
NAS Technical Report - NAS-03-012 August 2003
--

A Survey of Elliptic Curve Cryptosystems, Part I: Introductory
San C. Vo

NASA Advanced Supercomputing (NAS) Division – Research Branch (INR)
Information Sciences & Technology Directorate

NASA Ames Research Center, Moffett Field, CA 94043

Introduction

 The theory of elliptic curves is a classical topic in many branches of algebra and
number theory, but recently it is receiving more attention in cryptography. An elliptic
curve is a two-dimensional (planar) curve defined by an equation involving a cubic
power of coordinate x and a square power of coordinate y. One class of these curves is
elliptic curves over finite fields, also called Galois fields. These elliptic curves are finite
groups with special structures, which can play naturally, and even more flexibly, the roles
of the modulus groups in the discrete logarithm problems.
 Elliptic curves have been used actively in designing many mathematical,
computational and cryptographic algorithms, such as integer factoring, primality proving,
public key cryptosystems and pseudo-random number generators, etc. Essentially, elliptic
curve cryptosystems promise a better future for cryptography: more security against
powerful attacks in the era of computing capability.
 Many research papers in Elliptic Curve Cryptography (ECC) have been published
by researchers all over the world. However, the idea of using elliptic curves in
cryptography is still considered a difficult concept and is neither widely accepted nor
understood by typical technical people. The problem may stem from the fact that there is
a large gap between the theoretical mathematics of elliptic curves and the applications of
elliptic curves in cryptography.
 A large amount of ECC literature was collected and organized in the development
of this survey on ECC. Part I (Introductory) of this survey gives a modest overview of
how elliptic curves have been applied to public key cryptography. The objective is to
introduce a bridge between the mathematical facts of elliptic curves and its application
for cryptography. The document attempts to provide clear, intuitive and elementary
explanations to guide a typical technical reader into the world of elliptic curve
cryptography. However, basic knowledge of cryptography and abstract algebra, including
group theory and number theory, would be helpful for readers in several technical areas.
Part II of this survey, that will be developed, intends to focus more on practical
implementations.
 The materials cover elliptic curves and their basic mathematical rules, the Elliptic
Curve Discrete Logarithm Problem (ECDLP) and many typical attacks on ECDLP-based
cryptosystems. Also included are descriptions of elliptic curve public key cryptosystems
or schemes (encryption/decryption, digital signature, key agreement and key transport
schemes). The document concludes with discussions of elliptic curve implementations,
the security and advantages of ECC.
 It is hoped that this survey could provide readers good initial background on the
path into the new and exciting area of elliptic curve cryptography, that is attracting more
attention from cryptographers, computer scientists and researchers all over the world.

__
A Survey of Elliptic Curve Cryptosystems – Part I: Introductory – 10/27/2003

Page 1 of 105

NAS Technical Report - NAS-03-012 August 2003
--

Contents

 Page
Notations & Acronyms 03
Chapter 1. Elliptic Curves over Finite Fields 05
 A. Finite fields
 1. Basic facts
 2. Prime and binary finite fields
 B. The curve and the group
 C. Order of the group over finite fields
 1. Hasse’s theorem
 2. Formulae and algorithms on elliptic curve group orders
 3. Supersingularity
 4. Structure of the group
 5. Schoof’s algorithm and improvements
Chapter 2. Elliptic Curve Cryptosystems 15
 A. Introduction to elliptic curve cryptosystems
 1. The discrete logarithm problem
 2. The cryptographic problems on elliptic curves
 3. Approaches in elliptic curve cryptosystems
 4. Public key and private key generation
 B. Message encryption/decryption schemes
 1. Elliptic curve analogue of the ElGamal cryptosystem
 2. Massey-Omura elliptic curve cryptosystem
 3. Menezes-Vanstone elliptic curve cryptosystem
 C. Digital signature & authentication schemes
 1. Elliptic curve digital signature schemes
 2. Elliptic curve digital signature schemes with message recovery
 3. Summary of digital signature schemes
 4. Signcryption schemes
 5. Schnorr’s authentication schemes
 D. Key agreement & key exchange schemes
 1. Elliptic curve Diffie-Hellman key agreement
 2. Elliptic curve MTI key agreement
 3. Elliptic curve Menezes-Qu-Vanstone key agreement (MQV)
 E. RSA-type elliptic curve cryptosystems
 1. Public key cryptosystems using elliptic curves over a ring ZN
 2. RSA-type elliptic curve cryptosystems
 3. Elliptic curve digital signature & key agreement schemes
 F. Advantage features of elliptic curve cryptosystems
Chapter 3. Attacks on Elliptic Curve Cryptosystems 34
 A. Running time of algorithms
 B. Algorithms on the discrete logarithm problem
 C. Algorithms on the elliptic curve discrete logarithm problem
 D. Application of Weil pairing and MOV reduction attack
 E. SSA attack (Smart-Satoh-Araki attack)

__
A Survey of Elliptic Curve Cryptosystems – Part I: Introductory – 10/27/2003

Page 2 of 105

NAS Technical Report - NAS-03-012 August 2003
--

 F. Differential and power attacks
Chapter 4. Implementations of Elliptic Curve Cryptosystems 43
 A. Implementations of finite fields
 1. Finite fields
 2. Polynomial bases
 3. Normal bases and optimal normal bases
 4. Optimal normal basis (ONB)
 5. Low-complexity normal bases for GF(2m)
 (or Gaussian normal bases)
 6. Self-dual bases and self-dual normal bases
 7. Primitive normal bases
 8. Non-conventional basis
 9. The choice of bases
 10. Comparisons of finite fields
 11. Composite extension finite fields and subfields
 12. Optimal extension fields (OEF)
 B. Implementations of elliptic curves
 1. Conditions for selecting appropriate elliptic curves
 2. Methods of constructing elliptic curves
 3. Finding a point of a given prime order on an elliptic curve
 4. Methods/formulae to compute the order of an elliptic curve
 5. Schoof’s and Satoh’s algorithm for point-counting
 C. Implementations of elliptic curve arithmetic operations
 1. Scalar point multiplication: basic methods
 2. Scalar point multiplication: advanced methods
 3. Scalar point multiplication: other methods
 4. Algorithms on composite extension finite fields
 5. Representing points on an elliptic curve
 6. Half-point algorithms
 7. Modular multiplication algorithm
Appendices 81
 A. Trace functions
 1. Trace of a finite field element
 2. Properties on order of an elliptic curve
 3. Trace of an elliptic curve
 B. Twisted curves
 C. Examples
References 90

Notations & Acronyms

 These are two tables of basic notations and acronyms that will be frequently used
in the document.

Notation Meaning Notation Meaning
Fq or GF(q) Finite field of order q ℜ(x + iy) = Real part of a complex

__
A Survey of Elliptic Curve Cryptosystems – Part I: Introductory – 10/27/2003

Page 3 of 105

NAS Technical Report - NAS-03-012 August 2003
--

(consisting of q elements) ℜ(z) = x number z = x + iy
Fp or GF(p) Prime finite field of order p

(consisting of p elements)
ℑ(x + iy) =
ℑ (z) = y

Imaginary part of a complex
number z = x + iy

Fq
* = Fq\{0}

GF(q)* =
GF(q) \{0}

Multiplicative subgroup of
the finite field Fq or GF(q)

a·P, (a·P),
aP or (aP)

Scalar point multiplication of
an elliptic curve point P with
a scalar a

mF
2

or
GF(2m)

Binary finite field of order
2m (consisting of 2m
elements)

a|b a divides b
(or b is divisible by a)

E(Fq) or
E(GF(q))

Elliptic curve E over finite
field Fq or GF(q)

a∤b a does not divide b (or b is
not divisible by a)

#E or #E(Fq)
or #E(GF(q))

Order of an elliptic curve E
over finite field Fq or
GF(q)

Tr(·) Trace function

#(Fq) or
#(GF(q))

Order of a finite field Fq or
GF(q)

Z Ring of integers

Ẽ or E’ Twisted curve of E Q Field of rational numbers
〈P〉 or 〈g〉 Group generated by an

element P or g
R Field of real numbers

P = (xP, yP)
P = (Px, Py)

An elliptic curve point
represented with its x- and
y-coordinates

[a, b] Closed interval consisting of
all real values x, such that
a ≤ x ≤ b

∆ Discriminant mod n Modulo n
O The point at infinity of an

elliptic curve
a·b or ab Scalar multiplication of two

numbers
()p

· Legendre symbol
(modulo a prime number p)

lcm (a, b) Least common multiplier of
a and b

()b
· Jacobi symbol

(b is composite number)
gcd (a, b) Greatest common divisor of

a and b
ZN, where
N = pq

Ring of integers modulo N,
where N is composite

⎡a⎤
⎣a⎦

The smallest integer ≥ a
The biggest integer ≤ a

Table i. Notations

Acronym Meaning Acronym Meaning
ABC Anomalous binary curve or

binary anomalous curve
MIPS Million instructions per

second
AES Advanced encryption

standard
MOV Menezes-Okamoto-Vanstone

algorithm
CM Complex Multiplication MQV Menezes-Qu-Vanstone key

agreement scheme
DES Data Encryption Standard MY MIPS year
DH Diffie-Hellman algorithm NAF Non-adjacent form
DHP Diffie-Hellman problem OEF Optimal extension field

__
A Survey of Elliptic Curve Cryptosystems – Part I: Introductory – 10/27/2003

Page 4 of 105

NAS Technical Report - NAS-03-012 August 2003
--

DDHP Decision Diffie-Hellman
problem

ONB Optimal normal basis

DLP Discrete logarithm problem

PDA Personal Digital Assistant

DPA Differential Power
Analysis

PKI Public key infrastructure

ECC Elliptic curve cryptosystem RSA Rivest-Shamir-Adleman
cryptosystem

ECDDHP Elliptic curve Decision
Diffie-Hellman problem

SHA-1 Standard – Secure hash
algorithm, (revision 1)

ECDHP Elliptic curve Diffie-
Hellman problem

SKE Symmetric key encryption

ECDLP Elliptic curve discrete
logarithm problem

SPA Simple Power Analysis

ECDSA Elliptic curve digital
signature algorithm

SSA Smart-Satoh-Araki attack

IFP Integer factoring problem VLSI Very Large Scale Integration
KMOV Koyama-Maurer-Okamoto-

Vanstone cryptosystem

Table ii. Technical Acronyms

Chapter 1 – Elliptic Curves over Finite Fields

 The first chapter will introduce basic information about elliptic curves in order to
build a foundation of the subject: definitions of the elliptic curves and finite fields, group
structure of the elliptic curves and many other basic properties which are employed in
cryptography.
 Since 1985, two mathematicians Miller and Koblitz have been considered the co-
founders of elliptic curve cryptography. It is a new branch in cryptography that uses an
old, interesting and difficult topic in mathematics or, particularly, algebra: elliptic curves
over finite fields. This has both fortunate and “unfortunate” consequences for elliptic
curve cryptography. It is fortunate because ECC is based on a strong fundamental
mathematical background. This makes the solution of the Elliptic Curve Discrete
Logarithm Problem still infeasible; hence it still serves as the security core of elliptic
curve cryptosystems. The “unfortunate” aspect is that the background of ECC is too
complicated to be explained elementarily. The theory of RSA (Rivest-Shamir-Adleman)
cryptosystems, which are based on the Integer Factoring Problem, is fortunately rather
easy to discuss using high-school mathematics. The cryptosystems, which are based on
the Discrete Logarithm Problem defined on a finite field, require only elementary number
theory knowledge about modular multiplications and additions. To understand the theory
of ECC, the reader must study elliptic curves and get familiar with basic mathematical
concepts related to elliptic curves.

1.A. Finite fields
1.A.1. Basic facts

__
A Survey of Elliptic Curve Cryptosystems – Part I: Introductory – 10/27/2003

Page 5 of 105

NAS Technical Report - NAS-03-012 August 2003
--

 Here, we state briefly, without proof, basic facts on finite fields, necessary for
further discussion on the subject. For more details, please refer to books on the theory of
finite fields.
 Finite fields, also called Galois fields, are fields consisting of a finite number of
elements.
 A finite field has pm elements where p is a prime number and m is a natural
number. We call pm the order of the finite field. There is no finite field of order n, if n is
not a positive power of a prime number.
 For any prime p and positive integer m, there always exists a Galois field of order
pm.
 Two finite fields of the same number of elements pm are isomorphic, or roughly
speaking, they are the same finite field. We then call it the Galois field (or finite field) of
order pm, which is denoted by either GF(pm) or . mp

F

 We call p the characteristic of the finite field GF(pm). In general, the characteristic
of a field F is the smallest positive integer p such that p·1 = 43421L

 terms

11
p

++ = 0, where 1 is the

multiplicative identity of the field. We write char(F) = p. Then the arithmetic operations
over a finite field are reduced simply to multiplications and additions modulo p.
 It can be shown that p must be a prime number, because otherwise we can find a
prime factor p1 of p, (hence p1 < p) such that p1·1 = 0. The contradiction on the minimum
of prime p proves the claim.
 A cyclic group G is a group that can be generated from any one of its elements.
For multiplicative cyclic group G (whose operation is a multiplication ·) and any given
element g in G, there is an element a in G and a positive number k such that: ak =

43421 K
 termsk

aaa ⋅⋅⋅ = g. For an additive cyclic group (whose operation is an addition +) and any

given element g in G, there is an element a in G and a positive number k such that: ka =
 = g. 4434421 L

 termsk

aaa +++

 The multiplicative subgroup of a finite field Fq, written as Fq
* = Fq\{0} is

consisting of non-zero elements, or invertible elements of a finite field Fq. This group is
cyclic of order (q – 1). Particularly, we have: aq–1 = 1, ∀a ∈ Fq

*.
1.A.2. Prime and binary finite fields
 Let Fq be the Galois finite field of q elements, where q = pm for some prime p and
positive integer m.
 When m = 1, we usually denote the finite field Fp by Z/pZ or (if there will be
no confusion with the p-adic field). The arithmetic operations on F

Zp

p are the usual addition
and multiplication modulo p.
 When m ≥ 2, then we have: mpmp

ZF ≅/ . In fact, is only a ring, and it is even

not a field, let alone Galois field, since, for instance, any element that is a multiple of p is
equal to 0, not 1; hence it has no inverse.

mp
Z

 From now on, we will consider only elliptic curves E(Fq) defined over finite field
Fq, where q = pm and char(Fq) = p. Particularly, there are two cases:

__
A Survey of Elliptic Curve Cryptosystems – Part I: Introductory – 10/27/2003

Page 6 of 105

NAS Technical Report - NAS-03-012 August 2003
--

 If p is a prime number > 3, then q = p. In this case, the finite field is Fp and its
characteristic char(Fp) = p > 3. Particularly, Fp = {0, 1, 2,…, (p – 1)} whose field
operations are addition and multiplication modulo p. It is called a prime finite field.
 If p = 2, then q = 2m for some positive integer m. The finite field is GF(2m) or
and its characteristic is char (GF(2

mF
2

m)) = 2. It is called a binary finite field.
 The simplest case of a finite field is when m = 1. The finite field F2 = {0,1} has
the following operations:
 0 + 0 = 1 + 1 = 0 0·0 = 0·1 = 1·0 = 0
 1 + 0 = 0 + 1 = 1 1·1 = 1.
 We consider a less obvious case m = 2: the finite field GF(22). Let α3 = 1 and α ≠
1. The elements of GF(22) are 0, 1, α and α2 = α + 1. Using the standard trinomial basis,
we can write: GF(22) = {(00) = 0, (01) = 1, (10) = α, (11) = α2}. Simple operations on
GF(22) are:
 α + α = α2 + α2 = 1 + 1 = 0 α + α2 = 1 1 + α2 = α
 α ·α = α2 α ·α2 = 1 α2·α2 = α

1.B. The curve and the group
 Let E be an elliptic curve over a finite field Fq whose equation is given as follows.
 Over prime finite field Fp where prime p ≠ 2, 3, we use elliptic curves of equation

y2 = x3 + ax + b, where ∆ = –16(4a3 + 27b2) ≠ 0.
 Over binary finite field GF(2m), we use non-supersingular elliptic curves of
equation: y2 + xy = x3 + ax2 + b , where ∆ = b ≠ 0.
 We will also discuss supersingular elliptic curves over binary finite field GF(2m)
whose equations are of the form:

y2 + cy = x3 + ax + b, where ∆ = c4 ≠ 0.
 All the points of E(Fq), including the point at infinity, (which is denoted
conveniently as O), form an abelian (or commutative) group whose identity element is O
and the group law is addition +, which is defined as follows. We will then consider E as
both a curve and a group simultaneously. This group of elliptic curve points is the group
on which an elliptic curve cryptosystem will be defined. It is similar to the case of Diffie-
Hellman cryptosystem, (Diffie & Hellman [DH76] or more generally, any cryptosystem
based on the Discrete Logarithm Problem, defined on a group of elements of a prime
finite field.
Additive inverse of a point P
 First, we have –O = O. For any point P = (x, y) ≠ O on E, the additive inverse
point (–P) of point P is defined as in the table 1.1.

Equation of elliptic curve E over a finite field Fq –P = –(x, y)
y2 = x3 + ax + b (over Fp where prime p ≠ 2, 3) –P = (x, –y)
y2 + xy = x3 + ax2 + b (non-supersingular elliptic curve over GF(2m)) –P = (x, y + x)
y2 + cy = x3 + ax + b (supersingular elliptic curve over GF(2m)) –P = (x, y + c)
Point addition rules
 For any point P ≠ O and Q ≠ O on E, we have P + Q = Q + P = R, where the

inverse point (– R) is the intersection point of the elliptic
curve E with the line going through P and Q if P ≠ Q or with

__
A Survey of Elliptic Curve CryA

-(A+B)

C=A+B

o

2D

-2D

o

o

o

o

o

B
o D

tangent line at D

x

y

ptosystems – Part I: Introductory – 10/27/2003
Page 7 of 105

NAS Technical Report - NAS-03-012 August 2003
--

the tangent line to the elliptic curve at the point P if P = Q. (There is exactly one such
point of intersection (– R), since the intersection of a straight line and a cubic curve will
give at most 3 points.) The addition rules, which are also called chord-and-tangent laws,
will be best illustrated with the field of real numbers R as in the graph in Figure 1.1.
Figure 1.1. Point addition rules (or chord-and-tangent rules) for an elliptic curve
 However, for finite fields, an elliptic curve is not a continuous curve, but it is a
collection of scattered points and the point at infinity O (which is not drawn). Refer to
Figure 1.2 and 1.3.
 For example, let us consider the elliptic curve E: y2 = x3 + x + 6 over the finite
field F11, which has order #E(F11) = 13.
E= 〈P〉={(2,7), (5,2), (8,3), (10,2), (3,6), (7,9), (7,2), (3,5), (10,9), (8,8), (5,9), (2,4), O}.

0 21 3 4 5 76 8 9 10

1
0

2
3

4
5
6
7
8
9
10

o

o
o

o

o

o

o

o

o
o

o

o

y

x

A

B

-(A+B)

A+B

Addition
(2,4) + (3,5) = (7,2) or
12P+8P = 20P = 7P

P

2P

Doubling
2.(2,7) =(5,2)

Figure 1.2.
The graph of an elliptic curve E((GF11)): y2 = x3 + x + 6
includes 12 points and the point at infinity O.
The number of points is #E((GF11)) = 13.
The point addition rules over finite field GF11.

Figure 1.3.
The graph of an elliptic curve E(GF(23)): y2 = x3 + x + 1 has
13 points and the point at infinity O.
The number of points is #E(GF(23)) = 14.

10 654321 αααααα
0

1α

2α

3α

4α

5α

6α

x

y

1

o

o

o

o

o

o
o

o

o

oo

o
o

 We have, trivially, P + (–P) = O. One can imagine that the third intersection point
of the elliptic curve and the line going through 2 points P and (–P) is at infinity. Hence O
is called the point at infinity.
 The explicit formulae for the addition of two non-identity points P = (x1, y1) and
Q = (x2, y2) in all three cases discussed above are given in table 1.2. There is a basic
property of cubic equations that was used in deriving those formulae.
 If x1, x2 and x3 are three roots of a cubic equation X3 + aX2 + bX + c = 0, then

x1 + x2 + x3 = – a.
Point doubling formula
 When P = Q, the addition formula is called the formula for doubling a point P.
This is the basic arithmetic for scalar point multiplication that will be used the most in
implementations of elliptic curves.
Scalar multiplication of a point (or Scalar point mutiplication)
 Given a point P on an elliptic curve E and an integer k, the scalar point
multiplication of P by k is the point k·P that is computed by the following formula:

k·P = 44 344 21 L
 termsk

PPP +++ if k > 0, and k·P = (–k)·(–P), if k < 0.

__
A Survey of Elliptic Curve Cryptosystems – Part I: Introductory – 10/27/2003

Page 8 of 105

NAS Technical Report - NAS-03-012 August 2003
--

The notation k·P is usually replaced by other equally popular notations: kP, (kP) or (k·P)
where the context is clear.
 Obviously, we have: 0·P = P + (– P) = O.
Equation of elliptic curve E over a

finite field Fq

R = (x3, y3) = (x1, y1) + (x2, y2) where

Over Fp where prime p ≠ 2, 3
y2 = x3 + ax + b,
∆ = –16(4a3 + 27b2) ≠ 0
P = (x1, y1)
Q = (x2, y2)

x3 = λ2 – x1
 – x2

y3 = λ (x1
 – x3) – y1

where λ =

−
−

≠ ±

+
=

⎧

⎨
⎪⎪

⎩
⎪
⎪

y y
x x

 P Q

x a
y

 P Q.

2 1

2 1

1
2

1

3
2

if

if

If y1
 = 0, then P = (x1, 0) = – P. Hence 2.P = O.

Non-supersingular elliptic curve
over GF(2m)
y2 + xy = x3 + ax2 + b, b ≠ 0
P = (x1, y1)
Q = (x2, y2)

Let κ =
+
+

y y
x x

1

1 2

2 and µ = +x
y
x1

1

1
.

x

y y
x x

+
y y
x x

x x a

x x a P Q

x +
b
x

a P Q

3

1 2

1 2

2
1 2

1 2
1 2

2
1 2

1
2

1
2

2

=

+
+

⎛
⎝
⎜

⎞
⎠
⎟

+
+

+ + +

= + + + + ≠ ±

= + + =

⎧

⎨

⎪
⎪
⎪

⎩

⎪
⎪
⎪

κ κ

µ µ

 if

 if

,

y

y y
x x

x x x y

x x x y P Q

x + x
y
x

x x

x + x P Q.

 3

1 2

1 2
1 3 3 1

1 3 3 1

1
2

1
1

1
3 3

1
2

31

=

+
+

⎛
⎝
⎜

⎞
⎠
⎟ + + +

+ + + ≠ ±

+
⎛
⎝
⎜

⎞
⎠
⎟ +

= + =

⎧

⎨

⎪
⎪
⎪⎪

⎩

⎪
⎪
⎪
⎪

()

.()

.

().

= if

 if

κ

µ

If x1 = 0, then P = (0, b) = – P. Hence 2P = O.
Supersingular elliptic curve over
GF(2m)
y2 + cy = x3 + ax + b,
c ≠ 0
P = (x1, y1)
Q = (x2, y2)

Let κ =
+
+

y y
x x

1

1 2

2 and
c

ax +
=

2
1η

x

y y
x x

x x

x x P Q
x a

c
 P Q

3

1 2

1 2

2

1 2

1 2

1
4 2

2
2

=

+
+

⎛
⎝
⎜

⎞
⎠
⎟ + +

+ + ≠ ±

+
= =

⎧

⎨

⎪
⎪
⎪

⎩

⎪
⎪
⎪

= if

 if

 2κ

η ,

y

y y
x x

x x y c

x x y c P Q

x a
c

x x y c

x x y c P Q.

3

1 2

1 2
1 3 1

1 3 1

1
2

1 3 1

1 3 1

=

+
+

⎛
⎝
⎜

⎞
⎠
⎟ + + +

+ + + ≠ ±

+⎛
⎝
⎜

⎞
⎠
⎟ + + +

= + + + =

⎧

⎨

⎪
⎪
⎪⎪

⎩

⎪
⎪
⎪
⎪

()

.()

()

.()

= if

 if

κ

η

__
A Survey of Elliptic Curve Cryptosystems – Part I: Introductory – 10/27/2003

Page 9 of 105

NAS Technical Report - NAS-03-012 August 2003
--

Table 1.2. Point addition formulae for elliptic curves over finite fields
 The order n of a point P is the smallest positive integer such that n·P = O.
 In fact, the graph of an elliptic curve over a finite field consists of a finite number
of points (together with the point at infinity). It is not a continuous curve as in the case
where an elliptic curve is defined over real numbers. But we still have a similar property:
a line going through any two points will pass through one and only one other point.

1.C. Order of the group over finite fields
1.C.1. Hasse’s theorem
 The order of the group E(Fq) is #E(Fq) = q + 1 – t, where | t | ≤ 2 q1/2.
 By this theorem, the order of an elliptic curve is roughly about the order of the
finite field. For any element a ∈ Fq, if it is the x-coordinate of a point P in E(Fq), then it
is also the x-coordinate of the point (–P). Hence, the probability for a ∈ Fq to be the x-
coordinate of a point in E(Fq) is roughly equal to ½.
 This theorem is commonly called the Riemann Hypothesis for elliptic curves over
a finite field. It was proved, for many of its cases, by Artin in his Ph.D. thesis, for elliptic
curves by Hasse, and for curves of higher genus. Note that this is not the same as the
Riemann Hypothesis for the Riemann zeta function.
Property: In general, any value | t | ≤ 2p1/2 can occur if gcd (t, p) =1, for any
characteristic p. Particularly:
 When q = p, a prime, every possible value of t (i.e., | t | ≤ 2p1/2) can be attained by
some elliptic curve. When | t | ≤ p1/2, the elliptic curves are roughly equally distributed.
 When q is even (or p = 2), every odd value of t such that | t | ≤ 2q1/2 can be
attained by some non-supersingular elliptic curve.
Waterhouse’s lemma ([W69]): For q = pm, there exists an elliptic curve E over a finite
field Fq such that the elliptic curve order #E(Fq) = q + 1 – t, if and only if one of the
following conditions holds:
 (i) t ≢ 0 (mod p) and t2 ≤ 4q.
 (ii) m is odd and one of the followings holds:
 (1) t = 0.
 (2) t2 = pq = pm+1 if p = 2 or 3.
 (iii) m is even and one of the followings holds:
 (1) t2 = 4q.
 (2) t2 = q and p ≢ 1 (mod 3).
 (3) t = 0 and p ≢ 1 (mod 4).
1.C.2. Formulae and algorithms on elliptic curve group orders
Hasse-Weil’s theorem (Weil’s conjecture, proved by Helmut Hasse in 1934.)
 Let E be an elliptic curve over a finite field Fq. Then E is also an elliptic curve
over an extension field GF(qk) of Fq. As a group, we have the inclusion relationship:
E(Fq) ⊂ E(GF(qk)). That is, the elliptic curve order #E(Fq) must divide the elliptic curve
order # E(GF(qk)). Moreover, if #E(Fq) = q + 1 – t, then # E(GF(qk)) = qk + 1 – α k – β k,
where α and β are complex numbers satisfying the equation:

qT2 – tT + 1 = (1 – αT) (1 – βT).
 This theorem helps to compute the order of an elliptic curve defined over a
composite extension finite field from the order of the same elliptic curve over one of its

__
A Survey of Elliptic Curve Cryptosystems – Part I: Introductory – 10/27/2003

Page 10 of 105

NAS Technical Report - NAS-03-012 August 2003
--

subfields. Explicitly, we have two relationships between elements α and β: α + β = t
and αβ = q. Then the order #E(GF(qk)) can be computed via the sum Sk = αk + βk that is
given by the following recursive formula (also called a Lucas sequence):

Sk = (α + β)Sk –1 – αβSk –2 = t Sk –1 – q Sk –2 , for k ≥ 2, where S0 = 2 and S1 = α + β = t.
Direct formulae for the orders of elliptic curves over finite fields
 When the finite field is of computationally small order, one still can use direct
formulae to find the order of an elliptic curve. For each and every element x ∈ Fq, we
will determine whether there is (are) 0, 1 or 2 corresponding values of y by the Legendre
symbol (in prime finite field Fp) and the trace function (in binary finite field GF(2m)).
Summary of results is in the table 1.3.

Equation of elliptic
curve E over a finite

field Fq

Order of the elliptic curve
#E(Fq)

Over Fp, p ≠ 2, 3
y2 = x3 + ax + b
∆ = –16(4a3 + 27b2) ≠
0

#E = 1 + ∑
∈

⎥
⎦

⎤
⎢
⎣

⎡
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ ++

pFx p
baxx 1

3

= p + 1 ∑
∈

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ ++

pFx p
baxx3

,

where ()p
* denotes the Legendre symbol.

Non-supersingular
elliptic curve over
GF(2m)
y2 + xy = x3 + ax2 + b
b ≠ 0

#E = 2 + ()∑
∈≠

++ −

−+
mFx

xbxaTr

2
0

).(2

)1(1

 = 2m + 1 + (–1)Tr(a) ∑
∈≠

+ −

−
)2(0

).(2

)1(
mGFx

xbxTr

When x = 0, we always have one solution: y = b1/2 = .
12 −m

b
The order must be an even number.

Supersingular elliptic
curve over GF(2m)
y2 + cy = x3 + ax + b
c ≠ 0

#E = 1 + ()∑
∈

++−

−+
)2(

)]([32

)1(1
mGFx

baxxcTr

 = 2m + 1 + ∑
∈

+− −

−−
)2(

)]([)(322

)1()1(
mGFx

axxcTrbcTr

The order must be an odd number of possible values:
#E = 2m + 1, 2m + 1 ± 2m/2, 2m + 1 ± 2(m+1)/2, or 2m + 1 ± 2(m+2)/2.

Table 1.3. Direct formulae for computing the orders of elliptic curves over finite fields
Other algorithms
 Many particular elliptic curves over particular finite fields, whose the orders are
easily computed or formulated, are implemented in cryptography for different purposes.
For examples, the Koblitz curves or elliptic curves over a prime finite field Fp of the form

 Ep(a,0): y2 = x3 + ax, for a ≢ 0 (mod p) or Ep(0,b): y2 = x3 + b, for b ≢ 0 (mod p).
 For a general elliptic curve over larger finite field Fq, one should use Shanks’
Baby-step-Giant-step algorithm (Buchmann & Müller [BM91]). The idea is to pick up a
random point P on the elliptic curve and to compute an integer n such that: q + 1 – 2q1/2 ≤
n ≤ q + 1 + 2q1/2 and nP = O. If we can find only one such number, then it is the order of
the elliptic curve. If not, we find another point and continue. The groups, generated by
all the points that we picked, will eventually have the order of the elliptic curve. Its
running time is about O(q1/4).

__
A Survey of Elliptic Curve Cryptosystems – Part I: Introductory – 10/27/2003

Page 11 of 105

NAS Technical Report - NAS-03-012 August 2003
--

 Shanks’ Baby-step-Giant-step algorithm can fail when multiple values of n are
available for every point P. Mestre [M86] showed that if Shanks’ algorithm fails for an
elliptic curve, then it will not fail on its twisted curve.
 If an elliptic curve has Complex Multiplication properties, there are other efficient
algorithms to count the points. Refer to Lenstra & Lenstra [LL90], Atkin & Morain
[Mo91] and Lay & Zimmer [LZ94].
 In 1985, Schoof’s algorithm, which is of polynomial running time, was proposed
and later has been improved both theoretically and practically to be used to compute the
order of an elliptic curve over very large finite fields.
1.C.3. Supersingularity
 An elliptic curve over a finite field Fq, where q = pm, is supersingular if p divides
t, where #E(Fq) = q + 1 – t. If otherwise, it is a non-supersingular elliptic curve.
Lemma (i) If char(Fq) = 2 (or 3), the elliptic curve E(Fq) is supersingular if and only if
its j-invariant is equal to 0.
 (ii) The elliptic curve E(Fq) is supersingular if and only if either t2 = 0, q, 2q, 3q
or 4q.
 From the lemma, we observe that: If q is even (i.e., q = 2m), then E is non-
supersingular, when #E(GF(2m)) is even or t is odd. Otherwise, if E is supersingular,
when t is even, or the order #E(GF(2m)) is odd.
 Explicitly, the possible values of #E(GF(2m)) for supersingular elliptic curves are:

2m + 1, 2m + 1 ± 2m/2, 2m + 1 ± 2(m+1)/2 and 2m + 1 ± 2(m+2)/2.
Each value can be attained provided it is an integer, of course.
 If q = p, a prime > 3, then the elliptic curve E(Fq) E is supersingular if and only if
its order #E(Fp) = p + 1.
 Indeed, the simple reason is that | t | ≤ 2p1/2 < p. Hence the condition p|t implies
that t = 0.
 The class of supersingular elliptic curves also is an interesting area of research in
cryptography. The supersingular elliptic curves over either finite fields Fp or GF(2m) are
vulnerable to the MOV attack (Menezes, Okamoto & Vanstone [MOV93]).
 We now re-state Waterhouse’s lemma in a different way, taking consideration of
supersingularity [BS91].
Lemma: There exists an elliptic curve E over a finite field Fq where q = pm, such that
#E(Fq) = q + 1 – t, if and only if one of the following conditions holds:
 (i) For the case of supersingular curves,
 m is even: t = ±2q1/2 = ± 2pm/2.
 m is even and p ≢ 1 (mod 3): t = ±q1/2 = ± pm/2.
 m is odd and p = 2 or 3: t = ± (pq)/12 = ± p(m+1)/2.
 m is odd or m is even and p ≢ 1 (mod 4): t = 0.
 (ii) For the case of non-supersingular curves, two conditions | t | ≤ 2q1/2 and gcd
(t, p) = 1 must hold.
1.C.4. Structure of the group
 The group E(Fq) is either a cyclic group or a direct sum of two cyclic groups

⊕ , where n
1nZ

2nZ 2|n1 and n2|(q –1). That is, we have n2| gcd(n1, q –1).

 The elliptic curve has order # E(Fq) = n1n2.

__
A Survey of Elliptic Curve Cryptosystems – Part I: Introductory – 10/27/2003

Page 12 of 105

NAS Technical Report - NAS-03-012 August 2003
--

 This result together with the theory of abelian groups can help us determine the
group structure. One effective technique in algebra is counting the number of points of
particular order. There are many special cases to consider. In an easiest case, the order of
a point to be considered is 2. In fact, points of order 2 are of the form (x, 0) when
char(Fq) ≠ 2, 3. For non-supersingular elliptic curves when char(Fq) = 2, there is only
one point of order 2. It is (0, 1/2).
Lemma: If the order #E(Fq) is square-free, then E(Fq) is a cyclic group.
 In other words, if any prime number s such that s2|#E(Fq) must satisfy the
condition s∤(q – 1), then the group E(Fq) is cyclic.
1.C.5. Schoof’s algorithm and improvements
 This is a short historical summary of developments of the Schoof’s algorithm
since its original version in 1985. Many developed steps of the complete algorithm are
described in more details in the cited references.
a. Schoof ([S85],[S87]) presented an algorithm for counting the number of points N
on an elliptic curve. It originally applied in the case where q = pm and p > 3.
 Schoof used the theory of division polynomials and Frobenius endomorphisms to
determine the order N (modulo l) for a collection of small primes l. If the number of
such primes is large enough, such that the product of such primes ∏l > 4q1/2, then one
can use the Chinese remainder theorem to determine the number N uniquely. Schoof’s
algorithm is a deterministic method. This algorithm has a running time of about O(ln8 q)
or O(ln9 q).
 Buchmann & Müller [BM91] gave experimental results using a combination of
Schoof’s algorithm and Shanks’ Baby-step-Giant-step algorithm for the case p > 3. First,
we compute the order #E(Fq) mod (l1l2…ls) for a few small primes l1, l2,…, ls, using
Schoof’s algorithm. This helps to reduce the table size in the Baby-step-Giant-step
algorithm by a factor of the inverse product (l1 l2…ls) –1.
 Menezes, Vanstone & Zuccherato [MVZ93] discussed Schoof’s algorithm
implemented for finite fields of characteristic 2.
b. Since Schoof’s algorithm’s running time is too slow, it was not practical in
applied cryptography. Later, improvements in both theory and implementation were
made by Elkies and Atkin in their unpublished manuscripts from 1986 to 1992. Atkin
and Elkies used the properties of modular polynomials to get the possible values of N
modulo l. This method introduced new concepts: Atkin primes and Elkies primes. It
involves the isogeny between two l-isogenous elliptic curves. Atkin and Elkies also
proposed using more modular equations and modular forms to improve the
implementation.
 The improvements have provided more efficient implementation of Schoof’s
algorithm over finite fields of any large characteristic. The improved Schoof’s algorithm
is then called Schoof-Elkies-Atkin (SEA) algorithm.
 Implementations of this algorithm were presented in a few works, such as Morain
[Mo95] and Joux & Lercier [JL]. Couveignes & Morain [CM94] showed an improvement
in case of powers of small Elkies primes by using a structure called an “isogeny cycle.”
Lehmann, Maurer, Müller & Shoup [LMMS94] presented a variant of Atkin’s method
and its implementation. More details were also organized in Schoof [S95]. The author
also discussed Mestre’s method and Cornacchia’s algorithm.

__
A Survey of Elliptic Curve Cryptosystems – Part I: Introductory – 10/27/2003

Page 13 of 105

NAS Technical Report - NAS-03-012 August 2003
--

 Mestre’s method is to simplify to Shanks’ Baby-step-Giant-step algorithm in the
special cases. This method is practical for finite fields that are not too large.
 Cornacchia’s algorithm uses the natural lattice structure of the endomorphism
ring of the elliptic curve and then it is very effective if the ring is known. It is the basis
for the primality test by Atkin & Morain [Mo91].
c. The problem remains for the case p = 2, or in fact, for small characteristics less
then l, the prime degree of isogenies. Couveignes [C94] proposed a method to
work for any p, hence, helped to solve the case p = 2, using the formal group associated
to an elliptic curve. It is an important theoretical breakthrough that speeds up the
computations significantly. The first successful implementation of this algorithm was
presented in Lercier & Morain ([LM95], [LM95a]). Its running time is of O(l3)
elementary field operations and need a memory storage of O(l2). The main cost for a
counting algorithm in this case is the computation of isogenies of prime degree l between
two isogenous elliptic curves.
d. Later, Lercier [L96] proposed a heuristic algorithm for computing the isogenies,
for the case of characteristic 2, to replace that method in Couveignes’ algorithm since this
is too slow and requires too much memory. Lercier’s method works on the elliptic curve
itself instead of on its formal group. Its running time is also O(l3) field operations, but it
is faster by a significant constant factor in practice and conceptually simpler. The
memory space required is reduced to only O(l). It is not known whether this method can
be generalized to the case of any other characteristic.
 In turn, Couveignes proposed a general algorithm (method II) using elementary
Galois properties of the p-torsion points, without using the formal group. It works for any
characteristic. It was based on the ideas in Lercier & Morain’s work above.
 This algorithm allows the use of fast multiplication for polynomials to achieve its
running time at O(l2+ε) field operations. This method seems to reduce significantly the
burden of implementation of a point counting algorithm. The memory required is also
O(l).
e. References on current developments of the algorithm are discussed in Couveignes
[C96], Couveignes, Dewaghe & Morain [CDM96], Müller & Paulus[MP97], Dewaghe
[D98], Lercier ([L97],[L97a]), Elkies [E98], Galbraith [G99] and later works. Some
surveys are helpful to understand the general ideas: Buchmann, Müller & Shoup
[BMS95] and Lercier & Morain ([LM95a],[LM97]).
f. Satoh [Sa00] proposed a completely different algorithm (from Schoof-Elkies-
Atkin algorithm) with running time O(log3+aq) or O(log5q) for small fixed characteristic
p ≥ 5 and suggested that algorithm can be applied for the case of characteristic 2 and 3.
Satoh’s method is based on the canonical p-adic lift of an ordinary elliptic curve.
 Fouquet, Gaudry & Harley [FGH00] extended Satoh’s method to the case of
characteristic 2 and 3. The authors also showed in [FGH01] an implementation of the
Satoh-FGH algorithm and an early-abort strategy based on the Schoof-Elkies-Atkin
(SEA) algorithm to find secure random elliptic curves in finite fields of characteristic 2 in
a faster time than previous methods.

Chapter 2 – Elliptic Curve Cryptosystems

__
A Survey of Elliptic Curve Cryptosystems – Part I: Introductory – 10/27/2003

Page 14 of 105

NAS Technical Report - NAS-03-012 August 2003
--

 We will discuss basic cryptosystems using elliptic curves, such as
encryption/decryption, digital signatures and key agreement, etc. For each scheme, we
provide brief discussions and analyses on their security against some known attacks that
are already published. We also mention RSA-type elliptic curve cryptosystems that have
interesting applications.

2.A. Introduction to elliptic curve cryptosystems
2.A.1. The discrete logarithm problem
 The discrete logarithm problem can be defined over any abelian group. For
simplicity, we recall the definition of DLP over finite cyclic group.
 Let G be a finite cyclic group of order n and generated by g, i.e., G = 〈g〉. Given a
point y ∈ G, find an integer m, 0 ≤ m ≤ n – 1, such that y = gm.
 We call m = logg y the discrete logarithm of y to the base element g.
 The DLP can be solved in a sub-exponential running time.
 In cryptography, one usually takes group G as the cyclic (multiplicative)
subgroup of a modulo group Zp where p is a prime number. Then

 G = Zp
* = Zp\ {0} and its order is |G| = |Zp

*| = p – 1.
 Let g be a generator of G. Then given y ∈ G = 〈g〉 = Zp

*, the DLP is to find an
integer m, 0 ≤ m ≤ p – 1, such that y = gm (mod p).
 More generally, group G can be the multiplicative group in a finite field GF(pm)
Then its order is n = |G| = |GF(pm)*| = pm – 1. In fact, for cryptographic security reasons,
one prefers to work on a cyclic subgroup of G whose order is a prime number that divides
the number (pm –1).
 A variety of groups are used in this problem instead of the modulo groups. Now
we will consider using the group of points on an elliptic curve over finite fields.
2.A.2. The cryptographic problems on elliptic curves
a. The elliptic curve discrete logarithm problem
 Given a point P of order n in an elliptic curve E over a finite field Fq and a point
Q in the subgroup of E generated by P, denoted by 〈P〉, the ECDLP is to find an integer
m, where 0 ≤ m ≤ n – 1, such that Q = m·P.
 Another way to describe the problem is:
 Given a point P of order n in an elliptic curve E over a finite field Fq and a point
Q in E, the ECDLP is to find an integer m, 0 ≤ m ≤ n – 1, such that Q = m·P if such a
number exists.
 Point P is called the base point in this problem. We call m = logPQ the elliptic
curve discrete logarithm of Q to the base point P.
 The ECDLP is believed to be unsolvable in sub-exponential time, while there are
already algorithms to solve the DLP in sub-exponential time.
 The following lemma from group theory tells us whether a solution for an ECDLP
exists.
Lemma: Let N be the order of the elliptic curve E and n be the order of the subgroup 〈P〉
(generated by point P). Let l = N/n be the cofactor, or the index, of subgroup 〈P〉. If
gcd(n, l) = 1, then a point Q in the elliptic curve E is in subgroup 〈P〉 if and only if n·Q =
O.

__
A Survey of Elliptic Curve Cryptosystems – Part I: Introductory – 10/27/2003

Page 15 of 105

NAS Technical Report - NAS-03-012 August 2003
--

 The condition gcd(n, l) = 1 is easily satisfied, since in practice, n should be a
prime number.
b. Elliptic curve Diffie-Hellman problem
 Elliptic curve Diffie-Hellman problem (ECDHP) ([DH76]): Given a point P of
order n in an elliptic curve E over a finite field Fq and two points (k·P) and (l·P),the
ECDHP is to find the point (kl·P).
 This problem is also used in the elliptic curve Diffie-Hellman key exchange
algorithm. Boneh & Lipton [BL96] proved that: If the ECDLP cannot be solved in sub-
exponential time, then neither can the ECDHP.
 Elliptic curve decision Diffie-Hellman problem (ECDDHP) (Boneh [B98]): Given
a point P of order n in an elliptic curve E over a finite field Fq and three points (k·P),
(l·P) and (m·P), the ECDDHP is to decide whether m = kl (modulo the order of point P).
 The ECDDHP is not harder than the ECDHP. Boneh & Venkatesan [BV96] and
Boneh & Shparlinski [BS01] discussed many issues on security of the ECDHP and
related schemes.
2.A.3. Approaches in elliptic curve cryptosystems
 In 1985, Koblitz and Miller independently introduced the use of the group of
points of an elliptic curve over a finite field in cryptosystems based on the elliptic curve
discrete logarithm problem. (Koblitz’ work [K87] was not published until two years later
than Miller’s [Mi85]).
 They are called elliptic curve cryptosystems. In the current cryptography
literature, there are basically three approaches.
 (i) Diffie-Hellman/DSA-type elliptic curve cryptosystems
 Many proposed elliptic curve cryptosystems of this type are mentioned, such as
ElGamal, Menezes-Vanstone, Massey-Omura, Schnorr, Nyberg-Rueppel schemes, MQV
schemes. They are also used in many Standards such as ANSI X9.62 & ANSI X9.63 and
IEEE P1363.
 (ii) RSA-type elliptic curve cryptosystems: KMOV, Demytko schemes and other
schemes:Koyama’s “K scheme,” Koyama & Kuwakado, Meyer-Müller, Chua-Ling,
Fujioka-Fujisaki-Okamoto and McCurley schemes.
 (iii) Other elliptic curve cryptosystems: using supersingular elliptic curves or
Koblitz curves.
 A Koblitz curve over GF(2m) is a non-supersingular elliptic curve whose defining
function has coefficients in F2. In literature, they are also referred as anomalous binary
curves (ABC’s) or binary anomalous curves. These curves must have the form Ea: y2 + xy
= x3 + ax2 + 1, where a = 0 or 1. These curves are non-supersingular elliptic curves (in
order to resist MOV attack) and not vulnerable to the SSA attack. They are easy to create
and implementbecause of Complex Mulitplication properties.
 We will present the outline of practical approaches of elliptic curve cryptosystems
that are proposed in cryptography literature. They are grouped into: message
encryption/decryption schemes, digital signature schemes with and without message
recovery, authentication schemes, key exchange and key agreement schemes, RSA-type
elliptic curve cryptosystems, and elliptic curve digital signature schemes over a ring ZN.
 Each scheme or cryptosystem will be presented in its basic algorithms. Simple
analyses on security that should be widely known in literature and a few typical features
will be also pointed out where possible.

__
A Survey of Elliptic Curve Cryptosystems – Part I: Introductory – 10/27/2003

Page 16 of 105

NAS Technical Report - NAS-03-012 August 2003
--

2.A.4. Public key and private key generation
 Let E be a non-supersingular elliptic curve defined over the finite field Fq, where
either q = 2m, for some positive integer m or q is a prime greater than 3. Choose P as a
base point of a big prime order n in E(Fq). We will work on the group generated by the
point P: 〈P〉 = {O, P, 2P,…, (n – 1)P}.
 Key generation: The signer will select a random integer d in the interval [2, n –
2], and compute the point Q = d·P. The private key is d and public key is Q or, in fact, a
pair of points P and Q on the elliptic curve.

2.B. Message encryption/decryption schemes
 Unless stated otherwise, the elliptic curve E is a non-supersingular curve defined
over a (Galois) finite field Fq, where q is a prime p > 3, or q = 2m, where m is a positive
integer. Simple analyses on security and specification features are occasionally discussed.
2.B.1. Elliptic curve analogue of the ElGamal cryptosystem ([E85])
 A point P of order n on an elliptic curve E is fixed and publicly known. User A
chooses a random number d, keeps it secretly, and publishes the key Q = d·P. To send a
message m to user A, user B first embeds m to a point M = (mx, my) on E, then chooses a
random integer k. User B will send a pair of points (k·P, M + k·Q), assuming k·Q ≠ O.
 To decrypt the message, user A will use his secret key to compute: M = (M + kQ)
– d(kP).
 A disadvantage of this cryptosystem is that one must use a point M = (mx, my) on
the elliptic curve to embed the message m. Hence it limits the plaintext space somehow.
This is another drawback, since the eavesdropper can recover the full message if he
somehow knows only one part of it, either mx or my.
 An alternative version of this cryptosystem is to replace the elliptic curve addition
in (M + kQ) by a regular finite field addition in both encryption and decryption. This
avoids the above disadvantage; now message M is not necessarily embedded on the
elliptic curve.
 Encryption: Assuming that kQ ≠ (0,0), then the ciphertext is the pair of data that
includes: M ⊕ (kQ) = (mx + (kQ)x, my + (kQ)y) and point (kP). Here the addition + is the
regular finite field addition.
 Decryption: Using his secret key a, user A can recover the plaintext as:

[M ⊕ (kQ)] – d(kP) = (mx + (kQ)x – (kQ)x, my + (kQ)y – (kQ)y) = (mx, my) = M.
 In this algorithm, one does not need to compute the order of the elliptic curve. But
in practice, we need to do so for security confidence on the infeasibility of the ECDLP.
 The ciphertext is expanded by a factor of 2 (or only 3/2 if one uses compressing
techniques). The same drawback: if someone knows mx (or my), he can solve for (kQ)x
then (kQ)y and my (or mx) easily.
 Another version of this scheme is just to use the x-coordinate of a point, and
hence the message M is now just written as M = mx. Then the message will be XOR-ed
with (kQ)x and concatenated with k·P to form the ciphertext: kQ || M ⊕ (kQ)x. The
decryption is similar to the method described above, after (k·P) is extracted from the
ciphertext.

__
A Survey of Elliptic Curve Cryptosystems – Part I: Introductory – 10/27/2003

Page 17 of 105

NAS Technical Report - NAS-03-012 August 2003
--

 Alternative version using symmetric key encryption: The message will be
encrypted by a symmetric key encryption scheme SKE with (k·Q) as a secret key and will
be sent together with (k·P) to user A.
 User A receives the ciphertext, the pair e = SKE(kQ)(M) and point (k·P). User A
then uses his secret key a to compute a· (k·P) = k·Q and uses (k·Q) to decrypt the
message:).(1

).(eSKEM Qk
−=

2.B.2. Massey-Omura elliptic curve cryptosystem ([MO86])
 This cryptosystem will be used to send a message m that is embedded as a point P
on a fixed elliptic curve whose order N is computed and also publicly known. Each user
will choose at random an integer e such that gcd(e, N) = 1, and compute d such that e.d ≡
1 (mod N). Both e and d are kept secret. That is, for some integer k,

(ed)·P = (1 + kN) ·P = P + kN·P = P + O = P.
 User A sends eAP to user B. Then user B sends back eB(eAP) to user A. Then user
A does his decryption by computing: dA.(eB(eAP) = eB.P and sends it back to user B. No
one can read the message yet, up to this stage. Finally, user B does his decryption to read
the message: dB(eBP) = P.
 The security of this cryptosystem is obviously based on the infeasibility of
ECDLP. Massey-Omura elliptic curve cryptosystem can be considered a variant version
of the original Diffie-Hellman key exchange scheme.
2.B.3. Menezes-Vanstone elliptic curve cryptosystem ([MV90],[MV93])
 This is also mentioned as a version of ElGamal cryptosystem in many
cryptography literature. Let E be a non-supersingular elliptic curve defined over a finite
field Fp, where prime p > 3. Choose a point P in E(Fp) of order n and compute the point
Q = d·P with the secret key d. The pair (P, Q) are public keys.
 Encryption: The sender will choose a secret random number k in the interval [1, n
–1]. The ciphertext of a message m = (m1, m2) ∈ Zp

*×Zp
* will be the triple including the

point k.P and two finite field elements y1 and y2 where y1 = c1m1 (mod p) and y2 = c2m2
(mod p), and assuming kQ = (c1, c2) ≠ (0,0).
 Decryption: The receiver uses his secret key d to compute the point d·(k·P) that
should be exactly kQ = (c1, c2). Hence the receiver can recover the message by:

 = (m))(mod),(mod(1
22

1
11 pcypcy −−

1, m2).
 Analysis: There is also a message expansion of factor 2 (or 3/2 if one uses
compressing techniques). The same drawback: if one knows mx (or my), he can solve for
my (or mx) easily. To prevent this attack, one should send only k·P and one finite field
element y = c1 m (mod p).
 There are other proposals/standards computing y1 and y2 in more complex
algorithms from c1, c2, m1 and m2 in order to prevent an eavesdropper, who knows y1, y2
and half the message, say m1, from recovering the other half message m2 or from
substituting m1 by his own message.

2.C. Digital signature & authentication schemes
2.C.1. Elliptic curve digital signature schemes
a. Elliptic curve digital signature algorithm (ECDSA) – ANSI X9.62.

__
A Survey of Elliptic Curve Cryptosystems – Part I: Introductory – 10/27/2003

Page 18 of 105

NAS Technical Report - NAS-03-012 August 2003
--

 This is a version of ElGamal elliptic curve digital signature scheme and is an
analogue to DSA, Digital Signature Algorithm. In this document, the hash function H is
the Secure Hash Algorithm (SHA-1), whose output e is a 160-bit string.
Step 1. Initial Setup: All users will use the same underlying finite field Fq, where either q
= 2m or q is a prime greater than 3. Let E be a non-supersingular elliptic curve defined
over the finite field Fq. Choose P as a base point of prime order n in E(Fq). We will work
on the group 〈P〉 = {O, P, 2P,…, (n – 1)P}.
Step 2. Key generation: The signer will select a statistically unique and unpredictable (or
random) integer d in the interval [1, n –1], and compute point Q = d·P. The signer’s
private key is d and his public key is Q.
Step 3. Signature generation: The signer will select a statistically unique and
unpredictable integer k in the interval [1, n –1], and compute kP = (x1, y1) and check that
r = x1 ≠ 0 (mod n). If r = 0, then select another k. Compute e = H(M) and check that s = k

–1(e + dr) mod n ≠ 0. If s = 0, then select another k. The signature for message M is a pair
(r,s).
Step 4. Signature verification: The verifier will compute the values e = H(M), u1 = es–1

(mod n) and u2 = rs–1(mod n). Then compute the elliptic curve point u1P + u2Q = (x2, y2),
using the signer’s public key Q, then the value v = x2 (mod n). The signature is accepted
if v = r.
 The security of this cryptosystem does not depend on the choice of the base point
P as long as its order n satisfies the requirements: n > 2160 (or n has at least 161 bits.)
 Signature size: To achieve the same security level (in terms of MIPS years to
break-in using the best attacks) of DSA (160-bit q and 1024-bit p), or RSA (1024-bit
modulus n), the parameter n should have at least 161 bits. This could help ECDSA to
resist against Vaudenay’s attack.
 Public key size: By the point compression technique, a point (x, y) on the elliptic
curve can be represented simply by x-coordinate and a single bit of y-coordinate. Hence
in the above case, a public key size is 161 bits only.
 Note that the security of such schemes also depends on the security of hash
function that is used. In current estimation, for short-term security, n should have at least
161 bits; for medium-term security, 180 bits. One always expect that these lower bounds
should be increased as technology advances.
 Brown [B00] proved that ECDSA is secure against existential forgery by adaptive
chosen-message attack if the goup of points on the elliptic curve is modeled by a generic
group and the hash function is collision-resistant. Nguyen & Shparlinski [NS01]
discussed the insecurity of the ECDSA with partially known nonces.
b. Other schemes (Agnew, Mullin & Vanstone [AMV90])
 The setup and key generation are similar to those in ECDSA described above.
Instead of computing the inverse k–1 in the formula s = k–1(e + dr) mod n, we define: s =
d–1(e + kr) mod n. Hence, we need to compute only one fixed inverse d–1 of the private
key d for all messages. Recall that: kP = (x1, y1), r = x1

 ≠ 0 (mod n), e = H(M). The
signature for message M is a pair (r, s).
 To verify signature, we compute: e = H(M), u1 = – er–1(mod n) and u2 = sr–1(mod
n). Then using the signer’s public key Q to compute: u1P + u2Q = (x2, y2) and v = x2 (mod
n). The signature is accepted if v = r.

__
A Survey of Elliptic Curve Cryptosystems – Part I: Introductory – 10/27/2003

Page 19 of 105

NAS Technical Report - NAS-03-012 August 2003
--

 The security of this scheme is based partially on the intractability of the following
problem:
 Given Q = (xQ, yQ), find a point P = (xP, yP), such that s(xP, yP) = (xQ, yQ), where s
= (xP mod n), if such a point exists.
 This problem is thought to be more difficult than ECDLP. The existence is also
not proven yet. This scheme is basically similar to a general version of Nyberg-Rueppel’s
signature scheme with message recovery.
 Modified ElGamal digital signature schemes are discussed in Saryazdi [S90],
Horster, Michels & Petersen ([HMP94],[HMP94a]), and He & Kiesier [HK94].
c. Schnorr signature scheme
 Schnorr [S91] proposed another modification of the ElGamal scheme to avoid the
inverse computation. It also requires a hash function H(M, x), for a message M using a
key x. Its signature can be smaller than the ElGamal scheme. The setup and key
generation steps are similar as those steps in ECDSA described above.
 Signature generation: Select a random integer k in the interval [1, n – 1], then
compute the point kP = (x1, y1). Then compute e = H(M, x1) and s = (k + de) mod n. The
signature for message M is a pair (e, s).
 Signature verification: Compute the point sP – eQ = (z, t), using the signer’s
public key Q. The signature is accepted if H(M,z) = e.
 The Schnorr scheme is secure against passive attacks but not yet known for active
attacks. In order to resist against some known attacks, the hash function H(M, x) used in
this scheme must satisfy two basic conditions: H(M, x) must be almost uniformly
distributed with respect to variable x, and be a one-way function with respect to variable
M. Otherwise, for fixed message M and value e, if the hash function H(M, x) is not
uniform with respect to x, one can compute the point (a, b) = sP – eQ, for a random s
until the equality e = H(M, a) holds. This attack yields a signature (s, e) for the given
message M.
 There is another case: chosen message attack. One can choose an arbitrary
signature (s, e) and compute the point (z, t) = sP – eQ. Then he can solve for message M
from the equation e = H(M, z), if the hash function H is not a one-way function with
respect to M. The hash function is not required to be collision-free with respect to M. If
we have: H(M, x) = H(M’, x), the signature for message M cannot be used to sign
message M’ since it depends also on a random number k, hence on a random point kP =
(x, y).
2.C.2. Elliptic curve digital signature schemes with message recovery
a. Nyberg-Rueppel’s signature scheme with message recovery ([NR96])
 Signature generation: The signer will select a random integer k in the interval [1,
n – 1], then compute the point R = kP = (x1, y1). This is called a one-time key pair (k, R).
Then the signer will compute e and check that e = (x1 + M) mod n ≠ 0. If e = 0, the signer
must select another k and repeat. Compute the integer s = k – de (mod n). Then the
signature for message M is a pair (e,s).
 Signature verification: One cannot verify directly the signature in this scheme.
The signature is accepted if the message is recovered properly. This can be achieved by
adding redundancy to the message before it is signed and checking the redundancy after
it is recovered.

__
A Survey of Elliptic Curve Cryptosystems – Part I: Introductory – 10/27/2003

Page 20 of 105

NAS Technical Report - NAS-03-012 August 2003
--

 Message recovery: Compute the point sP + eQ = (z, t). The message is decrypted
by M = (e – z) mod n.
 Nyberg-Rueppel’s scheme is similar to Schnorr’s scheme in which the hash
function H is replaced simply by: H(M + x1) = M + x1. In Nyberg-Rueppel’s scheme, we
are interested in recovering the message embedded in the signatures without verifying the
signature itself. In Schnorr’s scheme, the receiver can attain the message somehow and
use it to verify the signature.
An alternative scheme
 Signature generation: Embed the message into a point M on the elliptic curve.
Select a random integer k in the interval [1, n – 1]; then compute the point R = kP + M =
(x1, y1). The signature is a pair (R,s) where s = k – dx1 (mod n).
 Signature verification: One also cannot verify the signature in this scheme. The
signature is accepted if the message is recovered properly.
 Message recovery: From R = (x1, y1), one can compute the point (sP + x1Q). Then
the message is recovered by computing the point: (sP + x1Q) – R = M.
 In a more general term, in Nyberg-Rueppel’s schemes, the integer s satisfies a
signature equation Ad + Bk + C = 0 (mod n), where (A, B, C) is a fixed permutation of
(±x1, ±s, ±1). Nyberg & Rueppel [NR96] also discussed details on alternative schemes.
 Nyberg-Rueppel’s scheme can be also used as a key agreement algorithm in the
multiplicative group setup. El Mahassni, Nguyen & Shparlinski [MNS01] discussed the
insecuriry of Nyberg-Rueppel schemes with partially known nonces.
b. Vanstone’s signature scheme with message recovery
 It is another modified version of the ElGamal scheme and is also an enhancement
of Nyberg-Rueppel’s scheme. The setup and key generation steps are similar to those
steps in ECDSA described above. In place of the hash function H, one uses a symmetric
key encryption/decryption scheme, Ex and Dx in order to recover the encrypted message.
 Signature generation: Select a random integer k in the interval [1, n –1], where the
prime n is order of the base point P, as usual. Then compute the point kP = (x’, y’). Then
compute: e = Ex’(M), e’ = H(e) and s = (k + de’) mod n. The signature for message M is a
pair (e, s).
 Signature verification: One cannot verify directly the signature in this scheme.
The signature is accepted if the message is recovered properly. This can be achieved by
adding redundancy to the message before it is signed and checking the redundancy after
it is recovered.
 Message recovery: Compute an integer e’ = H(e) and the point sP – e’Q = (z,t).
The message is recovered as: Dz(e) = M.
 In fact, because of the relation (z,t) = (x’, y’), as the same point on the elliptic
curve, the encryption E and decryption D, that used x-coordinate as a secret key, can be
designed generally as a symmetric key encryption scheme with the key (kP):

E = SKE(kP)(M) = e and D = (e) = M. 1
)(

−
kPSKE

 Signature size: This scheme produces a signature of the size equal to the sum of
message size and elliptic curve size (or order n).
2.C.3. Summary of digital signature schemes
Digital Signature

Schemes
Signature Generation Signature

Verification
Message Recovery

__
A Survey of Elliptic Curve Cryptosystems – Part I: Introductory – 10/27/2003

Page 21 of 105

NAS Technical Report - NAS-03-012 August 2003
--

ECDSA
(ANSI X9.62)

R = kP = (x1, y1)
r = x1 ≠ 0 (mod n)
e = H(M)
s = k–1(e + dr) mod n
Signature: (r, s)

e = H(M)
u1 = es–1(mod n)
u2 = rs–1(mod n)
u1P + u2Q = (x1, y1)
v = x1 (mod n)
Accept the signature
if v = r

No. Message is
encrypted and then

decrypted in a
separate scheme.

Agnew, Mullin &
Vanstone’s scheme
([AMV90])

R = kP = (x1, y1)
r = x1 ≠ 0 (mod n)
e = H(M)
s = d–1(e + kr) mod n
Signature: (r, s)

e = H(M)
u1 = – er–1(mod n)
u2 = sr–1(mod n)
u1P + u2Q = (x1, y1)
v = x1 (mod n)
Accept the signature
if v = r

No. Message is
encrypted and then

decrypted in a
separate scheme.

Schnorr’s scheme R = kP = (x1, y1)
e = H(M, x1)
s = (k + de) (mod n)
Signature: (e, s)

sP – eQ = (z,t)
Accept the signature
if H(M,z) = e.

No. Message is
encrypted and then

decrypted in a
separate scheme.

Vanstone’s scheme e = Ex’(M)
e’ = H(e)
s = (k + de’) (mod n)
Signature: (e, s)

Not directly. The
signature is accepted

if the message is
recovered properly.

e’ = H(e)
sP – e’Q = (z,t)
Accept the message
if Dz(e) = M

Nyberg-Rueppel’s
scheme 1

e = (x1 + M) mod n
s = (k – de) (mod n)
Signature: (e, s)

Not directly. The
signature is accepted

if the message is
recovered properly.

sP + eQ = (z,t)
Message:
M = (e – z) mod n

Nyberg-Rueppel’s
scheme 2
(alternative)

R = kP + M = (x1, y1)
s = k – dx1 (mod n)
Signature: (R, s)

Not directly. The
signature is accepted

if the message is
recovered properly.

Message:
(sP + x1Q) – R = M

Table 2.1. Summary of digital signature schemes
Initial setup & Key generation
 All users will use the same underlying finite field Fq, where either q = 2m or q is a
prime greater than 3. Let E(Fq) be a non-supersingular elliptic curve defined over a finite
field Fq. Choose P as a base point of prime order n in E(Fq). Each user selects a random
integer d in the interval [1, n – 1], then computes the point Q = dP. His private key is d
and public key is Q.
 For all schemes, the sender always selects a random integer k in the computation.
Both sides need a good hash function H.
2.C.4. Signcryption schemes
 The original “signcryption” schemes were propsed Zheng and Imai’s works,
[Z98] and [IZ98]. It is a cryptographic method that fulfils both functions of encryption
and digital signature with a smaller cost than the cost required by a typical signature-
then-encryption procedure.

__
A Survey of Elliptic Curve Cryptosystems – Part I: Introductory – 10/27/2003

Page 22 of 105

NAS Technical Report - NAS-03-012 August 2003
--

Signcryption: The signer will select a random integer k in the interval [1, n –1], and
compute kP = (x1, y1), r = H(M, kP) and s = k (r + d)–1. The signature is (r, s).
Unsigncryption: Compute the elliptic curve point K = s(rP + Q), using the signer’s public
key Q, then check whether H(M, K) = r.
 In the other version, compute s = k (1 + rd)–1 in signcryption step and compute K
= s(P + rQ) in unsigncryption step.
2.C5. Schnorr’s authentication schemes ([S91])
 The setup and key generation steps are similar to those steps in the ECDSA
described above or in Schnorr’s signature scheme.
 Initiation: Prover A selects a random integer k in the interval [1, n –1] then
computes the point kP = (x1, y1). Then prover A uses the hash function H to compute the
value h = H(0, x1). Prover A sends to verifier B its identification string I, its public key Q,
the signature S for the pair (I, Q) and h. Verifier B then verifies the signature S and send a
random integer e ∈ [1, n – 1] to A. Prover sends to B: s = k + de (mod n).
 Verification: Verifier B verifies the pair (I, Q) either by checking the signature S
or computing sP – eQ = (z, t) and checking that H(0, z) = h.
 An attack C can cheat by guessing e and sending to verifier B a wrong proof: h =
H(0, x1) where (x1, y1) = kP – eQ, for a random integer k and s = k. The probability for
successful guessing e is only (n – 1)–1. Verifier B can also choose e freely in order to
learn prover A’s method of authentication.

2.D. Key agreement & key exchange schemes
 In a key agreement or key exchange scheme, every party contributes
information/data in order to compute a session key. While in a key transfer scheme, one
party sends the computed session key to the other parties in a secure way.
2.D.1. Elliptic curve Diffie-Hellman key agreement ([DH76])
 Two users A and B first agree on a base point P on an elliptic curve E. User A
will choose a random number a, compute a·P, then send a·P publicly to user B, while
keeping a secret. User B will choose a random number b, compute b·P then send b·P
publicly to user A, while keeping b secret.
 Both users now can compute the common secret key (ab·P) by one user’s secret
key and other’s public key.
 For user A, it is the point a·(b·P); for user B, it is the point b·(a·P) = a·(b·P).
 Anyone else could know the public information P, aP, and bP, but it is infeasible
to find the secret keys a, b and (ab·P) (by the property of ECDHP.)
 Both ElGamal and Massey-Omura cryptosystems are variants of Diffie-Hellman
key exchange scheme.
2.D.2. Elliptic curve MTI key agreement (Imai, Matsumoto & Takashima, [IMT86])
 Each user has a key pair. User A has (a, QA), where QA = aP and user B has (b,
QB), where QB = bP. User A selects a random integer kA, then computes and sends to user
B the point KA = kA .QB. Similarly, user B will send to A the point KB = kB .QA, where kB is
a random integer. Each user now can compute the shared secret value K by:
 For user A, it is K = a–1kAKB = a–1kAkB aP = kAkBP,
 For user B, it is K = b–1kBKA = b–1kBkA bP = kAkBP.

__
A Survey of Elliptic Curve Cryptosystems – Part I: Introductory – 10/27/2003

Page 23 of 105

NAS Technical Report - NAS-03-012 August 2003
--

 An alternative version: User A selects a random integer kA then computes and
sends to user B two points KA = kAP and QA. Similarly, user B will send to A two points
KB = kBP and QB. Each user now can compute the shared secret value K by:
 For user A, it is K = aKB + kAQB = (akB + kAb)P.
 For user B, it is K = bKA + kBQA = (bkA + kBa)P.
 In general, these schemes are vulnerable to a few active attacks, including
unknown key-share attacks.
2.D.3. Elliptic curve Menezes-Qu-Vanstone key agreement ([MQV95])
 Setup: One will construct an appropriate elliptic curve E as usual, such that n is a
prime factor of its order #E (usually, it is order of the base point P on E.) Let us define: h
= ⎡(log2 n)/2⎤.
 User A has two key pairs (a1, A1) and (a2, A2), where private keys a1, a2 ∈ [1, n –
1] and public keys A1 = a1P (that is called long term or static key) and A2 = a2P = (x, y)
(which is called the short term or ephemeral key.) User B also has two key pairs (b1, B1)
and (b2, B2), where B1 = b1P and B2 = b2P = (x’, y’), with two secret keys b1, b2 ∈ [1, n –
1]. Let tA = f(A2) = f(x, y) = (x mod 2h) + 2h and tB = f(B2) = f(x’, y’) = (x’ mod 2h) + 2h.
Then two users will do computations using one’s own secret keys and the other’s public
keys.
User A will compute
 an integer eA = (tAa1 + a2) mod n
 a point RA = eA(tBB1 + B2).
Check if RA = (xA, yA) ≠ O.

User B will compute
 an integer eB = (tBb1 + b2) mod n
 a point RB = eB(tAA1 + A2).
Check if RB = (xB, yB) ≠ O.

 Table 2.2. Computations in the MQV key exchange scheme
 Then K = xA = xB is the shared secret value or shared key for both users A and B.
Verification: One can observe simply that aiBj = aibjP = bjAi, for i, j = 1, 2. Hence it is
easy to verify the scheme:
 RA = eA(tBB1 + B2) = [(tAa1 + a2) mod n] (tBB1 + B2)
 = [(tAa1 + a2) mod n] [(tBb1 + b2) mod n]P, (since point P has order n)
 = [(tBb1 + b2) mod n] (tAA1 + A2) = eB(tAA1 + A2) = RB.
 Note that in this scheme, one needs both x- and y-coordinates of elliptic curve
points in computation. The special feature of this scheme requires both public and private
keys of both parties implied in the signatures and their verifications. Hence the MQV
scheme can prevent efficiently the man-in-the-middle attack. Refer also to Law,
Menezes, Qu, Solinas & Vanstone [LMQSV98].

2.E. RSA-type elliptic curve cryptosystems
 We now mention RSA-type elliptic curve cryptosystems may be both
controversial and interesting to many researchers. There are works on designing such
cryptosystems or exploiting the connections with RSA cryptosystems.
2.E.1. Public key cryptosystem using elliptic curves over a ring ZN
a. Elliptic curves over a ring ZN

 The elliptic curve over ZN is of the form: Ea,b: y2 = x3 + ax + b, where a, b ∈ ZN,
and gcd(4a3 +27b2, N) = 1. In general, over a ring ZN, the set of points in Ea,b(ZN)
(including the point at infinity denoted by ON) does not form a group. The same addition
rules defined for an elliptic curve over a finite field cannot be extended to the ring ZN.

__
A Survey of Elliptic Curve Cryptosystems – Part I: Introductory – 10/27/2003

Page 24 of 105

NAS Technical Report - NAS-03-012 August 2003
--

The simple reason is that the inversion of a non-zero number n works in modulo a prime
p but does not work in modulo a composite number N, if gcd(n, N) > 1.
 Under modulo p, for p being some prime factor of N, the elliptic curve Ea,b over
ZN is reduced to an elliptic curve Ea b, over the prime finite field Fp, where we denote

paa = = a (mod p). Let P = (x, y) ∈ E(ZN), then Pp =),(yx ∈ E(Fp), and (ON)p = Op, the
point at infinity of E(Fp). We may drop subscripts a and b where there is no confusion.
 From now on, we are interested in the case that N is a product of two distinct odd
big primes p and q. For convenience, we also use the notation q for a prime factor of the
composite number N. Do not confuse with the subscript q for finite fields where q = pm.
By the Chinese remainder theorem, any x ∈ ZN can be represented uniquely as a pair

),(qp xx ∈ Fp × Fq. We consider the product Ẽ(ZN) of two groups E(Fp) and E(Fq). Hence
Ẽ(ZN) is a group. We have Ẽ(ZN) = E(Fp) × E(Fq) = {(Pp, Pq), where Pp =),(pp yx ∈
E(Fp) and Pq =),(qq yx ∈ E(Fq)} and ON = (Op, Oq).
 For the elliptic curve E(ZN), we observe that each point P ∈ E(ZN) corresponds to
a unique element (Pp, Pq) ∈ Ẽ(ZN), except for elements in which exactly one of the points
(Pp or Pq) in the pair is the point at infinity. Then we have # Ẽ(ZN) = #E(Fp)×#E(Fq). The
number of elements in the set E(ZN) - which is a subset of E~ (ZN) - is easily computed by:
#E(ZN) = (#E(Zp) – 1).(#E(Zq)– 1) + 1 = E~# (ZN) – #E(Zp) – #E(Zq) + 2. This number was
not used anywhere in the cryptosystems. Instead we are interested in

#Ẽ(ZN) = #E(Fp).#E(Fq) or MN = lcm(#E(Fp), #E(Fq)).
b. Addition rule and factorization algorithm
 Also let Q = (x’, y’) ∈ E(ZN) corresponding to a unique element (Qp, Qq) ∈ Ẽ(ZN).
The addition operation on E(ZN) is defined by the component-wise addition in each group
of the product group Ẽ(ZN). That is, P + Q = (Pp + Qp, Pq + Qq). Particularly, we have
the scalar point multiplication formula: kP = (kPp, kPq), for any integer k.

 The points (Pp, Oq) and (Op, Pq), for any Pp or Pq that is not the point at infinity,
are called non-realizable points. They cannot be the result of adding any two points on
E(ZN) If p and q are very large primes, then the percentage of non-realizable points is
negligible.
 In fact, the addition defined for E(ZN) above is undefined if and only if the
resultant is a non-realizable point of the form [Pp, Oq] or [Op, Pq]. When the point
addition would result in non-realizable points with non-negligible probability, one could
have a feasible integer factoring algorithm for N. In other words, one can claim:
Lemma: If P and Q are two points on E(ZN) whose addition is undefined, then the
knowledge of points P and Q is sufficient to factor N.
 In the next section, we will discuss public key cryptosystems, digital signature
and key agreement schemes based on elliptic curves over a ring ZN. We will use the
following result that can be proved simply.
Lemma: If MN = lcm(#E(Fp), #E(Fq)), then for any point P ∈ E(ZN), and any integer k,
we have the identity: (kMN + 1)P = P.
 As the RSA cryptosystem, two distinct large primes p and q are kept secret and
the modulus N = pq is publicly known. The security of RSA-type elliptic curve

__
A Survey of Elliptic Curve Cryptosystems – Part I: Introductory – 10/27/2003

Page 25 of 105

NAS Technical Report - NAS-03-012 August 2003
--

cryptosystems is based on the difficulty of factoring modulus N. The group orders
#E(Fp) and #E(Fq) are served as the trapdoor.
 The public key e is chosen to be relatively prime to both #E(Fp) and #E(Fq). Then
e is also relatively prime to MN = lcm(#E(Fp), #E(Fq)). That is: gcd (e, MN) = 1. Then the
secret key can be defined as: d = e–1(mod MN). Hence we have (ed) ·P = P.
2.E.2. RSA-type elliptic curve cryptosystems
a. KMOV elliptic curve cryptosystem
 Three KMOV cryptosystems were proposed by Koyama, Maurer, Okamoto &
Vanstone [KMOV92]. As an analogue of the RSA cryptosystem, the security of these
systems are based on the difficulty of factoring n.
 Type 0 scheme requires computation of the order of a general elliptic curve. It can
be used only in digital signature schemes. The signature is about twice the message. To
sign a message M, one embeds it as a point P = (x, y) ∈ E(ZN), and the signature is the
point Q = (u, v) = d·P, using his private key. To verify the signature, the receiver
computes the point P = (x, y) = e·Q, using the sender’s public key, and extracts the
message M. The drawback of this system is also common for all cryptosystems using
elliptic curves with large primes p, the Schoof’s algorithm to compute the order #E(Fp) is
still infeasible. This scheme cannot be used for a public-key cryptosystem, since
knowledge of the trapdoor is required to create a point on E(ZN), that corresponds to a
message.
 Type 2 scheme is a Rabin-type generalization of type 1, where the public key e =
2. It also has the 4-ambiguity in decrypted message, as in the original Rabin scheme.
 Type 1 scheme is the most practical of three schemes. To set up, user A has the
modulus N = pq where p and q are two distinct large primes, which are kept secret and
satisfy either case of these two special cases:
 Case p ≡ q ≡ 2 (mod 3): The elliptic curve E(ZN) is of the form E0,b: y2 = x3 + b,
where coefficient b is determined by the message, m = (mx, my) ∈ Zn × Zn, to be
encrypted: b ≡ (mod N). (Or also by the ciphertext: b ≡ (mod N) as we
will observe below.) But we do not need b explicitly in the computation.

32
xy mm − 32

xy cc −

 Case p ≡ q ≡ 3 (mod 4): The elliptic curve E is of the form Ea,0: y2 = x3 + ax,
where a must be computed by the sender using the message or plaintext m = (mx, my), a ≡

(mod N), or by the receiver by the encrypted message or ciphertext c = (c132)(−− xxy mmm x,

cy), a ≡ (mod N). 132)(−− xxy ccc
 Key generation: In both cases, the elliptic curve orders are easily computed,
#E(Fp) = p + 1 and #E(Fq) = q + 1. Let MN = lcm(p + 1, q + 1) that is also kept secret.
His public key will be N and e, where e is randomly selected such that gcd(e, MN) = 1.
His private key will be d, such that ed ≡ 1(mod MN).
 Encryption: To send a message to user A, user B will encrypt a message m = (mx,
my) using user A’s public key e: e.(mx, my) = (cx, cy) over E(ZN)
 Decryption: User A uses his secret key d to recover the message: d.(cx, cy) = (mx,
my) over E(ZN).
b. Demytko’s elliptic curve cryptosystem ([D94])
 Like KMOV schemes, this cryptosystem is defined over a ring ZN. It uses only the
x-coordinate of a point on an elliptic curve. Its security is also based on the difficulty of

__
A Survey of Elliptic Curve Cryptosystems – Part I: Introductory – 10/27/2003

Page 26 of 105

NAS Technical Report - NAS-03-012 August 2003
--

factoring N, where N = pq and p and q are two secret large primes. The elliptic curve E is
of the form E: y2 = x3 + ax + b and gcd (4a3 + 27b2, N) = 1. Let Ep denote the elliptic
group modulo p of elements (x, y) satisfying the equation y2 = x3 + ax + b (mod p)
together with the point at infinity O. Its order is #Ep= p + 1 – tp. Then its twist curve E’p
has order #E’p = p + 1 + tp. We do the same for the other prime number q.
 Key generation: His public key will be a pair N and e. There are four secret keys
d1, d2, d3 and d4 for decryption, which are defined by edi ≡ 1 (mod Ni), for 1 ≤ i ≤ 4 and
the moduli Ni are defined as in the table 2.3.
 Encryption: The message M is embedded as an x-coordinate of a point P on the
elliptic curve E. We write eP = ((eP)x, (eP)y). The ciphertext C will be the x-coordinate
of the point (eP): C = (eP)x.
 Decryption: First, we compute: u = C3 + aC + b (mod N). Then we determine
whether u is a quadratic residue modulo p and/or modulo q and refer to the table 2.3. for
the right decryption key (secret key) di.
 We have the decrypted message as: M = (di.(C,*))x (mod N), and we can do so
without using the y-coordinate.
u= C3 + aC + b(mod N) Modulus Ni Decryption
()p

u = 1 ()q
u = 1 N1 = lcm (p + 1 – tp, q + 1 – tq) M = (d1.(C, *))x (mod N)

()p
u = 1 ()q

u = – 1 N2 = lcm (p + 1 – tp, q + 1 + tq) M = (d2.(C, *))x (mod N)

()p
u = – 1 ()q

u = 1 N3 = lcm (p + 1 + tp, q + 1 – tq)

M = (d3.(C, *))x (mod N)

()p
u = – 1 ()q

u = – 1 N4 = lcm (p + 1 + tp, q + 1 + tq) M = (d4.(C, *))x (mod N)

 Table 2.3. Demytko’s elliptic curve cryptosystem: moduli and decryptions
 Knowing prime numbers p and q, it is easy to observe whether the modular
equations x2 ≡ u (mod p) and x2 ≡ u (mod q) have solutions and find those solutions. But
finding a solution for x2 ≡ u (mod N) is a much more difficult problem. It is claimed to be
equivalent to factoring N. One must know p and q to compute Ni’s. The decryption time
can be reduced by a factor of 4 if one computes M modulo p and q then combine the
result using the Chinese remainder theorem. This scheme is also used for digital
signatures where a sender uses one of his secret keys di to sign a message and the
receiver uses the sender’s public key to verify the signature.
c. Koyama & Kuwakado’s elliptic curve cryptosystem
 Koyama & Kuwakado [KK94] proposed an elliptic curve cryptosystem using the
elliptic curves of the form: EN (a, 0): y2 = x3 + ax, a ≢ 0 (mod p) or EN (0, b): y2 = x3 + b,
b ≢ 0 (mod p) over a ring ZN, where N = pq. This can be considered a special case of
Demytko’s scheme. It is also a complement to KMOV case in term of restriction on
prime numbers p and q.
Case 1: EN (a, 0): y2 = x3 + ax, a ≢ 0 (mod p)
 If p ≡ q ≡ 3 (mod 4), it is a case of KMOV cryptosystem.
 If p ≡ q ≡ 1 (mod 4), we have the formulae to find the order of the elliptic curve
that is non-supersingular. The algorithm discussed in chapter 4 will show all four
possible values of these orders. Then the Koyama & Kuwakado scheme is similar to
KMOV for the case p ≡ q ≡ 3 (mod 4).

__
A Survey of Elliptic Curve Cryptosystems – Part I: Introductory – 10/27/2003

Page 27 of 105

NAS Technical Report - NAS-03-012 August 2003
--

 Key generation: The public key e can be chosen universally such that gcd (e, #Ep)
= gcd (e, #Eq) = 1, for all 4 possible values of each order #Ep and #Eq.The private keys
are computed to satisfy conditions edp ≡ 1 (mod #Ep) and edq ≡ 1 (mod #Eq) for each
particular elliptic curve that will be used.
 Private keys depend on the message (plaintext and ciphertext). In order to have a
message-independent private key, we can modify a little (to make it similar to KMOV
scheme): edp ≡ 1 (mod Lp), where Lp is the least common multiplier of all 4 possible
values of orders #Ep.
 The plaintext m = (mx, my) that is embedded as an elliptic curve point such that the
coefficient a ≡ (mod N) must satisfy the condition a ≢ 0 (mod N). 132).(−− xxy mmm
 Encryption will be performed on the elliptic curve EN (a, 0): y2 = x3 + ax. The
ciphertext is: C = (cx, cy) = e. (mx, my).
 Decryption: From ciphertext C, the receiver computes ap ≡ (mod p)

and a

132)(−− xxy ccc

q ≡ (mod q) to determine the proper elliptic curve and the associated
private keys to use for decryption: m

132)(−− xxy ccc

p = dp. (cx, cy) over Ep(ap, 0) and mq = dq. (cx, cy) over
Eq(aq, 0). Then using the Chinese remainder theorem, the receiver can obtain the message
m = (mx, my) from mp and mq.
 If p ≡ – q = 1 (mod 4), then the elliptic curve modulo q is supersingular and its
order is (q + 1). The scheme is the same as in the previous case, except we fix the value
#Eq = q + 1.
Case 2: EN (0, b): y2 = x3 + b, b ≢ 0 (mod p)
 If p ≡ q ≡ 2 (mod 3), it is a case of KMOV cryptosystem.
 If p ≡ q ≡ 1 (mod 3), there are formulae to find the order of the elliptic curve that
is non-supersingular. The algorithm discussed in chapter 4 will show all 6 possible values
of these orders. Then Koyama & Kuwakado scheme is similar to KMOV for the case p ≡
q ≡ 2 (mod 3), where b will be computed from the plaintext b ≡ (mod N) and

from the ciphertext b

32
xy mm −

p ≡ (mod p) and b32
xy cc − q ≡ (mod q). 32

xy cc −

 If p ≡ – q = 1 (mod 3), again, the scheme is the same as in the previous case,
except we fix the value #Eq = q + 1.
d. Elliptic curve cryptosystem of Meyer-Müller ([MM96])
 Let N be a publicly known product of two large secret primes p and q, and p ≡ q ≡
11(mod 12). We use the elliptic curve of the form E: y2 = x3 + ax + b over a ring ZN and
satisfying the condition gcd (4a3 + 27b2, N) = 1.
 Encryption: The sender chooses randomly 0 ≠ r ∈ ZN, and embeds the message m
into a point P = (m2, rm3) on E where a = r3 and b = (r2 – 1)m6 – am2. Check that gcd(4a3
+ 27b2, N) = 1. Otherwise, if gcd(4a3 + 27b2, N) > 1, then a factor of N can be found.
 Then the sender computes Q = 2.P = (xQ, yQ). Let l = lsb (yQ) and type t be
represented by a Jacobi symbol t = ()N

yQ . The ciphertext will consist of (a, b, xQ, t, l).
 Decryption: The receiver computes the unique square root yQ of (+ ax3

Qx Q + b),
with type t and the least significant bit l. Let Q = (xQ, yQ). Then the receiver computes

__
A Survey of Elliptic Curve Cryptosystems – Part I: Introductory – 10/27/2003

Page 28 of 105

NAS Technical Report - NAS-03-012 August 2003
--

the index set I = {1 ≤ i ≤ s | 2Pi = Q, a2 = }. The set I must have only one point P96 . −
iPiP xy I,

and the message is m = . 143 −− axy
IPIP

 The security of this cryptosystem is based on the intractability of solving “square
root” (or half-point problem) in E(ZN). Joye & Quisquater ([JQ95],[JQ96]) showed that
one can determine two polynomials f(x), g(x) ∈ ZN [x] such that m2 is a root, by using the
expressions of a, b and coordinates of two points P and Q on E. This can be done simply,
since these coordinates are functions of m. Then m2 will be a root of the polynomial h(x)
= gcd (f(x), g(x)). There is a very high probability that we can choose f(x) and g(x) such
that h(x) is of degree 1. Hence we can solve trivially for the root m2. This cryptosystem is
equivalent to the Rabin-Williams cryptosystem because it enables the user to recover the
value of square of a message. Hence, it is equivalent to a factorization problem. Since m2
has 4 roots modulo N, we can decrypt the message m simply from yQ and its type t and
the least significant bit l.
 Signature scheme: To sign a message m, we hash a message m by m’ = H(m).
Then we find integers r and d ∈ ZN

* such that for points P = (d2, rd3) and Q = 2·P on an
elliptic curve of the form E: y2 = x3 + r3 x + b. We will get xQ = m’ and yQ has type t = 1.
The signature for m is (d, r).
 Verification: Let P = (d2, rd3) and compute a = r3 and b = (r2 – 1)d6 – ad2.
Compute Q = 2.P on the elliptic curve E: y2 = x3 + ax + b. The signature is accepted if yQ
has type t = 1, and xQ = m’ and m’ = H(m).
e. Elliptic curve cryptosystem of Chua-Ling
 For further interest, Chua & Ling [CL97] proposed a special cryptosystem using
singular cubic curves instead of standard elliptic curves. Chua-Ling cryptosystem used
the similar idea of Meyer-Müller on the singular cubic curve of the form C: y2 = x3 + bx2

over a ring ZN, where N is a publicly known product of two large secret primes p and q,
and p ≡ q ≡ 11 (mod 12). (Notice that the cubic polynomial has multiple roots; hence the
discriminant ∆ vanishes.)
 Encryption: The sender chooses randomly r ∈ ZN \{0,±1} and embeds the
message m into a point P = (m2, rm3) on C. Then the sender computes Q = 2P = (xQ, yQ),
a = r3, b = (r2 – 1)m2, l = lsb (yQ) and t = ()N

yQ . The ciphertext will consist of (a, b, xQ, t,
l).
 Decryption: The receiver computes the unique square root yQ of with
type t and lsb l. Letting Q

)(23
QQ bxx +

p = Q (mod p), the receiver then computes Ip = {1 ≤ i ≤ 2 | 2Pp,i
= Qp and a2 = } and m9

,
6

,
−

iPpiPp xy p = (mod p). Similarly, the receiver gets m14

,

3

,

−− axy
ipPipP q

from the equation: Qq = Q (mod q). The receiver can have m by using the Chinese
remainder theorem such that m = mp(mod p) and m = mq(mod q)
 Joye & Quisquater [JQ95a] showed that one needs the expressions of xQ and a, b
to find out 2 polynomials f(x) and g(x) of degree 2 and 3. Hence, with very high
probability, one can solve for m2 and then message m.
f. Paillier’s elliptic curve encryption scheme
 Paillier ([P99], [P00]) proposed three encryption schemes, which are defined on
an elliptic curve over a ring ZN, where N = pq, is the product of two large odd prime
numbers. Over each finite field Fp and Fq, the elliptic curve E: y2z = x3 + axz2 + bz3 is the

__
A Survey of Elliptic Curve Cryptosystems – Part I: Introductory – 10/27/2003

Page 29 of 105

NAS Technical Report - NAS-03-012 August 2003
--

quadratic twist of an anomalous elliptic curve. Hence, the elliptic curve orders are:
#E(Fp) = p + 2 and #E(Fq) = q + 2. Therefore, #E(ZN) = (p + 2)(q + 2).
 For one encryption scheme, Paillier used the elliptic curve over the ring R =
Z/p2qZ. Then he computed: #E(Z/p2qZ) = (p + 2)p×#E(Fq). The twist of this elliptic curve
has the order: #E(d)(Z/p2qZ) = p2×#E(d)(Z/qZ), where () 1−=p

d .
 For another encryption scheme, Paillier used the elliptic curve over the ring R =
Z/N2Z. Then he computed: #E(Z/N2Z) = (p + 2)(q + 2)pq.
 Galbraith [G02] proposes a generalization of Paillier schemes over elliptic curves
on rings ZN, where N = pq, a product of two large odd primes.

E: y2z = x3 + axz2 + bz3, where gcd(N, 6(4a3 + 27b2)) = 1.
Let M = lcm(#E(Fp), #E(Fq)). The user needs a point Q = (x : y : z) that has order dividing
M in the elliptic curve E(Z/N2Z). That point can be of the form Q = NQ’, where Q’ is any
ramdom number. The public key will be N, a, b and Q. The secret key will be M.
Encryption: A message m is embedded in ZN as usual. Let Pm = (mN : 1 : 0). The sender
chooses a random number r and sends the point S = rQ + Pm to the receiver who has the
secret key M.
Decryption: The receiver computes: MS = r(MQ) + MPm = MPm = (mMN : 1 : 0). Given
the x-coordinate, one can devide by N and M to recover m.
 Other works related to Paillier cryptosystems are in Damgård & Jurik [DJ01] and
Catalano, Gennaro & Howgrave-Graham [CGH01].
g. Security on RSA-type elliptic curve cryptosystems
 Many researchers have proposed and attacked RSA-type elliptic curve
cryptosystems. They showed that the RSA-types of elliptic curve cryptosystems provide
no significant benefits or advantages over RSA cryptosystems, even though they do resist
to some known attacks on the RSA cryptosystems, if those attacks do not use integer
factoring algorithms. Kurosawa, Okada & Tsujii [KOT95], Kaliski [K97] gave
discussions to discourage the use of all RSA-type elliptic curve cryptosystems. Meyer &
Müller [MM96] discussed that all RSA-type elliptic curve cryptosystems could be
vulnerable to chosen ciphertext attacks. Håstad [H85]) proposed the low encryption
multiplier/exponent attacks that is originally applied to RSA or Rabin cryptosystems
when a message is encrypted with many different moduli Ni (to be sent to different users)
and the encryption (public) key e is small. Håstad showed that one could solve systems of
k congruence polynomials of degree e in polynomial time if Ni > 2(e+1)(e+2)/4(e + 1)(e+1) and
k > e(e + 1)/2. Roughly, we can have Ni >> 2k. This attack is also applicable even when
many public keys ei are used instead of one, but e = max{ei} satisfies the above
conditions. For elliptic curve cryptosystems, this attack is called low multiplier attack (on
public key). Koyama & Kuwakado [KK94a] showed that if e ≥ 5 and Ns = min(Ni) ≥ 2511,
then KMOV and Demytko’s cryptosystems are secure against the Håstad attacks. In case
of KMOV scheme against Håstad attack (low multiplier attack) in broadcast applications,
instead of solving congruence polynomials, one must deals with congruence rational
functions that could be transferred to polynomials of bigger degree,

Bleichenbacher attack [B97] does not depend on the encryption key (public key)
e, and is based on this algorithm to solve the system of equations: b ≡
(mod N). It is based on a work of Coppersmith who proposed an algorithm to solve
polynomial equations: f(x) ≡ g(x) ≡ 0 (mod N), where f(x) is of small degree (about 2

3232
xyxy ccmm −≡−

32

__
A Survey of Elliptic Curve Cryptosystems – Part I: Introductory – 10/27/2003

Page 30 of 105

NAS Technical Report - NAS-03-012 August 2003
--

and g(x) is a rational function of degree less than that of f(x), and g(x) can be computed in
a small number of arithmetic steps.

Wiener [W90] showed the Small decryption key (secret key) attack that one can
use the theory of continued fractions to find the secret key d of the RSA cryptosystems
and RSA-type elliptic curves cryptosystems. Later, Pinch [Pi95] showed that possibility
if the order of secret key d is at most N1/8.
Homomorphism attacks. Passive homomorphism attack can be applied when the
encryption E and decryption D schemes implemented are homomorphic functions to
addition; that is, E(M1 + M2) = E(M1) + E(M2) and D(M1 + M2) = D(M1) + D(M2), where
messages M1 and M2 are embedded on the same elliptic curve. That is, from the
signatures for messages M1 and M2, one can forge a signature for the message (M1 + M2)
and so on for any linear combination of M1 and M2. The passive attack using
homomorphism is usually probabilistically ineffective.
 There is an active attack (chosen-plaintext attack) based on homomorphism. If an
attacker wants a user B to sign a message M, he will send to user B another message: M’=
M + E(uM) using B’s public key and a random number u. User B’s signature for M’ is S’
= D(M’) = D[M + E(uM)] = D(M) + uM. Then the attacker will be able to forge a
signature for message M to be: S = D(M) = S’ – uM.

A hash function should be applied on the plaintext to destroy its homomorphic
property if any. However, homomorphic property is not the only condition for an RSA-
type cryptosystem being vulnerable under chosen message attacks. Bleichenbacher, Joye
& Quisquater [BJQ97] showed that some RSA-cryptosystems, which have no
homomorphic property, are also vulnerable under even better chosen-message attacks.
These attacks, which use the extended Euclidean algorithm, need only one message.
Isomorphism attacks. Passive isomorphism attack: Two elliptic curves E1: y2 = x3 + a1x
+ b1 and E2: y2 = x3 + a2x + b2 over a prime finite field Fp, where p > 3, are isomorphic if
and only if there exists an element u ∈ Fp

* such that a2 = u4a1 and b2 = u6b1. The change
of variables (x, y) → (u2x, u3y) will transform E1 to E2. For elliptic curves defined over a
ring ZN the isomorphic property is similar, except the condition u ∈ ZN

*. If this situation
is satisfied, for any integer d, if we have the scalar point multiplication (cx, cy) = d.(mx,
my) on the elliptic curve E1, then we have (u2cx, u3cy) = d(u2mx, u3my) on the elliptic
curve E2.
 For two randomly given plaintexts (or ciphertexts), (mx, my) and (m’x, m’y), there
is a negligible probability to have an element u ∈ GF(p)* such that m’x = u2mx and m’y =
u3my . Hence the passive attack using isomorphism is usually probabilistically ineffective.
 There is an active attack (chosen-plaintext attack) based on this isomorphism. If
an attacker wants a user B to sign a message M = (mx, my), he will send to user B another
message M’ = (u2mx (mod N), u3my (mod N)), using user B’s public modulus N and a
random number u. User B’s signature for M’ is S’ = d.(u2mx (mod N), u3my (mod N)) =
(s’x, s’y). Then the attacker will be able forge a signature for message M to be S = d.(mx,
my) = (u–2s’x (mod N), u–3s’y (mod N). To resist against this attack, a hash function should
be applied on the plaintext
Concealing-message problem. Unconcealable message has its ciphertext the same as the
message (plaintext) itself. Blakley & Borosh [BB79] showed that there are at least 9
messages that are unconcealable (including three trivial messages 0, –1 and 1). But there
was no literature showing an analoguous problem for RSA-type elliptic curve

__
A Survey of Elliptic Curve Cryptosystems – Part I: Introductory – 10/27/2003

Page 31 of 105

NAS Technical Report - NAS-03-012 August 2003
--

cryptosystems for a long time until 1997. Joye, Quisquater & Takagi [JQT97] started to
analyze the concealing-message problem for RSA-type elliptic curve cryptosystems. The
maximum number of unconcealable messages is bound by (e + 1)2, where e is the RSA-
encryption key (public key). Hence the probability that a message is unconcealable for a
1024-bit RSA modulus is as small as about 10–299. But this can be open for some active
attacks.
2.E.3. Elliptic curve digital signature & key agreement schemes
a. Fujioka-Fujisaki-Okamoto’s scheme [FFO93]
 This could be considered an elliptic curve version of the ESIGN (Efficient Digital
Signature) that based on Okamoto’s digital signature scheme. The idea is to extend
Okamoto’s scheme, whose signature involves a one-variable polynomial function, to a
scheme involving a two-variable rational function. Refer to the original paper for a more
detailed description. The elliptic curve used in this scheme has the form CN: y2 = x3 + ax
+ b over ZN where N = p2q. The main disadvantage of this scheme is the excessive
complexity of advanced calculus used to describe the algorithm. It makes the scheme less
desirable for typical technical people.
 The security of this scheme depends on the difficulty of factoring N = p2q. There
is no known attack for this scheme so far. We did not know whether factoring N = p2q is
as difficult as factoring N = pq. Note that the quadratic version of Okamoto’s scheme was
broken by Brickell & DeLaurentis [BD85] and this attack was generalized by Girault,
Toffin & Vallée [GTV88].
b. An analogue of McCurley’s scheme (McCurley [Mc88], Boyd & Smith [BS95])
 McCurley’s key agreement scheme ([Mc88]) is an enhanced variation of the
Diffie-Hellman scheme. In order to break this scheme, one needs to break the ordinary
Diffie-Hellman scheme and also factor big numbers. Boyd & Smith [BS95] proposed an
analogue of McCurley’s scheme using an elliptic curve over a ring ZN. Then the
procedure is analogous to the elliptic curve Diffie-Hellman key exchange scheme
discussed earlier.
 The scheme is still secure if an attacker can factor N or solve the ECDHP in the
groups E(Fp) and E(Fq) but cannot do both. The authors also proved that if there exists an
algorithm to solve the ECDHP over a ring ZN, then it can be a feasible algorithm for
factoring the modulus N.
c. Sakazaki-Okamoto-Mambo ID-based key distribution scheme
 Okamoto [O88] proposed an ID-based key distribution system whose security
depends on the Integer Factoring Problem as in the RSA cryprosytems. The drawback of
this scheme is that it cannot be constructed on an elliptic curve over a ring ZN in a
straightforward way because the point corresponding to a user’s identity may not be a
point on the elliptic curve.
 Mambo, Okamato & Sakazaki [MOS99] gave a solution to the above problem in
order to construct it over a ring ZN. The elliptic curve EN(a, b): y2 = x3 + ax + b, where N
= pq, the product of two large primes, as in the RSA cryptosystems. The Center has
private key consisting of p, q and k, where k = lcm (#Ep(a, b), (#Eq(a, b)). Let P be the
point on EN(a, b) of order k. Given N, a, b and P, computing k is assumed to be
intractable without knowledge of the prime factors p and q.
Step 1. Issuing private key to a user A whose public identifying information is IDA.

__
A Survey of Elliptic Curve Cryptosystems – Part I: Introductory – 10/27/2003

Page 32 of 105

NAS Technical Report - NAS-03-012 August 2003
--

 Let iA = h(IDA) be user A’s hashed identity. Suppose that gcd(iA, k) =1. The
Center computes: dA = iA

–1 (mod k) and SA = – dAP (= – iA
–1 P). The Center transmits the

pair (iA, SA) to user A over a secure channel. Then the user A’s private key is SA
 and

public key is iA. It follows that iASA = – P.
Step 2. Key exchange scheme: First, Alice chooses a random number rA in the interval [1,
N – 1] and computes the point on the elliptic curve EN(a, b): CA = SA + rAiBP, and sends it
to Bob. Similarly, Bob chooses a random number rB ∈ [1, N – 1] and sends to Alice the
point: CB = SB + rBiAP. Alice computes the point KAB = rA(iBCB + P) and Bob the point
KBA = rB(iACA + P). Then the share secret point is: K = KAB = KBA = rArBiAiBP.
 The above scheme can work also on the ring ZN itself.
 Qu, Stinson & Vanstone [QSV01] discussed that the scheme has multiplicative
homomorphism-like properties; hence it could be vulnerable to homomorphism attacks:
Sx = – ySxy and Sy = – xSxy.
 Suppose that gcd(x, y) = 1, Sx = – x–1P and Sy = – y–1P. Then Sxy = k1Sx + k2Sy,
where k1x + k2y = 1.
 The attack: Suppose that one knows enough public keys Ii and secret key Si (by
interacting with the Center) to construct a database D = {x, Sx} for small primes x, using
the above lemma. Given a public key I that can be factored into primes in the database D,
he/she can compute the private key SI of that public key I.

2.F. Advantage features of elliptic curve cryptosystems
 All the users can use the same underlying finite field that can be selected to
optimize the finite field arithmetic. Thus it requires the same hardware to perform such
arithmetic. Users still can select a different elliptic curve or can change to other elliptic
curves at any time for security reasons.
 All the known attacks so far can reveal a single private key at a time. The same
effort has to be repeated for other private key. This is true assuming that each user
employs a different elliptic curve. There is a security risk if multiple users employing the
same elliptic curve and the same base point. It will take only about (k)1/2 times as long to
reveal k single private keys on the same elliptic curves.
 ECC has higher cryptographic security strength with smaller in key sizes and
signature sizes in comparison to other cryptosystems, RSA or DSA. An estimation by
Odlyzko was presented in the table 3.1.

DSA/RSA key size Elliptic curve key size Time to break (MIPS Years)
512 bits 106 bits Insecure
768 bits 132 bits ≈ 108 (not recommended)
1024 bits 160 bits ≈ 1011

2048 bits 210 bits ≈ 1020

2500 bits 239 bits ≈ 1023

21000 bits 600 bits ≈ 1078

Table 3.1. Key sizes for comparable security of DSA/RSA and ECC
Remark: A MIPS machine can perform a million microprocessor instructions per second.
In cryptography literature, it is usually estimated (optimistically) that a machine rated at
1 MIPS can perform roughly 40,000 elliptic curve additions per second. A 1-MIPS year
(MY) is equivalent to the computing power of a MIPS computer utilized for one year.

__
A Survey of Elliptic Curve Cryptosystems – Part I: Introductory – 10/27/2003

Page 33 of 105

NAS Technical Report - NAS-03-012 August 2003
--

 Computational efficiencies of ECC: faster speed in implementation and
execution. Although the elliptic curve operations (such as additions or scalar point
multiplications) require more arithmetic operations than modular multiplications in
modulo groups, but, if the same security level is required, we will work on a much
smaller size of finite fields for elliptic curves than the size of modulo groups. As a result,
it is estimated that elliptic curve operations are about 8 to 10 times faster than modular
multiplication in a modulo group whose order is of the same security level. There are
subsequent advantages from this approach: better storage efficiencies and bandwidth
savings, smaller certificates and codes, which then require smaller memory, and low cost
of implementation: integrated circuit (IC) chips of smaller number of gates and lower
power consumption.
 The uses of elliptic curve cryptosystems will have the most benefit in applications
in highly contrained and low resources environments, where bandwidth, memory, power
and processing capacity are limited, such as smart cards, wireless communication devices
and handheld/mobile electronics devices and computers... Hence elliptic curve
cryptosystems will be the most important and efficient cryptographic technology for the
next generation products of the Internet, banking, electronic commerce systems and many
other security solutions. For latest work on selecting appropriate key sizes for a
cryptosystem, refer to Lenstra & Verheul [LV00].

Chapter 3 – Attacks on Elliptic Curve Cryptosystems

 We will briefly scan many well-known cryptographic attacks or algorithms on the
ECDLP, the security core of elliptic curve cryptosystems. This is an active research area
which will provide new algorithms on cryptographic attacks as well as counter-attacks
toward the ECDLP.

3.A. Running time of algorithms
 For the running time, one can count on both the number of bit operations and the
number of group operations such as elliptic curve additions or scalar point multiplications
or other finite field arithmetic operations…
 For any integer x, the number of bits b(x) of x is [log2

 x] + 1 = [(log x)/(log 2)] +
1. Then we can write: b(x) = O(log x).
 Recall the usual notation of running time function L that is usually written as a
function of variable log x: L(x, c, α) = O{exp[(c + o(1))(log x)α (log log x)1–α]}, where α
is a real number, 0 ≤ α ≤ 1 and o(1) is a number that approaches 0 as x increases to
infinity.
 When α = 0, L(x, c, 0) = O((log x)c’), then the running time is polynomial in (log x).
 When α = 1, L(x, c, 1) = O[exp(c’log x)], then the running time is fully exponential in
(log x). If written in terms of x, it is L(x, c, 1) = O(xc’).
 Otherwise, 0 < α < 1, the running time is sub-exponential in (log x). Fixing x and c,
and for α in the interval [0,1], the smaller value of α will give the quicker running time.
 One may distinguish two types of algorithms: General-purpose algorithm attempts
to solve general problems; hence its running time depends on the size of the input. It is
independent of the underlying group representation. Special-purpose algorithm attempts

__
A Survey of Elliptic Curve Cryptosystems – Part I: Introductory – 10/27/2003

Page 34 of 105

NAS Technical Report - NAS-03-012 August 2003
--

to solve a particular problem; hence its running time depends not only on the size of the
input but also on special features of the input or the underlying group representation.

3.B. Algorithms on the discrete logarithm problem
 We will give brief discussions of most practical algorithms known in literature to
find the discrete logarithm m in the equality y = gm.
Shanks’ Baby-step-Giant-step
 This algorithm works on any group. It requires pre-computing a look-up table of
powers of the base element g. Let h = ⎣ n1/2⎦. We pre-compute two lists of data: {g0, gh,
g2h,…, } and {y, yg

2hg –1,…, yg–h}. Compare them to check if there is a match: guh = yg– t,
or y = guh+t. Then m = loggy = uh + t, for 0 ≤ u and t ≤ h.
 This algorithm takes fully exponential running time in length of the largest prime
factor of the order n of the group. Particularly, it is about n1/2 steps (or group operations.)
By its running time, this method is also named a square root method. It also requires
memory size of n1/2. It is a time-memory trade-off version of exhaustive search.
 To resist this attack, we should have the order n of the group divisible by a big
prime p, say p ≥ 1040 ≈ 2132.
Pohlig-Hellman’s method ([HP78])
 This method (also referred as Silver-Pohlig-Hellman’s method) reduces the
problem to a determination of m modulo pi, each of the primes pi in the prime
factorization of n, the order of the group. Then we use the Chinese Remainder theorem to
recover m.
 Let n = be the order of g. Let p be any prime in the set {pse

s
e pp ...1
1 1,…, ps}. Then

z = m (mod pe) = a0 + a1p + …+ ae–1pe–1, where 0 ≤ aj ≤ p – 1, for 0 ≤ j ≤ e – 1. We can
write yn/p = (gn/p)m

 = (gn/p)z = , since g0/)(apng n/p has order p. Now, a0 is the discrete
logarithm of yn/p to the base gn/p. For a1, we write:

.)()()(1//)0(/
2/)0(2/0 apnpampnpnampna gggyg === −−−

Each term aj now is a discrete logarithm to the base element gn/p. Hence it reduces from a
difficult DLP to many easier baby-DLPs. Each baby-DLP can be solved using other
algorithms.
 Its running time, O(Σei(log n + pi)) group multiplications, depends mostly on the
largest prime factor. Hence it works efficiently only when n is a smooth number, that is,
all primes pi are small. Therefore, in order to resist Pohlig-Hellman’s algorithm, n should
be divisible by a large prime number (> 280), or indeed, n must be prime > 280 for the
maximum security possible.
Pollard’s rho-method and lambda-method
 This method is a randomized version of Shanks’ Baby-step-Giant-step algorithm,
and it requires no significant storage of pre-computations.
 The algorithm was described in Pollard [P78] later also explained in much
cryptography literature. In short, we partition the group into 3 subsets, and then perform
the following recursive search: xi+1 = xiu, where u is either xi, g or y depending on which
subset xi belongs to. The search is completed until we find a value j such that xj = x2j.

__
A Survey of Elliptic Curve Cryptosystems – Part I: Introductory – 10/27/2003

Page 35 of 105

NAS Technical Report - NAS-03-012 August 2003
--

 By its running time, this method is also named a square root method. This
algorithm also works on any group, and it takes about (πn/2)1/2/R steps (group operations)
if R microprocessors are used in parallel. Refer to van Oorschot & Wiener [OW94] and
[OW99]. When n > 2160, the DLP is still infeasible.
 Pollard’s “lambda-method for catching kangaroos” is applicable when the result
is known to be in a certain range. If the length of that range is w, then the running time is
about w1/2.
 The above algorithms, as Shanks’ Baby-step-Giant-step, Pollard-rho and Pohlig-
Hellman, are called generic algorithms. The algorithms can work on any group and
require no special group structure except that each element in the group has a unique
representation.
 Shoup [Sh97] showed that the lower bounds of running time for generic methods
to solve DLP are proved that match the known upper bounds, about O((n)1/2), under some
assumptions. That is, in order to improve the attack efficiently, one must know more
about the structure of the group. There was also a method proposed by R. Silverman &
Stapleton [SS97], to solve multiple discrete logarithms: loggy1,…, loggyM. This method
was originally to attack the ECDLP.
Index-calculus algorithm
 First we try to select an appropriate fixed subset, called the “factor base” B, of
small primes gi of the group G, such that most elements in can be represented as
products of such primes.

*
pZ

 We hope to be able to find the discrete logarithms logg gi of elements gi in the
factor base B to the base point g, by setting up a system of (a large enough number of)
linear equations of the form k = (log∑

∈Bg
i

i

a ggi) mod(p –1), where gk = ∏
∈Bg

a
i

i

ig .

 If we can represent the given element y as a factorization over elements gi in the
factor base and the base element g: ygk = ∏

∈Bg

b
i

i

ig , for some random integer k, then we can

solve our DLP for x = logg y = mod (p –1). ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−∑

∈Bg
igi

i

kgb)(log

 This algorithm has a sub-exponential running time:
L(p, c, ½) = exp[(c + o(1))(log p)1/2(log log p)1/2].

It is the fastest general-purpose algorithm for DLP.
 The original (or classical) works on index-calculus methods are due to many
researchers such as Maurice Kraitchik, A. E. Western & J. C. P. Miller, Adelman, Ralph
C. Merkel, Pollard, Hellman & Justin M. Reyneri and Blake, Fuji-Hara, Mullin &
Vanstone.
 There are two sieving methods, which are under current active research.
Number field sieve algorithm
 Lenstra, Lenstra, Manasse & Pollard [LLMP90] developed the Number Field
Sieve method for factoring numbers (originally, of the form n = re ± s, for r and s small.)
Its running time is known heuristically as
 L(n, c, 1/3) = exp[(c + o(1))(log n)1/3(log log n)2/3], where ...526.1)3/2(2 3/2 ≈=c

__
A Survey of Elliptic Curve Cryptosystems – Part I: Introductory – 10/27/2003

Page 36 of 105

NAS Technical Report - NAS-03-012 August 2003
--

It is independent of the size of factors of n. A general version of this algorithm has the
value c = (64/9)1/3 ≈ 1.923…
 Refer to the works of Coppersmith, Odlyzko & Schroeppel [COS86] the case of
finite fields of characteristics 2, c ≈ 1.587. Refer to Gordon [G93] and Schirokauer
[Sc93] on the case of prime finite field Fp, c ≈ 1.923... For finite field GF(pm), when m <
(log p)1/2, or log p ≥ m2, the running time is heuristically sub-exponential:

L(pm, c, 1/3) = exp[(c + o(1))(log pm)1/3(log log pm)2/3], for c ≈ 1.923...
Function field sieve algorithm (Work of Adleman, Huang, Coppersmith, Semaev…)
 The works of Coppersmith and others are considered a special case of function
field sieve algorithm. For finite field GF(pm), when m > (log p)2, or log p ≤ m1/2, it has a
sub-exponential running time: L(pm, c, 1/3) = exp[(c + o(1))(log pm)1/3(log log pm)2/3], for
c ≈ 1.526...

3.C. Algorithms on the elliptic curve discrete logarithm problem (ECDLP)
 There is no known attack of sub-exponential time for this problem. First, in order
to avoid exhaustive search, the order N of the group should be divisible by a prime n >
280. To avoid the square-root attacks, n should be greater than 2160. For convenience, we
may now assume the base point P in the ECDLP has order n.
Shanks’ Baby-step-Giant-step
 It takes fully exponential time in length of the largest prime factor of the order N
of the elliptic curve. To resist against this attack, we should have the order divisible by a
big prime n, say n > 2160. This is one of the fastest generic algorithms for ECDLP on non-
supersingular elliptic curves. It is also claimed that the best general-purpose algorithm for
ECDLP is the combination of Shanks’ Baby-step-Giant-step method and Pohlig-Hellman
method discussed below.
Pollard’s ρ-method
 It takes about (πn/2)1/2/R steps (i.e., elliptic curve additions), if R microprocessors
are used in parallel. Refer to van Oorschot & Wiener [OW94] and [OW99]. This is
known as one of the best generic algorithms for ECDLP. It is also claimed that the best
general-purpose algorithm for ECDLP is the combination of Pollard’s ρ-method and the
Pohlig-Hellman method. A well-known cryptographic fact is that exhaustive search
through a k-bit symmetric key cipher takes about the same time as the Pollard ρ-
algorithm applied to an elliptic curve cryptosystem having a 2k-bit n. Currently, the
standard n is required to be greater than 2160.
Pohlig-Hellman’s method
 This algorithm works on any group by exploiting the subgroup structure. The idea
is to determine elliptic curve discrete logarithm m in the ECDLP by determining m(mod
pi) for all primes pi in the prime factorization of the order n of the base point P. Then we
use the Chinese remainder theorem to recover m. This algorithm works efficiently if the
primes pi are small. That is, n is a smooth number. Therefore, in order to resist the
Pohlig-Hellman’s algorithm, n should be divisible by a large prime number (> 2160) and
moreover, to attain the maximum security level possible, n must be prime.
 In summary, no generic algorithm on ECDLP can perform substantially better
than the Pohlig-Hellman algorithm combined with either Shanks’ Baby-step-Giant-step

__
A Survey of Elliptic Curve Cryptosystems – Part I: Introductory – 10/27/2003

Page 37 of 105

NAS Technical Report - NAS-03-012 August 2003
--

or Pollard’s ρ-method. Currently, there is no other breakthrough improvement on
implementation of the known attacks or of new attacks.
Method of solving multiple elliptic curve discrete logarithms (R. Silverman &
Stapleton [SS97])
 The method was proposed to find multiple elliptic curve discrete logarithms:
logPQ1, logPQ2,…, logPQM. The idea is to apply the parallelized Pollard-rho method M
times to find each logPQi. In each search, one may encounter two types of collisions:
ordinary collisions within itself and special collisions with other searches. If the running
time to find a logPQi is T, then the running time to find all M discrete logarithms logPQi’s
is TK1/2. Hence if multiple users are using the same elliptic curve and same base point,
there is a security risk, since it takes only about K1/2 times to recover K secret keys on the
same elliptic curve. Therefore, we should choose parameters such that solving each
single discrete logarithm is infeasible by itself.
Index-calculus method
 Over finite fields where the DLP is defined, there is another “additional structure”
beyond the “multiplicative structure.” The index-calculus methods take advantage of this
extra structure. It is generally believed that it is much more complicated, or even
impossible, to apply index-calculus method to elliptic curves. In ECDLP, the group of
points has no extra structure other than the basic operation: addition of two points. A
similar approach as in DLP, by choosing a “factor base” B, could not work for E(Fq). The
questions are: How to create a factor base for an elliptic curve? And may there be a
method without requiring a factor base of elliptic curve points?
 Flassenberg & Paulus [FP97] discussed that the sieving methods are still not
efficient on ECDLP yet. Miller [Mi98] discussed “lifting” points on E(GF(pn) to points
on an elliptic curve Ẽ(Q) where Q is the rational field. That is, given P ∈ E(GF(pn), find
an elliptic curve Ẽ(Q) and a point Q ∈ Ẽ(Q) such that Q ≡ P (mod p). The natural
candidate for a factor base is a set of points of small height on Ẽ(Q). The height of an
elliptic curve point that is defined as the number of bits in the numerator and
denominator of the x-coordinate of that point. But these points are too sparse to generate
all points on the elliptic curve by scalar point multiplications. In order to have such a
lifting with probability c, the points need to have a height of at least 2cp, which is
impossible. Even when such a base exists, it is still a very difficult problem to find an
efficient method for the lifting. Recently, Silverman & Suzuki ([S99],[SS99]) gave a
more detailed proof to confirm the impossibility of index calculus method for the
ECDLP. The main reason is that a factor base for the ECDLP is exponentially bigger
than a DLP factor base.
 In summary, the ECDLP is considered more difficult than the DLP for DSA and
more difficult than the IFP (Integer Factoring Problem) on which RSA cryptosystems are
based.

3.D. Application of Weil pairing and MOV reduction attack
 The Weil pairing can be used to embed an elliptic curve E(Fq) into the
multiplicative group of the finite field GF(qk) for some positive integer k. This helps to
reduce the elliptic curve discrete logarithm problem (ECDLP) on the curve E(Fq) to the
ordinary discrete logarithm problem in the multiplicative group GF(qk)*

 = GF(qk)\{0}.
This method is called MOV reduction (proposed by Menezes, Okamoto & Vanstone

__
A Survey of Elliptic Curve Cryptosystems – Part I: Introductory – 10/27/2003

Page 38 of 105

NAS Technical Report - NAS-03-012 August 2003
--

[MOV93]). We need an assumption that gcd(#(E(Fq), q) = 1, and it works on both cases,
either q = p > 3, or q = 2m. The supersingular elliptic curves automatically satisfy the
assumption that gcd(#E(Fq), q) = 1, since if q = p, then E(Fq) = p + 1, while if q = 2m then
#E(Fq) must be an odd number.
 Let P be the base point of order n used in the ECDLP. Let Q be a fixed GF(qk)-
point of order n that is not in the subgroup 〈P〉, generated by point P. The mapping
defined by Weil pairing, P a en(P, Q), is the embedding of subgroup 〈P〉 into the
multiplicative subgroup GF(qk)* of the finite field GF(qk). The necessary condition for
this embedding is obviously that:
 (a) The order n of point P must divide (qk – 1).
Then the finite field GF(qk) contains all n n-th roots of unity. We need one more
condition for MOV working on the finite field GF(qk):
 (b) The elliptic curve E(GF(pk) contains n2 points of prime order n. Hence we
have E[n](Fq) ⊆ E(GF(pk).
 It was shown that statement (b) implies statement (a) and the proof did not
require either condition n| #E(Fq) or n∤(q – 1).
 Balasubramanian & Koblitz [BK98] showed that the statement (a) implies
statement (b), if two conditions n| #E(Fq) and n∤(q – 1) are satisfied. Indeed, since n|
#E(Fq), the elliptic curve E(Fq) contains a point P ≠ Ο of order n. The condition n| (qk –
1) implies that gcd(n, q) = 1. Hence the elliptic curve E(GF(ps) contains n2 points of
order n, for some positive integer s. Using Frobenius mapping and the critical condition
n∤(q –1), they proved that, in fact, s must be k. We have (b). q.e.d.
Theorem (Balasubramanian & Koblitz [BK98]): Let n be a prime such that n|#E(Fq) and
n∤(q – 1). Then the elliptic curve E(GF(qk)) contains n2 points of order n if and only if n|
(qk – 1), for some positive integer k.
 That is, the necessary condition n| (qk – 1) is in fact also sufficient for MOV
reduction, provided a crucial assumption that n∤(q –1). Otherwise the result is wrong
even if one assumes that n2 | #E(Fq).
 The running time for DLP in this situation will be sub-exponential in log(qk), by
index calculus method, L(qk, c, 1/3) = exp[(c + o(1))(log qk)1/3(log log qk)2/3]. In fact, the
algorithm is not proved for the case q prime and k > 1, but cryptography researchers
would prefer to assume so “optimistically.” Refer to Gordon [G93] for the case k = 1.
 Hence the MOV reduction is significant only when k is small enough.
Particularly, if we have k ≥ (log q)2, its running time will be greater than
 =])log(log))(log'exp[(3/2)(log3/1)(log 22 qq qqc
 = exp[(c’)log q (3log log q)2/3] > exp[(c’)log q].
 This running time is fully exponential in (log q) and hence there is no significant
advance in the MOV reduction. When k = log q, we can estimate that
[(log qlog q)1/3(log log qlog q)2/3] = (log q)2/3.(2log log q)2/3 < (log q)2/3(log q)1/3 = log q.
Then the running time is sub-exponential. Hence the borderline value for k could be log q
< k < (log q)2. One could choose roughly k0 = (logq)2/[s(log logq)2], for a value s such
that 0 < s < q, for k to be on the borderline of exponential and sub-exponential time.
 We consider supersingular and non-supersingular elliptic curves separately.
 When E is supersingular, the MOV reduction needs the extension field to be of
degree k ≤ 6 only. Let #E(Fq) = q + 1 – t. Then the values of k are computed as follows:

__
A Survey of Elliptic Curve Cryptosystems – Part I: Introductory – 10/27/2003

Page 39 of 105

NAS Technical Report - NAS-03-012 August 2003
--

t2 0 q 2q 3q 4q
k 2 3 4 6 1

Table 3.2. Values of k versus t2

 Hence the MOV method is successful on attacking the ECDLP on supersingular
elliptic curves. That is the reason that one generally prefers non-supersingular elliptic
curves in applied cryptography.
 When E is non-supersingular, to resist the MOV attack, we must have k > (log q)2
(with a very high margin of security) and this can be done simply. Particularly, the order
n of base point P must be checked to satisfy the MOV condition, that is: n∤(qk –1) for all
k ≤ (log q)2. In practice, we do not need value of k to be near (log q)2 (as we also
observed above), but k = 20 is sufficient. In the future, we should replace this value by a
number b such that the DLP on GF(qb) is intractable with the up-to-date technology
capability.
 Assume that n is divisible by a large prime u (or if n is a prime itself, then u = n)
in order to resist the Pohlig-Hellman attack. To ensure the condition: E[u] ⊄ E(GF(qt))
for each t, 1 ≤ t ≤ k, it is sufficient to check either u2∤ #E(GF(qt)) or n∤(qt – 1).
 With such requirements, the ECDLP on non-supersingular elliptic curves has no
known sub-exponential time algorithm. The best-known algorithms (which still run at
exponential speed) are Shanks’ Baby-step-Giant-step and MOV reduction followed by a
number field sieve (Koblitz, 1991), or combination of Pollard-ρ and Pohlig-Hellman
methods. Refer to [HMV93]. Currently, there is no other breakthrough improvement on
implementation of the known attacks or of new attacks.

Supersingular elliptic curves #E(Fq)
Over Fp, p > 3 E: y2 = x3 + ax + b when #E(Fp) = p + 1
Over GF(2m) E: y2 + cy = x3 + ax + b whose order will be one of the followings:

2m + 1, 2m + 1 ± 2m/2, 2m + 1 ± 2(m+1)/2 or 2m + 1 ± 2(m+2)/2.
Table 3.3. A checklist of orders of supersingular elliptic curves that should be avoided

 Chao, Tanada & Tsujii [CTT94] discussed that the minimum k satisfies n| (qk –
1), or qk ≡ 1 (mod n), must be a factor of φ(n), that is equal to (n – 1) in the case n is
prime. Hence in order to check that k > B, some lower boundary, one may only check that
φ(n) is B-nonsmooth, (i.e., φ(n) has no prime factors less than B), instead of factoring
φ(n) completely.

3.E. SSA attack (Smart-Satoh-Araki attack)
 The SSA attack is to solve the ECDLP on non-supersingular elliptic curves of
trace t = 1 or #E(Fp) = #(Fp), where p > 3. They are called anomalous curves. The idea is
to reduce the ECDLP to a simpler equation in a p-adic field. There are a few independent
works on this problem by Smart, Samaev and Araki & Satoh. The generalized work is
done recently by Rück. The SSA attack cannot apply to other cases since its proof uses
the essential identity: #E(Fp) = #(Fp) = p. In order to resist this attack, the SSA condition
(or anomalous condition) should be satisfied: #E(Fp) ≠ #(Fp) = p.
 One should note that the anomalous binary curves (ABC’s) or “Koblitz curves,”
which are defined over finite fields GF(2m), are not susceptible to the Smart-Satoh-Araki

__
A Survey of Elliptic Curve Cryptosystems – Part I: Introductory – 10/27/2003

Page 40 of 105

NAS Technical Report - NAS-03-012 August 2003
--

attack. It was known that trace-1 elliptic curve case was mentioned earlier at the West
Coast Number Theory conference, 1996, as a “well known fact” and hence unpublished.
Araki & Satoh’s work ([AS98]) is to solve the ECDLP on non-supersingular elliptic
curves of trace t = 1 or #E(Fp) = #(Fp). The method is based on an elliptic curve version
of Fermat quotient that is defined as Lp(a) = (ap–1 –1)/p (mod p) ∈ Fp, for a such that
gcd(a, p) = 1. It is well-defined because of Fermat’s Little theorem, ap–1 – 1 ≡ 0 (mod p).
 The detailed proof is out of context. It utilized the concept of formal group,
associated with an elliptic curve, and its properties. This algorithm has a linear running
time O((log p)3) to solve the ECDLP on an anomalous elliptic curve. It also works on
non-prime finite fields Fq, where q = pr, where p > 3.
Smart’s work ([Sm99]): claimed that this attack works just on prime finite fields. The
idea is to reduce the ECDLP to a simpler equation in a p-adic field. We consider the
ECDLP as usual, Q = m·P, on an elliptic curve, and neither point has order two. We then
lift these points to points P and Q on the same elliptic curve but over the p-adic field
Qp by P = (x, y) where x is the x-coordinate of P and y is computed via Hensel’s lemma,
and similarly for the point Q . Then we have: RPmQ =− ∈ E1(Qp), where En(Qp) = {P
∈ E(Qp): vp(x(P)) ≤ –2n} ∪ {O}, as a subgroup of the elliptic curve E(K), and vp is the
discrete valuation in Qp. Then we have two following equivalence relations:

E0(Qp)/ E1(Qp) ≅ E(Fp) and En(Qp)/En+1(Qp) ≅ E1(Qp)/ E2(Qp) ≅ Fp, for n ≥ 1.
If the elliptic curve satisfies the condition: #E(Fp) = #(Fp) = p, we can multiply the above
equation by p: RpPpmQp =− · ∈ E2(Qp). Taking the p-adic elliptic logarithm Ξp
(which is easy to compute but its context is not able to be described yet within this
document), we have: Ξp(pQ – m. Pp) = Ξp(Rp) ≡ 0 (mod p2). This reduces the ECDLP
to a single linear equation of one unknown over the p-adic field Qp. Its solution is m =
Ξp(pQ) / Ξp(Pp) (mod p).
 This attack has a linear running time O(log p), since the only non-trivial
computation needed to be performed is to compute pQ and Pp . Both computations
need a number of (log p) group operations on an elliptic curve.
 Semaev [Se98] showed a more general result on the elliptic curve discrete
logarithm problem in a subgroup of order p of an elliptic curve E(Fq), where q = pk.
Semaev showed how to construct an isomorphism from such a subgroup to an additive
subgroup of some finite field GF(pk). Then the problem can be solved in polynomial
running time, O(log p) field operations. As an immediate result, the ECDLP in
anomalous elliptic curves over prime finite fields then can be solved easily in polynomial
running time. Rück [R97] generalized the result of Semaev [Se98] for more general
curves.

3.F. Differential and power attacks
 More rigorous proofs for those estimations are still needed in order to evaluate
and compare the security of various cryptosystems. More powerful attacks are expected
for the years to come when elliptic curve cryptosystems are more extensively studied and
widely implemented. There are a few estimations on the security of elliptic curve
cryptosystems, in comparisons with other cryptosystems, scattered in cryptography

__
A Survey of Elliptic Curve Cryptosystems – Part I: Introductory – 10/27/2003

Page 41 of 105

NAS Technical Report - NAS-03-012 August 2003
--

literature. For example, refer to the table 3.4 for the case n > 2160, where Vaudenay’s
attack on DSA (or DLP) was blocked in ECDSA (or ECDLP).
(Length
in bits)

System
parameter

Public key ° Private key Signature size Encrypted 100-
bit message

RSA N/A 1024+64 2048 1024 1024
DSA 2208 1024 160 320 depend
ECC 481 161 160 320 321

Table 3.4. Comparisons of the cryptosystems RSA, DSA and ECC
(°: For time to break of about 1011 MIPS years)

 The software attack is to use an exhaustive search for a solution of an ECDLP.
 The hardware attack is to build special-purpose hardware for a parallel search by
Pollard-ρ method that is considered one of the best algorithms so far, or used in
combination with other methods or even by new algorithms hopefully to be developed.
Both software and hardware attacks are still infeasible for elliptic curve cryptosystems
with at least n > 2160, unless there will be significant breakthroughs in hardware designs,
computational or cryptanalytic algorithms.
 Side-channel attacks: The timing and differential power attacks belong to the
family of attacks, called “side-channel” attacks, which devise to exploit the leakage of
information from implementations of cryptosystems.
 Timing attacks, which are proposed by Kocher [Ko96] are based on repeatedly
measuring the exact execution times of modular exponentiation operations. Kocher also
proposed attacks using differential power analyses based on the power assumption of
cryptographic devices. This later type is usually referred as Simple Power Attacks (SPA).
To defend against such attacks, in general, one should uniformize or homogenize the
computations to make running time and power independent of key bits or randomize
inputs and key bits. Particularly for elliptic curve cryptosystems, one should use
Montgomery’s method for point scalar multiplication or add dummy operation to
homogenize the point adding operations.
 Differential fault & power analyses are one of important issues recently for
cryptographic attacks, particularly against ECC. Refer to Biehl, Meyer & Müller
[BMM00], Coron [C99], Aigner & Oswald [AO01] and Joye & Tymen [JT01] for
discussions on both attacks and counter-attacks. The differential fault attack induces
computational errors to the device and deduce key bits from the leaked information by
the faulty results. To defend againt DFA attack, one should check the consistency of the
computational results. For example, for elliptic curve cryptosystems, verifying the
resulting point being on the elliptic curve is implicit consistency relation which should be
used at all time.
 The differential power attack attack applies statistical tests to intermediate results
in order to detect correlations between plaintext and ciphertext. To defend against DPA
attack, one should decorrelate the intermediate results, key bits, plaintexts and ciphertexts
by randomization. Particularly for elliptic curve cryptosystems, we can also use the
randomized projective coordinates.
 Later works, such as Bellezza [Be01], also discussed many methods of counter-
attacks against the side-channel attacks, especially for the elliptic curve cryptosystems,
such as: moving to a random isomorphic elliptic curve, changing the field representation,

__
A Survey of Elliptic Curve Cryptosystems – Part I: Introductory – 10/27/2003

Page 42 of 105

NAS Technical Report - NAS-03-012 August 2003
--

(such as using projective coordinates…) and adding a random point to the input and
subtracting a suitable multiple of that point at the end. But in a general sense, designers
should be aware that design and implemention of a countermeasure against one physical
cryptanalysis may benefit another attack or attacks.

Chapter 4 – Implementations of Elliptic Curve Cryptosystems

 We will discuss many technical issues in implementations of elliptic curve
cryptosystems such as how to implement finite fields, elliptic curves and arithmetic
operations on them. More techniques and algorithms are likely being developed to
improve the efficiency of elliptic curve cryptosystems. An elliptic curve cryptosystem
requires a process of setting up common system parameters. These parameters, once
generated, will be used by all users within a group using that cryptosystem. Each user
will have his/her own pair of private and public keys.

4.A. Implementations of finite fields
 First, one has to decide which finite fields will be used for an elliptic curve
cryptosystem. One must choose an appropriate finite field and its basis to represent field
elements.
4.A.1. Finite fields
 In order to implement finite fields, we will deal with these tasks:
 Selecting the underlying finite field Fq.
 Selecting a basis representation for the finite field elements,
 Implementing the arithmetic on the finite field Fq.
 The cost, speed and feasibility of elliptic curve cryptosystems depend on the finite
field Fq, where q = pm, on which it is implemented. There are usually two finite fields to
work on: prime finite field Fp = Zp (i.e., m = 1) when p is a prime number > 3 and binary
finite field GF(2m).
a. Prime finite fields Fp, where p is a large prime number > 3
 The prime p should be large enough such that the ECDLP is infeasible over prime
finite field Fp. The minimum threshold of the choice of p should increase as new
technology and theory develops to attack the ECDLP. In fact, it is the order of an elliptic
curve that is the first factor in selecting the elliptic curve. As we will discuss later, that
order must be divisible by a prime > 2160. It is also within a relatively small range around
p, the order of Fp, as we knew already: | p – #E(Fp)| ≤ 1+ 2 p .
Mersenne primes. The prime p is suggested to be a Mersenne prime for maximum
security and efficient implementation. There is also general doubt that the more special
internal structures are embedded in a finite field chosen for an elliptic curve
cryptosystem, the more vulnerable this cryptosystem will be.
 A Mersenne prime is of the form p = 2t – 1, where t is, obviously, a prime. We
call t a Mersenne exponent. For example, t = 2, 3, 5, 7, 17, 31, 89, 127, 521 and 607, we
have (2t – 1) to be a Mersenne prime.
 A Mersenne number is of the form (2t – 1), where t is not necessarily a prime. Not
any prime can be a Mersenne exponent; e.g., 211 – 1 = 2047 = 23·89 is a composite
number.

__
A Survey of Elliptic Curve Cryptosystems – Part I: Introductory – 10/27/2003

Page 43 of 105

NAS Technical Report - NAS-03-012 August 2003
--

Pseudo Mersenne primes. In Crandall’s patent [C92], the Mersenne primes are a subset
of fast class numbers, which are primes of the form p = 2t – C, where C is a very small
positive number in practice. They are called pseudo Mersenne primes. Then the modular
reduction (modulo p) can be implemented very efficiently in this case: using only cyclic
shifts and additions, with no divisions required. This advantage is also for the Fermat
primes of the form p = + 1.

s22
Generalized Mersenne primes. Generalized Mersenne primes are also implemented for
prime finite fields. They are primes of the form p = 2n – 2s – 1.
Modular reduction method. The binary form of a number a is represented as

43421
KL

44 344 21
KL

44 344 21
K

terms

011

terms

1)1(

terms

)1(21

t

t

t

itittit

t

tnntnt aaaaaaaaaa −+−+−−−= = An –1… A1A0.

where each set of t bits, starting from the far right side, are grouped. Let p = 2t – C. Then
we have: 2t ≡ C (mod p). Hence

Ai = (ait+(t–1)…ait+1ait) = (mod p). ∑∑
−

=
+

−

=
+ ≡

1

0

1

0
222

t

j

j
jit

i
t

j

j
jit

it aCa

That is, to compute Ai (mod p) we just shift its bits to the positions for those of A0, then
we compute its decimal value. Adding them up, we get the modulo p of a

a (mod p) ≡ An –1 (mod p) + … + A0 (mod p).
 When C = ±1, the algorithm will have only shiftings and additions/subtractions.
 When C ≠ ±1, the algorithm will actually have shiftings, multiplications by C, and
then additions/subtractions.
b. Finite fields GF(2m) of characteristic 2 (binary finite fields)
 We now discuss more on the bases of GF(2m) that is considered a vector space of
dimension m over F2. A basis is a set of elements {e0, e1,…, em–1} in GF(2m) such that

each element a ∈ GF(2m) can be represented uniquely by the form a = , where ai

m

i
iea∑

−

=

1

0
i ∈

F2, i.e., ai = 0 or 1. Then one can write: a = (a0, a1,…, am –1).
 There are many different bases of GF(2m). The most natural bases are, of course,
polynomial bases, normal bases and optimal normal bases.
c. Extension finite fields
 Extension finite fields are special cases of practical implementation. They are
divided into two groups: composite finite fields of characteristic 2 are of the form
GF(2n)m) and Optimal Extension Fields (OEF) of the form GF(2n ± c)m) have
characteristic greater than 2. We can summarize all types of finite fields, which are
currently implemented, into the table 4.1.

Finite Fields
Prime finite fields GF(p), p > 2 Extension finite fields GF(pm)

Special form primes char (p) = 2 General
primes (&
Mersenne)

Pseudo
Mersenne

Generalized
Mersenne

Binary Composite
char (p) > 2

OEF

GF(p) GF(2n– c) GF(2n–2s–1) GF(2n) GF((2n)m) GF((2n± c)m)
Table 4.1. Finite field classifications

4.A.2. Polynomial bases

__
A Survey of Elliptic Curve Cryptosystems – Part I: Introductory – 10/27/2003

Page 44 of 105

NAS Technical Report - NAS-03-012 August 2003
--

 Let f(x) = xm + fm–1 xm–1 + … + f1x + f0, where fi ∈ F2, be an irreducible polynomial
of degree m over F2. We call f(x) the reduction polynomial (or sometimes, field
polynomial). Let α = x + (f(x)) be a root of f(x). Hence the set {αm–1,…,α2, α, 1} is a
polynomial basis, where αi= xi + (f(x)), for 0 ≤ i ≤ m – 1.
 Then the elements of the finite field GF(2m) can be represented as the set of all
polynomials of degree 0 ≤ d ≤ m – 1: a(x) = am –1 xm –1 + … + a1x + a0, where ai = 0 or 1.
One can also write: a(x) = (am–1,…, a1, a0). Particularly, we can write the zero element 0
= (0, 0,…, 0) and the multiplicative identity 1 = (0, 0,…, 1).
a. Irreducible polynomials
 A polynomial f(x) is called irreducible if we cannot write f(x) = g(x).h(x), for any
polynomials g(x), h(x) of degree strictly less than the degree of f(x).
 An irreducible polynomial f(x) = xm + fm –1 xm –1 + … + f1x + f0 of degree m over F2
should satisfy these necessary conditions:
 The constant term f0 = 1; otherwise, we can factor x out. Hence from now on, we
always write the general form as: f(x) = xm + fm –1 xm –1 + … + f1x + 1.
 There is an odd number (≥ 3) of nonzero terms; otherwise, f(x) whose number of
nonzero terms is even has a factor (x + 1).
 There must be at least one term of odd degree; otherwise, f(x) of all even powers
is a square of a polynomial of degree (m/2).
 It is easy to verify this property:
 If f(x) = xm + fm –1 xm –1 + … + f1x + 1 is an irreducible polynomial of degree m,
then so are polynomials g(x) = f(x + 1) and h(x) = xm.f(1/x) = xm + f1 xm –1 + … + fm –1x +
1.
 The compositions of g(x) and h(x) will give us a few more irreducible
polynomials.
b. Primitive polynomials
 If f(x) = fm xm + … + f1x + f0 is an irreducible polynomial of degree m over F2 and
r is a root of f(x) in an extension field of F2 (that is a finite field GF(2m)), then r, r2,

22r ,...,
12 −m

r are all roots of f(x). Indeed, if f(r) = 0, then for any d, we have = f
d

if
2

i,
since fi equals either 0 or 1. Hence:

.0))(()()(22
1

1
1

2
1

)1.(2
1

2 ==+++=+++= −
−

−
−

dd

o
m

mo

dmd

m

d
rffrfrffrfrfrf LL

Property: All the roots of the polynomial f(x) have the same multiplicative order, that is
called the period (or order) of the function f(x).
PROOF: Indeed, if order of r is k, i.e., rk = 1, then k| (2m – 1). Hence k is odd. We also
have = 1. Therefore, the order of kddk rr)(22. = r

d2 is some integer l such that: l | k and
ld

r .2 = 1. Hence, k| (2dl). Since k is odd, we have k | l. Hence k = l. q.e.d.
 The period (or order) of a polynomial f(x) can also be defined as the least positive
integer e such that f(x) divides the polynomial (xe + 1).
Definition: If the period of f(x) is (2m – 1), that is the order of the multiplicative subgroup
GF(2m)* = GF(2m)\{0}, then f(x) is called a primitive polynomial.
 All roots of a primitive polynomial f(x) are primitive elements of GF(2m). For
example, the polynomial h(x) = xm + … + x + 1 divides (xm+1 + 1). Hence its period is
equal to (m + 1) or less and h(x) is not a primitive polynomial of GF(2m), unless m = 2.

__
A Survey of Elliptic Curve Cryptosystems – Part I: Introductory – 10/27/2003

Page 45 of 105

NAS Technical Report - NAS-03-012 August 2003
--

 A primitive polynomial can be built from a primitive element a of a finite field
GF(2m) by the formula: f(x) = (x + a)(x + a2)).

)

()(
1222 −

++
m

axax L

 If another primitive polynomial g(x) = (x + b)(x + b2) is

built from a primitive element b, such that b ∉{ | 0 ≤ n ≤ m –1}, then g(x) ≠ f(x).

()(
1222 −

++
m

bxbx L
n

a2

 In other words, each primitive element is a root of only one primitive polynomial
of GF(2m). In fact, the set of roots of all primitive polynomials for a finite field are
exactly all primitive elements in GF(2m)* = GF(2m)\{0}. Hence there can be many
primitive polynomials for a finite field GF(2m), when m ≥ 3. And in fact, a primitive
polynomial cannot be reducible over F2. ℵ
 Recall that the number of non-zero terms for a reduction polynomial must be odd.
Hence the first polynomials to be considered are of 3 non-zero terms since we prefer the
fewest terms in reduction polynomials. But irreducible trinomials are relatively sparse;
hence the next candidates are polynomials of 5 non-zero terms or pentanomials. In
practice, the most-used polynomial bases are trinomial and pentanomial bases. We can
choose such a reduction polynomial f(x) such that the computations modulo f(x) can be
performed efficiently in software and hardware implementations.
c. Trinomial basis representation
 Its reduction polynomial is an irreducible trinomial of the form Tm,k(x) = xm + xk +
1, where 1 ≤ k ≤ m –1. In fact, a trinomial Tm,k(x) = xm + xk + 1 is irreducible if and only if
its reciprocal trinomial Tm,m–k(x) = xm + xm–k + 1 is irreducible. Hence, we should be
interested in trinomials of the following form only: Tm,k(x) = xm + xk + 1, where 1 ≤ k ≤
m/2. Such trinomials exist for certain values of m only. If they exist, we should choose
the reduction polynomial with the smallest k. Such a trinomial generally will have the
most efficient implementation.
d. Pentanomial basis representation
 Its reduction polynomial is an irreducible pentanomial of the form

P(x) = , where 1 ≤ k1123 ++++ kkkm xxxx 1 < k2 < k3 ≤ m –1.
Such pentanomials always exist for m ≥ 4. In practice, it was recommended to use
pentanomials whose coefficient triples (k1, k2, k3) or (k3, k2, k1) will have the first
coefficient as small as possible and next coefficients are kept as small as possible after
fixing the previous one or ones in the triple order. These polynomials would have more
efficient computations of finite field operations.
e. The field arithmetic
 Its operations are performed via modulo f(x) over the finite field F2 as follows:
 The reduction modulo f(x) of a polynomial g(x) is just the remainder when g(x) is
divided by f(x).
 Field addition is performed component-wise by XOR-ing.

ℵ Number theory tip – Number of primitive polynomials
 There are a total of φ(2m – 1) primitive elements in the multiplicative subgroup
GF(2m)* = GF(2m) \{0}.
Property: For any integer m > 0, we have m| φ(2m – 1), or more generally, m| φ(pm – 1),
for any prime p. Hence the number of primitive polynomials of a finite field GF(2m) is
equal to φ(2m – 1)/m.

__
A Survey of Elliptic Curve Cryptosystems – Part I: Introductory – 10/27/2003

Page 46 of 105

NAS Technical Report - NAS-03-012 August 2003
--

(am–1,…, a1, a0) + (bm–1,…, b1, b0) = (cm–1,…, c1, c0) where ci = ai ⊕ bi.
 Field multiplication: (am–1,…, a1, a0) · (bm–1,…, b1, b0) = (rm–1,…, r1, r0), where
the polynomial (rm –1xm–1 + …+ r1x + r0) is the remainder when the product

(am –1xm–1 + …+ a1x + a0) · (bm –1xm–1 + …+ b1x + b0)
is divided by f(x) over F2.

Refer also to Schönhage [S77] and Pincin [P89] for more disccusions. Kim,
E. J. Lee & P. J. Lee [KLL98] proposed a new inversion algorithm, called MAIA
(Modified Almost Inverse Algorithm), which is suited especially for Optimal Extension
Fields.
Squaring. In particular, the squaring operation of a polynomial (am –1xm–1 + …+ a1x + a0)
that is performed in modulo 2 is in fact a linear operation; that is,

(am –1xm–1 + …+ a1x + a0)2 = am –1x2(m–1) + am –2x2(m–2) + …+ a1x2 + a0.
In terms of bit strings, we write: (am–1,…, a1, a0)2 = (a2(m–1), 0, a2(m–2), 0,…, 0, a1, 0, a0).
Then we reduce the resulting polynomial by modulo f(x).
 We should refer to some algorithms using squaring matrices when we need to
implement many squaring operations in a fixed polynomial basis.
 Orlando & Paar [OP00] proposed a design for the standard basis field
representation, and it is based on the transformation from squaring operation into an
addition and a multiplication by a constant that depends only on the field polynomial. Let
L = ⎡m/2⎤ and K = ⎣m/2⎦, then
 (am –1xm–1 + …+ a1x + a0)2 = am –1x2(m–1) + am –2x2(m–2) + …+ a1x2 + a0.
 = x2L[aL+(K–1)x2(K–1) + aL+(L–2)x2(L–2) … +aL+1x2 + aL] + [aL–1x2(L–1) + … + a1x2 + a0].
 = A.B + C, where A = x2L mod f(x) is a constant depending only on the field
representation and A could be reduced to a polynomial of degree much less than m and

B = aL+(K–1)x2(K–1) + aL+(L–2)x2(L–2) … +aL+1x2 + aL and C = aL–1x2(L–1) + … + a1x2 + a0.
 Inversion: We need to discuss also some methods of computing the inverse of a
non-zero element. This operation obviously has an important role in field arithmetic. The
general method is using this identity: a–1

 = 21222)(
1−− −

=
mm

aa , ∀a ≠ 0. Recall that: =
1. In implementations, we can even analyze further the power exponent (2

12 −m
a

m–1 – 1) of a to
reduce our computation to a few multiplications.
 Another well-known method is using the Euclidean algorithm. After finding
gcd(f(x), a(x)), we can work backward the steps in the Euclidean algorithm to represent
gcd(f(x), a(x)), as a linear combination of f(x) and a(x). This is called the extended
Euclidean algorithm: finding polynomials u(x) and v(x) such that gcd(f(x), a(x)) =
f(x)·u(x) + a(x) ·v(x). When gcd (f(x), a(x)) = 1, we can write 1 ≡ a(x)·v(x) (mod f(x)). In
other words, the polynomial v(x) is the inverse of a(x), modulo f(x).
 The explicit algorithm and its hardware architecture can be found easily in
computer engineering literature. In fact, it is generally referred to as an algorithm to
compute the ratio b(x)/a(x). Hence inversion is only a special case when we let b(x) = 1.
 Quite a few methods are mentioned in cryptography literature. For each particular
finite field and its chosen reduction polynomial, one method can be implemented more
efficiently or conveniently than others.
 O’Malley, Orman, Schroeppel & Spatscheck [OOSS95] proposed the “Almost
Inverse” algorithm on the binary finite field GF(2155) with its reduction polynomial T(x)
= x155 + x62 + 1. In fact, this is the only irreducible trinomial of GF(2155) (if one ignores

__
A Survey of Elliptic Curve Cryptosystems – Part I: Introductory – 10/27/2003

Page 47 of 105

NAS Technical Report - NAS-03-012 August 2003
--

its reciprocal trinomial) and it is not a primitive polynomial. The authors developed the
“Almost Inverse” algorithm from Elwyn R. Berlekamp’s idea (in his book (Algebraic
coding theory, 1968)) and the low-end GCD algorithm, which were independently
discovered by Silver & Terzian, 1962 (never published) and Stein [S67].
 The idea of “Almost inverse” algorithm is to compute the almost inverse of a
polynomial a(x) modulo f(x). It will compute a polynomial b(x) and an integer j (which is
less than twice the degree of f(x),) such that a(x) b(x) ≡ x j (mod f(x)). Then the inverse of
the polynomial a(x) will be the polynomial b(x) divided by the term xj.
 They also suggested a few similarly well-behavior irreducible trinomials: x127 +
x63 + 1, x140 + x65 + 1, x182 + x81 + 1, x191 + x71 + 1, x223 + x91 + 1 and x255 + x82 + 1.
 Irreducible trinomials are rather sparse. For finite fields of degrees between 100
to 199, there are 43 fields having no irreducible trinomials.
4.A.3. Normal bases and optimal normal bases
 Normal bases are not special only for finite fields of characteristic 2. In fact, they
are defined for any finite field GF(qm) where q is a prime power.
 A normal basis of GF(2m) over F2 is a basis of the form {β, β2, ,…, },
where β ∈ GF(2

22β
12 −m

β
m). Such a basis always exists. Then a = (a0, a1,…, am–1) will represent

the element a = . By convention, the ordering of
bits in normal basis representation is different from that in polynomial basis
representation. Particularly, we can write the zero element 0 = (0,0,…,0) and
multiplicative identity 1 = (1,1,…,1).

12
1

22
2

2
10

−

−++++
m

maaaa ββββ L

 The most important property of a normal basis is that the square of a field element
can be computed easily and implemented efficiently on hardware by just a right 1-cyclic
shift on the register. Indeed, given an element a = (a0, a1,…, am–1) represented in a normal

basis, we have: a2 = = (a
im

i
i

im

i
i

im

i
i aaa 2

1

0
1

2
1

0

2
2

1

0

1

βββ ∑∑∑
−

=
−

+−

=

−

=

==⎟
⎠

⎞
⎜
⎝

⎛
m–1, a0, a1,…, am–2). Then

for any integer s, 1 ≤ s ≤ m – 1, the 2s-th power of element a can be computed quickly by
an right s-cyclic shift. That is, = (a

s
a2

m–s, am–s+1, …, a0, a1,…, am–s–1). We can verify
again the relationship: = a. Similarly, the square root of a can be computed simply
by a left 1-cyclic shift: a

m
a2

1/2 = (a1, a2,…, am–1, a0).
 Unfortunately, multiplication in a normal basis is more complicated.
a. The field arithmetic
 Field addition is performed component-wise by XOR-ing as on a polynomial
basis. Field multiplication: (a0, a1,…, am–1) · (b0, b1,…, bm–1) = (c0, c1,…, cm–1), where ck,
for 0 ≤ k ≤ m – 1, is computed by as follows. First, we have that equality written as:

 We will compute the products for

all 1 ≤ i, j ≤ m – 1, where = 0 or 1. Replacing them back in the previous equality, we

have: c

.·
1

0

22
1

0

1

0

2 ∑∑∑
−

=

−

=

−

=

=
m

i

ji

j

m

j
i

m

k

k

k bac βββ ,· 2
1

0

)(
,

22 km

k

k
ji

ji
βλββ ∑

−

=

=

)(
,
k
jiλ

k = , where the addition on subscripts are of modulo m. Observe

that: . Then we can rewrite (after we dropped the superscript in):

∑∑
−

=

−

=

1

0

1

0

)(
,

m

i

m

j

k
jijiba λ

)0(
,

)(
, kjki
k
ji −−= λλ)0(

, jiλ

__
A Survey of Elliptic Curve Cryptosystems – Part I: Introductory – 10/27/2003

Page 48 of 105

NAS Technical Report - NAS-03-012 August 2003
--

ck = ∑∑∑∑∑∑
−

=

−

=
++

−

=

−

=
++

−

=

−

=
−− ==

1

0

1

0
,

1

0

1

0

)0(
,

1

0

1

0

)0(
,

m

i

m

j
jikjki

m

i

m

j
jikjki

m

i

m

j
kjkiji bababa λλλ

Hence we need only the first term in the expansion of the product

.· 2
1

1

)(
,,

22 km

k

k
jiji

ji
βλβλββ ∑

−

=

+=

 This formula for ck is very helpful in hardware implementation. Indeed, each term
ck can be obtained from the term c0 by the same hardware setup and a left k-cyclic shift of
the involved variables; that is, adding k to each subscript in the formula for c0. In other
words, (a0, a1,…, am) and (b0, b1,…, bm) are replaced by (ak, ak+1,…, am, a0, a1,…, ak– 1)
and (bk, bk+1,…, bm, b0, b1,…, bk– 1) , respectively.
 The complexity mλ of a normal basis is the number of non-zero terms λi,j. Then
we have 2m – 1 ≤ mλ ≤ m2. When mλ = 2m – 1, the normal basis is an optimal normal
basis that will be discussed next. It is the case that λ0,j = 1 for precisely one j, 0 ≤ j ≤ m –
1 and that for each i, 0 ≤ i ≤ m – 1, λi,j = 1 for precisely two distinct values j, 0 ≤ j ≤ m –
1. This is the most important and popular normal basis used in cryptography.
 Inversion: One of the most obvious ways (and also efficient in some setups) is to
convert to an inversion on a more familiar polynomial basis representation by a basis-
change matrix multiplication and convert the result back to the original normal basis to
display.
 Deutsch, Omura, Reed, Shao, Truong & Wang [DORSTW85] proposed a new
method for inversion, which is derived from the equality: a–1 = , ∀a ≠ 0. Then the

exponent of a can be manipulated as: 2

22 −m
a

m – 2 = . Hence, a∑∑
−

=

−

=

=
1

1

2

0

222
m

s

s
m

s

s –1 =

, where we already knew how to compute efficiently each term

. Considering that (m – 1) cyclic shift operations are of no cost, we still need (m – 2)
multiplications in the finite field GF(2

∏
−

=

−
=− =∑=

1

1

2
1

1 222
m

s

sm
s

sm
aaa

s
a2

m) for the final product. This method is impractical
for large m.
 The most efficient algorithm was proposed by Itoh & Tsujii [IT88] or Itoh,
Teechai & Tsujii [ITT86]. They exploited a factorization of the exponent (2m – 2) into
interweaved cyclic shifts (i.e., squares) and multiplications. We can write: 2m – 2 = 2 (2m

–1 – 1), where 2m–1 – 1 = . Hence, for m odd,

we can compute from with a right [(m – 1)/2]-cyclic shift and one
multiplication. For m even, we can compute from with a total of (m/2)
right 1-cyclic shifts and two multiplications. It can reduce the computation to exactly
⎣log

⎪⎩

⎪
⎨
⎧

++−

+−
−−

−−

even is if 1)12)(12(2
odd, is if)12)(12(

2/)2(2/)2(

2/)1(2/)1(

m
m

mm

mm

α 2 1 1m− − α 2 1 2 1()/m− −

α 2 1 1m− − α 2 2 2 1()/m− −

2(m –1) + H(m – 1) – 1 ⎦ ≤ 2log2(m – 1) multiplications and (m – 1) cyclic shifts,
where H(m) is the Hamming weight of the binary representation of m. We can check this
formula by induction. However, this method requires storage for intermediate results.

__
A Survey of Elliptic Curve Cryptosystems – Part I: Introductory – 10/27/2003

Page 49 of 105

NAS Technical Report - NAS-03-012 August 2003
--

 A similar algorithm was proposed independently by Vanstone in a lecture at NTT
(Nippon Telegraph and Telephone, Japan) in 1987, and it can also be applied to a general
power operation.
 Another method for inversion, described in Agnew, Beth, Mullin & Vanstone
[ABMV93], does not require storage for intermediate results but requires more
multiplications.

 If m – 1 = gh, then we have α–1 = , where η = α
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
∑
−

=
−

−−−
==

1

0
2)12(

12)112(2

h

i

gig
ghm

ηηα 2

and we used the identity: ah – 1 = (a – 1) , where a = 2∑
−

=

1

0

h

i

ia g, for the exponent of η. Let

denote Then we can compute two factors: .2
1

0
T

h

i

gi =∑
−

=

 (i) in (g – 1) multiplications (together with (g

– 1) right 1-cyclic shifts) and

∏
−

=

−+++− ===
1

0

212120212
g

i

igg
ηηηβ L

 (ii) in (h – 1) multiplications and (h – 1)g right 1-cyclic shifts. ∏
−

=

=
1

0

2
h

i

giT ββ

Hence, in total, we can compute the inverse α–1 of α in (g + h – 2) multiplications and in
hg – 1 = m – 2 right 1-cyclic shifts. This number is minimized when both g and h are
about (m – 1)1/2.
b. Miscellaneous implementations
Trace of an element: Given a point a = (a0, a1,…, am–1) in a normal basis
representation, its trace will be easily computed as: Tr(a) = a0 ⊕ a1⊕ … ⊕ am –1. Indeed,
from the squaring formula discussed above, we have
 Tr(a) =

122212 −
++++

m
aaaa L

 = (a0, a1,…, am –1) + (am –1, a1,…, am –2) + … + (a2, a3,…, a1) + (a1, a2,…, a0)
 = (x, x,…, x), where x = a0 ⊕ a1⊕ … ⊕ am –1.
We observe: Tr(a) = 0 if x = 0 and Tr(a) = 1 if x = 1. Hence Tr(a) = a0 ⊕ a1⊕ … ⊕ am –1.
 Therefore, the trace function is also a parity function that indicates whether the
number of bits 1 is odd or even. Furthermore, since squaring and square root operations
are just cyclic shifts, we have a trivial proof for the identity: Tr(a) = Tr(a2) = Tr(a1/2).
Finding the roots of equation x2 + x + b = 0: We can observe again that since Tr(x + x2)
= 0, the equation has solutions only when Tr(b) = 0. In that case, one root is x, then the
other root is (x + 1), since (x + 1)2 + (x + 1) = x2 + 1 + x + 1 = x2 + x.
 In normal basis representation, the roots can be found easily by bit operations.
Indeed, we can write x = (x0, x1,…, xm–1) and x2 = (xm–1, x0, x1,…, xm–2). Hence the
equation is: x2 + x = (x0 ⊕ xm –1, x1⊕ x0,…, xm –1⊕ xm –2) = (b0, b1,…, bm –1) = b. Then one
can choose xm–1

 = 0 to compute other bits of a root x = (x0, x1,…, xm–1). The other root is
for xm–1

 = 1. Then we have: x0 = b0 ⊕ xm –1, x1 = b1 ⊕ x0, x2 = b2 ⊕ x1, …, xm –2 = bm –2 ⊕
xm –3.
 More generally, we can solve the equation x2 + ax + b = 0, where a is an
invertible element, by transferring it to the form X2 + X + a– 2b = 0, where X = a – 1x.

__
A Survey of Elliptic Curve Cryptosystems – Part I: Introductory – 10/27/2003

Page 50 of 105

NAS Technical Report - NAS-03-012 August 2003
--

Discrete exponentiation: The goal is to compute the power an ∈ GF(2m) where n is its

binary form n = (ns–1,…, n1, n0) = . ∑
−

=

1

0

2
s

i

i
in

 In a regular way, we then write: an = . Using normal basis,

we get terms simply by cyclic shifts. Thus we need only a number of –1

multiplications or probabilistically about (r/2) multiplications.

∏∏
−

=

−

=

=
1

0

2
1

0

2)(
s

i

inis

i

i
in aa

i
a2 ⎟

⎠

⎞
⎜
⎝

⎛∑
−

=

1

0

s

i
in

 Following the 2d-ary expansion method, we may pad an extra number of bit 0’s to
the left side of the bit string to make s = dr for some integer r. Then we have n of the
form n = (Nr–1,…, N1, N0), where each Ni is a d-bit string and Nr–1 ≠ (0…0). Explicitly,

we can write: n = and N∑
−

=

1

0
2

r

j

dj
jN j = . Let w∑

−

=
+

1

0
2

d

i

i
ijdn j be the value of the d-bit string Nj.

The idea is to rewrite n as a sum over wj, the values of the d-bit strings Ni. We have: 1 ≤

wj ≤ 2d – 1, for any j. Then n = , where s∑∑ ∑
−

=

−

=

−

=

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ 12

1

12

1

1

0
,)(2

d

w

d

w

r

j

dj
wj wwWws j,w = 1 if wj = w

and sj,w = 0 if otherwise. Hence an = , where W(w) = . ()∏
−

=

12

1

)(
d

w

wwWa ∑
−

=

1

0
, 2

r

j

dj
wjs

 For a randomly chosen n, the term W(w) will have about (r/2d) non-zero terms in
it. In a normal basis, aW(w) will be computed in (r/2d) – 1 multiplications. Then computing
the term (aW(w))w will need probabilistically about (d/2) – 1 multiplications. We need to
compute all (2d – 1) such terms (aW(w))w; and it is possible to use (2d – 1) microprocessors
in parallel. Finally, (2d – 2) multiplications will provide the final value of an.
 Refer to Agnew, Beth, Mullin & Vanstone [ABMV93] for further analysis on the
numbers of operations. Other works were proposed by Cohen, Miyaji & Ono ([CMO97],
[CMO98]).
4.A.4. Optimal normal bases (ONB) (Gao & Lenstra [GL92])
a. Existence of ONBs
 An optimal normal basis over F2 only exists in finite field GF(2m) for certain
values of m. Recall from the previous section, when the complexity mλ of a normal basis
(i.e., the number of non-zero terms λi,j) is equal to (2m – 1), then the normal basis is
called an optimal normal basis. There are two types of ONB, type I and type II,
depending on m and hence on the mathematical formulae defining them.
Theorem (Mullin, Onyszchuk, Vanstone & Wilson [MOVW89])
 (i) The finite field GF(2m) has an optimal normal basis if and only if (m + 1) is a
prime and 2 is a primitive element in the finite field Fm+1. (Type I ONB).
 (ii) If (2m + 1) is a prime and 2 is a primitive element in the finite field F2m+1,
then the finite field GF(2m) has an optimal normal basis. (Type II ONB).
 (iii) If (2m + 1) is a prime such that 2m + 1 ≡ 3(mod 4), and 2 generates the
quadratic residues in the finite field F2m+1, then the finite field GF(2m) has an optimal
normal basis. (Type II ONB).
 The converse of the last two statements is also true. Namely,

__
A Survey of Elliptic Curve Cryptosystems – Part I: Introductory – 10/27/2003

Page 51 of 105

NAS Technical Report - NAS-03-012 August 2003
--

 If the finite field GF(2m) has a Type II optimal normal basis, then (2m + 1) is a
prime and either
 2 is a primitive element in the finite field F2m+1, or
 2m + 1 ≡ 3(mod 4) and 2 generates the quadratic residues in the finite field F2m+1.
(It is useful to observe that 2m + 1 ≡ 3(mod 4) if and only if m is odd.)
 All ONB’s of Type I or II are obtainable by the three statements in the above
theorem. The conjecture is that: If m does not satisfy the criteria in the above three
statements, then the finite field GF(2m) does not contain an optimal normal basis. In a
later section, we will discuss other low-complexity normal bases, where mλ > 2m – 1.
 For a more explicit and practical approach to establish algorithms for ONB, we
consider further analyses on m required by the above theorem.
 Statement (i): Let s = m + 1. Recall that 2 is not primitive in Fs, for prime s
satisfying s ≡ ±1(mod 8). Hence we are interested in case of prime s ≡ 3 or 5 (mod 8)
only when checking the existence of Type I ONB.
 When m ≡ 2 or 4 (mod 8) and s = m + 1 is prime: Type I ONB exists if and only if
ords(2) = s – 1 = m.
 This case is proved in a more general finite field GF(pm) for any prime p. The
requirement, that s = m + 1 is prime, causes quite a few finite fields having no ONB of
type I, such as when m is odd.
 The last two statements depend on whether 2 is primitive (hence, not a quadratic
residue) in Fp or not primitive.
 Statement (ii): Let s = 2m + 1. We consider the cases that 2 is primitive in Fs, i.e.,
when s ≡ 3 or 5 (mod 8), or, equivalently, m ≡ 1 or 2 (mod 4).
 When m ≡ 1 or 2 (mod 4) and s = 2m + 1 is prime: Type II ONB exists if and only
if we have: ords(2) = s – 1 = 2m.
 Observe that if ords(2) = s – 1, then 22m ≡ 1 mod(2m + 1), or (2m + 1) | (22m –1).
The finite field GF(22m) contains a primitive (2m + 1)th root of unity, called β. It
generates an optimal normal basis of GF(22m) over F2. Moreover, let ε = β + β–1 ∈
GF(2m). Then ε will generate an optimal normal basis of GF(2m) over F2.
 Statement (iii): Let s = 2m + 1. We consider the cases that 2 is a quadratic residue
in the finite field Fs, i.e., when s ≡ ±1 (mod 8). We need also s ≡ 3 (mod 4). Hence m ≡ 3
(mod 4) is the only case to be considered.
 When m ≡ 3 (mod 4) and s = 2m + 1 is prime: Type II ONB exists if and only if
ords(2) = (s – 1)/2 = m.
 Observe that if ords(2) = (s – 1)/2, then 2m ≡ 1 mod(2m + 1), or (2m + 1)| (2m – 1).
The finite field GF(2m) contains a primitive (2m + 1)th root of unity, called β. It generates
an optimal normal basis of GF(2m) over F2.
b. Structure of ONBs (Ash, Blake & Vanstone [ABV89])
 Type I ONB uses the reduction polynomial (or field polynomial) of the form f(x)
= xm + xm–1 +… + x + 1. Let β be a primitive (m +1)th root of unity in GF(2m). Then β
generates the Type I ONB. Since β m+1 – 1 = 0 and β ≠ 1, therefore βm + βm–1 +… + β + 1
= f(β) = 0. Hence β is a root of the reduction polynomial. We also have

= 0. Hence all elements in the normal basis are exactly all roots of f(x),
that is now also called normal polynomial.

() ii
ff 22)()(ββ =

__
A Survey of Elliptic Curve Cryptosystems – Part I: Introductory – 10/27/2003

Page 52 of 105

NAS Technical Report - NAS-03-012 August 2003
--

Property: There exists an integer ki such that 1 ≤ ki ≤ m – 1, such that ,
with the exception of one value of i such that 1 ≤ i ≤ m – 1.

iki 22· βββ =

 Type II ONB uses the reduction (normal) polynomial f(x) = fm(x), where all
polynomials fi(x) of degree i are computed by the recursive formulae (modulo 2) for all 0
≤ i ≤ m: f0(x) = 1, f1(x) = x + 1 and fi+1(x) = x fi(x) + fi–1(x), (mod 2), for i ≥ 1.
 Let β be a primitive (2m + 1)th root of unity in GF(22m). Then ε = β+ β–1
generates the ONB for GF(2m). This idea is also used to create other low complexity
normal bases. When m ≡ 3 (mod 4), β is in fact in GF(2m). Thus ε = β can generate the
ONB for GF(2m).
Property: There are integers ki and mi such that 1 ≤ ki, mi ≤ m – 1, such that

, for any i such that 1 ≤ i ≤ m – 1. ii mki 222. εεεε +=
 Note that the generator for the ONB of a finite field is not necessarily a generator
for non-zero elements of the finite field itself.
Uniqueness: For every binary finite field GF(2m), there is at most one ONB of each type.
Normal bases for a finite field GF(pm) where p is an odd prime
 A normal basis of GF(pm) is a basis of the form {β, βp, ,…, }, where β
∈ GF(p

2pβ
1−mpβ

m). Such a basis always exists. Then a = (a0, a1,…, am –1) will represent the
element Particularly, we can write the zero
element 0 = (0, 0,…, 0) and multiplicative identity element 1 = (1,1,…,1).

.
1

1

2

210

−

−++++=
mp

m
pp aaaaa ββββ L

 Given a point a = (a0, a1,…, am –1) represented in a normal basis, we have:

ap = = (a
ip

m

i
i

ip
m

i

p
i

p
ip

m

i
i aaa βββ ∑∑∑

−

=
−

+−

=

−

=

==⎟
⎠

⎞
⎜
⎝

⎛ 1

0
1

1

0

1

0

1

m –1, a0, a1,…, am –2)

Theorem (Mullin, Onyszchuk, Vanstone & Wilson [MOVW89])
 Suppose that the finite field GF(pm) contains (m + 1)th roots of unity. If the m non-
unit roots of unity are linearly independent, then GF(pm) contains an optimal normal
basis.
 One can write {β, βp, ,…, }, where β is a primitive (m + 1)

2pβ
1−mpβ th root of

unity. The elements of the set are called conjugates of β. In other words, we now state:
 The finite field GF(pm) contains an optimal normal basis consisting of m non-unit
(m + 1)th roots of unity if and only if (m + 1) is a prime and p is primitive in the finite field
Fm+1.
 Here is a sketch of the proof. If (m + 1) is prime then p(m+1)–1 ≡ 1 mod(m + 1).
That is, (m + 1) | (pm – 1), where (pm –1) is the order of the multiplicative subgroup
GF(pm)*. Then the finite field GF(pm) contains a primitive (m + 1)th root β of unity. Since
p is primitive in Zm+1, the minimal polynomial of β is (xm+1 – 1)/(x – 1) and the non-unit
(m + 1)th roots are linearly independent. Hence the finite field GF(pm) contains an optimal
normal basis generated by element β. If finite field GF(pm) contains an optimal normal
basis consisting of m non-unit (m + 1)th roots of unity, then (m + 1) must be prime. Hence
we have: p(m+1)–1 ≡ 1 mod(m + 1), or pm ≡ 1 mod(m + 1). ℵ

ℵ Number theory tip – Primitive elements of a finite field

__
A Survey of Elliptic Curve Cryptosystems – Part I: Introductory – 10/27/2003

Page 53 of 105

NAS Technical Report - NAS-03-012 August 2003
--

4.A.5. Low-complexity normal bases for GF(2m) (or Gaussian normal bases) (Ash,
Blake & Vanstone [ABV89])
 Recall that the complexity mλ of a normal basis is the number of non-zero terms
λi,j. When the optimal normal basis does not exist, we could use the low-complexity
normal basis (or Gaussian normal basis,) where mλ > 2m –1.
 The ideas of Ash, Blake & Vanstone [ABV89] are from the construction of Type
II ONB previously described. For a finite field GF(2m), we find a small integer k such
that (km + 1) is a prime. Under certain conditions, there will exist some element β ∈
GF(2km), β ≠ 1 and βkm+1 = 1. We will try to apply on β a trace-like operator from the
finite field GF(2km) to GF(2m) in order to find a generator for a low complexity normal
basis of GF(2m). (In case of Type II ONB, we have k = 2 and the operator is ε = β + β–1.)
 When m is not divisible by 8, one can use the Gaussian cyclotomic periods to
construct easily an efficient normal basis for GF(2m). We summarize the results into this
theorem.
Theorem: Given a type T, that is a positive integer, suppose m is not divisible by 8, and
p = Tm +1 is a prime. Let k = ordp(2), and h = Tm/k = (p – 1)/k. The finite field GF(2m)
has a normal basis of type T if and only if gcd(h, m) = 1.
 When T = 1 or 2, it is type I ONB or type II ONB, respectively, which were
discussed previously. They are the most popular normal bases that are the most efficient
multiplications in finite fields.
 When T ≥ 3, it is called a low-complexity normal base of type T (or Type T
Gaussian normal basis.) If both type I and II ONBs do not exist, then the type T Gaussian
normal basis of the smallest T should be used.
Uniqueness: For any positive integer T, every binary finite field GF(2m) has at most one
Type T Gaussian normal basis.
Recursive formula for reduction polynomial
 Let u be an integer of order T modulo p: ordp(u) = T. For 1 ≤ i ≤ m, let us define

Zi(z) =)(mod1.12)(mod2.12)(mod.12)(mod12 pTuipuipuipi
zzzz

−−−−−
++++ L .

Let f0(t,z) = 1, Z(z) = zp–1 + zp–2 + … + z + 1, and fi(t, z) = (t + Zi(z)) fi–1(t, z) mod Z(z).
Then the reduction polynomial for the normal basis is: f(t) = fm(t, z).

 A primitive element of a finite field Fq is an element α such that its order is (q –
1) and every non-zero element of Fq is a power of α. Thus, a primitive element is a
generator of the multiplicative subgroup GF(q)*.
 Let q be an integer ≥ 2. If there is some integer a < q, such that the order of a
modulo q is (q – 1), then q is a prime number. Thus, q is a prime if and only if there is an
element of order exactly (q – 1) (modulo q).
 There are exactly φ(p – 1) primitive elements in the prime finite field Fp, where φ
denotes the Euler’s φ-function.
Primitive elements & quadratic residues
 In general, if x is a quadratic residue, then we can write x = y2, for some y ∈ Fp.
Hence x(p–1)/2 = yp –1 = 1. Therefore, x cannot be primitive. In other words,
 If x is primitive, then x is not a quadratic residue. In particular, the quadratic
residues in Fp are of the form x2n and the quadratic non-residues are of the form x2n+1.

__
A Survey of Elliptic Curve Cryptosystems – Part I: Introductory – 10/27/2003

Page 54 of 105

NAS Technical Report - NAS-03-012 August 2003
--

 Note that we can write (z – 1)Z(z) = zp – 1. Hence the modulo Z(z) can be
performed simply by: zp ≡ 1 mod Z(z), zp+1 ≡ z mod Z(z), and generally, zp+j ≡ zj mod Z(z).
 More calculations for other small finite fields GF(2m) are given in the table 4.2. as
illustrated examples.
m Computing polynomials for ONB Type II of finite field

GF(2m)
Existence of

Type I & II ONB
2 f2(t) = t2 + t + 1

(The only irreducible polynomial of degree 2 over F2)
Type I ≡ Type II

3 f3(t) = t(t2 + t + 1) + t + 1 = t3 + t2 + 1 Type II, no Type I
4 f4(t) = t(t3 + t2 + 1) + t2 + t + 1= t4 + t3 + t2 + 1 (reducible) Type I, no Type II
5 f5(t) = t(t4 + t3 + t2 + 1) + t3 + t2 + 1= t5 + t4 + t2 + t + 1 Type II, no Type I
6 f6(t) = t(t5 + t4 + t2 + t + 1) + t4 + t3 + t2 + 1= t6 + t5 + t4 + t + 1 Type II, no Type I
7 f7(t) = t(t6 + t5 + t4 + t + 1) + t5 + t4 + t2 + t + 1= t7 + t6 + t4 + 1

(reducible)
no Type I
no Type II

8 f8(t) = t(t7 + t6 + t4 + 1) + t6 + t5 + t4 + t + 1= t8 + t7 + t6 + t4 + 1 no Type I
no Type II

9 f9(t) = t9 + t8 + t6 + t5 + t4 + t + 1 Type II, no Type I
10 f10(t) = t10 + t9 + t8 + t5 + t4 + t2 + t + 1 (reducible) Type I, no Type II
11 f11(t) = t11 + t10 + t8 + t4 + t3 + t2 + 1 Type II, no Type I

Table 4.2. Computing reduction polynomials for some ONB Type II’s
4.A.6. Self-dual bases and self-dual normal bases
a. Dual bases
 Two bases B = {b0, b1,…, bm–1} and C = {c0, c1,…, cm–1} of a finite field GF(pm)
over Fp are called dual bases (or complementary bases) if and only if

Tr(ci.bj) = δij, where δij = 0 if i ≠ j and δij = 1 if i = j.
The symbol δij is called the Kronecker delta function.
Fact: Every basis has a unique dual basis.
 Let s = s0b0 + s1b1 + … + sm–1bm–1 and t = t0c0 + t1c1 + … + tm–1cm–1. Then the
trace of the product (s.t) is defined by: Tr(st) = s0t0 + s1t1 + … + sm–1tm–1, and is used to
define a non-degenerate symmetric bilinear form: 〈s, t〉 = Tr(st), which is called the trace
bilinear form.
Theorem: Every element a ∈ GF(qm) can be expressed in the dual basis C as: a =

. i

m

i
i cabTr∑

−

=

1

0

)(

 The above fact still true in general, when the trace function Tr(·) is replaced by
any nontrivial linear function f (or transformation) from the finite field GF(pm) to the
finite field Fp. Dual bases have many advantages in hardware designs but they are more
complex in software implementations, such as field squaring. Current works using
specially designed dual bases were discussed in literature such as circular dual bases and
optimal dual bases.
b. Optimal dual bases
 Benaissa, Fenn & Taylor ([BFT96],[BFT96a]) proposed an optimal dual basis of
a given polynomial basis with respect to a linear function g. The authors showed that any
linear function g can be of the form

__
A Survey of Elliptic Curve Cryptosystems – Part I: Introductory – 10/27/2003

Page 55 of 105

NAS Technical Report - NAS-03-012 August 2003
--

g(z) = Tr(bz), ∀z ∈ GF(2m), for some element b ∈ GF(2m).
Hence they can choose an optimal element b such that the elements of the resulting dual
basis are just a permutation of elements in the given polynomial basis.
c. Circular dual bases
 Lee & Lim [LL98] proposed the circular dual basis that is the dual basis of a
polynomial basis whose reduction polynomial is of the form f(x) = xm + … + x + 1, when
it is an irreducible polynomial, for proper values of m. This polynomial basis is the Type
I ONB. In fact, this circular basis exist only in the finite fields, which have Type I ONB.
Explicitly, if the polynomial basis (or Type I ONB) is {1, α, α2,…, αm –1}, then its
circular dual basis is {1, c, c2,…, cm –1}, where ci = α + α–i, for 1 ≤ i ≤ m – 1. A short list
of degree m of such finite fields are: m = 4, 10, 12, 18, 28, 36, 52, 58, 66, 82, 100, 106,
130, 138, 148, 162, 172, 178, 180, 196, 210, 226, 268, 292, 316, 346, 348…
 The authors showed a few advantages and efficiencies of this circular dual basis,
which should inherit benefits of both dual basis and optimal normal basis, in finite field
arithmetic implementations: multiplications, squarings, inversions and basis changes.
d. Self-dual (or self-complementary) bases
 A basis {e0, e1,…, em–1} is called self-dual (or self-complementary) basis with
respect to the trace function Tr(·), if and only if Tr(eiej) = δij .
 Self-duality will always mean “with respect to the trace function Tr(·),” unless
stated otherwise.
Property: Any polynomial basis cannot be a self-dual basis.
 As observed above, a polynomial basis can be a dual basis of itself (or of a
permutation of it) with respect to some linear function other than the trace function Tr(·).
Theorem ([LS80])
 A finite field GF(qm) has a self-dual basis over Fq if and only if either q is even, or
both q and m are odd.
 A basis satisfying only the condition: Tr(eiej) ≠ 0 if and only if i = j, is called a
trace-orthogonal basis. Then any finite field GF(qm) always has a trace-orthogonal basis
over the field Fq.
e. Self-dual normal bases
 A normal basis that is also self-dual is called self-dual normal basis. A finite field
GF(2m) can have more than one self-dual normal basis. For instance, a Type II ONB is a
self-dual normal basis.
Theorem (MacWilliams & Sloane [MS77])
 If m is odd, then the finite field GF(2m) has a self-dual normal basis over F2.
Theorem (Existence theorem): A finite field GF(qm) has a self-dual normal basis over Fq
if and only if either q is even and m ≢ 0 (mod 4), or both m and q are odd.
 The necessary condition is trivial for q odd, and due to Imamura & Morii [IM85].
The sufficient condition is due to Lempel & Weinberger [LW88].
 Jungnickel, Menezes & Vanstone [JMV90] counted the number of self-dual bases
and for case q prime only, the number of self-dual normal bases. Later, Beth &
Geiselmann extended the later result to any finite field. Geiselmann & Gollmann [GG90]
also mentioned that dual basis multipliers have some advantages when circuits are
designed from certain standard cells (e.g., TTL), but there seems to be no reason to prefer

__
A Survey of Elliptic Curve Cryptosystems – Part I: Introductory – 10/27/2003

Page 56 of 105

NAS Technical Report - NAS-03-012 August 2003
--

them in full custom VLSI-design. Deutsch, Hsu, Reed & Truong [DHRT88] gave a
comparison on VLSI multipliers using differents bases.
4.A.7. Primitive normal bases
 A normal basis {β, βq, ,…, } of the finite field GF(q

2qβ
1−mqβ m) over a finite

field Fq where q is any prime power, is called a primitive normal basis if β is a primitive
root of the multiplicative subgroup GF(qm)*.
Theorem (Lenstra & Schoof [LS87])
 For every prime power q > 1, and every positive integer m, there exists a
primitive normal basis of finite field GF(qm) over Fq.
 Carlitz ([C52],[C52a]) proved this result with the case q prime and qm sufficiently
large. Davenport [D69] extended to all m with q = p prime. The author also showed that
the number of choices for β is at least (p –1)m.
4.A.8. Non-conventional basis
a. All-one-polynomial (AOP) basis (Hasan & Wu [HW98])
 The reduction polynomial f(x) = xm + xm–1 + … + x + 1 whose coefficients are all 1
is called all-one-polynomial (AOP). Let α = x + (f(x)) be a root of f(x). Hence the set {α,
α2,…, αm} is a non-conventional basis, where αi= xi + (f(x)), for 1 ≤ i ≤ m.
b. Equally Spaced Polynomial (ESP) basis (Itoh [I91] and Hasan & Wu [HW98])
 A polynomial g(x) = xsm + xs(m–1) + … + xs + 1 = f(xs) over GF(2), where f(x) is a
AOP of degree m over GF(2) is called an s-equally spaced polynomial (s-ESP) of degree
sm.
4.A.9. The choice of bases
 The security of an elliptic curve cryptosystem does not depend on the choice of
basis representation for the finite field GF(2m). Polynomial bases and optimal normal
bases are equally secure. Moreover, all the bases are mutually transformable by using
basis-change matrix multiplication, we can also use flexibly one basis for internal
calculations and another basis for outputting data.
 Any standard book on linear algebra always discusses the problem of using
matrix multiplication for basis change or conversion. The implementation should be
rather simple. The storage requirement is known to be about O(m2) bits over a binary
finite field GF(2m).
 Kaliski & Yin ([KY98],[KY98p]) and Kaliski & Liskov [KL98] discussed new
algorithms for basis conversion over finite field GF(2m). These algorithms require only
O(m)-bit storage.
 For software, the polynomial bases could be easier to understand and more
efficient. But the normal bases are more efficient for hardware implementation by taking
advantage of the fact that squaring operation is simply a cyclic shift, while in polynomial
bases, implementation of the squaring operation cannot be easier than that of
multiplication.
 However, this advantage must be exchanged for a larger and more complicated
layouts for multiplications, unless one uses the optimal normal bases. We also take into
account that the easy squaring operations also reduce the number of multiplications in
scalar point multiplication, [GG90].
4.A.10. Comparisons of finite fields

__
A Survey of Elliptic Curve Cryptosystems – Part I: Introductory – 10/27/2003

Page 57 of 105

NAS Technical Report - NAS-03-012 August 2003
--

 In implementing elliptic curve cryptosystems on finite fields, the binary finite
fields GF(2m) are preferred over the prime finite fields Fp, even though Fp has
performance advantages in software since it is rather more comprehensive.
 The arithmetic in the binary finite field GF(2m) is easier to implement than it is in
the prime finite field Fp, especially when optimal normal bases are used. The easy
squaring operations also reduce the number of multiplications in scalar point
multiplication.
 Point compression & recovery or compact point techniques help in reducing the
encrypted message.
 In some cryptosystems where the supersingular elliptic curves could be used, we
can also reduce the number of arithmetic operations.
 The ability to select the underlying finite field and its basis to optimize the finite
field operations is also an advantage of an elliptic curve cryptosystem over other systems
based on the discrete logarithm problem or the integer factoring problem.
4.A.11. Composite extension finite fields and subfields
 When m is a composite number, m = rs, then the composite extension finite field
GF(2m) can be considered an extension field of degree s over finite field GF(2r). The
finite field GF(2r) is called a subfield of GF(2m).
 The elliptic curve over a subfield is also used in computing the order of an elliptic
curve over a composite extension finite field using Hasse-Weil’s theorem.
 We can also represent elements in a composite extension finite field over its
subfield using either one of the two bases discussed earlier.
 We should point out that the finite field GF((2r)s) is isomorphic to the finite field
GF(2m), but their field operations (additions and multiplications) are different depending
on the irreducible field polynomials, P(x) of GF((2r)s) over GF(2r) and Q(y) of GF(2r)
over GF(2).
 It also depends on the posbbile factorizations of m (other than factors r and s).
The choice of those field polynomials are essential to determine the algorithmic
complexity of arithmetic operation of GF((2r)s).
Using polynomial bases: Let {rs–1,…, r1, r0} be a polynomial basis for GF(2m) over
GF(2r). Every element a in the finite field GF(2m) can be uniquely written in the form a =

(cs–1,…, c1, c0) = , or by the polynomial of the form a = ci

s

i
irc∑

−

=

1

0
s–1xs–1 + …+ c1x + c0,

where each term ci
 ∈ GF(2r), for s – 1 ≥ i ≥ 0, is also represented in a polynomial basis

over F2.

Using normal bases: Let {β, , ,…, } be a normal basis for GF(2
r2β

r22β
rs)1(22 −

β m)
over GF(2r). Then every element a in the binary finite field GF(2m) will be represented
by a = (c0, c1,…, cs–1) = c0β + c1

r2β + c2
r22β +…+ cs–1, where ci

 ∈ GF(2r), for 0 ≤ i ≤ s –

1. In this representation, we observe that = c
r

ic2
i, then

r
a2 = cs–1β + c0

r2β + c1
r22β + c2

r32β +…+ cs–2
rs)1(2 −

β .
 We do not have the rule “squaring is a right 1-cyclic shift” anymore. Instead, the
2r-th power of an element is a right cyclic shift of coefficients ci. This implementation is
most useful when, of course, r = 1 only.

__
A Survey of Elliptic Curve Cryptosystems – Part I: Introductory – 10/27/2003

Page 58 of 105

NAS Technical Report - NAS-03-012 August 2003
--

 Finally, the elements ci
 ∈ GF(2r) also can be presented by either basis over F2.

Recall that the choice of bases is not a security factor. One can always converse simply
from one basis to another.
 The arithmetic operations in the composite extension finite field GF(2m) =
GF((2r)s) over the finite field GF(2r) do not only involve modulo 2 as in the case over F2
but also involve arithmetic operations in the finite field GF(2r) over F2. There are many
research efforts in techniques to maximize performing operations over subfields.
 The following lemma focused on optimal normal bases rather than on normal
bases. Refer to Mullin [M93] or Agnew, Mullin & Vanstone [AMV93].
Lemma: There is an optimal normal basis for finite field GF(2rs) over GF(2r) if and only
if gcd(r, s) = 1 and there is an optimal normal basis for the finite field GF(2s) over F2.
 In fact, let B = {α, α2, ,…, } be an optimal normal basis for the finite
field GF(2

22α
)1(2 −s

α
s) over F2. Since gcd (r, s) = 1, then B is also linearly independent over GF(2r)

and is an optimal normal basis of the finite field GF(2rs) over GF(2r). The set of elements
a = d0α + d1α2 + d2

22α +…+ ds–1 , where d
)1(2 −s

α i
 ∈ GF(2r).

has cardinality 2rs; hence it is just the finite field GF(2rs).
Refer to Green & Taylor [GT74], Guajardo [G97], Guajardo & Paar [GP97] and

Smart [S01] for more discussions on implementations and security issues.
4.A.12. Optimal extension fields (OEF) (Bailey & Paar, [BP98],[BP99],[BP00])
a. The fields ℵ
 Finite fields of the form GF(pm), where m > 1 (and typically small m = 3,…,8)
and p is a big prime of the form p = 2n ± c, for some small c such that log2c ≤ ⎣n/2)⎦ and
an irreducible binomial P(x) = xm – w exists over GF(p), for some element a ∈ GF(p).
 Such number p is called pseudo-Mersenne prime number. In practice, the prime p
is chosen to be a little bit smaller than the word size of the processor. In such finite
fields, we can perform efficient subfield multiplication, by reducing a 2n-bit number to
roughly 1.5n bit value by “folding” the upper half into the lower half. The small value of
c helps to improve the subfield modular reduction. There are two special types of OEF
that can provide additional advantages on arithmetic operations.
 Type I OEF: p = 2n ± 1. This field allows for subfield modular reduction with
very low complexity. For example, good choices for p are: 231 – 1 and 261 – 1. Example
of implementation of Type I OEF: GF((261 – 1)3) whose reduction binomial is x3 – 37.

ℵ Number theory tip
Theorem: For an integer m ≥ 2, for w ∈ GF(p), the binomial xm – w is irreducible in
GF(p) if and only if the following two conditions are satisfied:
 (i) Each prime factor of m divides the order e of element w in GF(p), but does not
divide (p – 1)/e;
 (ii) p ≡ 1 (mod 4) if m ≡ 0 (mod 4).
Corollary: If w is a primitive element for GF(p) and m is a divisor of (p – 1), then the
binomial xm – a is irreducible over GF(p).
 An important trivial result is for the case m = 2. The binomial x2 – w is irreducible
over GF(p) when w is a primitive element.

__
A Survey of Elliptic Curve Cryptosystems – Part I: Introductory – 10/27/2003

Page 59 of 105

NAS Technical Report - NAS-03-012 August 2003
--

 Type II OEF: has an irreducible binomial xm – 2. This field allows for a reduction
in the complexity of extension field modular reduction since multiplication by w can be
implemented using shiftings. Example of Type II OEF: GF((263 – 259)2), GF((263 –
259)3) and GF((263 – 259)4).
b. The elliptic curves
 Over OEFs GF(pm), the elliptic curves have the form: y2 = x3 + ax + b, unless for
the case p = 3, one uses a non-supersingular elliptic curve of the form: y2 = x3 + ax2 + b.
Refer also to Baier [B01].
c. Implementation issues
 The inverse algorithm is the most important algorithm to discuss in
implementation works. Over OEFs, authors developed and modified some efficient
advanced algorithms implemented in typical finite fields discussed earlier. Refer to
Bailey, Paar & Woodbury [BPW00], working over finite field GF((28 – 17)17) on low-
end 8-bit processors and Aoki, Hoshino, Kobayashi, Kobayashi & Morita’s [AHKKM]:
working on finite field GF(pm), where prime p > 3.
 Kim, E. J. Lee & P. J. Lee [KLL98] implemented OEFs using a choice of p less
than 216, which allows for the use of look-up tables for subfield inversion. They also
proposed a new inversion algorithm, called MAIA (Modified Almost Inverse Algorithm),
which is suited especially for OEFs.
 Hoshino, K. Kobayashi, T. Kobayashi & Morita [HKKM99] presented an
inversion algorithm for OEFs that is based on a direct solution of a set of linear
equations. This method is efficient for small values of m.

4.B. Implementations of elliptic curves
 Now, we will discuss issues on implementing elliptic curves. Related problems
are choosing an appropriate order, computing the order of a given elliptic curve, and
constructing a cryptographically good elliptic curve for a cryptosystem.
4.B.1. Conditions for selecting appropriate elliptic curves
 The order of the elliptic curve, N = #E(Fq), must be divisible by a prime number n
that is sufficiently large, n > 2160. This is to resist against the Pollard ρ-algorithm.
 The order n of a base point P must satisfy the MOV condition: n ∤ (qk – 1) for all
values k < (log q)2. In practice, k = 20 is sufficient.
 The best-known attacks on an elliptic curve cryptosystem satisfying these two
conditions are a combination of either Pollard-ρ or Shanks’ Baby-step-Giant-step and
Pollard-Hellman algorithms.
 The order of the elliptic curve E must also satisfy the anomalous (or SSA)
condition over prime finite fields, #E(Fp) ≠ p to resist the SSA attack.
 The choice of point P of order n is not a security factor. In fact, given an elliptic
curve, there are many different points having that order which can be chosen.
Cofactor
 We denote by n the order of the base point P on the elliptic curve whose order is
denoted by N. Usually, we should have either N = n or N = nl, where l is a small integer,
called a cofactor. In group theory, we call l the index of a subgroup generated by group
element P, denoted by 〈P〉, in the group E.

__
A Survey of Elliptic Curve Cryptosystems – Part I: Introductory – 10/27/2003

Page 60 of 105

NAS Technical Report - NAS-03-012 August 2003
--

 Recall the inequalities of the order of an elliptic curve, we have: q + 1 – 2q1/2 ≤
#E(Fq) = N ≤ q + 1 + 2q1/2. Then (q1/2 – 1)2/n ≤ N/n = l = (q1/2 + 1)2/n.
 We can observe that l must be an integer and the difference of the upper and
lower bounds of l is d = 4q1/2 /n. Hence if n > 4q1/2, then d < 1, we must have: l = ⎣(q1/2 +
1)2/n⎦.
Therefore, the order of the elliptic curve can be computed as: #E(Fq) = N = n.l = n ⎣(q1/2 +
1)2/n⎦, if there exists a point on E of order n > 4q1/2.
 Furthermore, the condition n > 4q1/2 also implies that n2 > (q1/2 + 1)2 ≥ N = #E. Or
n2 ∤ N . Therefore, there is exactly one subgroup of order n in E. This is directly from the
well-known Sylow’s third theorem in group theory and the subgroup is also called the
Sylow n-subgroup.
4.B.2. Methods of constructing elliptic curves
 There are four methods for constructing an elliptic curve in cryptography.
 Generating random elliptic curves.
 Using the Hasse-Weil theorem (on composite extension finite fields).
 Using selected orders of elliptic curves or also referred as Complex
Multiplication (CM) methods.
 Using special elliptic curves such as Koblitz curves.
a. Using a random elliptic curve
 We select an elliptic curve at random and compute its order by some algorithm.
For special elliptic curves, or over relatively small finite fields, there are a few effective
formulas or algorithms for the order. The best-known method for a general case is
Schoof’s algorithm, together with its improvements and/or extensions.
The advantages:
 One can change the elliptic curve as frequently as possible for security reasons.
 In order to break into an elliptic curve cryptosystem, the attacker should use an
algorithm to solve the ECDLP that can work on any elliptic curve rather than some
particular classes of weak elliptic curves.
The disadvantages:
 It is tedious and still complicated to use Schoof’s algorithm (and even its
improved versions) to find an elliptic curve of particular order.
 It is more difficult, generally, to implement a random elliptic curve efficiently,
while we can optimize implementation on specific elliptic curves, such as in Koblitz
curves and some cryptosystems using supersingular elliptic curves.
 It is time-consuming to generate an elliptic curve and to perform operations on a
general elliptic curve. Other implementations, such as compressing and recovering a
point, may need more computations than in some particular cryptosystems.
b. Using Hasse-Weil’s theorem
 This method is to construct an elliptic curve over a finite field GF(2m) where m is
a composite number. We first construct an elliptic curve over a finite field GF(2n) for
some small factor n of m such that we can compute its order easily. Then we lift it to an
elliptic curve over a finite field GF(2m) where its order can be computed rather easily
using the Hasse-Weil’s theorem.
 We should compute rather easily that #E(GF(2n)) = 2n + 1 – t, then we will have
#E(GF(2m)) = 2m + 1 – αm/n – βm/n, where α and β are complex numbers satisfying the

__
A Survey of Elliptic Curve Cryptosystems – Part I: Introductory – 10/27/2003

Page 61 of 105

NAS Technical Report - NAS-03-012 August 2003
--

equation qT2 – tT + 1 = (1 – αT)(1 – βT). More practically, α + β = t and αβ = q = 2n.
Then the power sum Lk = αk + βk is the k-th term in the sequence of symmetric functions:

L1
 = t, L2 = t2 – 2q, and for all k ≥ 3, Lk = tLk –1 – q tLk –2.

 The sequence Lk is usually called Lucas sequence.
 The order #E(GF(2m)) then has a small factor, namely #E(GF(2n)). This method
of choosing an elliptic curve works on composite extension finite fields and can create
only a limited number of elliptic curve orders.
 This construction method can increase the performance in generating elliptic
curves and doing elliptic curve operations. But in the security aspect, these elliptic curves
(also referred as subfield elliptic curves) are considered weak curves.
c. Complex Multiplication (CM) methods
 A Complex Multiplication method allows choosing an appropriate elliptic curve
order, before constructing explicitly an elliptic curve of that order. In practice, this
method is fast, and the big advantage is to eliminate the need for a point counting
algorithm. Two methods mentioned in literature are due to Atkin & Morain and Lay &
Zimmer.
Atkin-Morain method [Mo91]
 The method works on a prime finite field Fp. Recall that #E(Fp) = p + 1 – t, where
t2 ≤ 4p. It is based on a theorem of the primality-testing algorithm using elliptic curves.
Theorem: Let p be a prime that can be written as 4p = t2 + Ds2 for a given D. Then there
exists an elliptic curve E defined over Fp such that 4.#E(Fp) = (t – 2)2 + Ds2.
 We call D a Complex Multiplication discriminant for p, or the elliptic curve E has
CM property by D, or in fact, by (–D)1/2. If we know D for a given curve E, we then can
solve for t (and s) in the equation: 4p = t2 + Ds2, and know the order #E(Fp).
Atkin-Morain algorithm:
 Compute t = p + 1 – #E(Fp) = p + 1 – N. Find an integer s and a square-free
positive integer D such that Ds2 = t2 – 4p.
 This step can be done since if N is an order of an elliptic curve #E(Fp), we must
have t2 ≤ 4p. Hence A = 4p – t2 ≥ 0, and it can be written uniquely as A = Ds2, where D is
a square-free positive integer. Then we write: 4p = t2 + Ds2.
 Construct the Hilbert polynomial HD(X) of j(D1/2), using the above formula.
 Find a root r of the equation HD(X) ≡ 0 (mod p).
 Create a non-supersingular elliptic curve whose j-invariant is r.
 This algorithm can be generalized over finite field Fq, where q = pm.
 Although it is possible to choose the order of an elliptic curve before choosing the
underlying finite field, in usual cryptographic practice, one prefers to choose the finite
field in advance so one can exploit some efficient implementations.
 This method usually generates small d. The subset of elliptic curves generated by
this method is considerably smaller than the number of elliptic curves available.
 Those elliptic curves are thought to be insecure, but no weakness is known so far.
 Refer to Miyaji ([Mi91], [Mi93]) for construction examples.
Lay-Zimmer method [LZ94]
 This method works on finite fields of characteristic 2 and also over prime finite
fields. It solves the following problems:

__
A Survey of Elliptic Curve Cryptosystems – Part I: Introductory – 10/27/2003

Page 62 of 105

NAS Technical Report - NAS-03-012 August 2003
--

 Given an integer N > 3, find a prime p and an elliptic curve E(Fp) such that its
order #E(Fp) = N.
 Given an integer k > 1, decide the existence of a prime p > 3 and an elliptic curve
E(Fp) such that E(Fp) ≅ Zk

 × Zk.
 Given two integers m and C, find an elliptic curve E over a finite field GF(2m),
such that its order #E = cn, where n is a prime number and c ≤ C.
 Given a prime p > 3 and an integer m with |p + 1 – m| < 2p1/2, build an elliptic
curve E(Fp) such that #E(Fp) = m.
 The algorithm is based on constructing an elliptic curve E(GF(2m)) that has a
given j-invariant. However, the rest of the algorithm is based heavily on the algebraic
number theory whose context is too complicated to be described in this document.
 Refer to Müller & Paulus [MP97] and Baier & Buchmann [BB01] for more
discussions on the CM methods. For CM methods and other works on Koblitz cureves,
readers may refer to Koblitz ([K90],[K92]), Solinas ([S97],[S00]) and Meier &
Staffelbach [MS93].
c. Comparisons
 There is no mathematical theory, comparison or fact yet about which elliptic
curves, randomly chosen or specially chosen, are more difficult for the ECDLP. There is
current research mentioning general doubts about constructing elliptic curves extra
internal structure, such as with special coefficients (i.e., Koblitz curves), with special
Complex Multiplication property and/or over composite extension finite fields. There is a
tradeoff between performance and security in implementing elliptic curve cryptosystems
using such special curves and/or finite fields.
4.B.3. Finding a point of given prime order on an elliptic curve
 The order n of a point P ≠ O on an elliptic curve is a positive integer such that

nP = O and mP ≠ O for any integer m such that 1≤ m < n.
 The order n of a point must divide the order N of the elliptic curve. In fact, it is
true for any group. If the elliptic curve order N = #E is a prime number, then the group is
cyclic, and obviously all points except the point at infinity O are of order N.
 Choosing a point P of prime order n: A simple method is usually applied in
cryptographic practices when n is a large prime. Then the factor l = #E/n will not be
divisible by n. Choose a random point Q ≠ O on the elliptic curve E, then verify whether
the point P = l·Q has order n. This can be done simply by checking that n·P = O. (Since n
is prime, there is no other positive integer m < n such that m·P = O.) If it is true, then P =
l·Q is the point we need; otherwise, choose another point Q and repeat.
4.B.4. Methods/formulae to compute the order of an elliptic curve
 It should be noted that it is easy to check whether the number of points on an
elliptic curve is correct when it is known, while an efficient algorithm to find out that
number is still a difficult task.
 In chapter 1, we already presented formulae and algorithms for counting the order
of an elliptic curve group, such as Hasse-Weil theorem, direct formulae using Legendre
symbol and trace function, Shanks’ Baby-step-Giant-step algorithm and Schoof’s
algorithm.
a. The order of an elliptic curve of the following special forms

 Ep(a, 0): y2 = x3 + ax, for a ≢ 0 (mod p) and p ≡ 1 (mod 4)

__
A Survey of Elliptic Curve Cryptosystems – Part I: Introductory – 10/27/2003

Page 63 of 105

NAS Technical Report - NAS-03-012 August 2003
--

or Ep(0, b): y2 = x3 + b, for b ≢ 0 (mod p) and p ≡ 1 (mod 3),
over a prime finite field Fp are discussed thoroughly in Bressoud [B87] and Ireland &
Rosen [IR90].
Case 1. For prime p ≡ 1 (mod 4) and Ep(a,0): y2 = x3 + ax, for a ≢ 0 (mod p).
 Let r = s + it be a complex prime (where s and t are integers,) and let r = s – it be
the complex conjugate of r, which satisfy the conditions r ≡ 1 (mod 2 + 2i) and p = r r =
s2 + t2. Let ℜ(r) = ℜ(s + it) = s be the real part of number r. Then #Ep(a, 0) = p + 1 –
2ℜ[R4(–a) r], where the symbol R4 is defined by R4(x) = x(p –1)/4 (mod r).
 The orders in this case are always even. Explicitly, the elliptic curve orders will
fall into one of only four cases listed in this table.

If R4(– a) = (–a)(p –1)/4 (mod r) ≡ The order #Ep(a, 0) is
1 p + 1 – 2ℜ(r) = p + 1 – 2s
–1 p + 1 – 2ℜ(– r) = p + 1 + 2s
i p + 1 – 2ℜ(i r) = p + 1 – 2t
–i p + 1 – 2ℜ(–i r) = p + 1 + 2t

Table 4.4. Orders of elliptic curves Ep(a,0): y2 = x3 + ax, a ≢ 0 (mod p),
 over a prime finite field Fp, p ≡ 1 (mod 4)

 Observe that r ≡ 1 (mod 2 + 2i) or (2 + 2i) | (r – 1) = [(s – 1) + it]. Hence we
derive a relation on their squares of absolute values. It is: 8 | [(s – 1)2 + t2] = p + 1 – 2s.
 So we can solve the system of equations s ≡ (p + 1)/2 (mod 4) and p = s2 + t2 for
values s and t, such that 1 ≤ s, t < p1/2. Then choose and check an appropriate value of r =
± s ± it ≡ 1 mod (2 + 2i).
Case 2. For prime p ≡ 1 (mod 3) and Ep(0, b): y2 = x3 + b for b ≢ 0 (mod p).
 Let w be a non-trivial cubic root of 1, (i.e., w2 + w + 1 = 0,) and w = e2πi/3 = (–1 +
i31/2)/2. Let r = s + wt be a complex prime, where s and t are integers, satisfying the
conditions r ≡ 2 (mod 3) and p = r r = s2 – st + t2. In this case, we note that w2 = (–1–
i31/2)/2 = w and r = (s – t) – wt, for simpler calculations. Then #Ep(0, b) = p + 1 +
2ℜ[R6(4b) r], where the symbol R6 is defined by R6(x) = x(p –1)/6 (mod r).
 Explicitly, the elliptic curve orders will fall into one of only six cases described in
table 4.5.

If R6(b)
 = b(p –1)/6 (mod r) ≡

Equivalently, if R6(4b) =
 (4b)(p –1)/6 (mod r) ≡

The order #Ep(0,b) is

u = 4(p–1)/3 (mod r) 1 p + 1 + 2ℜ(r) = p + 1 + 2s – t
–u –1 p + 1 + 2ℜ(– r) = p + 1 – 2s + t
w.u w p + 1 + 2ℜ(w r) = p + 1 – s + 2t
–w.u –w p + 1 + 2ℜ(–w r) = p + 1 + s – 2t
w2.u w2 p + 1 + 2ℜ(w2 r) = p + 1 – s – t
–w2u –w2 p + 1 + 2ℜ(–w2 r) = p + 1 + s + t
Table 4.5. Orders of elliptic curves Ep(0, b): y2 = x3 + b, b≢ 0 (mod p)

over a finite field Fp, p ≡ 1 (mod 3)
4.B.5. Schoof’s and Satoh’s algorithm for point-counting
 Refer to chapter 1 for a short summary of development of the algorithms by many
researchers such as Schoof, Atkin, Elkies, Couveignes and Lercier. We choose not to go

__
A Survey of Elliptic Curve Cryptosystems – Part I: Introductory – 10/27/2003

Page 64 of 105

NAS Technical Report - NAS-03-012 August 2003
--

deeply into the theory behind these developments of the algorithms at the present time,
because of the heavy burden of introducing a lot of difficult materials of the mathematics
underlying.
 We have discussed how to represent elements of finite fields and how to build an
elliptic curve over the underlying finite fields for an elliptic curve cryptosystem. In the
next section of this chapter, more features or issues on the implementations of operations
of such cryptosystems will be discussed. They are scalar point multiplication formulae
and algorithms, representations of points on an elliptic curve and special algorithms on
Koblitz curves and composite extension finite fields and other topics.

4.C. Implementations of elliptic curve arithmetic operations
 Many topics in implementations of arithmetic operations over elliptic curves will
be discussed in this section: scalar point multiplications, methods representing points of
an elliptic curve and Complex Multiplication methods…
 The most basic operation is adding two points or doubling a point on an elliptic
curve. It is more expensive computationally than a basic operation in a symmetric key
cryptosystem (a block encryption/decryption). But it is still much faster than a basic
modular multiplication over a cyclic group whose order is of the same security level.
 We now discuss efficient algorithms to expedite implementation procedures in
elliptic curve cryptosystems.
4.C.1. Scalar point multiplication: basic methods
 One crucial operation is scalar point multiplication since it determines the speed
of an elliptic curve cryptosystem. We will multiply a point P on an elliptic curve E by a
positive integer k. By definition, kP = 44 344 21 L

 termsk

PPP +++ . This problem is analogous to

raising an element to the k-th power in the multiplicative subgroup GF(q)*.
a. Double-and-add method
 This most basic method uses the binary expansion of the number k.
 Let write k = (kr–1,…, k0) in base 2, where kr –1 = 1 and r = ⎣log2 k⎦ + 1. Let Pr –2 =
P. Then compute Pi –1 = 2Pi + kiP, for all i, r – 2 ≥ i ≥ 0.
Then kP = P–1 = 2P0 + k0P.
 This method requires (r – 1) doublings and probabilistically about (r – 1)/2
additions or at most (r – 1). Observe that we can reduce the number of arithmetic
operations when the number of bits 0 is increased. This is the basic idea for methods,
which try to improve the implementation of scalar point multiplication.
b. Addition-subtraction method
 For elliptic curve implementation, the methods, which included subtractions, are
more attractive than the corresponding methods, which included divisions in calculating
power in finite fields. The reason is division or inversion in finite fields is a more costly
operation than multiplication, while subtraction is just as costly as addition in elliptic
curve operations.
 The basic method uses the binary expansion of k and 3k. Let l = 3k = (lr–1,…, l0)
and k = (kr–1,…, k0) such that the leftmost bit lr–1 must be 1. That is, a few leftmost bits
of k are added bits 0 from the canonical binary form of k.
 Let Pr –1 = P. Then compute Pi –1 = 2Pi + (li –1 – ki –1)P, for all i such that r – 1 ≥ i
≥ 2. Then kP = P1 = 2P2 + (l1 – k1)P.

__
A Survey of Elliptic Curve Cryptosystems – Part I: Introductory – 10/27/2003

Page 65 of 105

NAS Technical Report - NAS-03-012 August 2003
--

 This method requires (r – 2) doublings and probabilistically about (r – 2)/2
additions/subtractions or at most (r – 2). This method in fact is an easily described
version of the following method.
c. Addition-subtraction method using NAF
 We now use the canonical encoding called the non-adjacent form (NAF) of scalar
k. This coding employs a signed binary expansion (using 0 and ±1) that has the property
that no two consecutive coefficients are nonzero.
 The NAF of an integer is unique and has the fewest nonzero coefficients of any
signed binary expansions. There are many ways to construct the NAF. One way is just
described previously, using bits in k and 3k.
 The NAF can be computed similarly by the same method for the binary form.
That is, repeating dividing by 2 to collect the remainders, except an important rule: for
the nonzero remainder, the corresponding quotient must be even. This exception helps to
make the next remainder be zero.
 Let k be in NAF, k = (kr–1,…, k0). Let Pr–1 = P. Then compute P i–1 = 2Pi + ki–1P,
for all i, r – 1 ≥ i ≥ 1. Then kP = P0 = 2P1 + k0P.
 This method requires (r –1) doublings and probabilistically about (r –1)/3
additions or at most ⎡(r – 1)/2⎤.
 Eventually, we can combine this method with the sliding window method for a
more efficient implementation - the signed binary window method that will be discussed
later.
d. m-ary method (or 2d-ary method)
 This method is generalized from the double-and-add method, where the m-ary
expansion is used instead of binary form, where m is a power of 2. Let m = 2d, where d >
1. We start with the binary expansion of the number k = (ks–1,…, k0), where we may pad
an extra number of bit 0’s to the left side of the bit string to make s = d.r for some integer
r. Then we have the m-ary expansion of k of the form k = (Kr–1,…, K0) where each Ki is a
d-bit string and Kr–1 ≠ (0…0).
 First we pre-compute all points 2P, 3P,…, (2d –1)P. They will cover all possible
points of the form KiP. We look up for the point Pr–2 = Kr–1P, and compute Pi–1 = 2dPi +
KiP, for all i such that r – 2 ≥ i ≥ 0. Then kP = P–1 = 2dP0

 + K0P.
 This method requires (2d – 2) pre-computations (and memory storage), (r – 1)d =
s – d doublings and probabilistically about (r – 1)(1 – 2–d) additions. We can observe that
the larger d is, the more pre-computations are needed. With a little calculus, we can find
the optimal d to minimize the total of additions: A(s, d) = 2d – 2 + s – d + [(s/d) – 1] (1 –
2–d) .
 Bit recoding techniques, such as signed binary expansions, are also used to
improve the binary or m-ary methods. Refer to Koç [Kc91] and Eğecioğlu & Koç [EK94]
for detailed analyses in this approach.
e. The 2d-ary NAF form
 It is possible that one can combine the addition-subtraction method with the 2d-
ary method. Particularly, the addition-subtraction method using the 2d-ary NAF form that
is a binary form with the property that there is at most one non-zero term in d consecutive
coefficients. This form always uniquely exists and is easy to compute. The computing
method is similar to that for the NAF form, except that the corresponding quotient to the

__
A Survey of Elliptic Curve Cryptosystems – Part I: Introductory – 10/27/2003

Page 66 of 105

NAS Technical Report - NAS-03-012 August 2003
--

non-zero remainder must be divisible by 2d–1. The pre-computation must store all points:
±P, ±3P,…, ±(2d –1 – 1)P.
 The addition-subtraction method is a special case for d = 2.
4.C.2. Scalar point multiplication: advanced methods
a. Sliding window method ([Kc95])
 This method aims to separate zero words so we can skip an addition in the m-ary
method discussed above. Instead of decomposing k = (ks–1,…, k0) into words of d-bit
length, we now decompose k into zero and nonzero words, or windows Wi of varying
lengths li. Let d be the maximum length of all nonzero windows. Then we need to pre-
compute only “odd scalar multiplying” points 3P, 5P,…, (2d –1)P We write k = (Wr –1,…,
W0) where Wr –1 is a non-zero window (or window number).
 Look up for Pr –2 = Wr –1P. Then compute Pi–1 = Pil2 i + WiP, for all i such that r –
2 ≥ i ≥ 0. Then kP = P–1 = P02l

0 + W0P.
 There are two strategies to partition a binary expansion into windows: constant
length and variable length nonzero windows.
Constant length nonzero windows
 This strategy tries to produce zero windows of arbitrary length and nonzero
windows of a fixed length d. A nonzero window will start when a bit 1 is encountered as
we scan the bits from rightmost bit to leftmost.
 This method requires (2d – 2)/2 = 2d–1 – 1 pre-computations (and memory
storage), (s – d) doublings and probabilistically about A additions, where A is the number
of non-zero windows, A ≤ ⎡s/d⎤. Refer to Koç [Kc95] for more analytic results on the
value of A. In summary, this method reduces the number of additions by 3 to 7%, for 128
≤ s ≤ 2048, less than the m-ary method.
Variable length nonzero windows
 This strategy tries to produce nonzero windows whose right-end and left-end bits
are both 1. Two parameters are to be decided: the maximum length d of nonzero windows
and the maximum number r of adjacent 0’s allowed inside any nonzero window.
 This method generally tries to decrease further the average number of nonzero
windows when d and r are chosen optimally. We should choose 4 ≤ d ≤ 8.
 This method requires (2d – 2)/2 = 2d–1 – 1 pre-computations (and memory
storage), probabilistically about A additions, where A is the number of non-zero
windows, A ≤ ⎡s/d⎤ and D doublings. Refer to Koç [Kc95] for more analytic results on
the values of A and D. In summary, this method reduces the number of additions by 5-
8%, for 128 ≤ s ≤ 2048, less than the m-ary method.
b. Signed binary window methods
 These methods transform an ordinary binary expansion B into a signed binary
expansion S. (The transformations are also called “bit recoding” techniques.) Again, the
methods or algorithms using “signed” expansion are much more efficient in
implementing elliptic curve operations than in finite field operations since the subtraction
is just as costly as addition.
 The purpose is to skip a bit string of 1’s (in addition to bit strings of 0’s, as usual)
to reduce the number of additions.
Morain-Olivos’ algorithm

__
A Survey of Elliptic Curve Cryptosystems – Part I: Introductory – 10/27/2003

Page 67 of 105

NAS Technical Report - NAS-03-012 August 2003
--

 This algorithm reduces the weight of the signed binary form S, i.e., the number of
non-zero digits, denoted by #1(S). The idea is that a block of n bits 1 can be replaced by a
bit string that is a block consisting of a bit 1 followed by n bits 0 and then minus 1. That
is: . This observation is extracted from the equality: 10001111

bits bits

−= 321L321L
nn

2n+1 – 1 = (2n + 2n –1 + …+21 + 20).
 As a result, (n – 1) doublings and (n – 1) additions (i.e., 2(n – 1) total additions)
can be replaced by n doublings and 1 subtraction (i.e., (n +1) total additions). In other
words, this method tries to construct two positive integers k+ and k– such that k+ – k– = k.
The total computation for (k+ – k–).P is less than that for kP. Note that there are not two
separate computations of k+P and k–P, but actually the computations merge together: k–P
only shows up in a few subtractions corresponding to the positions of its bits 1 in the
scalar k.
 The same idea is to deal with a special string that has isolated 0’s. We observe
that: k ={ { { { { 1001000001100100111011

bits 1)-(bits bits 1bits)1(bits bits bits
43421 LLLL43421 LLLLL

mnmnmnmn
−==

++−

, where bit 1 denotes

(–1), and we assume m ≥ 2. This observation is extracted from the same equality above,
applied twice. Then we have the formula: kP = 2m.(2n+1.P – P) – P. That is, an isolated 0
inside a block of bit 1’s will contribute only two subtractions/additions and one extra
doubling, instead of (n + m – 1) additions.
 Morain-Olivos [MO90] provides detailed estimations of implementation cost. In
summary, the method reduces about 3% for 100-digit number and 2.7% for 300-digit
number.
 Jedwab & Mitchell [JM89] also proposed similar approaches using a modified
signed-digit representation. The original idea was proposed by Mitchell & Selby [MS89].
Müller [Mu98] discussed improved versions over Morain-Olivos’ method.
A generalization of the Morain-Olivos’ algorithm
 We can generalize this result for k being a string of (b –1) isolated bits 0
sandwiched among b blocks of bits 1, where b is larger than 2, the following can be
written: { ,100100100000111011011

bits 1)-(bits bits bits)1(bits bits bits 11111

43421 LL43421 LLLL44 344 21 LLLLL321LL321LLL321LL
L bbbbb NNNbNNNNN

k
−−

−==
−+++

assuming Nb ≥ 2. This observation is also derived from the above equality:
2n+1 – 1 = (2n + 2n–1 + …+ 21 + 20).

Then we can obtain the following formula: kP = .)])·2([·2(·2 11 11 PPPPNNN bb −−−++− LL

 This formula dramatically generalized the application of Morain-Olivos’
algorithm such that b can be any positive number greater than 2, rather than being
restricted to b = 2 only.
 By applying this algorithm, (N1 + … + Nb – 1) additions were replaced by only b
subtractions/additions and one extra doubling. The savings in the number of arithmetic
operations are significant when the sum (N1 + … + Nb) is much larger than b, which
should be obtainable for those cases of k.
Koyama-Tsuruoka’s algorithm ([KT92])
 This algorithm improved the above methods by increasing the average length of
zeros in the signed binary expansion using {1 , 0, 1}, where bit 1 denotes (–1).

__
A Survey of Elliptic Curve Cryptosystems – Part I: Introductory – 10/27/2003

Page 68 of 105

NAS Technical Report - NAS-03-012 August 2003
--

 A binary string of a non-zero window B = (1, bn,…, bi,…, b1, 1) in k will be
transformed to a signed binary string of the form T = (1, 0, tn,…, ti,…, t1,1), where ti = bi
–1, for all 1 ≤ i ≤ n. This transformation is effective (i.e. actually decreases the weight of
the bit string) only when the difference between the numbers of bits 1 and bits 0 is:
Diff(B) = #1(B) – #0(B) > 2. However, we should keep in mind that the transformation
also costs us one extra doubling because of the extra bit.
 Both methods (by Koyama-Tsuruoka and Morain-Olivos) generate a signed bit
string with the same weight, but the average length of zero runs by the Koyama-Tsuruoka
method is greater than that of the Morain-Olivos method.
 By this method, one needs to pre-compute only the odd scalar points ±3P,
±5P,…, upto ±(2d – 3)P, since this algorithm never allows the points ±(2d – 1)P to
appear.
 In fact, this transformation is extracted from the equality:

2n+2 – 2n+1 = 2n+1 = (2n + 2n –1 + …+21 + 1 + 1).
Using the relationship 1 = bi – ti, for all 1 ≤ i ≤ n, we then have:

2n+2 + (tn2n + tn–12n–1 + … + t121 + 1) = 2n+1 + (bn2n + bn–12n–1 + … + b121 + 1).
 Refer to Koyama & Tsuruoka [KT92] for detailed performance evaluation and
comparison. Note that, the similar idea in the Koyama-Tsuruoka’s algorithm was also
discussed in Koç [Kc91].
A generalization of Koyama-Tsuruoka’s algorithm
 Instead of applying this algorithm for a non-zero window only, we try to apply for
an arbitrary bit string k = (bn,…, b1, b0), where without loss of generality, we may assume
bn = 1. For all 0 ≤ i ≤ n, let ti = bi – 1, then again insert it into the arithmetic identity: 2n+1
= (2n + 2n–1 + … + 21 + 20) + 1, we can obtain the following identity:

2n+1 + (tn2n + tn–12n–1 + … + t121) + t020 –1) = (bn2n + bn–12n–1 + … + b121 + b020).
 When b0 = 1, then t0 = 0, this approach will transform k to the string of digits T =
(1, tn,…, t1, 1), where the last digit 1 = –1. This is Koyama-Tsuruoka’s algorithm for
non-zero window B = (bn,…, b1,1).
 When b0 = 0, then t0 = –1, this approach will transform k = (bn,…, b1,0), to the
string of digits T = (1, tn,…, t1, 2), where the last digit 2 = – 2. This last digit does not
affect the scalar point multiplication (k·P) at all. In the very last step of a given scalar
point multiplication algorithm, we then subtract a double of a point, 2P, instead of the
point P itself. The point 2P is available for free since it is always computed during the
process. If we use other m-ary methods or window methods, the digit 2 obviously is not
a concern anyway. We need only minor changes in pre-computations.
 The number of non-zero digits in T is

#non-0(T) = 2 + ∑
=

n

i
it

1
 = 2 + ∑

=

−
n

i
ib

1
1 = 2 + ∑

=≤≤ 0,1

)1(
ibni

 = 2 + #0(k’), where k’ = (bn,…, b1).

Hence this transformation is effective if the condition 2 + #0(k’) < #1(k) is satisfied. Since
#0(k’) = #0(k) – 1, we can rewrite the condition as:

Diff(k) = #1(k) – #0(k) > 1.
Hence Koyama-Tsuruoka’s algorithm can extend for any bit strings, which satisfy this
condition. Again, the transformation also costs us one extra doubling because of the extra
bit.

__
A Survey of Elliptic Curve Cryptosystems – Part I: Introductory – 10/27/2003

Page 69 of 105

NAS Technical Report - NAS-03-012 August 2003
--

c. Other algorithms/discussions
 Jedwab & Mitchell [JM89] proposed an equivalent algorithm to Morain-Olivos’
method. The original idea was proposed by Mitchell & Selby [MS89]. Müller [Mu98]
discussed improved versions over Morain-Olivos’ method.
 All algorithms described above are based on sliding window and bit
manipulations. They gave almost the same level of performance. They are all doing better
than a typical m-ary method. However, no method actually dominates over the other
methods yet. There is no significant difference or breakthrough in the algorithms showed
above.
 The attractive point again is using “negative” digits (e.g., 1 = –1 and/or 2 = – 2)
to have the subtractions involved since the cost of subtraction is the same as that of
addition in elliptic curve implementation.
 Refer to Gollmann, Han & Mitchell [GHM96], Brickell, Gordon, McCurley &
Wilson [BGMW93] and Gordon [G98] for more discussions.
d. Methods using addition chains/sequences
 The problem of optimal addition chains is to find the fewest additions needed to
compute a positive integer k starting from 1. It is used to compute kP from P with the
fewest elliptic curve additions (originally, to compute the power xk from x with fewest
multiplications).
 An addition chain [Ai] of k of length L is of the form: 1 = A0 < A1 < … < AL = k,
where every number is the sum of two earlier numbers: For 1 ≤ i ≤ L, Ai = Aj + Am, where
i > j ≥ m.
 An addition sequence of k is of the form: 1 = A0 < A1 < … < AL = k < AL+1 <…,
where every number is the sum of two earlier numbers as in an addition chain. Note that
in an addition chain, k occurs at the very end of the chain, while in an addition sequence,
k just needs to occur someplace in the sequence. For our practical purpose, now we
mention only addition chains.
 Obviously, there can be many different addition chains for a given positive
integer k. Naturally, we are most interested in finding the addition chain of minimum
length since it will help to minimize the number of arithmetic operations.
 In another version, we call an addition/subtraction chain, when [Ai] satisfies
weaker conditions: for 1≤ i ≤ L, Ai = Aj + Am or Ai = Aj – Am, where i > j ≥ m.
 In elliptic curve implementation, the subtraction operation is just as costly as
addition; the addition/subtraction chains would be more attractive here than they are in an
exponentiation problem.
 A star chain is an addition chain [Ai] satisfying: for 1≤ i ≤ L, Ai = 2.Ai –1 (a
doubling) or Ai = Ai–1 + Al, (“star step”) where i – 1 > l. That is, one summand must be the
very previous element. A star step is called a “simple step” when l = 1.
 Refer to Downey, Leong & Ravi Sethi [DLS81], Volger [V85] and Schönhage
[S75], van Leeuwen [L77], McCarthy [Mc86], Dietel & Sauerbrey [DS92] and de Rooij’s
[R98] for more discussions.
 Generally, computing the addition chain of minimum length is a very difficult
problem, but there are simple algorithms to produce good addition chains, even near
minimum length. The most common algorithm is using the binary form as in double-and-
add (or addition-subtraction) method, even though it usually produces addition chain

__
A Survey of Elliptic Curve Cryptosystems – Part I: Introductory – 10/27/2003

Page 70 of 105

NAS Technical Report - NAS-03-012 August 2003
--

larger than minimum length. Finding the addition chain with the minimum length will
benefit the algorithms to compute the scalar point multiplication kP, since it will
minimize the number of required additions.
 Bos & Coster [BC90] discussed a heuristic routine to create an addition sequence
of a set of numbers. This method will be significant when sliding window methods of
large width are used. In those cases, the pre-computed table will require a large number
of computations and also storage. We do not even need the addition chain for k. Instead,
we need to create only an addition sequence that consists of the needed window numbers
only. These window numbers are of course less than 2w, where w is the window width.
Hence they are much smaller than k itself. Then using one of the methods discussed
previously, we can create the addition chain for k.
 Yacobi [Y91] proposed a similar method, systematically developing into a
heuristic algorithm (that is claimed to be a modification of the Lempel-Ziv data
compression algorithm.) We will apply a 2d-ary method (or sliding window method)
where we will pre-compute only those intermediate scalar point multiplications that will
be needed. However, this algorithm is not better than a 2d-ary method for small scalar k,
less than 512 bits, but it is more efficient for larger k.
 Most recently, Aigner & Oswald [AO01] discussed using randomized addition-
subtraction chains in counter-attacks against differential power attacks.
4.C.3. Scalar point multiplication: other methods
a. Using projective coordinates
 Menezes & Vanstone ([MV90],[MV93]) proposed ideas of using projective
coordinates in implementing scalar point multiplication. It is to remove the inversion
operations in point addition or doubling operations in the intermediate steps in any scalar
point multiplication algorithm implemented. At the final step, we can use a single
inversion to convert it to affine coordinates as usual.
 Menezes & Vanstone ([MV90],[MV93]) worked on the binary finite field
GF(2m). Koyama & Tsuruoka [KT92] worked over prime finite field Fp They were all
dealing with the usual projective coordinates (xz, yz, z).
 Let P = (x1, y1, 1) and Q = (x2, y2, z2). We can rewrite Q = and
apply the regular point addition formulae (for affine coordinates) to find R = P + Q = (x’

)1,,(1
22

1
22

−− zyzx
3,

y’3, 1). Then let z3 be the common denominators of x’3 and y’3, we can write R = (x3, y3,
z3). The completed results for all three usual cases of elliptic curves over finite fields are
summarized in the table 4.6. For convenient reference, we also include the formulae of
the additive inverse of a point in the first column.

Equation of elliptic
curve E over Fq in
affine coordinates

R = (x3, y3, z3) = (x1, y1,1) + (x2, y2, z2) = P + Q

Let A = x1z2
 + x2, B = y1z2

 + y2, X = x2 – x1z2, Y = y2 – y1z2

Over Fp, p ≠ 2, 3
y2 = x3 + ax + b
∆ = –16(4a3 + 27b2)
∆ ≠ 0
P = (x1, y1, 1)
Q = (x2, y2, z2)
Then

,if)8(2

if
2
11

2
1

3
⎩
⎨
⎧

=−

±≠
=

Q P yxSy
Q PXT

x

Q P ySyxS

QPYTzXyxyx
y

⎪⎩

⎪
⎨
⎧

=−−

±≠−−
=

,if 8)12(

 if)(
4
1

22
11

2
2

1221
3

__
A Survey of Elliptic Curve Cryptosystems – Part I: Introductory – 10/27/2003

Page 71 of 105

NAS Technical Report - NAS-03-012 August 2003
--

–Q = (x2, –y2, z2)

,if8

if
3
1

2
3

3 ⎪⎩

⎪
⎨
⎧

=

±≠
=

Q P y

Q P zX
z

where T = Y2z2
 – AX 2 and S = 3 + a. 2

1x
(A slightly revised version of Koyama & Tsuruoka)

Non-supersingular
elliptic curve over
GF(2m)
y2 + xy = x3 + ax2 + b
b ≠ 0
P = (x1, y1, 1)
Q = (x2, y2, z2)
Then
–Q = (x2, y2 + x2, z2)

,if

if

1
3

⎩
⎨
⎧

=
±≠

=
Q P Ux

Q PAV
x

Q P bxyxU

QPBAVyxyxzA
y

⎪⎩

⎪
⎨
⎧

=++

±≠+++
=

,if)(

 if)()(

11
2
1

12212
2

3

,if

if
3
1

2
3

3 ⎪⎩

⎪
⎨
⎧

=

±≠
=

Q P x

Q P zA
z

where V = A2(A + az2) + Bz2(A + B) and U = + b 4
1x

(A slightly revised version of Menezes & Vanstone)
Supersingular elliptic
curve over GF(2m)
y2 + cy = x3 + ax + b
 c ≠ 0
P = (x1, y1, 1)
Q = (x2, y2, z2)
Then
–Q = (x2, y2 + cz2, z2)

,if

if
23

⎩
⎨
⎧

=

±≠
=

Q P cZ
Q PAW

x

,if)()(

if)()(

13
22

1

312
2

2
2

3 ⎪⎩

⎪
⎨
⎧

=+++

±≠+++
=

Q P cyzZcxZ

Q P zcyxAzBB
y

,if

if
3

2
3

3
⎩
⎨
⎧

=

±≠
=

Q P c
Q P zA

z

where W = B2z2 + A3 and Z = + a (Menezes & Vanstone) 2
1x

Table 4.6. Point addition formulae in the projective coordinates (xz, yz, z)
 With the above formulae, we can compute the scalar point multiplication, kP =
k.(x1, y1, 1) = (x, y, z), by repeated additions, as usual. Then by a single inversion at the
very end step to get z–1, we can write kP = (xz–1, yz–1). The disadvantage of this method is
that it requires larger memory to store points of three coordinates on an elliptic curve.
 We can develop other scalar point multiplication formulae by using the Jacobian
projective coordinates, (z2x, z3y, z) , z ≠ 0. Again, let P = (x1, y1, 1) and Q = (x2, y2, z2).
We rewrite Q =) and apply the regular addition formulae (for affine
coordinates) to find R = P + Q = (x’

1,,(3
22

2
22

−− zyzx
3, y’3, 1). Then we convert it back to the original

Jacobian projective coordinates. The completed results for all three usual cases of elliptic
curves over finite fields are summarized in the table 4.7.

Equation of elliptic
curve E over Fq in
affine coordinates

R = (x3, y3, z3) = (x1, y1,1) + (x2, y2, z2) = P + Q
--

Let 3
212

2
2122

3
212

2
21 ,,, zyyDzxxCyzyYxzxX −=−=+=+=

Over Fp, p ≠ 2, 3
y2 = x3 + ax + b
∆ = –16(4a3 + 27b2) ≠ 0
P = (x1, y1, 1)
Q = (x2, y2, z2)

,if8

if
2
11

2

22

3
⎩
⎨
⎧

=−

±≠−
=

Q P yxS
Q P XCD

x

__
A Survey of Elliptic Curve Cryptosystems – Part I: Introductory – 10/27/2003

Page 72 of 105

NAS Technical Report - NAS-03-012 August 2003
--

Then
–Q = (x2, –y2, z2)

Q P zyxyxS

QPzyxzxD
y

⎪⎩

⎪
⎨
⎧

=−−

±≠−−
=

,if)4(

 if)(
3
313

2
11

3
313

2
31

3

,if 2

if

1

2
3

⎩
⎨
⎧

=
±≠

=
Q P y

Q P Cz
z

where .3 2
1 axS +=

(A slightly revised version of Cohen, Miyaji & Ono [CMO97])
Non-supersingular
elliptic curve over
GF(2m)
y2 + xy = x3 + ax2 + b
b ≠ 0
P = (x1, y1, 1)
Q = (x2, y2, z2)
Then
–Q = (x2, y2 + x2z2, z2)

,if

if)(2
2

2

3
⎩
⎨
⎧

=
±≠++

=
Q PU

Q PYV XazX
x

Q P bxyxU

QP zy YzxVx
y

⎪⎩

⎪
⎨
⎧

=++

±≠++
=

,if)(

 if

11
2
1

3
31

2
313

3

,if

if

1

2
3

⎩
⎨
⎧

=
±≠

=
Q P x

Q PX z
z

where V = Xz2
 + Y and U = + b 4

1x
Supersingular elliptic
curve over GF(2m)
y2 + cy = x3 + ax + b
c ≠ 0
P = (x1, y1, 1)
Q = (x2, y2, z2)
Then

),,(2
3
222 zczyxQ +=−

,if

if
2

32

3
⎩
⎨
⎧

=

±≠+
=

Q P Z
Q PXY

x

,if)()(

if)()(

1
3

31
2

3
312

22

3
⎪⎩

⎪
⎨
⎧

=+++

±≠+++
=

Q P cycxxcZ

Q P zcyxXYY
y

,if

if 2
3

⎩
⎨
⎧

=
±≠

=
Q P c
Q PX z

z

where Z = + a 2
1x

Table 4.7. Point addition formulae in the Jacobian projective coordinates (z2x, z3y, z)
 Refer to Agnew, Mullin & Vanstone [AMV93] and Cohen, Miyaji & Ono
([CMO97], [CMO98]) for more discussions.
b. Montgomery’s method
 This method is extracted from a work of Montgomery [M87]. In the table 4.8., we
show the relations of the x-coordinates of 2 points (P + Q) and (P – Q).
Equation of elliptic curve E over finite field P + Q = (x3, y3) & P – Q = (x4, y4), where

P = (x1, y1), Q = (x2, y2) and P ≠ ± Q
Over Fp, P ≠ 2, 3, E: y2 = x3 + Ax + B
∆ = –16(4a3 + 27b2) ≠ 0)

 x3 = x4 – 4y1y2(x2 – x1)–2

Non-supersingular elliptic curve over GF(2m)
y2 + xy = x3 + ax2 + b (and b ≠ 0)

x3 = x4 + x1 x2(x1 + x2)–2

Supersingular elliptic curve over GF(2m)
y2 + cy = x3 + ax + b (and c ≠ 0)

x3 = x4 + c2 (x1 + x2)–2

 Table 4.8. Addition formulae using the Montgomery’s method
 Hence, for both supersingular and non-supersingular elliptic curves over binary
finite field GF(2m), we can compute the x-coordinate x3 of (P + Q) with only one

__
A Survey of Elliptic Curve Cryptosystems – Part I: Introductory – 10/27/2003

Page 73 of 105

NAS Technical Report - NAS-03-012 August 2003
--

inversion and a few finite field additions from the x-coordinates of P, Q and (P – Q). The
y-coordinates are not involved in the computations.
 However, if over prime finite field Fp, the computation must involve also the y-
coordinates y1 and y2. Hence the Montgomery’s method performs better over binary finite
fields than over prime finite fields.
 To compute point kP, where k = (kr–1,…, k0) in base 2, we first compute the point
2P. Thereafter, given a pair of points (mP, (m + 1)·P), we then compute in step i either
 (2m·P, (2m + 1)·P) if ki = 0, or
 ((2m + 1)·P, (2m + 2)·P) if ki = 1.
 The Montgomery’s method has a considerably slower speed since in each step
(for each bit) we must compute
 A doubling in order to get the point 2m·P or (2m + 2)·P = 2(m + 1)·P) and
 A point addition with point (±P) to get (2m + 1)·P.
 On the other hand, these computations also provide one advantage of this method:
the ability of resistance against the power differential analyses attacks since there is no
distinction on operating over bit 0 or bit 1.
 One may even use projective coordinates in the Montgomery’s method to reduce
the inversion (or division). We summarize the formulae in the table 4.9.
Equation of elliptic curve E over finite

field Fq

P + Q = (x3, y3, z3) & P – Q = (x4, y4, z4), where
P = (x1, y1,1), Q = (x2, y2, z2) and P ≠ ± Q

Over Fp, p ≠ 2, 3
y2 = x3 + ax + b
(and ∆ = –16(4a3 + 27b2) ≠ 0)

x3 = x4 – 4 y2
2z 1y2(x2 – x1z2)

z3 = z4

Non-supersingular elliptic curve over
GF(2m)
y2 + xy = x3 + ax2 + b (and b ≠ 0)

x3 = x4 + x2
2z 1x2(x1z2 + x2)

z3 = z4
(Agnew, Mullin & Vanstone)

Supersingular elliptic curve over
GF(2m)
y2 + cy = x3 + ax + b (and c ≠ 0)

x3 = x4 + c3
2z 2(x1z2 + x2)

z3 = z4

Table 4.9. Addition formulae using the Montgomery’s method in the projective
coordinates (xz, yz, z)

 Hence, over binary finite fields GF(2m), for both supersingular and non-
supersingular elliptic curves, we can compute the x-coordinate x3 of (P + Q) with a few
field operations from z2 and x-coordinates of three points P, Q and (P – Q). Over prime
finite fields Fp, the computation must involve also the y-coordinates y1 and y2. Moreover,
no inversion or division is required.
 We can do similar computations over the Jacobian projective coordinates of the
form (z2x, z3y, z) , z ≠ 0.

Equation of elliptic curve E over
finite field Fq

P + Q = (x3, y3, z3) and P – Q = (x4, y4, z4), where
P = (x1, y1,1), Q = (x2, y2, z2) and P ≠ ± Q

Over Fp, p ≠ 2, 3
y2 = x3 + ax + b
(and ∆ = –16(4a3 + 27b2) ≠ 0)

x3 = x4 – 4y1y2
3
2z

z3 = z4

__
A Survey of Elliptic Curve Cryptosystems – Part I: Introductory – 10/27/2003

Page 74 of 105

NAS Technical Report - NAS-03-012 August 2003
--

Non-supersingular elliptic curve over
GF(2m)
y2 + xy = x3 + ax2 + b (and b ≠ 0)

x3 = x4 + x4
2z 1x2

z3 = z4

Supersingular elliptic curve over
GF(2m)
y2 + cy = x3 + ax + b (and c ≠ 0)

x3 = x4 + c6
2z 2

z3 = z4

Table 4.10. Addition formulae using the Montgomery’s method in the Jacobian
projective coordinates (z2x, z3y, z)

 Again, over binary finite fields GF(2m), for both supersingular and non-
supersingular elliptic curves, we can compute the x-coordinate x3 of (P + Q) with a few
field operations from z2 and x-coordinates of three points P, Q and (P – Q). Over prime
finite fields Fp, the computation must involve also y-coordinates y1 and y2. Moreover, no
inversion or division is required.
 In summary, the Montgomery’s method always works better over binary finite
fields than over prime finite fields for either affine coordinates or projective coordinates.
c. Demytko’s work ([D94])
 Let P = (x, y) be a point on an elliptic curve E: y2 = x3 + ax + b over finite field Fp
with its discriminant ∆ = –16(4a3 + 27b2) ≠ 0. Let Pk = k.P = (xk, yk).

 If yk ≢ 0 (mod p), then x2k =
)(4

8)(
4

8)(
3

22

2

22

baxx
bxax

y
bxax

kk

kk

k

kk

++
−−

=
−− .

 If xk ≢ xk+1 and x ≢ 0 (mod p), then x2k+1 = 2
1

1
2

1

)(
)(4)(

+

++

−
+−−

kk

kkkk

xxx
xxbxxa .

 If xk ≢ xk+1 and x ≡ 0 (mod p), then x2k+1 = 2
1

11

)(
))((24

+

++

−
+−+

kk

kkkk

xx
xxxxab + x.

 We can observe that xk ≡ xk+1 (mod p) only when Pk
 = –Pk+1 or (2k + 1)·P = O.

 Recall from the Montgomery’s method, we have a more general formula

If xi ≢ xj then xi+j = 2)(
))((24

ji

jiji

xx
xxxxab

−

+−+
+ xi–j.

This yields a chosen message attack proposed by Kaliski [K97].
 We can also use the projective coordinates in the above formulae. For example,
we denote P = (X, Y, Z) and Pk = k.P = (Xk, Yk, Zk). Then we have:
 X2k = ; Z3222 8)(kkkk ZbXaZX −− 2k = 4Zk)(323

kkkk bZZaXX ++ and
 X2k+1

 = Z.[(XkXk+1 – aZkZk+1)2 – 4bZkZk+1(XkZk+1 + Xk+1Zk)]; Z2k+1 = X(XkZk+1
 – Xk+1Zk)2.

d. Direct multiplication formulae and others
 For practical implementation, the inversion of finite field elements is the most
expensive operation to perform in finite fields. Guajardo & Paar proposed an idea to
reduce the number of inversions at the cost of extra multiplications for calculating the
point (2d.P). Instead of repeating doubling P many times to compute the intermediate
points 2P, 22P,…,2d–1P, which may be of no use at all, we should derive a general direct
formulae to compute point (2d.P) for any positive integer d, as large as one can. In each
formula, we try to reduce the number of inversions to a possible minimum. Those
formulae can be applied in the pre-computations of 2d-ary methods or window methods
to improve the efficiency.

__
A Survey of Elliptic Curve Cryptosystems – Part I: Introductory – 10/27/2003

Page 75 of 105

NAS Technical Report - NAS-03-012 August 2003
--

 Shamir’s speed-up algorithm to compute point (aP + bQ) is to go through the
non-adjacent signed binary expansions of the scalars a and b at the same time, doubling
and adding/subtracting P, Q, and P ± Q. This algorithm is claimed to have fast speed but
it also requires more memory.
 Others, such as Lee & Lim [LL94], and Brickell, Gordon, McCurley & Wilson
[BGMW93] worked on pre-computations to improve scalar multiplication efficiency.
Gallant, Lambert & Vanstone [GLV01] and Müller ([Mu98,[Mu98a]) discussed using
efficient endomorphisms of elliptic curves.
4.C.4. Algorithms on composite extension finite fields
 For a composite extension finite field, we mean a finite field of the form GF(2r),
where r is a composite number r = nm. Then the finite field GF(2mn) is considered an
etension field of order m of the subfield GF(2n), (or an extension field of order n of the
subfield GF(2m)). Refer to Green & Taylor [GT74].
a. Multiplicative inversion over composite extension finite fields
 Guajardo [G97], Paar [P95], Guajardo & Paar ([GP97],[GP98], [GP01]) aimed to
generalize the generalized the Itoh-Tsujii algorithm (which was proposed for mornal
bases) to polynomial bases and for composite extension fields.
 It takes advantage of calculations in the subfield GF(2n) of small degree n. The
reduction polynomial of GF(2nm) over GF(2n) is P(x). The inverse of a non-zero element
A ∈ GF(2nm) is defined by: A–1 = (Ar)–1Ar–1, where r = (2nm – 1)/(2n – 1) and Ar ∈ GF(2n).
First, the term Ar–1 will be computed using addition chains since r – 1 = 2n + 22n + … +
2(m–1)n. Second, we observe that the product Ar of two elements A and Ar–1 in GF(2nm) is,
in fact, in the subfield GF(2n). This helps to reduce the cost in comparison with general
multiplication in the composite extension finite field GF(2mn) if we choose the reduction
polynomial P(x) carefully. Third, the inversion (Ar)–1 is easily performed in the subfield
GF(2n). The final product between an element (Ar)–1∈ GF(2n) and an element Ar–1 ∈
GF(2nm) also requires only m multiplications in GF(2n) and no reduction modulo
polynomial P(x).
 Fan & Paar [FaP97] worked on binary finite fields of the “tower” form GF(2nm)
where m = 2k. The simplest case for the extension field of degree m = 2 was discussed in
Kasahara & Morii [KM89] and Afanasyev [A91].
b. Using look-up tables of pre-computations
 Guajardo [G97] and Guajardo & Paar [GP97] proposed a method that analyzes
the complexity of the application of the Karatsuba-Ofman Algorithm (KOA) (discussed
in [KO63]) and introduces a fast multiplication method in composite extension Galois
fields of the form GF(2nm) by using look-up logarithm and anti-logarithm tables in the
subfield GF(2n).
c. Implementations over composite extension finite fields
 Implemantions of elliptic curves over composite finite fields are presented in
many works by: Paar ([P93],[P96],[P99]), Bosselaers, de Gersem, Vandenberghe,
Vandewalle & de Win [BGVVW96], Paar & Soria-Rodriguez [PS97], Guajardo [G97],
Guajardo & Paar [GP97], Fleischmann, Paar & Roelse [FPR98], Fleischmann, Paar &
Soria-Rodriguez [FPS99] and Bailey, Paar & Woodbury [BPW00].
 Many research articles have already focused on VLSI architectures for fast
implementations of arithmetic operations: multiplication, inversion and exponentiation.
Current approaches are combinations of structure of composite extension finite fields and

__
A Survey of Elliptic Curve Cryptosystems – Part I: Introductory – 10/27/2003

Page 76 of 105

NAS Technical Report - NAS-03-012 August 2003
--

hardware architectures: bit parallel arithmetic in subfield and serial processing for
extension field arithmetic. This is called the parallel-serial (hybrid) approach. This could
have very fast implementations. Refer to Paar & Soria-Rodriguez [PS97] and its
references.
e. Current issues on elliptic curves over composite extension finite fields
 Consider a non-supersingular elliptic curve over a composite extension finite field
GF(2nm) of the equation: E: y2 + xy = x3 + ax2 + b, where coefficients a and b are in the
subfield GF(2n). Then E is referred to as a “subfield elliptic curve”. Particularly, when n
= 1, it is just a Koblitz curve or a binary anomalous curve (ABC).
 In practice, we prefer the order #E to be prime or divisible by a small number.
Hence we should use GF(2nm) where n is equal to 1 or is small and m is a large prime.
Otherwise, the order #E(GF(2nm)) will have a considerably large factor #E(GF(2n)).
 However, there are always concerns about using the elliptic curves over
composite extension Galois fields in cryptography by world mathematicians. Refer to
Müller & Paulus [MP97].
 There is also current research mentioning general doubts about constructing
elliptic curves with special coefficients (such as Koblitz curves and subfield elliptic
curves) and/or over finite fields with special internal structure (such as composite
extension finite fields).
 Gallant, Lambert & Vanstone [GLV00] showed that the parallelized Pollard
lambda method can be improved by a factor of (2m)1/2 for binary anomalous curves over
finite fields GF(2m). The idea is to partition the group 〈P〉 into equivalence classes using
the Frobenius endomorphisms Φ: E(GF(2m)) → E(GF(2m)), by: Φ(x, y) = (x2, y2). We
define the equivalence relation ~ by: P1 ~ P2 if and only if P1

 = ± Φl(P2), for some l such
that 0 ≤ l ≤ m – 1. Assuming that Φ(P) = Φ(x, y) = λ·(x, y), then the equivalent class of
point P includes [P] = {P, λP, λ2P,…, λm–1P, –P, –λP, –λ2P,…, –λm–1P} and [O] = {O}.
Therefore, the number of elements to be searched is reduced by a factor of 2m; hence the
running time that is proportional to the square root of the size of the group, will be
reduced by a factor of (2m)1/2.
 Wiener & Zuccherato [WZ98] also showed the same improvement, not only for
binary anomalous curves, but also for more generalized cases, subfield elliptic curves
(defined over composite extension finite field GF(2m) with coefficients in the subfield
GF(2n)). The running time is also reduced by a factor of (2m)1/2.
4.C.5. Representing points on an elliptic curve
 The coordinates x and y of any point (x, y) on an elliptic curve must satisfy the
cubic relation. Hence to represent an elliptic curve point, both coordinates are not
required. Therefore, we can save space in storage of such points. There are a few
methods developed to represent elliptic curve points. The terminology of such methods is
not agreed upon globally yet.
a. Compressing and recovering points on an elliptic curve
 When p > 3, E: y2 = x3 + ax + b over a prime finite field Fp. The compressing and
recovering employs the propert that: the coordinates of two points P and its (additive)
inverse point (–P) are: P = (x, y) and (–P) = (x, –y) = (x, p – y).
 Compressing: Consider a point P = (xP, yP) on E. Then the compressed form of P
consists of xP and the rightmost bit of yP, denoted by ỹP, when yP is written in the binary

__
A Survey of Elliptic Curve Cryptosystems – Part I: Introductory – 10/27/2003

Page 77 of 105

NAS Technical Report - NAS-03-012 August 2003
--

expansion form. In other words, we have ỹP ≡ yP (mod 2). Two values y and (p – y)
always have the opposite rightmost bits.
 Recovering: Given xP and ỹP, we can recover point P or, in fact, yP. First, we
compute the square root r of value (+ ax3

Px P + b) (mod p). If the rightmost bit of r is
equal to ỹP, then yP = r. Otherwise, let yP = p – r.
 When p = 2, E: y2 + xy = x3 + ax2 + b, a non-supersingular elliptic curve over a
finite finite field GF(2m). For any two points P = (x, y) and – P = (x, y + x), the difference
between two ratios of point coordinates (yx–1) and (y + x) x–1 = yx–1 + 1 are only 1, i.e.,
the rightmost bit in binary expansion form. Observe also that if x ≠ 0, we can write the
elliptic curve equation in terms of (yx–1): (yx–1)2 + yx–1

 = x + a + bx–2.
 Compressing: The compressed form of a point P = (xP, yP) on E consists of xP and
a bit ỹP. If xP = 0, let ỹP = 0. (Actually, we do not care nor use this bit). If xP ≠ 0, let ỹP be
the rightmost bit of .)(1−

PP xy
 Recovering: Given xP and ỹP, we can recover yP as follows. If xP = 0, let yP be the
square root of b. Particularly, using the identity = b, we have y

m
b2

P = . (We ignore
the bit ỹ

12 −m
b

P, or just consider it a check bit). If xP ≠ 0, we need to solve the equation r2 + r =
xP + a + (mod p) for a root r2−

Pbx o. Observe that the other root is (ro + 1). We choose r =
ro or r = ro + 1, such that the rightmost bit of r is equal to ỹP. Then compute yP = xPr.
b. Compact form for cyclic subgroup of an elliptic curve
 This form, originally proposed by Seroussi [S98] is applied only for non-
supersingular elliptic curves E: y2 + xy = x3 + ax2 + b, with b ≠ 0, over a binary finite
field GF(2m). In fact, it is applied only for a cyclic subgroup of the elliptic curve. We can
rewrite the equation as:

z2 + z = x + a + bx – 2 where z = y/x, assuming that x ≠ 0.
We have some observations. Given x ≠ 0, the above equation of z has a solution if and
only if we have Tr (x + a + bx – 2) = 0. Therefore, for any point P = (x, y) ∈ E, where its x-
coordinate ≠ 0, we must have the identity: Tr(x + a + bx–2) = 0. Using the equality: Tr(a +
b) = Tr(a) + Tr(b), it can be rewritten as: Tr(x + bx–2) + Tr(a) = 0 or Tr(x + bx–2) = Tr(a),
since values of the trace function Tr(·) is in F2. The point P = (0, y) in fact has order 2.
 If Q = (xQ, yQ) = 2P ∈E, then xQ = x2 + bx–2. If P ≠ (0, y), then Q is not the point at
infinity. Using the equality on trace function: Tr(x) = Tr(x2) over finite field GF(2m), we
can derive the following relations: Tr(xQ) = Tr(x2 + bx–2) = Tr(x + bx–2) = Tr(a), for any
point P whose order is other than 2.
 Seroussi used this fact to represent a point on an elliptic curve by “compact form”
that needed only m bits, instead of (m + 1) bits as they did in the compressed form,
discussed above. In an elliptic curve cryptosystem, we should always consider points in a
cyclic subgroup of large prime order n (hence n is odd). Any point P = (x, y) in such
subgroup cannot have order 2, and there always exists a point R such that P = 2R. Indeed,
we can write explicitly: P = (n + 1)·P = 2R, where R = [(n +1)/2]·P.
 In other words, we always have Tr(xP) = Tr (a), for any point P = (x, y) ≠ (0, y)
that is used in an elliptic curve cryptosystem. That is, we can eliminate one bit from the
x-coordinate of point P = (x, y) without ambiguity. The position of this bit can be chosen
depending on the basis of the finite fields.

__
A Survey of Elliptic Curve Cryptosystems – Part I: Introductory – 10/27/2003

Page 78 of 105

NAS Technical Report - NAS-03-012 August 2003
--

 Combined with the compressed form, we can fill up the removed bit from x by the
single bit representing y-coordinate. Hence this form has exactly m bits to represent a
point P = (x, y) in the cyclic subgroup mentioned.
 Particularly, we will utilize the matrix implementation of trace function Tr(x) =
T.xt, where xt is the transpose matrix of x = (x0, x1,…, xm–1) ∈ GF(2m) and T is an m × m
matrix that depends on the basis used to represent the finite field GF(2m) and is calculated
in advance. Then we will eliminate any i-th position bit of x where the corresponding bit
T(i) = 1 in the matrix T. For recovering, that bit will be determined uniquely to get the
relation between x and a: Tr(x) = Tr(a).
 This representation is proved to be optimal for points on non-supersingular
elliptic curves over finite field GF(2m). Recall that a non-supersingular elliptic curve has
even order and more particularly, #E(GF(2m)) ≡ 2Tr(a) (mod 4). That is, one can write
#E(GF(2m)) = 2s, for some value s (or even #E(GF(2m)) = 4s, for the case Tr(a) = 0).
Therefore, the prime order n of the interested cyclic subgroup of the elliptic curve is at
most ½ (or ¼ when Tr(a) = 0) of the curve order #E(GF(2m)) that is at most (2m + 1 +
2.2m/2). We can even drop the term 1 since the order must be even. Hence
 If Tr(a) = 1, then n ≤ 2m–1 + 2m/2 < 2m, for m ≥ 3. Hence, an m-bit form can be
sufficient to represent all points in the cyclic subgroup of the elliptic curve.
 If Tr(a) = 0, then n ≤ 2m–2 + 2(m/2)–1 < 2m–1, for m ≥ 3. Hence, an (m – 1)-bit form is
sufficient.
c. Other discussions
 The compressing techniques just solve the simple problem of only 1-bit ambiguity
of the y-coordinate. When we use only the x-coordinate, it does not matter how one can
determine its corresponding y-coordinate of point P or its inverse point (–P). If we need
the y-coordinate, we still can use other conventions without having explicitly the extra
bit, from the known facts on the coordinates of point P and point (–P) as follows:
 y(–P) = p – yP for prime finite fields Fp, p > 3, and
 y(–P) = xP + yP for binary finite fields GF(2m).
 One can define y to be the smaller/larger, odd/even or “positive/negative” (in
sense of modulo p) of two values upon mutual agreement.
 Another approach is to try to use values independent of points (or y-coordinates)
such as y2 or y·(x + y) in our algorithms. But this approach could cost us more than 1 bit.
For discussions and algorithms in this approach, refer to Montgomery [M97], Demytko
[D94] and Schroeppel [Sc00].
 Another option that could be employed is to use the full y-coordinate of a point
and two bits to represent x-coordinate, since for a given y, there are possibly three values
of x from the elliptic curve equation.
 However, the security of an elliptic curve cryptosystem does not depend on the
representation of a point in either a compressed, non-compressed or compact form.
4.C.6. Half-point algorithms
 It is reasonable and practically necessary to find algorithms to compute the half of
a point, i.e., (½·P) of a given point P on an elliptic curve. In other words, we need to
solve the following problem:
 Given a point P, find another point Q on the same elliptic curve such that 2Q = P.

__
A Survey of Elliptic Curve Cryptosystems – Part I: Introductory – 10/27/2003

Page 79 of 105

NAS Technical Report - NAS-03-012 August 2003
--

We will discuss the solutions of this problem for finite fields.
 For prime finite field Fp, p > 3, E: y2 = x3 + ax + b. Let Q = (xQ,yQ) and 2Q = P =
(xP,yP). From the point doubling formula, we have xP = [(3 + a)/2y2

Qx Q]2 – 2xQ.
Then xQ is a root of the equation 0 = f(X) = X4 – 4X3xP – 2X2a – X(4axP

 + 8b) + a2 – 4bxP.
For each xQ, we find the corresponding values of yQ if they exist. We can verify directly
that 2·Q = P. In fact, the algorithm for solving the half-point problem is expected to have
polynomial running time. One may need to apply some algorithm to compute the square
root modulo prime p of that running time.
 Over binary finite field GF(2m), we consider a non-supersingular elliptic curve E:
y2 + xy = x3 + ax2 + b. We have xP = . Similarly, we solve the following
equation for x

22 −+ QQ bxx

Q: 0 = f(X) = X4 + X2
 xP + b = Y2 + YxP + b = 0. This equation of variable Y

has a root if and only if Tr(b) = 0. If so, then we have x2−
Px Q = Y1/2 =

12 −m
Y .

 Recall that if P is in a cyclic subgroup of prime order n of the elliptic curve, the
half-point always exists. Since order n of P is odd, one can write: P = (n + 1)·P = 2·Q,
where Q = [(n +1)/2]·P.
 For completeness, we may consider the case of a supersingular elliptic curve over
binary finite field GF(2m), E: y2 + cy = x3 + ax + b. We can write xP = (+ a4

Qx 2)c–2 .
Hence xQ = (xPc2 + a2)1/4, that always exists in the finite field GF(2m).
 This existence of the half-point is used in Seroussi [S98] to represent a point on a
non-supersingular elliptic curve over a finite field GF(2m) by a compact form of only m
bits.
 Meyer & Müller [MM96] also discussed the half-point problem on an elliptic
curve over a ring ZN for composite number N = pq. The authors referred to the problem
by a different name, square root of a point. More references on this problem are in
[KMOV92], Demytko [D94], Boyd & Smith [BS95] and [Kn99]. They showed that
solving the half-point algorithm enables solving the integer-factoring problem (IFP).
 4.C.7. Modular multiplication algorithm
 Modular multiplication techniques are also helpful to increase the speed of
general computation process. Montgomery’s modular multiplication algorithm is the
most popular algorithm and were discussed widely in crypto literature: Montgomery
[M85], Acar, Kaliski & Koç [AKK96] and Acar & Koç [AK98].
 There are still many works on implementation and performance of elliptic curve
cryptosystems. Readers may refer to: Agnew, Mullin, Onyszchuk & Vanstone
[AMOV91], Mister, Preneel, Wiener & de Win [MPWW98], Hankerson, Hernandez &
Menezes [HHM00] and Brown, Hankerson, Hernandez & Menezes [BHHM01] and
others.

Appendices

Appendix A. Trace functions
1. Trace of a finite field element
 Trace of an element a is a linear mapping Tr: GF(pm) → Fp defined by

__
A Survey of Elliptic Curve Cryptosystems – Part I: Introductory – 10/27/2003

Page 80 of 105

NAS Technical Report - NAS-03-012 August 2003
--

Tr(a) =
11

0

21 −−

=

++++=∑
mppp

m

i

p aaaaa
i

L

Basic properties ℵ
 Tr(ap) = Tr(a).
 Tr(a + b) = Tr(a) + Tr(b), and generally,

Tr(v·a) = v.Tr(a), for a, b ∈ GF(pm), v ∈ Fp.
 When p = 2, Tr(0) = 0, and Tr(1) = 1 if m is odd and Tr(1) = 0 if m is even.
 These above properties can be checked easily from the definition and the equality
formula for finite fields of characteristic p: (a + b)p = ap + bp, for all a, b in Fp.
Property: For an element a ∈ GF(2m), Tr(a) equals 0 for one half of the elements in
GF(2m) and equals 1 for the other half.
PROOF: When m is odd, we have Tr(a + 1) = Tr(a) + Tr(1) = Tr(a) + 1. Hence the
mapping z a (z + 1) is a bijection between the subset of elements of trace 0 and that of
elements of trace 1. When m is even, the result still holds. However, the bijection in this
case is z a (z + b), where b is some element with Tr(b) = 1. (Such element b always
exists.) q.e.d.
 When p > 2, there are pm–1 elements of trace 0 in GF(pm). In fact, there is also
equal distribution of values of trace function Tr(·) in the finite field GF(pm).
Property: For an element a ∈ GF(2m), its trace Tr(a) = 0 if the polynomial (X2 + X + a)
is reducible over GF(2m) or, in other words, has two roots over GF(2m). Conversely,
Tr(a) = 1 if the polynomial (X2 + X + a) is irreducible over GF(2m) or it has no root over
GF(2m).
PROOF: Consider the homomorphism f: GF(2m) → GF(2m), defined by f(X) = X2 + X. Its
kernel is F2, (since f(0) = f(1) = 0) and its image Im(f) is a subgroup of index 2 in GF(2m).
Therefore, the polynomial (X2 + X + a) has a root (or it is reducible) over finite field
GF(2m) if and only if we have a = –a ∈ Im(f). For such element a, we write: a = b + b2,
for some element b ∈ GF(2m). Hence Tr(a) = Tr(b + b2) = 0.ℵ q.e.d.
2. Trace of an elliptic curve
 Recall that order of the group E(Fq) is #E(Fq) = q + 1 – t. We call t the trace of the
elliptic curve E. Recall the definition of Frobenius endomorphism Ψ ∈ End(E) of an

ℵ Number theory tip – The nth roots of 1
 The multiplicative subgroup GF(pm)* is a cyclic group of order (pm –1), generated
by a primitive element g. Let n be a divisor of (pm –1). There are n roots of the
polynomial (xn –1). That are also called the nth roots of 1, are n elements of the form

,)1(. nmpjg − for 0 ≤ j ≤ n – 1. Particularly, for n = p – 1, we have:
ga ∈ GF(p)* if and only if a is a multiple of (pm –1)/(p –1).

ℵ Number theory tip – Using the trace of a finite field element
 The equation X2 + aX + b = 0, where a, b ∈ GF(2m), a ≠ 0, has a root in GF(2m) if
and only if Tr(a–2b) = 0. Moreover, if x is one root of the equation, then (x + a) is the
other root. In other words, the number of solutions of the equation X2 + aX + b = 0
equals [2 – 2.Tr(a–2b)] or [1 +]. When a = 0, there is one root x = (–b))(2

)1(baTr −

− 1/2 =
12 −m

b .

__
A Survey of Elliptic Curve Cryptosystems – Part I: Introductory – 10/27/2003

Page 81 of 105

NAS Technical Report - NAS-03-012 August 2003
--

elliptic curve E by: ∀(x, y) ∈ E, Ψ(x, y) = (xq, yq) and Ψ(O) = O. Then the trace t of the
elliptic curve E also satisfies the relation Ψ2 – tΨ + q = 0 that is called the characteristic
equation.
 When t = 0, #E(Fq) = q + 1, the elliptic curve is called supersingular.
 When t = 1, #E(Fq) = q, the elliptic curve is called Fp-anomalous. We will discuss
later that these two types of elliptic curves are cryptographically insecure.
 The elliptic curve with t = 2, or its order #E(Fq) = q – 1, should also deserve some
attention.
3. Properties on order of an elliptic curves
Property 1 (Lay & Zimmer [LZ94]): Let E be a non-supersingular elliptic curve E: y2 +
xy = x3 + ax2 + b, over the finite field GF(2m). Then the order of the elliptic curve E is #E
≡ 2Tr(a) (mod 4).
PROOF: (Koblitz, using division polynomials). Let Y = y/x. We re-write the elliptic curve
equation as: Y2 + Y = x + a + bx–2. Consider the division polynomial (that will be
described later): f4(x) = x6 + bx2 = x2(x4 + b). The non-trivial points Q = (x, y) ∈ E of
order 4 will have x = b1/4 = . The equation will have solution in GF(2

22 −m
b m) (i.e.,

corresponding to the y-coordinates of Q) if and only if 0 = Tr(x + a + bx–2) = Tr(+ a
+) = Tr(a),

22 −m
b

12 −m
b

since we have Tr(B + B2) = 0 for any B. (Here B = and B
22 −m

b 2 = .) Thus the
elliptic curve has a non-trivial point of order 4 if and only if Tr(a) = 0.

12 −m
b

 Since the order of a non-supersingular elliptic curve is even, or #E ≡ 0 or 2 (mod
4), we can obtain the modular identity: #E ≡ 2.Tr(a) mod 4. q.e.d.
 This result shows that the maximum prime order of a cyclic subgroup of any non-
supersingular elliptic curve is equal to ½ or ¼ the order of the curve itself. It is this
cyclic subgroup that has interesting cryptographic uses in elliptic curve cryptosystems.
Property 2 (Seroussi [S98]): Let E be a non-supersingular elliptic curve E: y2 + xy = x3
+ ax2 + b over the finite field GF(2m). Then for any point P of order other than 2 on E,
the point Q = 2.P = (xQ, yQ) will satisfy the condition:Tr(xQ) = Tr(a).
 This property later gives a way to represent a point of an elliptic curve over a
finite field GF(2m) using only m bits.
Property 3 (J. Silverman): The elliptic curve E: y2 = x3 + x over a prime finite field Fp
has its order satisfying the modular condition: #E(Fp) ≡ 0 (mod 4).
PROOF: When p ≡ 1 (mod 4), element (–1) is a quadratic residue in Fp. Hence, for each
value of x such that the equation y2 = x3 + x has two non-zero solutions of y, then the
equation y2 = (–x)3 + (–x) = –(x3 + x) also has two non-zero solutions. Thus, we counted
already a multiple of four points together. The rest in the set of points are the point at
infinity O and 3 points whose y-coordinate is 0: (0, 0), (t, 0), and (–t, 0), where t2 = –
1(mod p). This modular equation always has two solutions, since the Legendre symbol
modulo p of (–1), where p ≡ 1 (mod 4) is 1. In summary, the number of elliptic curve
points is a multiple of 4.
 When p ≡ 3 (mod 4), we have #E(Fp) = p + 1 ≡ 0 (mod 4). q.e.d.

Appendix B. Twisted curves

__
A Survey of Elliptic Curve Cryptosystems – Part I: Introductory – 10/27/2003

Page 82 of 105

NAS Technical Report - NAS-03-012 August 2003
--

 When char(K) = p > 3, two elliptic curves E: y2 = x3 + ax + b and E’: y2 = x3 +
ac2x + c3b where c is a quadratic non-residue (mod p), are twisted curves over the prime
finite field Fp.
 When char(K) = 2, two non-supersingular elliptic curves over the binary finite
field GF(2m): E: y2 + xy = x3 + (a + d) x2 + b and E’: y2 + xy = x3 + ax2 + b, where d is any
element of trace 1, are twisted curves.
 When the finite field GF(2m) has the odd degree m over finite field F2, we can
choose d = 1. More generally, we will observe that:
 For an element d ∈ GF(2m), its trace Tr(d) = 1 if and only if the polynomial (X2 +
X + d) is irreducible over the finite field GF(2m).
 Twisted curves have the same j-invariant. Their orders are related by: #E(Fq) = q
+ 1 – t and #E’(Fq) = q + 1 + t. Twisted curves will be used in many applications, such as
Demytko’s elliptic curve cryptosystem and one-way permutations…
Theorem: Let E be an ordinary elliptic curve over the finite field Fp and E’ its twisted
curve. Then we have:
 (i) #E(Fq) + #E’(Fq) = 2q + 2,
 (ii) E(GF(q2)) ≈ E’(GF(q2)). That is, two elliptic curves are isomorphic over the
quadratic extension field GF(p2) but not over the finite field Fq.
 We show the proof of statement (i) here since it is elementary, interesting and
helpful. The proof for statement (ii) can be found in other elliptic curve literature, since it
involves more difficult details.
PROOF: Over prime finite field Fp, (Kaliski [K91]):
 Since the element c is a quadratic non-residue (mod p), then either (x3 + ax + b) or
c3(x3 + ax + b) is a quadratic residue modulo q, not both. Hence each pair of elements x
and cx ∈Fp describes exactly a pair of points on elliptic curves E(Fp) and E’(Fp). We
summarize the results in the table A.

Status of (x3 + ax + b) A pair of points on elliptic curves E and E’
(x3 + ax + b) is a quadratic residue (x, ±(x3 + ax + b)1/2) on E
(x3 + ax + b) is a quadratic non-residue (cx, ±[c3(x3 + ax + b)]1/2) on E’
(x3 + ax + b) = 0 (mod p) (x, 0) on E and (cx, 0) on E’

 Table A. The points on twisted curves E(Fp) and E’(Fp)
These 2q points above, together with the two points at infinity O of two curves give us a
total of 2(q +1) points.
 Over binary finite field GF(2m), (Meier & Staffelbach [MS93]):
 We have Tr(d) = 1. For every fixed value x ≠ 0, we will count the numbers of
solutions for two equations in variable Y = y/x corresponding to two curves: Y2 + Y + ex =
0 and Y2 + Y + (ex + d) = 0, for a constant ex = (x3 + ax2 + b)/x2. Because of Tr(d) = 1,
there is only one elliptic curve equation that has two solutions and the other equation
must have no solution. They accounted for 2×(2m – 1) points for both elliptic curves.
 When x = 0, both elliptic curve equations are of the form y2 = b. They always
have one solution, y = b1/2 = . These two points, together with two points at infinity
O on two elliptic curves, complete our counting.
 q.e.d.

12 −m
b

Lemma: Over prime finite field Fp two elliptic curves: y2 = x3 + ax + b and y2 = x3 + ac2x

+ c3b, where c is a quadratic residue modulo p, have the same order.

__
A Survey of Elliptic Curve Cryptosystems – Part I: Introductory – 10/27/2003

Page 83 of 105

NAS Technical Report - NAS-03-012 August 2003
--

 Over binary finite field GF(2m), two elliptic curves: y2 + xy = x3 + ax2 + b and y2 +
xy = x3 + (a + e) x2 + b, where Tr(e) = 0, have the same order. (Moreover, they are
isomorphic elliptic curves.)
 Over GF(2m), two elliptic curves:y2 + xy = x3 + ax2 + b and y2 + xy = x3 + a2x2 + b,
 have the same order. (Moreover, they are isomorphic elliptic curves.)
PROOF: The first two statements are straightforward from the above theorem. The third
statement is a simple result of the second one where e = a2 + a. Then we have: Tr(e) =
Tr(a2) + Tr(a) = 0. q.e.d.

Appendix C. Examples of elliptic curves over small binary finite fields GF(2m)
Example 1
 We consider the finite field GF(22). There is only one irreducible polynomial f(x)
= x2 + x + 1 over F2. Let α = x (mod f(x)) be a root of f(x). The four elements of GF(22)
are 0, 1, α and α2 = α + 1. Obviously, α3 = 1, or we say the element α is the third root of
unity in the field. In fact, α and α2 are two primitive elements of the multiplicative
subgroup GF(22)* and are the only roots of f(x). Hence f(x) is the only primitive
polynomial of GF(22).
 The trinomial basis is {1, α} and {α, α2} is an ONB (of both Type I and II.) For
example, we can write: 1 = α2 + α . Hence, in trinomial basis, we have: GF(22) = {(00) =
0, (01) = 1, (10) = α, (11) = α2}. And in ONB, we write: GF(22) = {(00) = 0, (11) = 1,
(10) = α, (01) = α2}. Observe that Tr(0) = Tr(1) = 0 and Tr(α) = Tr(α2) = α + α2 = 1.
Hence the trinomial basis is not self-dual. The ONB is self-dual and is also a primitive
normal basis. Now we define g(z) = Tr(α2z), ∀z ∈ GF(22). Then {1, α} is its dual basis
with respect to the linear function g(·).
 Consider the elliptic curve of the equation E: y2 + xy = x3 + x2 + α. Its order is #E
= 4 and its elements are {O, (0,α2), (α,0), (α,α)}. We can compute simple point
multiplications: 2(α,0) = (0,α2). Hence 4(α,0) = O. Then point (α, 0) is a generator of E.
The other generator is, obviously, the point (α,α). We can check that: 2(α,α) = (0,α2).
 Let E: y2 + xy = x3 + x2 + 1 be a Koblitz curve. The group E has order 8 and its
structure is ⊕ , where n

1nZ
2nZ 2 = gcd(n1, q – 1). Since n1 is a divisor of 8 and q – 1 = 7;

hence n2 = 1 and E = Z8, a cyclic group. We have
E = 〈(α, 1)〉 = {(0,1), (1,α), (1,α2), (α, 1), (α,α2), (α2,1), (α2,α),O}.

 The other generators are points (α, α2), (α2,1) and (α2, α).
Example 2 (Koblitz, Menezes & Vanstone [KMV96])
 The finite field GF(23) is a vector space of dimension 3 over F2. Its irreducible
polynomial is chosen to be f(x) = x3 + x + 1 whose root is denoted by α = x (mod f(x)).
We list all elements of the multiplicative subgroup GF(23)* as powers of α. Obviously,
we have α7 = 1. In fact, all six non-trivial powers of α are primitive elements of the
multiplicative subgroup GF(23)*.
α0 = (001)
 = 1

α1 = (010) α2 = (100) α3 = (011)
 = α + 1

α4 = (110)
 = α 2 + α

α5 = (111)
= α 2 +α +1

α6 =(101)
 = α 2 + 1

Table C.1. Elements in the finite field GF(23) using trinomial basis {1, α, α2}
 The polynomial f(x) = x3 + x + 1 is primitive and its roots are: α, α2 and α4. The
only other primitive polynomial for GF(23) is g(x) = (x + α3)(x + α5)(x + α6) = x3 + x2 +

__
A Survey of Elliptic Curve Cryptosystems – Part I: Introductory – 10/27/2003

Page 84 of 105

NAS Technical Report - NAS-03-012 August 2003
--

1. Their roots included all six primitive elements in GF(23)*. Note that we still have the
same results if we do computations over other bases, e.g., ONB. These two polynomials
are also the only irreducible polynomials of GF(23).
 We can compute Tr(1) = 1, Tr(α3) = Tr(α + 1) = 1 and Tr(α) = α + α2 + α4 = 0 =
Tr(α2) = Tr(α4). Hence the trinomial basis {1, α, α2} is not self-dual with respect to Tr(·).
But the permutation {1, α2, α} is its dual basis.
 Consider the elliptic curve E: y2 + xy = x3 + x2 + 1 over the finite field GF(23).
Refer to Figure 1.3. We will check that #E = 14. In fact, E is a Koblitz curve over F2, and
has only two points, (0,1) and O. Using Hasse’s theorem, we can write #E(F2) = 2 + 1 – t
= 2, since t = 1. The equality: 2T2 – T + 1 = (1 – aT)(1 – bT) gives us two relations: a + b
= 1 and ab = 2. Then we have: a2+ b2 = (a + b)2 – 2ab = –3 and a3+ b3 = (a + b)[(a + b)2 –
3ab)] = – 5. Hence #E = 23 + 1 – (a3 + b3) = 14. The order is square-free; hence E is a
cyclic group. It is generated by point P = (α, α5). Note that, in this example as well as
other examples in this document, we always use the explicit point addition rules given in
the table 1.2. Check that
 7P = 2(2P + P) + P = 2[(α3, 0) + (α, α5)] + (α, α5)
 = 2(α2, α5) + (α, α5) = (α6, α6) + (α, α5) = (0,1).
Hence 14P = O. More explicitly, we have
E = 〈(α, α5)〉 = {P = (α, α5), 2P = (α3, 0), 3P = (α2, α5), 4P = (α4, 0), 5P = (α4, α3),
 6P = (α6, α6), 7P = (0,1), 8P = (α6, 0), 9P = (α4, α6), 10P = (α5, α5),
 11P = (α2, α3), 12P = (α3, α3), 13P = (α, α6), O}.
In fact, the other five generators for E are points 3P, 5P, 9P, 11P and 13P.
Example 3
 The finite field GF(23) can be represented in the optimal normal basis of type II.
It is the only normal basis of GF(23). Its irreducible polynomial is f(x) = x3 + x2 + 1
whose root is denoted by α = x (mod f(x)). This polynomial is a primitive polynomial as
we discussed in the previous example 2. In fact, all six non-trivial powers of α are
primitive elements of the multiplicative subgroup GF(23)*. They are six non-trivial 7th
roots of unity. We can list all elements of the cyclic group GF(23)* using Type II ONB
{α, α2, α4} in the table C.2.
α0 = (111) =
α +α2 +α4

α1 =(100) α2
 = (010) α3

 = (101)
= α + α4
= α2 + 1

α4
 = (001)

=α2 +α +
1

α5 = (011)
= α2 + α4

= α + 1

α6
 = (110)

= α +α2

Table C.2. Elements in the finite field GF(23) using Type II ONB {α, α2, α4}
Recall the trace formula Tr(a) = Tr(a0, a1,…, am–1) = a0 ⊕ a1 ⊕ … ⊕ am–1, we get:
 Tr(1) = Tr(α) = Tr(α2) = Tr(α4) = 1 and Tr(0) = Tr(α3) = Tr(α5) = Tr(α6) = 0.
Hence the above ONB is also self-dual. In fact, it is the only self-dual normal basis here.
Furthermore, it is a primitive normal basis since α is primitive in the subgroup GF(23)*.
 The elliptic curve E: y2 + xy = x3 + x2 + 1 over the finite field GF(23) has order 14
and its elements are generated by R = (α3, α). Check that
 7R = 2(2R + R) + R = 2[(α2, 0) + (α3, α)] + (α3, α)
 = 2(α6, α) + (α3, α) = (α4, α4) + (α3, α) = (0,1).
Hence 14R = O. More explicitly, we have

__
A Survey of Elliptic Curve Cryptosystems – Part I: Introductory – 10/27/2003

Page 85 of 105

NAS Technical Report - NAS-03-012 August 2003
--

E = 〈(α3, α)〉 = {R = (α3, α), 2R = (α2, 0), 3R = (α6, α), 4R = (α, 0), R = (α5, α2),
 6R = (α4, α4), 7R = (0, 1), 8R = (α4, 0), 9R = (α5, α4), 10R = (α, α),
 11R = (α6, α2), 12R = (α2, α2), 13R = (α3, α4), O}.
 Any of the six points, R, 3R, 5R, 9R, 11R and 13R, can be a generator for E.
 The twisted curve of E is Ẽ: y2 + xy = x3 + 1. It has order # Ẽ(GF(23)) = 2(23 + 1)
– 14 = 4. We also have # Ẽ(F2) = 2(2 + 1) – 2 = 4. Hence: Ẽ(F2) = Ẽ(GF(23)) = {O, (0,1),
(1,0), (1,1)}, and is generated by either point (1, 0) or (1, 1).
Example 4
 We consider the finite field GF(24). The trinomial f(x) = x4 + x + 1 is irreducible
over F2. Then the non-zero elements of the cyclic subgroup GF(24)* can be generated by
an element, α = x(mod f(x)), a root of function f(x) in GF(24). Obviously, α15 = 1.
α0 = (0001) α1 = (0010) α2 = (0100) α3 = (1000) α4 = (0011)

 = α + 1
α5 = (0110)
 = α2 + α

α6 = (1100)
 = α3 + α2

α7 = (1011)
 = α3 + α + 1

α8 = (0101)
 = α2 + 1

α9 = (1010)
 = α3 + α

α10 = (0111)
 = α2 + α + 1

α11 = (1110)
 = α3 + α2 + α

α12 = (1111)
= α3 + α2 + α + 1

α13 = (1101)
 = α3 + α2 + 1

α14 = (1001)
 = α3 + 1

Table C.3. Elements in the finite field GF(24) using trinomial basis {1, α, α2, α3}
 In fact, there are seven other elements, which can serve as a generator for the
multiplicative subgroup GF(24)*. They are α2, α4, α7, α8, α11, α13 and α14. The
polynomial f(x) = x4 + x + 1 is primitive and its roots are: α, α2, α4 and α8. The
only other primitive polynomial for the finite field GF(24) is
 g(x) = (x + α7) [(x + α7)2][x +][x +].

227)(α
327)(α

 = (x + α7) (x + α14) (x + α13) (x + α11) = x4 + x3 + 1.
Their roots included all eight primitive elements in the multiplicative subgroup GF(24)*

 Examples of finite field arithmetic:
 (1101) + (1001) = (0100), i.e., (x3 + x2 + 1) + (x3 + 1) = x2 mod f(x), and
 (1101)·(1001) = (1111), since (x3 + x2 + 1) · (x3 + 1) = x3 + x2 + x + 1 mod f(x).
 We still can do multiplications by representing finite field elements as powers of
element α. (1101)·(1001) = α13. α14 = α27 = α12 = (1111).
 We can compute the trace of elements. For example, Tr(α3) = α3 + α3×2 +

 = α
323223 ×× +αα 3 + α6 + α12 + α9 = 1. Then we have Tr(αi) = 1, when i = 3, 6, 7, 9, 11,

12, 13 and 14, and Tr(αi) = 0, if otherwise.
 We can verify that two self-dual bases for the finite field GF(24) are {α3, α7, α12,
α13} and {α6, α9, α11, α14}. For example, Tr(α7×2) = 1, Tr(α7α3) = Tr(α10) = 0… They are
not normal bases. The above trinomial basis is not a dual basis since we have Tr(1) = 0.
Now we define g(z) = Tr(α–1z), ∀z ∈ GF(24). Then the permutation {1, α3, α2, α} is its
dual basis with respect to the linear function g(·).
Example 5
 Let E: y2 + xy = x3 + x2 + 1 be a Koblitz curve. The group E(GF(24)) has order 16,
by using Hasse’s theorem. The Frobenius equation 2T2 – T + 1 = (1 – aT)(1 – bT) gives
us two relations: a + b = 1 and ab = 2. We can compute two power sums of a and b:
 a2 + b2 = (a + b)2 – 2ab = – 3 and a4 + b4 = (a2 + b2)2 – 2(ab)2 = 9 – 8 = 1.

__
A Survey of Elliptic Curve Cryptosystems – Part I: Introductory – 10/27/2003

Page 86 of 105

NAS Technical Report - NAS-03-012 August 2003
--

Then #E = 24 + 1 – (a4 + b4) = 16. Hence E is an anomalous binary curve over both finite
fields F2 and GF(24). Recall that the structure of the group is ⊕ , where n

1nZ
2nZ 2 | gcd

(n1, q –1). Since n1 is some divisor of 16 and (q – 1) = 15; hence n2 = 1 and E = Z16, a
cyclic subgroup. Therefore, we can observe that for any point P = (x, y) ∈ E, then point
(x2, y2) ∈ E, and of course, = (x, y) ∈ E. This helps to reduce the task of
listing all points on the elliptic curve (using ONB Type I in the previous example).

),(
4242 yx

E = 〈(α3, α)〉 = {(0,1), (1, α5), (1, α10), (α3, α), (α3, α9), (α5, 1), (α5, α10), (α9, α8),
 (α9, α12), (α10,1), (α10, α5), (α12, α4), (α12, α6), (α6, α2), (α6, α3), O}.

Again, the other seven generators for E are scalar point multiplications of the form
a·(α3,α), where a runs through all odd numbers between 3 and 15.
Example 6
 We consider the finite field GF(25) using a polynomial basis. The trinomial f(x) =
x5 + x2 + 1 is irreducible over F2. The middle term of interested trinomials here can be
either x or x2 only. The other trinomial (x5 + x + 1) is reducible. Indeed, x5 + x + 1 = (x2
+ x + 1)(x3 + x2 + 1). Then the non-zero elements of the cyclic (multiplicative)
subgroup GF(25)* can be generated by the single element, α = x (mod f(x)), a root of f(x)
in GF(25).
0 = (00000) α = (00010) α2 = (00100) α3 = (01000) α4 = (10000)
α5 = (00101)
 = α2 + 1

α6 = (01010)
 = α3 + α

α7 = (10100)
 = α4 + α 2

α8 = (01101)
 = α3 + α 2

 + 1
α9 = (11010)
 = α4 + α 3

 + α

α10 = (10001)
 = α4 + 1

α11 = (00111)
 = α2 + α + 1

α12 = (01110)
 = α3 + α2

 + α
α13 = (11100)
= α4 + α 3

 + α2
α14 = (11101) =
α4 + α 3

 + α2 +1

α15 = (11111)
= α4 + α 3 + α2

 +α + 1

α15 = (11011)
=α4 +α 3 +α + 1

α17 = (10011)
= α4 + α + 1

α18 = (00011)
 = α + 1

α19 = (00110)
= α 2 + α

α20 = (01100)
 = α3 + α2

α21 = (11000)
 = α4 + α3

α22 = (10101)
 = α4 + α2

 + 1
α23 = (01111) =
α3 +α2

 +α + 1
α24 = (11110) =
α4 + α3 + α2

 +α

α25 = (11001)
 = α4 + α3

 + 1
α26 = (10111) =
α4 +α2

 +α + 1
α27 = (01011)
 = α3 + α + 1

α28 = (10110)
 = α4 + α2

 + α
α29 = (01001)
 = α3 + 1

α30 = (10010) = α4 + α 1 = (00001) = α31
Table C.4. Elements in the finite field GF(25) using trinomial basis {1, α, α2, α3, α4}

 In fact, all 30 non-trivial powers of α are primitive elements of the multiplicative
subgroup GF(25)*. There are 6 primitive polynomials for the finite field GF(25). They
are also all the irreducible polynomials for GF(25), since 25 – 1 = 31 is Mersenne prime
number.
 (x + α) (x + α2) (x + α4) (x + α8) (x + α16) = x5 + x2 + 1,
 (x + α3) (x + (α3)2) (x + (α3)4) (x + (α3)8) (x + (α3)16) = x5 + x4 + x3 + x2 + 1,
 (x + α5) (x + (α5)2) (x + (α5)4) (x + (α5)8) (x + (α5)16) = x5 + x4 + x2 + x + 1,
 (x + α7) (x + (α7)2) (x + (α7)4) (x + (α7)8) (x + (α7)16) = x5 + x3 + x2 + x + 1,
 (x + α11) (x + (α11)2) (x + (α11)4) (x + (α11)8) (x + (α11)16) = x5 + x4 + x3 + x + 1,
 (x + α15) (x + (α15)2) (x + (α15)4) (x + (α15)8) (x + (α15)16) = x5 + x3 + 1.
Their roots included all 30 primitive elements of the multiplicative subgroup GF(25)*.
 We can compute the trace of elements. For example,

__
A Survey of Elliptic Curve Cryptosystems – Part I: Introductory – 10/27/2003

Page 87 of 105

NAS Technical Report - NAS-03-012 August 2003
--

 Tr(1) = 1, Tr(α3) = α3 + α3.2 + = 1 and
42.332.322.3 ααα ++

 Tr(α) = α + α2 + = 0 = Tr() , for positive integers n.
423222 ααα ++

n2α
Then Tr(αi) = 1, when i = 0, 3, 5, 6, 9, 10, 11, 12, 13, 17, 18, 20, 21, 22, 24 and 26,
 Tr(αi) = 0, if otherwise.
 The trinomial basis {1, α, α2, α3, α4} is not self-dual, since, e.g., Tr(α2) = 0. If we
define g(z) = Tr(α25z), ∀z ∈ GF(25). Then its permutation {α, 1, α4, α3, α2} is its dual
basis with respect to the linear function g(·).
 Consider another non-supersingular elliptic curve of the form: E: y2 + xy = x3 + α:
E = {O, (0,α16), (α,α13), (α,α24), (α2,α13), (α2,α21), (α3,α24), (α3,α28), (α5,α17), (α5,α28),
 (α6,α7), (α6,α24), (α8,α16), (α8,α28), (α10,1), (α10,α4), (α11,1), (α11,α19), (α13,α2),
 (α13,α21), (α14,α7), (α14,α29), (α15,α), (α15,α14), (α19,α9), (α19,α13), (α21,0), (α21,α21),
 (α26,α7), (α26,α18), (α28,1), (α28,α26)}.
Then #E(GF(25)) = 32 = #GF(25). The structure of the group is ⊕ , where n

1nZ
2nZ 2

|gcd(n1, 31). Since n1 is a divisor of 32, and 31 is prime; hence n2 = 1 and E = Z32, a
cyclic group. Observe that the elliptic curve order #E = 32 ≡ 0 (mod 4), since Tr(0) = 0.
 Two Koblitz curves Ea: y2 + xy = x3 + ax2 + 1, where a = 0 or 1, over finite field
GF(25) have the orders #E1 = 22 and #E0 = 44. They are just twisted elliptic curves.
 Consider a non-supersingular elliptic curve E2: y2 + xy = x3 + α2x2 + 1 over the
finite field GF(25) with the trinomial basis above.
 E2 = {O, (0,1), (1,α6), (1,α27), (α,α27), (α,α29), (α2,α15), (α2,α16), (α4,α3), (α4,α21),
 (α5,α14), (α5,α21), (α8,α16), (α8,α28), (α9,α7), (α9,α12), (α10,α21), (α10,α29),
 (α11,α20), (α11,α27), (α13,α17), (α13,α23), (α15,1), (α15,α24), (α16,1), (α16,α9),
 (α18,α10), (α18,α30), (α20,α24), (α20,α30), (α21,α2), (α21,α13), (α22,α2), (α22,α10),
 (α23,α4), (α23,α15), (α26,α24), (α26,α29), (α27,α25), (α27,α30), (α29,α2), (α29,α8),
 (α30,α10), (α30,α18)}.
Its order is 44. The structure of the group is ⊕ , where n

1nZ
2nZ 2|gcd(n1, 31). Since n1 is a

divisor of 44, and 31 is prime; hence n2 = 1 and E2 = Z44, a cyclic group.
Example 7
 We consider the finite field GF(25) using a normal basis. The reduction
polynomial is f(x) = x5 + x4+ x2 + x + 1. By the way, it is a primitive polynomial. The
optimal normal basis of Type II consists of five polynomials: x, x2, x4, x8 and x16 (mod
f(x)). A generator for non-zero elements of multiplicative subgroup GF(25)* is chosen to
be β = x (mod f(x)). Indeed, since GF(25)* is a cyclic group of prime order (31), any
element other than 1 can be a generator for the whole group. We can write them
explicitly in the table C.5., where

(a0, a1, a2, a3, a4) = a0x + a1x2 + a2x4 + a3x8 + a4x16 (mod f(x)).
For instance, 1 = (11111) = x + x2 + x4 + x8 + x16. (All polynomials are of modulo f(x).)
We can compute the following intermediate terms and the next four repeated squares of
each term (by simple right 1-cylic shifts). They are:
 x5 ≡ x4 + x2 + x + 1 = x8 + x16 = (00011), and x10 = (10001), x20 = (11000)
 x7 ≡ x2 + 1 = x + x4 + x8 + x16 = (10111),
 x3 ≡ x + x8 = (10010), since x8 ≡ x3 + x,
 x11 ≡ x6 + x4 = (x + x8)2 + x4 = x2 + x4 + x16 = (01101) and

__
A Survey of Elliptic Curve Cryptosystems – Part I: Introductory – 10/27/2003

Page 88 of 105

NAS Technical Report - NAS-03-012 August 2003
--

 x15 ≡ (x + x8)4 x3 = (x + x4) x3 = x + x8 + x16 = (10011).
0 = (00000) β = (10000) β2 = (01000) β3 = (10010) β4 = (00100)
β5 = (00011) β6 = (01001) β7 = (10111) β8 = (00010) β9 = (01100)
β10 = (10001) β11 = (01101) β12 = (10100) β13 = (01011) β14 = (11011)
β15 = (10011) β16 = (00001) β17 = (00101) β18 = (00110) β19 = (01111)
β20 = (11000) β21 = (11010) β22 = (10110) β23 = (00111) β24 = (01010)
β25 = (11110) β26 = (10101) β27 = (01110) β28 = (11101) β29 = (11100)
β30 = (11001) β31= 1= (11111)
Table C.5. Elements in the finite field GF(25) using Type II ONB, {β, β2, β4, β8, β16}

 Then the field multiplications will be very simple on powers of β. Recall also
that, in normal basis representation, the trace of an element can be computed easily by
the formula: Tr(a) = Tr(a0, a1,…, am–1) = a0 ⊕ a1 ⊕ … ⊕ am–1. Then we have: Tr(βi) = 1,
when i = 0, 1, 2, 4, 8, 11, 13, 15, 16, 21, 22, 23, 26, 27, 29 and 30, while Tr(βi) = 0, if
otherwise. The ONB, therefore, is a self-dual basis, since the trace of all elements of the
basis is 1. It is also a primitive normal basis.
 We can use the algorithm described in chapter 4 to compute the product terms λi,j.
First, we create 4 matrices:

A = , S = , A

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

10111
01010
00001
00100
01000

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

10110
00101
11101
00010
00100 –1 = , and matrix T = S.A

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

11111
00001
00010
01001
00100 –1 = .

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

10100
00110
11000
01001
00010

 There are nine terms λi,j which are all 1: (By λi,j = Tj–i,–i, where indices are of
modulo m = 5) λ0,1 = T1,0, λ1,0 = T4,4, λ1,3 = T2,4, λ2,3 = T1,3, λ2,4 = T2,3, λ3,1 = T3,2, λ3,2 =
T4,2, λ4,2 = T3,1 and λ4,4 = T0,1. Then (a0, a1, a2, a3, a4)·(b0, b1, b2, b3, b4) = (c0, c1, c2, c3, c4)
where c0 = a0b1 ⊕ a1(b0 ⊕ b3) ⊕ a2 (b3 ⊕ b4) ⊕ a3 (b1 ⊕ b2) ⊕ a4 (b2 ⊕ b4)
 c1 = a1b2 ⊕ a2 (b1 ⊕ b4) ⊕ a3 (b4 ⊕ b0) ⊕ a4 (b2 ⊕ b3) ⊕ a0 (b3 ⊕ b0)
 c2 = a2b3 ⊕ a3 (b2 ⊕ b0) ⊕ a4 (b0 ⊕ b1) ⊕ a0 (b3 ⊕ b4) ⊕ a1 (b4 ⊕ b1)
 c3 = a3b4 ⊕ a4 (b3 ⊕ b1) ⊕ a0 (b1 ⊕ b2) ⊕ a1 (b4 ⊕ b0) ⊕ a2 (b0 ⊕ b2)
 c4 = a4b0 ⊕ a0 (b4 ⊕ b2) ⊕ a1 (b2 ⊕ b3) ⊕ a2 (b0 ⊕ b1) ⊕ a3 (b1 ⊕ b3)
or, generally, for 0 ≤ k ≤ 4,

ck = akb1+k ⊕ a1+k(bk ⊕ b3+k) ⊕ a2+k (b3+k ⊕ b4+k) ⊕ a3+k (b1+k ⊕ b2+k) ⊕ a4+k (b2+k ⊕ b4+k),
where indices are of modulo m = 5.
Example: (10011)·(10101) = α15α26 = α41 = α10 = (10001) or by another way
 (10011)· (10101) = (c0, c1, c2, c3, c4) = (10001) because:
 c0 = (1)(0) ⊕ (0)(1⊕0) ⊕ (0)(0⊕1) ⊕ (1)(0⊕1) ⊕ (1)(1⊕1) = 1
 c1 = (0)(1) ⊕ (0)(0⊕1) ⊕ (1)(1⊕1) ⊕ (1)(1⊕0) ⊕ (1)(0⊕1) = 0
 c2 = (0)(0) ⊕ (1)(1⊕1) ⊕ (1)(1⊕0) ⊕ (1)(0⊕1) ⊕ (0)(1⊕0) = 0
 c3 = (1)(1) ⊕ (1)(0⊕0) ⊕ (1)(0⊕1) ⊕ (0)(1⊕1) ⊕ (0)(1⊕1) = 0
 c4 = (1)(1) ⊕ (1)(1⊕1) ⊕ (0)(1⊕0) ⊕ (0)(1⊕0) ⊕ (1)(0⊕0) = 1.
 Consider a non-supersingular elliptic curve E: y2 + xy = x3 + βx2 + β over the
finite field GF(25) with ONB Type II above.
 E2

 = {O, (0, β16), (β2, β), (β2, β20), (β3, β20), (β3, β24), (β4, β16), (β4, β17), (β5, β4),
 (β5, β23), (β11, β13), (β11, β18), (β12, β16), (β12, β26), (β13, β11), (β13, β18), (β14, β 7),

__
A Survey of Elliptic Curve Cryptosystems – Part I: Introductory – 10/27/2003

Page 89 of 105

NAS Technical Report - NAS-03-012 August 2003
--

 (β14, β9), (β17, β13), (β17, β27), (β18, β6), (β18, β19), (β20, β13), (β20, β15), (β22, β),
 (β22, β18), (β23, β21), (β23, β28), (β24, β3), (β24, β20), (β25, β12), (β25, β24), (β27, β),
 (β27, β25), (β29, β22), (β29, β24), (β30, β2), (β30, β10)}.
Its order is 38. The structure of the group is ⊕ , where n

1nZ
2nZ 2 | gcd(n1, 31). Since n1 is

a divisor of 38, and 31 is prime; hence n2 = 1 and E = Z38, a cyclic group.

References

[AKK96] Tolga Acar, Burton S. Kaliski, Jr. & Çetin K. Koç, Analyzing and comparing

Montgomery multiplication algorithms, pp. 26-33, IEEE Micro, 16, 3, June 1996.
[AK98] Tolga Acar & Çetin K. Koç, Montgomery multiplication in GF(2k), pp. 57-69,

Designs, Codes and Cryptography, 14, 1998.
[ARS78] Leonard M. Adleman, Ronald L. Rivest & Adi Shamir, A method for obtaining

digital signatures and public-key cryptosystems, pp. 120-126, Communications of
the ACM, 21, 2, February 1978.

[A91] V. Afanasyev, On the complexity of finite field arithmetic, pp. 9-12, the 5th Joint
Soviet-Swedish International Workshop on Information Theory, Moscow, USSR,
January 1991.

[ABMV93] Gordon B. Agnew, Thomas Beth, Ron C. Mullin & Scott A. Vanstone,
Arithmetic operation in GF(2m), pp. 3-13, Journal of Cryptology, 6, 1, 1993.

[AMOV91] Gordon B. Agnew, Ron C. Mullin, I. Onyszchuk & Scott A. Vanstone, An
implementation for a fast public-key cryptosystem, pp. 63-79, Journal of
Cryptology, 3, 2, 1991.

[AMV90] Gordon B. Agnew, Ron C. Mullin & Scott A. Vanstone, Improved digital
scheme based on discrete exponentiation, p. 1024, Electronics Letters, 26, 14,
July 1990.

[AMV93] Gordon B. Agnew, Ron C. Mullin & Scott A. Vanstone, An implementation
of elliptic curve cryptosystems over , pp. 804-813, IEEE Journal on Selected
Areas in Communications, 11, 5, June 1993.

1552
F

[AO01] Manfred Aigner & Elisabeth Oswald, Randomized addition-subtraction chains as
a countermeasure against power attacks, pp. 39-50, Lecture Notes in Computer
Science (LNCS) 2162, Workshop on Cryptographic Hardware and Embedded
Systems – CHES 2001, Paris, France, Çetin K. Koç, David Naccache & Christof
Paar (eds), Springer, 2001.

[AHKKM] Kazumaro Aoki, Fumitaka Hoshino, Kunio Kobayashi, Tetsutaro Kobayashi
& Hikaru Morita, Usage of optimal extension fields for elliptic curve
cryptosystems, Nippon Telegraph and Telephone (NTT) Laboratories.

[AS98] Kiyomichi Araki & Takakazu Satoh, Fermat quotients and the polynomial time
discrete log algorithm for anomalous elliptic curves, pp. 81-92, Commentarii
Mathematici Universitatis Sancti Pauli, 47, 1998. Eratta: pp. 211-213, ibid, 48,
1999.

[ABV89] David W. Ash, Ian F. Blake & Scott A. Vanstone, Low complexity normal
bases, pp. 191-210, Discrete Applied Mathematics, 25, 1989.

__
A Survey of Elliptic Curve Cryptosystems – Part I: Introductory – 10/27/2003

Page 90 of 105

NAS Technical Report - NAS-03-012 August 2003
--

[B01] Harald Baier, Elliptic curve of prime order over optimal extenstion fields for use
in cryptography, 2001.

[BB01] Harald Baier & Johannes Buchmann, Efficient construction of cryptographically
strong elliptic curves, pp. 191-202, LNCS 1977, Indocrypt 2000, Springer-Verlag,
2000; Technical Report TI-02/01, Technische Universität Darmstadt, 2001.

[BP98] Daniel V. Bailey & Christof Paar, Optimal extension fields for fast arithmetic in
public-key algorithms, pp. 472-485, LNCS 1462, Advances in Cryptology –
Crypto ‘98, Santa Barbara, California, Hugo Krawczyk (ed.), Springer-Verlag,
1998.

[BP99] Daniel V. Bailey & Christof Paar, Inversion in optimal extension fields,
Conference on the Mathematics of Public Key Cryptography, Andrew Odlyzko,
G. Walsh & H. Williams (eds.), Fields Institute for Research in the Mathematical
Sciences, Toronto, Canada, June 1999.

[BP00] Daniel V. Bailey & Christof Paar, Efficient arithmetic in finite field extensions
with application in elliptic curve cryptography, Journal of Cryptology, 2001.

[BPW00] Daniel V. Bailey, Christof Paar & Adam D. Woodbury, Elliptic curve
cryptography on smart cards without coprocessors, the 4th Smart Card Research
and Advanced Applications (IFIP CARDIS 2000) Conference, Bristol, United
Kingdom, September 2000.

[BK98] R. Balasubramanian & Neal Koblitz, The improbability that an elliptic curve has
sub-exponential discrete log problem under the Menezes-Okamoto-Vanstone
algorithm, pp. 141-145, Journal of Cryptology, 11, 2, Spring 1998.

[Be01] Antonio Bellezza, Countermeasures against side-channel attacks for elliptic curve
cryptosystems, November 2001.

[BFT96] Mohammed Benaissa, Sebastian T. J. Fenn & David Taylor, GF(2m)
multiplication and division over the dual basis, pp. 319-327, IEEE Transactions
on Computers, 45, 3, March 1996.

[BFT96a] Mohammed Benaissa, Sebastian T. J. Fenn & David Taylor, Finite field
inversion over the dual base, pp. 134-136, IEEE Transactions on VLSI Systems,
4, March 1996.

[BS91] Thomas Beth & F. Schaefer, Non-supersingular elliptic curves for public key
cryptosystems, pp. 252-266, LNCS 547, Advances in Cryptology – Eurocrypt ‘91,
Brighton, United Kingdom, Donald W. Davies (ed.), Springer-Verlag, 1991.

[BMM00] Ingrid Biehl, Bernd Meyer & Volker Müller, Differential fault attacks on
elliptic curve cryptosystems, pp. 131-146, LNCS 1880, Advances in Cryptology –
Crypto 2000, Santa Barbara, California, Mihir Bellare (ed.), Springer-Verlag,
2000.

[BB79] G. R. Blakley & I. Borosh, Rivest-Shamir-Adleman public key cryptosystems do
not always conceal messages, pp. 169-178, Computers and Mathematics with
Applications, 5, 1979.

[B96] Daniel Bleichenbacher, Generating ElGamal signatures without knowing the
secret key, LNCS 1070, Advances in Cryptology – Eurocrypt ‘96, Saragossa,
Spain, Ueli M. Maurer (ed.), Springer-Verlag, 1996.

[B97] Daniel Bleichenbacher, On the security of the KMOV public key cryptosystems,
pp. 235-248, LNCS 1294, Advances in Cryptology – Crypto ‘97, Santa Barbara,
California, Burt S. Kaliski, Jr. (ed.), Springer, 1997.

__
A Survey of Elliptic Curve Cryptosystems – Part I: Introductory – 10/27/2003

Page 91 of 105

NAS Technical Report - NAS-03-012 August 2003
--

[BJQ97] Daniel Bleichenbacher, Marc Joye, and Jean-Jacques Quisquater, A new and
optimal chosen-message attack on RSA-type cryptosystems, pp. 302-313,
International Conference on Information and Communications Security – ICICS
‘97, LNCS 1334, Yongfei Han, Tatsuaki Okamoto & S. Qing (eds.), Springer-
Verlag, 1997.

[B98] Dan Boneh, The decision Diffie-Hellman problem, pp. 48-63, LNCS 1423,
Algorithmic Number Theory, the 3rd International Symposium, ANTS-III,
Portland, Oregon, Joe P. Buhler (ed.), June 1998.

[BL96] Dan Boneh & Richard J. Lipton, Searching for elements in black box fields and
applications, pp. 283-297, LNCS 1109, Advances in Cryptology – Crypto ‘96,
Santa Barbara, California, Neal Koblitz (ed.), Springer-Verlag, 1996.

[BS01] Dan Boneh & Igor E. Shparlinski, On the unpredictability of bits of the elliptic
curve Diffie-Hellman scheme, p. 201 ff, LNCS 2139, Advances in Cryptology –
Crypto 2001, Santa Barbara, California, Joe Kilian (ed.), Springer-Verlag, 2001.

[BV96] Dan Boneh & Ramarathnam Venkatesan, Hardness of computing the most
significant bits of secret keys in Diffie-Hellman and related schemes, pp. 129-
142, LNCS 1109, Advances in Cryptology – Crypto ‘96, Santa Barbara,
California, Neal Koblitz (ed.), Springer-Verlag, 1996.

[BC90] Jurjen Bos & Matthijs Coster, Addition chain heuristics, pp. 400-407, LNCS 435,
Advances in Cryptology – Crypto ‘89, Santa Barbara, California, Gilles Brassard
(ed.), Springer-Verlag, 1990.

[BGVVW96] Antoon Bosselaers, P. de Gersem, Servaas Vandenberghe, Joos
Vandewalle & Erik de Win, A fast software implementation for arithmetic
operations in GF(2n), pp. 65-76, LNCS 1163, Advances in Cryptology –
Asiacrypt ‘96, Kyongju, Korea, Kwangjo Kim & Tsutomu Matsumoto (eds.),
Springer-Verlag, 1996.

[BS95] Colin Boyd & Andrew Smith, An elliptic curve analogue of McCurley’s key
agreement scheme, the 5th IMA conference on Cryptography and Coding,
Springer-Verlag, pp. 150-157, 1995.

[B87] David M. Bressoud, Factorization and primality testing, Undergraduate Texts in
Mathematics, Springer, 1987.

[BGMW93] Ernest F. Brickell, Daniel M. Gordon, Kevin S. McCurley & David B.
Wilson, Fast exponentiation with precomputation, pp. 200-207, LNCS 658,
Advances in Cryptology – Eurocrypt ‘92, Balatonfüred, Hungary, Rainer A.
Rueppel (ed.), Springer-Verlag, 1993.

[BD85] Ernest F. Brickell & J. DeLaurentis, An attack on a signature scheme proposed
by Okamoto and Shiraishi, pp. 28-32, LNCS 218, Advances in Cryptology –
Crypto ‘85, Santa Barbara, California, Hugh C. Williams (ed.), Springer-Verlag,
1986.

[B00] Daniel R. L. Brown, The exact security of ECDSA, preprint, 2000.
[BHHM01] Micheal Brown, Darrel Hankerson, Julio López Hernandez & Alfred

Menezes, Software implementation of the NIST elliptic curves over prime fields,
pp. 250-265, LNCS 2020, Topics in Cryptology – Cryptographer’s Track – RSA
Conference 2001, David Naccache (ed.), Springer-Verlag, 2001.

__
A Survey of Elliptic Curve Cryptosystems – Part I: Introductory – 10/27/2003

Page 92 of 105

NAS Technical Report - NAS-03-012 August 2003
--

[BM91] Johannes Buchmann & Volker Müller, Computing the number of points of
elliptic curves over finite fields, the 1991 International Symposium on Symbolic
& Algebraic Computations, Bonn, 1991.

[BMS95] Johannes Buchmann, Volker Müller & Victor Shoup, Distributed computation
of the number of points on an elliptic curve over a finite prime field, Technical
Report 03/95 SFB 124-TP D5, University of Saarland, 1995.

[C52] L. Carlitz, Primitive roots in finite field, pp. 373-382, Transactions of the
American Mathematical Society, 73, 1952.

[C52a] L. Carlitz, Some problems involving primitive roots in a finite field, pp. 314-318
and p. 618, Proceedings of the National Academy Science of the U.S.A., 38,
1952.

[CGH01] D. Catalano, Rosario Gennaro & N. Howgrave-Graham, The bit security of
Paillier’s encryption scheme and its applications, pp. 229-243, LNCS 2045,
Advances in Cryptology – Eurocrypt 2001, Innsbuck, Austria, Birgit Pfitzmann
(ed.), Springer-Verlag, 2001.

[CTT94] Jinhui Chao, K. Tanada & Shigeo Tsujii, Design of elliptic curves with
controllable lower boundary of extension degree for reduction attacks, pp. 50-55,
LNCS 839, Advances in Cryptology – Crypto ‘94, Santa Barbara, California, Yvo
G. Desmedt (ed.), Springer-Verlag, 1994.

[CL97] S. K. Chua & S. Ling, A Rabin-type scheme on y2 ≡ x3 + bx2 (mod n), LNCS
1276, the 3rd Annual International Computing and Combinatorics Conference
(COCOON ‘97), T. Jiang & D. T. Lee (eds.), Springer-Verlag, 1997.

[CMO97] Henri Cohen, Atsuko Miyaji & Takatoshi Ono, Efficient elliptic curve
exponentiation, pp. 282-290, LNCS 1334, International Conference on
Information and Communications Security – ICICS ‘97, Yongfei Han, Tatsuaki
Okamoto & S. Qing (eds.), Springer-Verlag, 1997.

[CMO98] Henri Cohen, Atsuko Mijyji & Takatoshi Ono, Efficient elliptic curve
exponentiation using mixed coordinates, pp. 51-65, LNCS 1514, Advances in
Cryptology – Asiacrypt ‘98, Beijing, China, Kazuo Ohta & Dingyi Pei (eds.),
Springer-Verlag, 1999.

[COS86] Don Coppersmith, Andrew M. Odlyzko & Richard Schroeppel, Discrete
logarithms in GF(p), pp. 1-15, Algorithmica, 1, 1986.

[C99] Jean-Sébastien Coron, Resistance against differential power analysis attacks for
elliptic curve cryptosystems, pp. 292-302, LNCS 1717, Workshop on
Cryptographic Hardware and Embedded Systems – CHES ‘99, Çetin K. Koç &
Christof Paar (eds), Springer, 1999.

[C94] Jean-Marc Couveignes, Quelques calculs en théorie des nombres, Thèse,
Université de Bordeaux I, July 1994.

[C96] Jean-Marc Couveignes, Computing l-isogenies with the p-torsion, pp. 59-66,
LNCS 1122, Algorithmic Number Theory, the 2nd International Symposium,
ANTS-II, Talence, France, May 1996, Henri Cohen (ed.), Springer-Verlag, 1996.

[CDM96] Jean-Marc Couveignes, L. Dewaghe & François Morain, Isogeny cycles and
the Schoof-Elkies-Atkin algorithm, Research report LIX/RR/96/03, École
Polytechnique, Laboratoire D’informatique, 1996.

__
A Survey of Elliptic Curve Cryptosystems – Part I: Introductory – 10/27/2003

Page 93 of 105

NAS Technical Report - NAS-03-012 August 2003
--

[CM94] Jean-Marc Couveignes & François Morain, Schoof’s algorithm and isogeny
cycles, pp. 43-58, LNCS 877, Algorithmic Number Theory, the 1st International
Symposium, ANTS-I, Ithaca, Springer-Verlag, 1994.

[C92] Richard E. Crandall, U.S. Patent No. 5,159,632, Method and apparatus for public
key exchange in a cryptographic system, 27 October 1992.

[DJ01] Ivan B. Damgård & M. J. Jurik, A generalisation, a simplification and some
applications of Paillier’s probabilistic public-key system, pp. 365-382, LNCS
1992, Public Key Crypography 2001, Korea, Kwangjo Kim (ed.), Springer-
Verlag, 2001.

[D69] H. Davenport, Bases for finite fields, Journal of London Mathematical Society,
43, 1968, pp.21-39 and 44, p. 378, 1969.

[D94] N. Demytko, A new elliptic curve based analogue of RSA, pp. 40-49, LNCS 765,
Advances in Cryptology – Eurocrypt ‘93, Lofthus, Norway, Tor Helleseth (ed.),
Springer-Verlag, 1994.

[DHRT88] L. J. Deutsch, I. S. Hsu, Irving S. Reed & T. K. Truong, A comparison of
VLSI architecture of finite field multipliers using dual, normal or standard bases,
pp. 735-739, IEEE Transactions on Computers, 37, 6, June 1988.

[DORSTW85] L. J. Deutsch, James K. Omura, Irving S. Reed, H. M. Shao, T. K. Truong
& Charles C. Wang, VLSI architectures for computing multiplications and
inverses in GF(2m), pp. 709-716, IEEE Transactions on Computing, C-34, 8,
1985.

[D98] L. Dewaghe, Remarks on the Schoof-Elkies-Atkin algorithm, pp. 1247-1252,
Mathematics of Computation, 67, 223, July 1998.

[DS92] Andreas Dietel & Jorg Sauerbrey, Resource requirements for the application of
addition chains in modulo exponentiation, pp. 174-182, LNCS 658, Advances in
Cryptology – Eurocrypt ‘92, Balatonfüred, Hungary, Rainer A. Rueppel (ed.),
Springer-Verlag, 1993.

[DH76] Whitfield Diffie & Martin E. Hellman, New directions in cryptography, pp. 644-
654, IEEE Transactions in Information Theory, 22, 1976.

[DLS81] Peter Downey, Benton Leong & Ravi Sethi, Computing sequences with
addition chains, pp. 638-696, SIAM Journal of Computing 3, 1981.

[EK94] Ömer Eğecioğlu & Çetin K. Koç, Exponentiation using canonical recoding, pp.
407-417, Theoretical Computer Science 129, 1994.

[E85] Taher ElGamal, A public key cryptosystem and a signature scheme based on
discrete logarithms, pp. 469-472, IEEE Transactions in Information Theory, IT-
31, 1985.

[E98] Noam D. Elkies, Elliptic and modular curves over finite fields and related
computational issues, pp. 21-76, Computational Perspectives on Number Theory,
D. A. Buell & J. T. Teitelbaum (eds.), AMS/International Press, 1998.

[FaP97] John L. Fan & Christof Paar, On efficient inversion in tower fields of
charatersitics two, 1997 IEEE International Symposium on Information Theory
(ISIT), Ulm, Germany, 1997.

[FP97] R. Flassenberg & Sachar Paulus, Sieving in function fields, the ECDLP workshop
‘97, University of Waterloo, Ontario, Canada, 1997.

__
A Survey of Elliptic Curve Cryptosystems – Part I: Introductory – 10/27/2003

Page 94 of 105

NAS Technical Report - NAS-03-012 August 2003
--

[FPR98] Peter Fleischmann, Christof Paar & P. Roelse, Efficient multiplier architectures
for Galois fields GF(24n), pp. 162-170, IEEE Transactions on Computers, 47, 2,
February 1998.

[FPS99] Peter Fleischmann, Christof Paar & Pedro Soria-Rodriguez, Fast arithmetic for
public-key algorithms in Galois fields with composite exponents, pp. 1025-1034,
IEEE Transactions on Computers, 48, 10, October 1999.

[FGH00] Mireille Fouquet, Pierrick Gaudry & Robert Harley, An extension of Satoh’s
algorithm and its implementation, 2000.

[FGH01] Mireille Fouquet, Pierrick Gaudry & Robert Harley, Finding secure curves with
the Satoh-FGH algorithm and an early-abort strategy, pp. 14 ff, LNCS 2045,
Advances in Cryptology – Eurocrypt 2001, Innsbuck, Austria, Birgit Pfitzmann
(ed.), Springer-Verlag, 2001.

[FFO93] Atsushi Fujioka, Eiichiro Fujisaki & Tatsuaki Okamoto, An efficient digital
scheme based on an elliptic curve over the ring ZN, pp. 54-65, LNCS 740,
Advances in Cryptology – Crypto ‘92, Santa Barbara, California, Ernest F.
Brickell (ed.), Springer-Verlag, 1993.

[G99] Steven D. Galbraith, Constructing isogenies between elliptic curves over finite
fields, pp. 118-138, LMS Journal of Computation and Mathematics, 2, 1999.

[GLV00] Robert Gallant, Robert Lambert & Scott A. Vanstone, Improving the
parallelized Pollard lambda search on binary anomalous curves, pp. 1699-1705,
Mathematics of Computation, 69, 232, 2000.

[GLV01] Robert Gallant, Robert Lambert & Scott A. Vanstone, Faster point
multiplication on elliptic curves with efficient endomorphisms,), p. 190 ff, LNCS
2139, Advances in Cryptology – Crypto 2001, Santa Barbara, California, Joe
Kilian (ed.), Springer-Verlag, 2001.

[GL92] Shuhong Gao & Hendrik W. Lenstra, Jr., Optimal normal bases, pp. 315-323,
Designs, Codes and Cryptography, 2, 1992.

[GG90] W. Geiselmann & Dieter Gollmann, VLSI design for exponentiation in GF(2n),
pp. 398-405, LNCS 453, Advances in Cryptology – Auscrypt ‘90, Sydney,
Australia, Josef Pieprzyk & Jennifer Seberry (eds.), Springer-Verlag, 1990.

[GTV88] M. Girault, P. Toffin & B. Vallée, How to break Okamoto’s cryptosystem by
reducing lattice bases, pp. 281-291, LNCS 330, Advances in Cryptology –
Eurocrypt ‘88, Davos, Switzerland, C. Günther (ed.), Springer-Verlag, 1988.

[GHM96] Dieter Gollmann, Y. Han & Chris J. Mitchell, Redundant integer
representations and fast exponentiation, pp. 135-151, Designs, Codes and
Cryptography, 7, 1996.

[G93] Daniel M. Gordon, Discrete logarithm in GF(p) using the number field sieve, pp.
124-138, SIAM Journal on Discrete Mathematics, 6, 1993.

[G98] Daniel M. Gordon, A survey of fast exponentiation methods, pp. 129-146, Journal
of Algorithms, 27, 1998.

[G02] Steven D. Galbraith, Elliptic curve Paillier schemes, pp.129-138, Journal of
Cryptography, 15, 2, Spring 2002.

[GT74] D. H. Green & I. S. Taylor, Irreducible polynomials over composite Galois fields
and their applications in coding techniques, pp. 935-939, Proceedings of IEE,
121, September 1974.

__
A Survey of Elliptic Curve Cryptosystems – Part I: Introductory – 10/27/2003

Page 95 of 105

NAS Technical Report - NAS-03-012 August 2003
--

[G97] Jorge Guajardo, Efficient algorithms for elliptic curve cryptosystems, Master
Thesis, ECE Department, Worcester Polytechnic Institute, Worcester, Christof
Paar (advisor), May 1997.

[GP97] Jorge Guajardo & Christof Paar, Efficient algorithms for elliptic curve
cryptosystems, pp. 342-356, LNCS 1294, Advances in Cryptology – Crypto ‘97,
Santa Barbara, California, Burt S. Kaliski, Jr. (ed.), Springer, 1997.

[GP98] Jorge Guajardo & Christof Paar, Fast inversion in composite Galois fields
GF((2n)m), 1998 IEEE International Symposium on Information Theory (ISIT),
MIT, Cambridge, Massachussetts, 1998.

[GP01] Jorge Guajardo & Christof Paar, Itoh-Tsujii inversion in standard basis and its
application in cryptography and codes, to appear in Designs, Codes and
Cryptography, 2001.

[HHM00] Darrel Hankerson, Julio L. Hernandez & Alfred Menezes, Software
implementation of elliptic curve cryptography over binary fields, LNCS 1965,
Workshop on Cryptographic Hardware and Embedded Systems – CHES 2000,
Çetin K. Koç & Christof Paar (eds.), Springer-Verlag, 2000.

[HMV93] Greg Harper, Alfred J. Menezes & Scott A. Vanstone, Public-key
cryptosystems with very small key lengths, pp. 163-173, LNCS 658, Advances in
Cryptology – Eurocrypt ‘92, Balatonfüred, Hungary, Rainer A. Rueppel (ed.),
Springer-Verlag, 1993.

[HW98] M. Anwarul Hasan & Huapeng Wu, Low complexity bit-parallel multipliers for
a class of finite fields, pp. 883-887, IEEE Transactions on Computers, 47, 8,
August 1998.

[H85] Johan Håstad, On using RSA with low exponent in a public key network, pp. 403-
408, LNCS 218, Advances in Cryptology – Crypto ‘85, Santa Barbara, California,
Hugh C. Williams (ed.), Springer-Verlag, 1986.

[HK94] J. He & T. Kiesier, Enhancing the security of ElGamal’s signature scheme, pp.
249-252, IEE Proceedings of Computing and Digital Technique, 141, 4, July
1994.

[HP78] Martin E. Hellman & Stephen C. Pohlig, An improved algorithm for computing
logarithms over GF(p) and its cryptographic significance, pp. 106-110, IEEE
Transactions on Information Theory, IT-24, January 1978.

[HMP94] P. Horster, M. Michels & H. Petersen, Meta-ElGamal signature schemes, pp.
96-107, the 2nd ACM Conference on Computer and Communications Security,
ACM Press, New York, November 1994.

[HMP94a] P. Horster, M. Michels & H. Petersen, Generalized ElGamal signatures for
one message block, Technical Report TR-94-3, University of Technology
Chemnitz-Zwickau, May 1994.

[HKKM99] Fumitaka Hoshino, Kunio Kobayashi, Tetsutaro Kobayashi & Hikaru
Morita, Fast elliptic curve algorithm combining Frobenius map and table
reference to adapt to higher characteristic, pp. 176-189, LNCS 1592, Advances in
Cryptology – Eurocrypt ‘99, Prague, Czech Republic, Jacques Stern (ed.),
Springer-Verlag, 1999.

[IMT86] Hideki Imai, Tsutomu Matsumoto & Y. Takashima, On seeking smart public-
key distribution systems, pp. 99-106, Transactions of the IECE of Japan, E69,
1986.

__
A Survey of Elliptic Curve Cryptosystems – Part I: Introductory – 10/27/2003

Page 96 of 105

NAS Technical Report - NAS-03-012 August 2003
--

[IZ98] Hideki Imai & Yuliang Zheng, Efficient signcryption schemes on elliptic curves,
IFIP/SEC ’98, the 14th Interantional Information Security conference, Vienna &
Budapest, August 1998.

[IM85] Kyoki Imamura & M. Morii, Two classes of finite fields which have no self-
complementary normal bases, IEEE International Symposium of Information
Theory, England, 1985.

[IR90] Kenneth Ireland & Michael Rosen, A classical introduction to modern number
theory, Graduate Texts in Mathematics, 84, Springer-Verlag, 1990.

[I91] Toshiya Itoh, Characterization for a family of infinitely many irreducible equally
spaced polynomials, pp. 273-277, Information Processing Letters, 37, 5, 1991.

[ITT86] Toshiya Itoh, O. Teechai & Shigeo Tsujii, A fast algorithm for computing
multiplicative inverses in GF(2t), pp. 31-36, Journal of the Society for Electronic
Communication, Japan, 44, 1986.

[IT88] Toshiya Itoh & Shigeo Tsujii, A fast algorithm for computing multiplicative
inverses in GF(2m) using normal bases, pp. 171-177, Information and
Computation Journal, 78, 1988.

[JM89] J. Jedwab & Chris J. Mitchell, Minimum weight modified signed-digit
representations and fast exponentiation, pp. 1171-1172, Electronics Letters, 25,
17, August 1989.

[JL] Antoine Joux & Reynald Lercier, “Chinese & match”, an alternative to Atkin’s
“Match and sort” method used in the SEA algorithm, Mathematics of
Computation, to appear.

[JQ95] Marc Joye & Jean-Jacques Quisquater, Note on the preliminary version of the
Meyer-Müller’s cryptosystem, Crypto Group Technical Report CG-1996/2,
Université Catholique de Louvain, 1995.

[JQ95a] Marc Joye & Jean-Jacques Quisquater, On the cryptosystems of Chua and Ling,
Crypto Group Technical Report CG-1997/4, Université Catholique de Louvain,
1995.

[JQ96] Marc Joye & Jean-Jacques Quisquater, Reducing elliptic curve cryptosystem of
Meyer-Müller, Crypto Group Technical Report CG-1996/4, Université
Catholique de Louvain, 1996. Other title: Reducing elliptic curve cryptosystem of
Meyer-Müller to the cryptosystem of Rabin-Williams.

[JQT97] Marc Joye, Jean-Jacques Quisquater & Tsuyoshi Takagi, How to choose secret
parameters for RSA-type cryptosystems over elliptic curves, Technical Report TI-
35/97, Technische Universität Darmstadt, November 1997.

[JT01] Marc Joye & Christophe Tymen, Protections against differential analysis for
elliptic curve cryptography – an algebraic approach, pp. 377-390, LNCS 2162,
Workshop on Cryptographic Hardware and Embedded Systems – CHES 2001,
Paris, France, Çetin K. Koç, David Naccache & Christof Paar (eds), Springer,
2001.

[JMV90] Dieter Jungnickel, Alfred J. Menezes & Scott A. Vanstone, On the number of
self-dual bases of GF(qm) over GF(q), pp. 23-29, Proceedings of the American
Mathematical Society, 109, 1, May 1990.

[K91] Burt S. Kaliski, Jr., One-way permutations on elliptic curves, pp. 187-199,
Journal of Cryptology, 3, 3, 1991.

__
A Survey of Elliptic Curve Cryptosystems – Part I: Introductory – 10/27/2003

Page 97 of 105

NAS Technical Report - NAS-03-012 August 2003
--

[K97] Burt S. Kaliski, Jr., A chosen message attack on Demytko’s elliptic curve
cryptosystems, pp. 71-72, Journal of Cryptology, 10, 1, 1997.

[KL98] Burt S. Kaliski, Jr. & Moses Liskov, pending U.S. Patent application serial No.
09/195,346, Efficient finite field basis conversion involving a dual basis,
November 1998.

[KY98] Burt S. Kaliski, Jr. & Yiqun Lisa Yin, Storage-efficient finite field basis
conversion, the 5th Annual Workshop on Selected Areas in Cryptography – SAC
‘98.

[KY98p] Burt S. Kaliski, Jr. & Yiqun Lisa Yin, U.S. Patent No. 5,854,759, Methods and
apparatus for efficient finite field basis conversion, December 1998.

[KO63] A. Karatsuba & Y. Ofman, Multiplication of multidigit numbers on automata,
Soviet Physics (Doklady Akademii Nauk, USSR), 1962; English translation, 7, 7,
pp. 595-596, 1963.

[KM89] M. Kasahara & M. Morii, Efficient construction of gate circuit for computing
multiplicative inverses over GF(2m), pp. 37-42, IEICE Transactiions, E-72, 1,
1989.

[KLL98] D. S. Kim, E. J. Lee, P. J. Lee, Speed-up of arithmetic for elliptic curve

cryptosystems, International Conference on Information and Communications
Security – ICICS ‘98, Springer-Verlag, 1998.

mp
F

[Kn99] E. Knudsen, Elliptic scalar multiplication using point halving, pp. 135-149, LNCS
1716, Advances in Cryptology – Asiacrypt ‘99, Singapore, Kwok-Yan Lam, Eiji
Okamoto & Chaoping Xing (eds.), Springer-Verlag, 1999.

[K87] Neal Koblitz, Elliptic curve cryptosystems, pp. 203-209, Mathematics of
Computation, 48, 177, January 1987.

[K90] Neal Koblitz, Constructing elliptic curve cryptosystems in characteristic 2, pp.
156-167, LNCS 537, Advances in Cryptology – Crypto ‘90, Santa Barbara,
California, Alfred J. Menezes & Scott A. Vanstone (eds.), Springer-Verlag, 1991.

[K92] Neal Koblitz, CM-curves with good cryptographic properties, pp. 279-287, LNCS
576, Advances in Cryptology – Crypto ‘91, Santa Barbara, California, Joan
Feigenbaum (ed.), Springer-Verlag, 1992.

[K98] Neal Koblitz, An elliptic curve implementation of the finite field digital signature
algorithm, pp. 327-337, LNCS 1462, Advances in Cryptology – Crypto ‘98, Santa
Barbara, California, Hugo Krawczyk (ed.), Springer-Verlag, 1998.

[KMV96] Neal Koblitz, Alfred J. Menezes & Scott A. Vanstone, The state of elliptic
curve cryptography, October 1996, to appear in Designs, Codes and
Cryptography.

[Ko96] Paul C. Kocher, Timing attacks on implementations of Diffie-Heelman, RSA,
DSS and other systems, LNCS 1109, Advances in Cryptology – Crypto ‘96, Santa
Barbara, California, Neal Koblitz (ed.), Springer-Verlag, 1996.

[Kc91] Çetin K. Koç, High-radix and bit recoding techniques for modular exponentiation,
pp. 139-156, International Journal of Computer Mathematics, 40, 1991.

[Kc95] Çetin K. Koç, Analysis of sliding window techniques for exponentiation, pp. 17-
24, Computers and Mathematics with Applications, 30, 10, November 1995.

[Ky95] Kenji Koyama, Fast RSA-type schemes based on singular cubic curves y2 + axy =
x3 (mod n), pp. 329-340, LNCS 921, Advances in Cryptology – Eurocrypt ‘95,

__
A Survey of Elliptic Curve Cryptosystems – Part I: Introductory – 10/27/2003

Page 98 of 105

NAS Technical Report - NAS-03-012 August 2003
--

Saint-Malo, France, Louis C. Guillou & Jean-Jacques Quisquater (eds.), Springer-
Verlag, 1995.

[KK94] Kenji Koyama & Hidenori Kuwakado, Efficient cryptosystems over elliptic
curves based on a product of form-free primes, pp. 1309-1318, IEICE
Transactions of Fundamentals on Electronic Communications Computer Science,
E77-A, 8, 1994.

[KK94a] Kenji Koyama & Hidenori Kuwakado, Security of RSA-type cryptosystems
over elliptic curves against the Håstad attack, pp. 1834-1844, Electronics Letters,
30, 22, 1994. Other version: Kenji Koyama & Hidenori Kuwakado, On the
security of RSA-type schemes over cubic curves against the Håstad attack, pp.
23-30, Technical Report of IEICE, ISEC94-10, 1994.

[KMOV92] Kenji Koyama, Ueli M. Maurer, Tatsuaki Okamoto & Scott A. Vanstone,
New public-key scheme based on elliptic curves over the ring Zn, pp. 252-266,
LNCS 576, Advances in Cryptology – Crypto ‘91, Santa Barbara, California, Joan
Feigenbaum (ed.), Springer-Verlag, 1992.

[KO97] Kenji Koyama & Tatsuaki Okamoto, NTT’s research & development of public-
key cryptosystems, Public Key Solution conference ‘97.

[KT92] Kenji Koyama & Yukio Tsuruoka, Speeding up elliptic cryptosystems by using a
signed binary window method, pp. 345-357, LNCS 740, Advances in Cryptology
– Crypto ‘92, Santa Barbara, California, Ernest F. Brickell (ed.), Springer-Verlag,
1992.

[KOT95] Kaoru Kurosawa, Koji Okada & Shigeo Tsujii, Low exponent attack against
elliptic curve RSA, pp. 376-383, LNCS 917, Advances in Cryptology – Asiacrypt
‘94, Wollongong, Australia, Josef Pieprzyk & Reihaneh Safavi-Naini (eds.),
Springer-Verlag, 1995. Other version: Kaoru Kurosawa & Shigeo Tsujii, Low
exponent attack against elliptic curve RSA, pp. 11-17, Technical Report of
IEICE, ISEC94-2, 1994.

[LMQSV98] Laurie Law, Alfred J. Menezes, Minghua Qu, Jerome Solinas & Scott A.
Vanstone, An efficient protocol for authenticated key agreement, Technical
Report CORR 98-05, University of Waterloo, Ontario, Canada, March 1998.

[LZ94] Georg-Johann Lay & Horst-Günter Zimmer, Constructing elliptic curves with
given group order over large finite fields, pp. 250-263, LNCS 877, Algorithmic
Number Theory, the 1st International Symposium, ANTS-I, Ithaca, Springer-
Verlag, 1994.

[LL98] Chang-Hyi Lee & Jong-In Lim, A new aspect of dual basis for efficient field
arithmetic, 1998.

[LL94] Pil Joong Lee & Chae Hoon Lim, More flexible exponentiation with
precomputation, pp. 95-107, LNCS 839, Advances in Cryptology – Crypto ‘94,
Santa Barbara, California, Yvo G. Desmedt (ed.), Springer-Verlag, 1994.

[L77] J. van Leeuwen, An extension of Hansen’s theorem for star chains, pp. 203-207,
Journal Reine Angew. Math. 295, 1977.

[LMMS94] Frank Lehmann, Ueli M. Maurer, Volker Müller & Victor Shoup, Counting
the number of points on elliptic curves over finite fields of characteristic greater
than three, pp. 60-70, LNCS 877, Algorithmic Number Theory, the 1st
International Symposium, ANTS-I, Ithaca, Springer-Verlag, 1994.

__
A Survey of Elliptic Curve Cryptosystems – Part I: Introductory – 10/27/2003

Page 99 of 105

NAS Technical Report - NAS-03-012 August 2003
--

[LS80] Abraham Lempel & Gadiel Seroussi, Factorization of symmetric matrices and
trace-orthogonal bases in finite fields, pp.758-767, SIAM Journal of Computing,
9, 4, November 1980.

[LW88] Abraham Lempel & M. J. Weinberger, Self-complementary normal bases in
finite fields, pp. 193-198, SIAM Journal of Discrete Mathematics 1, 1988.

[LL90] Arjen K. Lenstra & Hendrik W. Lenstra, Jr., Algorithm in number theory, pp.
673-715, Handbook of Theoretical Computer Science, J. van Leeuwen (ed.), MIT
Press, Cambridge, Massachusetts, 1990.

[LLMP90] Arjen K. Lenstra, Hendrik W. Lenstra, Jr., Mark Manasse & John M. Pollard,
The number field sieve, pp. 564-572, the 22nd Annual ACM Symposium on
Theory of Computing, 1990.

[LV00] Arjen K. Lenstra & Eric R. Verheul, Selecting cryptographic key sizes, Journal
of Cryptography, 2000; the 3rd International workshop on Practice and Theory in
Public Key Crypography – PKC 2000, LNCS 1751, Hideki Imai & Yuliang
Zheng (eds.), Springer-Verlag, 2000; CCE Quarterly Journal 3, pp. 3-10, 1999.

[LS87] Hendrik W. Lenstra, Jr. & René Schoof, Primitive normal bases for finite fields,
pp. 217-231, Mathematics of Computation, 48, 177, January 1987.

[L96] Reynald Lercier, Computing isogenies in , pp. 197-212, LNCS 1122,

Algorithmic Number Theory, the 2
mF

2
nd International Symposium, ANTS-II,

Talence, France, Henri Cohen (ed.), Springer-Verlag, 1996.
[L97] Reynald Lercier, Finding good random elliptic curves for cryptosystems defined

over , pp. 379-392, LNCS 1233, Advances in Cryptology – Eurocrypt ‘97,

Konstanz, Germany, Walter Fumy (ed.), Springer-Verlag, 1997.
mF

2

[L97a] Reynald Lercier, Algorithmique des courbes elliptiques dans les corps finis,
Thèse, École Polytechnique, Laboratoire D’informatique, June 1997.

[LM95] Reynald Lercier & François Morain, Counting points on elliptic curves over

using Couveignes’ algorithm, Research report LIX/RR/95/00, École
Polytechnique, Laboratoire D’informatique, 1995.

np
F

[LM95a] Reynald Lercier & François Morain, Counting the number of points on elliptic
curves over finite fields: Strategies and performances, pp. 79-94, LNCS 921,
Advances in Cryptology – Eurocrypt ‘95, Saint-Malo, France, Louis C. Guillou &
Jean-Jacques Quisquater (eds.), Springer-Verlag, 1995.

[LM97] Reynald Lercier & François Morain, Algorithms for computing isogenies
between elliptic curves, Computational Perspectives on Number Theory, 1997.

[MS77] F. J. MacWilliams & Neil J. A. Sloane, The theory of error-correcting codes,
North-Holland, Amsterdam, 1977.

[MNS01] E. El Mahassni, Phong Q. Nguyen & Igor E. Shparlinski, The insecuriry of
Nyberg-Rueppel and other DSA-like signature schemes with partially known
nonces, Workshop on Lattices and Cryptography, Boston, MA, 2001.

[MOS99] M. Mambo, Eiji Okamato & H. Sakazaki, ID-based key distribution system
over an elliptic curve, pp. 215-233, Contemporary Mathematics, 225, 1999; the
4th International Conference on Finite Fields, 1999.

__
A Survey of Elliptic Curve Cryptosystems – Part I: Introductory – 10/27/2003

Page 100 of 105

NAS Technical Report - NAS-03-012 August 2003
--

[MO86] James L. Massey & James K. Omura, U.S. Patent No. 4,567,600, Method and
apparatus for maintaining the privacy of digital messages conveyed by public
transmission, 28 January 1986.

[Mc86] D. P. McCarthy, Effect of improved multiplication efficiency on exponentiation
algorithms derived from addition chains, Mathematics of Computation, 46, 174,
pp. 603-608, April 1986.

[Mc88] Kevin S. McCurley, A key distribution system equivalent to factoring, pp. 95-
105, Journal of Cryptology, 1, 2, 1988.

[M86] J. F. Mestre’s Formules explicites at minoration de conducteurs de variete
algebriques, Compositio Math., 58, pp. 209-232, 1986.

[MS93] Willi Meier & Othmar Staffelbach, Efficient multiplication on certain non-
supersingular elliptic curves, pp. 333-344, LNCS 740, Advances in Cryptology –
Crypto ’92, Santa Barbara, California, Ernest F. Brickell (ed.), Springer-Verlag,
1993.

[MOV93] Alfred J. Menezes, Tatsuaki Okamoto & Scott A. Vanstone, Reducing elliptic
curve logarithms to logarithms in a finite field, pp. 1639-1646, IEEE Transactions
on Information Theory, 39, 1993; the 23rd ACM Symposium on the Theory of
Computing, 1991.

[MQV95] Alfred J. Menezes, Minghua Qu & Scott A. Vanstone, Some new key
agreement protocols providing mutual implicit authentication, pp. 22-32, Selected
Areas in Cryptology – SAC ‘95.

[MV90] Alfred J. Menezes & Scott A. Vanstone, The implementation of elliptic curve
cryptosystems, pp. 2-13, LNCS 453, Advances in Cryptology – Auscrypt ‘90,
Sydney, Australia, Josef Pieprzyk & Jennifer Seberry (eds.), Springer-Verlag,
1990.

[MV90a] Alfred J. Menezes & Scott A. Vanstone, Isomorphism classes of elliptic curves
over finite fields of characteristic 2, pp. 135-153, Utilitas Mathematica, 38, 1990.

[MV93] Alfred J. Menezes & Scott A. Vanstone, Elliptic curve cryptosystems and their
implementation, pp. 209-224, Journal of Cryptology, 6, 4, 1993.

[MVZ93] Alfred J. Menezes, Scott A. Vanstone & Robert J. Zuccherato, Counting points
on elliptic curves over , pp. 407-420, Mathematics of Computation 60, 201,

January 1993.
mF

2

[MM96] Bernd Meyer & Volker Müller, A public key cryptosystem based on elliptic
curves over Z/nZ equivalent to factoring, pp. 49-59, LNCS 1070, Advances in
Cryptology – Eurocrypt ‘96, Saragossa, Spain, Ueli M. Maurer (ed.), Springer-
Verlag, 1996.

[Mi85] Victor S. Miller, Use of elliptic curves in cryptography, pp. 417-426, LNCS 218,
Advances in Cryptology – Crypto ‘85, Santa Barbara, California, Hugh C.
Williams (ed.), Springer-Verlag, 1986.

[Mi98] Victor S. Miller, Elliptic curves and their uses in cryptography, the 2nd workshop
on Elliptic Curve Cryptography (ECC ‘98), University of Waterloo, Ontario,
Canada, 1998.

[MPWW98] Serge Mister, Bart Preneel, Michael Wiener & Erik de Win, On the
performance of signature schemes based on elliptic curves, pp. 252-266, LNCS

__
A Survey of Elliptic Curve Cryptosystems – Part I: Introductory – 10/27/2003

Page 101 of 105

NAS Technical Report - NAS-03-012 August 2003
--

1423, Algorithmic Number Theory, the 3rd International Symposium, ANTS-III,
Portland, Oregon, Joe P. Buhler (ed.), June 1998.

[MS89] Chris J. Mitchell & A. Selby, Algorithms for software implementation of RSA,
pp. 166-170, IEE Proceedings, 136, 3, 1989.

[Mi91] Atsuko Miyaji, On ordinary elliptic curve cryptosystems, pp. 50-55, LNCS 739,
Advances in Cryptology – Asiacrypt ‘91, Fujiyoshida, Japan, Hideki Imai, Ronald
L. Rivest & Tsutomu Matsumoto (eds.), Springer-Verlag, 1993.

[Mi93] Atsuko Miyaji, Elliptic curves over Fp suitable for cryptosystems, pp. 479-491,
LNCS 718, Advances in Cryptology – Auscrypt ‘92, Jennifer Seberry & Yuliang
Zheng (eds.), Springer-Verlag, 1993.

[M85] Peter L. Montgomery, Modular multiplication withour trial division, pp. 519-521,
Mathematics of Computation, 44, 170, April 1985.

[M87] Peter L. Montgomery, Speeding the Pollard and elliptic curve methods of
factorization, pp. 243-264, Mathematics of Computation, 48, 177, January 1987.

[Mo95] François Morain, Calcul du nombre de points sur une courbe elliptique dans un
corps fini: aspects algorithmiques, pp. 255-282, Journal de Théorie des Nombres
de Bordeaux, 7, 1995.

[Mo91] François Morain, Building cyclic elliptic curve modulo large primes, pp. 328-
336, LNCS 547, Advances in Cryptology – Eurocrypt ‘91, Brighton, United
Kingdom, Donald W. Davies (ed.), Springer-Verlag, 1991.

[MO90] François Morain & Jorge Olivos, Speeding up the computations on an elliptic
curve using addition-subtraction chains, pp. 531-544, Informatique théorique et
Applications (Theoretical Informatics and Applications), 24, 6, 1990.

[M93] Ron C. Mullin, A characterization of the extremal distributions of optimal normal
bases, pp. 41-49, Coding theory, Design theory, Group theory, Marshall Hall
Conference, Dieter Jungnickel & Scott A. Vanstone (eds.), Wiley, New York,
1993.

[MOVW89] Ron C. Mullin, I. Onyszchuk, Scott A. Vanstone & R. Wilson, Optimal
normal bases in GF(pn), pp. 149-161,Discrete Applied Mathematics, 22, 1988-89.

[Mu98] Volker Müller, Efficient algorithms for multiplication on elliptic curves,
Proceedings of ‘GI – Arbeitskonferenz Chipkarten, TU München, 1998.

[Mu98a] Volker Müller, Fast multiplication on elliptic curves over small fields of
characteristic two, pp. 219-234, Journal of Cryptology, 11, 4, 1998.

[MP97] Volker Müller & Sachar Paulus, On the generation of cryptographically strong
elliptic curves, preprint, 1997.

[NS01] Phong Q. Nguyen & Igor E. Shparlinski, The insecurity of the Elliptic Curve
Digital Signature Algorithm with partially known nonces, preprint, 2001.

[NR96] Kaisa Nyberg & Rainer A. Rueppel, Message recovery for signature schemes
based on discrete logarithm problem, pp. 61-81, Designs, Codes and
Cryptography, 7, 1996.

[O88] Eiji Okamato, Key distribution system based on identification information, pp.
194-201, LNCS 293, Advances in Cryptology – Crypto ‘87, Santa Barbara,
California, Carl Pomerance (ed.), Springer-Verlag, 1988.

[OOSS95] Sean O’Malley, Hilarie Orman, Richard Schroeppel & Oliver Spatscheck,
Fast key exchange with elliptic curve systems, pp. 43-56, LNCS 963, Advances in

__
A Survey of Elliptic Curve Cryptosystems – Part I: Introductory – 10/27/2003

Page 102 of 105

NAS Technical Report - NAS-03-012 August 2003
--

Cryptology – Crypto ‘95, Santa Barbara, California, Don Coppersmith (ed.),
Springer-Verlag, 1995.

[OW94] Paul C. van Oorschot & Michael J. Wiener, Parallel collision search with
applications to hash functions and discrete logarithms, pp. 210-218, the 2nd ACM
Conference on Computer and Communications Security, ACM Press, New York,
November 1994.

[OW99] Paul C. van Oorschot & Michael J. Wiener, Parallel collision search with
cryptanaltic applications, pp. 1-28, Journal of Cryptology, 12, 1, 1999.

[OP00] Gerardo Orlando & Christof Paar, An efficient squaring architecture for GF(2m)
and its applications in cryptographic systems, pp. 1116-1117, Electronic Letters,
36, 13, June 2000.

[P93] Christof Paar, A parallel Galois field multiplier with low complexity based on
composite fields, pp. 320-324, the 6th Joint Swedish-Russian Workshop on
Information Theory, Mölle, Sweden, August 1993.

[P95] Christof Paar, Some remarks on efficient inversion in finite fields, p. 58 ff, 1995
IEEE International Symposium on Information Theory, Whistler, B. C., Canada,
17-22 September 1995.

[P96] Christof Paar, A new architecture for a parallel finite field multiplier with low
complexity based on composite fields, pp. 856-861, IEEE Transactions on
Computers, 45, 7, July 1996.

[P99] Christof Paar, Implementation options for finite field arithmetic for elliptic curve
cryptosystems, the 3rd workshop on Elliptic Curve Cryptography (ECC ‘99),
University of Waterloo, Ontario, Canada, 1999.

[PS97] Christof Paar & Pedro Soria-Rodriguez, Fast arithmetic architectures for public
key algorithms over Galois field GF((2n)m), pp. 363-378, LNCS 1233, Advances
in Cryptology – Eurocrypt ‘97, Konstanz, Germany, Walter Fumy (ed.), Springer-
Verlag, 1997.

[P99] Pascal Paillier, Public-key cryptosystems based on composite degree residuosity
classes, pp. 223-228, LNCS 1592, Advances in Cryptology – Eurocrypt ‘99,
Prague, Czech Republic, Jacques Stern (ed.), Springer-Verlag, 1999.

[P00] Pascal Paillier, Trapdooring discrete logarithms on elliptic curves over rings, pp.
573-584, LNCS 1976, Advances in Cryptology – Asiacrypt 2000, Kyoto, Japan,
Tatsuaki Okamoto (ed.), Springer-Verlag, 2000.

[Pi95] Richard G. E. Pinch, Extending the Wiener attack to RSA-type cryptosystems, pp.
1736-1738, Electronics Letters, 31, 1995.

[P89] Antonio Pincin, A new algorithm for multiplication in finite fields, pp. 1045-
1049, IEEE Transactions on Computers, C-38, 7, July 1989.

[P78] John M. Pollard, Monte Carlo methods for index computation (mod p), pp. 918-
924, Mathematics of Computation, 32, 1978.

[QSV01] Minghua Qu, Douglas Stinson & Scott A. Vanstone, Cryptanalysis of the
Sakazaki-Okamato-Mambo ID-based key distribution system over elliptic curves,
2001.

[R98] Peter de Rooij, Efficient exponentiation using precomputation and vector addition
chains, pp. 389-399, LNCS 1403, Advances in Cryptology – Eurocrypt ‘98,
Espoo, Finland, Kaisa Nyberg (ed.), Springer-Verlag, 1998.

__
A Survey of Elliptic Curve Cryptosystems – Part I: Introductory – 10/27/2003

Page 103 of 105

NAS Technical Report - NAS-03-012 August 2003
--

[R97] Hans-Georg Rück, On the discrete logarithm in the divisor class group of curves,
preprint, 1997.

[S90] S. Saryazdi, An extension to ElGamal public key cryptosystem with a new
signature scheme, pp. 195-198, Communication, Control and Signal Processing,
Elsevier, 1990.

[Sa00] Takakazu Satoh, The canonical lift of an ordinary elliptic curve over a finite field
and its point counting, Journal of the Ramanujan Mathematical Society,
December 2000.

[Sc93] Oliver Schirokauer, Discrete logarithms and local units, pp. 409-423,
Philosophical Transactions of the Royal Society of London A, 345, 1993.

[S91] Claus-Peter Schnorr, Efficient signature generation by smart cards, pp. 161-174,
Journal of Cryptology, 4, 3, 1991.

[S85] René Schoof, Elliptic curves over finite fields and the computation of square roots
mod p, pp. 483-494, Mathematics of Computation, 44, 170, April 1985.

[S87] René Schoof, Nonsingular plane cubic curves over finite fields, pp. 183-211,
Journal of Combinatorial Theory, A 46, 1987.

[S95] René Schoof, Counting points on elliptic curves over finite fields, pp. 219-254,
Journal de Théorie des Nombres de Bordeaux, 7, 1995.

[S75] Arnold Schönhage, A lower bound for the length of addition chains, pp. 1-12,
Theoretical Computer Science, 1, 1975.

[S77] Arnold Schönhage, Fast multiplication for polynomials over fields of charateristic
2, pp. 395-398, Acta Informatica, 7, 1977.

[Sc00] Richard Schroeppel, Elliptic curve point ambiguity resolution apparatus and
method, Patent application, 2000.

[Se98] I. A. Semaev, Evaluation of discrete logarithms in a group of p-torsion points of
an elliptic curve in characteristic p, pp. 353-356, Mathematics of Computation,
67, 221, January 1998.

[S98] Gadiel Seroussi, Compact representation of elliptic curve points over ,
Research manuscript, Hewlett-Packard Laboratories, April 1998.

nF
2

[Sh97] Victor Shoup, Lower bounds for discrete logarithms and related problems, pp.
256-266, LNCS 1233, Advances in Cryptology – Eurocrypt ‘97, Konstanz,
Germany, Walter Fumy (ed.), Springer-Verlag, 1997.

[S99] Joseph H. Silverman, The xedni calculus and the elliptic curve discrete logarithm
problem, Technical Report CORR 99-05, University of Waterloo, Ontario,
Canada, 1999.

[SS99] Joseph H. Silverman & Joe Suzuki, Elliptic curve discrete logarithms and the
index calculus, LNCS 1514, Advances in Cryptology – Asiacrypt ‘98, Beijing,
China, Kazuo Ohta & Dingyi Pei (eds.), Springer-Verlag, 1999.

[SS97] Robert D. Silverman & J. Stapleton, 1997, preprint.
[Sm99] Nigel P. Smart, The discrete logarithm problem on elliptic curves of trace one,

pp. 193-196, Journal of Cryptology, 12, 3, October 1999.
[S01] Nigel P. Smart, How secure are elliptic curves over composite extension fields?,

LNCS 2045, Advances in Cryptology – Eurocrypt 2001, Innsbuck, Austria, Birgit
Pfitzmann (ed.), Springer-Verlag, 2001.

__
A Survey of Elliptic Curve Cryptosystems – Part I: Introductory – 10/27/2003

Page 104 of 105

NAS Technical Report - NAS-03-012 August 2003
--

[S97] Jerome Solinas, An improved algorithm for arithmetic on a family of elliptic
curves, pp. 357-371, LNCS 1294, Advances in Cryptology – Crypto ‘97, Santa
Barbara, California, Burt S. Kaliski, Jr. (ed.), Springer, 1997.

[S00] Jerome Solinas, Efficient arithmetic on Koblitz curves, pp. 195-249, Designs,
Codes and Cryptography, 19, 2000.

[S67] J. Stein, Computational problems associated with Racah algebra, pp. 397-405,
Journal of Computational Physics, 1, 1967.

[V96] Serge Vaudenay, Hidden collisions on DSS, pp. 83-88, LNCS 1109, Advances in
Cryptology – Crypto ‘96, Santa Barbara, California, Neal Koblitz (ed.), Springer-
Verlag, 1996.

[V85] Hugo Volger, Some results on addition/subtraction chains, pp. 155-160,
Information Processing Letters, 20, 1985.

[W69] E. Waterhouse, Abelian varieties over finite fields, pp. 521-560, Ann. Sci., École
Normale Supérieure, 2, 1969.

[W90] Michael J. Wiener, Cryptanalysis of short RSA secret exponents, pp. 553-558,
IEEE Transactions on Information Theory, 36, 3, 1990.

[WZ98] Michael J. Wiener & Robert J. Zuccherato, Faster attacks on elliptic curve
cryptosystems, pp. 190-200, LNCS 1556, Selected Areas in Cryptography – SAC
‘98, Springer-Verlag, 1998.

[Y91] Yacov Yacobi, Exponentiating faster with addition chains, pp. 222-229, LNCS
537, Advances in Cryptology – Crypto ‘90, Santa Barbara, California, Alfred J.
Menezes & Scott A. Vanstone (eds.), Springer-Verlag, 1991.

[Z98] Yuliang Zheng, Shortened digital signature, signcryption and compact and
unforgeable key agreement schemes, submitted to IEEE P1363a – Standard
Specifications for Public-Key Cryptography: Additional techniques, 1998.

Standards
ANSI X9.62, Public key cryptography for the financial services industry: The elliptic

curve digital signature algorithm (ECDSA), American Bankers Association, 1999.
ANSI X9.63, Public key cryptography for the financial services industry: Key agreement

and key transport using elliptic curve cryptography, American Bankers
Association, 2000.

FIPS PUB 180-1 (Federal Information Processing Standards Publication): Secure Hash
Standard (SHA-1), U.S. Department of Commerce – National Institute of
Standards and Technology (NIST), 1995.

IEEE P1363, Standard specifications for public-key cryptography, 2000.

__
A Survey of Elliptic Curve Cryptosystems – Part I: Introductory – 10/27/2003

Page 105 of 105

	A Survey of Elliptic Curve Cryptosystems, Part I: Introducto
	NASA Advanced Supercomputing (NAS) Division – Research Branc
	Information Sciences & Technology Directorate
	NASA Ames Research Center, Moffett Field, CA 94043
	m
	Theorem: Every element a (GF(qm) can be expressed in the dual basis C as: a = .
	We will discuss the solutions of this problem for finite fie
	E = (((3, ()(= {(0,1), (1, (5), (1, (10), ((3, (), ((3, (9), ((5, 1), ((5, (10), ((9, (8),

	Standards

