SHA-3 Standard: Permutation-Based Hash and Extendable-Output Functions

CATEGORY: COMPUTER SECURITY SUBCATEGORY: CRYPTOGRAPHY

Information Technology Laboratory
National Institute of Standards and Technology
Gaithersburg, MD 20899-8900
May 2014

U.S. Department of Commerce

Penny Pritzker, Secretary
National Institute of Standards and Technology
Patrick D. Gallagher, Under Secretary of Commerce for Standards and Technology and Director

FOREWORD

The Federal Information Processing Standards (FIPS) Publication Series of the National Institute of Standards and Technology (NIST) is the official series of publications relating to standards and guidelines adopted and promulgated under the provisions of the Federal Information Security Management Act (FISMA) of 2002.

Comments concerning FIPS publications are welcomed and should be addressed to the Director, Information Technology Laboratory, National Institute of Standards and Technology, 100 Bureau Drive, Stop 8900, Gaithersburg, MD 20899-8900.

Charles H. Romine, Director Information Technology Laboratory

Abstract

This Standard specifies the Secure Hash Algorithm-3 (SHA-3) family of functions on binary data. Each of the SHA-3 functions is based on an instance of the Keccak algorithm that NIST selected as the winner of the SHA-3 Cryptographic Hash Algorithm Competition. This Standard also specifies the KECCAK-p family of mathematical permutations, including the permutation that underlies КЕССак, in order to facilitate the development of additional permutation-based cryptographic functions.

The SHA-3 family consists of four cryptographic hash functions, called SHA3-224, SHA3-256, SHA3-384, and SHA3-512, and two extendable-output functions (XOFs), called SHAKE128 and SHAKE256.

Hash functions are components for many important information security applications, including 1) the generation and verification of digital signatures, 2) key derivation, and 3) pseudorandom bit generation. The hash functions specified in this Standard supplement the SHA-1 hash function and the SHA-2 family of hash functions that are specified in FIPS 180-4, the Secure Hash Standard.

Extendable-output functions are different from hash functions, but it is possible to use them in similar ways, with the flexibility to be adapted directly to the requirements of individual applications, subject to additional security considerations.

Key words: computer security, cryptography, extendable-output function, Federal Information Processing Standard, hash algorithm, hash function, information security, Keccak, message digest, permutation, SHA-3, sponge construction, sponge function, XOF.

Federal Information
Processing Standards Publication 202

May 2014

Announcing the

SHA-3 STANDARD: PERMUTATION-BASED HASH AND EXTENDABLE OUTPUT FUNCTIONS

Federal Information Processing Standards Publications (FIPS PUBS) are issued by the National Institute of Standards and Technology (NIST) after approval by the Secretary of Commerce pursuant to Section 5131 of the Information Technology Management Reform Act of 1996 (Public Law 104-106), and the Computer Security Act of 1987 (Public Law 100-235).

1. Name of Standard: SHA-3 Standard: Permutation-Based Hash and Extendable-Output Functions (FIPS PUB 202).
2. Category of Standard: Computer Security Standard, Cryptography.
3. Explanation: This Standard (FIPS 202) specifies the Secure Hash Algorithm-3 (SHA-3) family of functions on binary data. Each of the SHA-3 functions is based on an instance of the Keccak algorithm that NIST selected as the winner of the SHA-3 Cryptographic Hash Algorithm Competition. This Standard also specifies the KеССаК-p family of mathematical permutations, including the permutation that underlies KECCAK, which can serve as the main components of additional cryptographic functions that may be specified in the future.

The SHA-3 family consists of six functions. Four are cryptographic hash functions, called SHA3-224, SHA3-256, SHA3-384, and SHA3-512; two are extendable-output functions (XOFs), called SHAKE128 and SHAKE256.

For hash functions, the input is called the message, and the output is called the (message) digest or the hash value. The length of the message can vary; the length of the digest is fixed. A cryptographic hash function is a hash function that is designed to provide special properties, including collision resistance and preimage resistance, that are important for many applications in information security. For example, a cryptographic hash function increases the security and efficiency of a digital signature scheme when the digest is digitally signed instead of the message itself. In this context, the collision resistance of the hash function provides assurance that the original message could not have been altered to a different message with the same hash value, and hence, the same signature. Other applications of cryptographic hash functions include pseudorandom bit generation, message authentication codes, and password security.

The four SHA-3 hash functions in this Standard supplement the hash functions that are specified in FIPS 180-4 [1]: SHA-1 and the SHA-2 family. Together, both Standards provide resilience against future advances in hash function analysis, because they rely on fundamentally different design principles. In addition to design diversity, the hash functions in this Standard provide some complementary implementation and performance characteristics to those in FIPS 180-4.

For XOFs, the length of the output can be chosen to meet the requirements of individual applications. The XOFs can be specialized to hash functions, subject to additional security considerations, or used in a variety of other applications. The approved uses of XOFs will be specified in NIST Special Publications.

The KECCAK-p permutations were designed to be suitable main components for a variety of cryptographic functions, including keyed functions for authentication and/or encryption. The six SHA-3 functions can be considered as modes of operation (modes) of the KECCAK-p[1600,24] permutation. In the future, additional modes of this permutation or other КЕССаК- p permutations may be specified and approved in FIPS publications or in NIST Special Publications.
4. Approving Authority: Secretary of Commerce.
5. Maintenance Agency: U.S. Department of Commerce, National Institute of Standards and Technology (NIST), Information Technology Laboratory (ITL).
6. Applicability: This Standard is applicable to all Federal departments and agencies for the protection of sensitive unclassified information that is not subject to Title 10 United States Code Section 2315 (10 USC 2315) and that is not within a national security system as defined in Title 40 United States Code Section 11103(a)(1) (40 USC 11103(a)(1)). Either this Standard or Federal Information Processing Standard (FIPS) 180 must be implemented wherever a secure hash algorithm is required for Federal applications, including as a component within other cryptographic algorithms and protocols. This Standard may be adopted and used by non-Federal Government organizations.
7. Specifications: Federal Information Processing Standard (FIPS) 202, SHA-3 Standard: Permutation-Based Hash and Extendable-Output Functions (affixed).
8. Implementations: The KECCAK-p permutations shall only be implemented within FIPSapproved or NIST-recommended modes of operation, such as the SHA-3 functions that are specified in this Standard. The SHA-3 functions may be implemented in software, firmware, hardware or any combination thereof. Only implementations of these functions that are validated by the Cryptographic Algorithm Validation Program will be considered as complying with this Standard. Information about the validation program can be obtained at http://csrc.nist.gov/groups/STM/cavp/index.html.
9. Implementation Schedule: This Standard becomes effective on [].
10. Patents: Implementations of the SHA-3 functions in this Standard may be covered by U.S. or foreign patents.
11. Export Control: Certain cryptographic devices and technical data regarding them are subject to Federal export controls. Exports of cryptographic modules implementing this Standard and technical data regarding them must comply with these Federal regulations and be licensed by the Bureau of Export Administration of the U.S. Department of Commerce. Information about export regulations is available at: http://www.bis.doc.gov/index.htm.
12. Qualifications: Although this Standard specifies mathematical functions that are suitable components for information security applications, conformance to this Standard does not assure that a particular implementation is secure. The responsible authority in each agency or department shall assure that an overall implementation provides an acceptable level of security. This Standard will be reviewed every five years in order to assess its adequacy.
13. Waiver Procedure: The Federal Information Security Management Act (FISMA) does not allow for waivers to a FIPS that is made mandatory by the Secretary of Commerce.
14. Where to Obtain Copies of the Standard: This publication is available electronically at http://csrc.nist.gov/publications/. Other computer security publications issued by NIST are available at the same web site.

Federal Information Processing Standards Publication 202

Specifications for the

SHA-3 STANDARD: PERMUTATION-BASED HASH AND EXTENDABLE-OUTPUT FUNCTIONS

Contents

1 INTRODUCTION 1
2 GLOSSARY 2
2.1 Terms and Acronyms 2
2.2 Algorithm Parameters and Other Variables 4
2.3 BASIC OpERATIONS AND FUNCTIONS 5
2.4 Specified Functions 6
3 KECCAK-P PERMUTATIONS 7
3.1 State. 7
3.1.1 Parts of the State Array 8
3.1.2 Converting Strings to State Arrays 9
3.1.3 Converting State Arrays to Strings 9
3.1.4 Labeling Convention for the State Array 10
3.2 STEP MAPPINGS 11
3.2.1 Specification of θ 11
3.2.2 Specification of ρ 12
3.2.3 Specification of π 13
3.2.4 Specification of χ. 14
3.2.5 Specification of l 15
3.3 KECCAK- $p\left[b, n_{r}\right]$ 16
3.4 Comparison with Keccak- f. 17
4 SPONGE CONSTRUCTION 17
5 KECCAK 19
5.1 Specification of pad10*1 19
5.2 Specification of $\operatorname{Keccak}[c]$ 19
6 SHA-3 FUNCTION SPECIFICATIONS 20
6.1 SHA-3 Hash Functions 20
6.2 SHA-3 Extendable-Output Functions 20
7 CONFORMANCE 21
APPENDIX A: ADDITIONAL INFORMATION 22
A. 1 Security Analysis 22
A.1. 1 Security Summary. 22
A.1.2 Additional Consideration for Extendable-Output Functions 23
A. 2 EXAMPLES 24
A. 3 ObJect Identifiers 26
APPENDIX B: REFERENCES 26

Figures

Figure 1: Parts of the state array, organized by dimension [8] 8
Figure 2: The x, y, and z coordinates for the diagrams of the step mappings 10
Figure 3: Illustration of θ applied to a single bit [8] 11
Figure 4: Illustration of ρ for $b=200$ [8] 13
Figure 5: Illustration of π applied to a single slice [8] 14
Figure 6: Illustration of χ applied to a single row [8] 15
Figure 7: The sponge construction: $Z=\operatorname{SPONGE}[f, \mathrm{pad}, r](M, d)[4]$ 17
Tables
Table 1: KECCAK-p permutation widths and related quantities. 7
Table 2: Offsets of ρ [8] 12
Table 3: Security strengths of SHA-1, SHA-2, and SHA-3 functions. 22
Table 4: Illustration of bit ordering conventions for a single byte 24

1 INTRODUCTION

This Standard specifies a new family of functions that supplement SHA-1 and the SHA-2 family of hash functions specified in FIPS 180-4 [1]. This family, called SHA-3 (Secure Hash Algorithm-3) is based on KECCAK [2], the algorithm ${ }^{1}$ that NIST selected as the winner of the public SHA-3 Cryptographic Hash Algorithm Competition [3]. The SHA-3 family consists of four cryptographic hash functions and two extendable-output functions. These six functions share the structure that is described in [4], namely, the sponge construction; functions with this structure are called sponge functions.

A hash function is a function on binary data (i.e., bit strings) ${ }^{2}$ for which the length of the output is fixed. The input to a hash function is called the message, and the output is called the (message) digest or hash value. The digest often serves as a condensed representation of the message. The four SHA-3 hash functions are named SHA3-224, SHA3-256, SHA3-384, and SHA3-512; in each case, the numerical suffix indicates the fixed length of the digest, e.g., SHA3-256 produces 256 -bit digests. The SHA-2 functions, i.e., SHA-224, SHA-256, SHA-384 SHA-512, SHA$512 / 224$, and SHA-512/256, offer the same set of digest lengths. Thus, the SHA-3 hash functions can be implemented as alternatives to the SHA-2 functions, or vice versa.

An extendable-output function (XOF) is a function on binary data in which the output can be extended to any desired length. The two SHA-3 XOFs are named SHAKE128 and SHAKE256. ${ }^{3}$ The suffixes " 128 " and " 256 " indicate the security strengths that these two functions can generally ${ }^{4}$ support, in contrast to the suffixes for the hash functions above, which indicate the digest lengths. SHAKE128 and SHAKE256 are the first XOFs that NIST has standardized.

The six SHA-3 functions are designed to provide special properties, such as resistance to collision, preimage, and second preimage attacks. The level of resistance to these three types of attacks is summarized in Appendix A.1.1. Cryptographic hash functions are fundamental components in a variety of information security applications, such as digital signature generation and verification, key derivation, and pseudorandom bit generation.

The digest lengths in FIPS-approved hash functions are 160, 224, 256, 384, and 512 bits. When an application requires a cryptographic hash function with a non-standard digest length, an XOF is a natural alternative to constructions that involve multiple invocations of a hash function and/or truncation of the output bits. However, XOFs are subject to the additional security consideration that is described in Appendix A.1.2.

[^0]Each of the six SHA-3 functions employs the same underlying permutation as the main component in the sponge construction. In effect, the SHA-3 functions are modes of operation (modes) of the permutation. In this Standard, the permutation is specified as an instance of a family of permutations, called KECCAK- p, in order to provide the flexibility to modify its size and security parameters in the development of any additional modes in future documents.

The four SHA-3 hash functions differ slightly from the instances of KECCAK that were proposed for the SHA-3 competition [3]. In particular, two additional bits are appended to the messages, in order to distinguish the SHA-3 hash functions from the SHA-3 XOFs, and to facilitate the development of new variants of the SHA-3 functions that can be dedicated to individual application domains. The mechanism for achieving these goals is called domain separation; see Sec. 2.1.

The two SHA-3 XOFs are also specified in a manner that allows for the development of dedicated variants. Moreover, the SHA-3 XOFs are compatible with the Sakura coding scheme [6] for tree hashing [7], in order to support the development of parallelizable extensions, to be specified in a separate document.

Most of the notation and terminology in this Standard is consistent with the specification of Keccak in [8].

2 GLOSSARY

2.1 Terms and Acronyms

bit A binary digit: 0 or 1. In this Standard, bits are indicated in the Courier New font.
byte
capacity
column
digest The output of a cryptographic hash function. Also called the hash value.
domain separation
extendable-output
function (XOF)
FIPS
FISMA
A sequence of eight bits.
In the sponge construction, the width of the underlying function minus the rate.

For a state array, a sub-array of five bits with constant x and z coordinates.

For a function, a partitioning of the inputs to different application domains so that no input is assigned to more than one domain.

A function on bit strings in which the output can be extended to any desired length.

Federal Information Processing Standard.
Federal Information Security Management Act.

hash function	A function on bit strings in which the length of the output is fixed. The output often serves as a condensed representation of the input.
hash value	See digest.
KDF	Key derivation function.
Keccak	The family of all sponge functions with a KECCAK-f permutation as the underlying function and multi-rate padding as the padding rule. Kессак was originally specified in [8].
lane	For a state array of a KECCAK-p permutation with width b, a sub-array of $b / 25$ bits with constant x and y coordinates.
message	A bit string of any length.
multi-rate padding	The padding rule pad $10^{*} 1$, whose output is a 1 , followed by a (possibly empty) string of 0 s , followed by a 1 .
NIST	National Institute of Standards and Technology.
plane	For a state array of a KЕССАК- p permutation with width b, a sub-array of $b / 5$ bits with a constant y coordinate.
rate	In the sponge construction, the number of input bits processed or output bits generated per invocation of the underlying function.
round	The sequence of step mappings that is iterated in the calculation of a KECCAK- p permutation.
round constant	For each round of a KECCAK-p permutation, a lane value that is determined by the round index. The round constant is the second input to the 1 step mapping.
round index	The value of the integer index for the rounds of a КЕССАК-p permutation.
row	For a state array, a sub-array of five bits with constant y and z coordinates.
SHA-3	Secure Hash Algorithm-3.
SHAKE	Secure Hash Algorithm Keccak.
sheet	For a state array of a KECCAK-p permutation with width b, a sub-array of $b / 5$ bits with a constant x coordinate.

slice	For a state array, a sub-array of 25 bits with a constant z coordinate.
sponge construction	The method originally specified in [4] for defining a function from the following: 1) an underlying function on bit strings of a fixed length, 2) a padding rule, and 3) a rate. Both the input and the output of the resulting function are bit strings that can be arbitrarily long.
sponge function	A function that is defined according to the sponge construction, possibly specialized to a fixed output length.
state	An array of bits that is repeatedly updated within a computational procedure. For a KECCAK-p permutation, the state is represented either as a three-dimensional array or as a string.
state array	For a KECCAK-p permutation, a 5-by-5-by- w array of bits that represents the state. The indices for the x, y, and z coordinates range from 0 to 4,0 to 4, and 0 to $w-1$, respectively.
step mapping	One of the five components of a round of a KECCAK- p permutation: θ, ρ, π, χ, or 1.
A sequence of bits.	

2.2 Algorithm Parameters and Other Variables

A
b
$c \quad$ The capacity of a sponge function.
f
i_{r}
$\mathbf{A}[x, y, z] \quad$ For a state array \mathbf{A}, the bit that corresponds to the triple (x, y, z).
$d \quad$ The length of the digest of a hash function or the requested length of the output of an XOF, in bits.
A state array.

The width of a KECCAK- p permutation in bits. The generic underlying function for the sponge construction.

The round index for a KECCAK-p permutation.
ℓ

Lane (i, j)	For a state array \mathbf{A}, a string of all the bits of the lane whose x and y coordinates are i and j.
M	The input message to a SHA-3 function.
n_{r}	The number of rounds for a KECCAK-p permutation.
pad	The generic padding rule for the sponge construction.
Plane (j)	For a state array A, a string of all the bits of the plane whose y coordinate is j.
$R C$	The rate of a sponge function.
w	For a round of a KECCAK- p permutation, the round constant.

2.3 Basic Operations and Functions

$0^{s} \quad$ For a positive integer $s, 0^{s}$ is the string that consists of s consecutive 0 s.
$\operatorname{len}(X)$
$X[i]$
For a string X and an integer i such that $0 \leq i<\operatorname{len}(X), X[i]$ is the bit of X with index i. Bit strings are depicted with indices increasing from left to right, so that X[0] appears at the left, followed by X[1], etc. For example, if $X=101000$, then $X[2]=1$.

Truncs $(X) \quad$ For a positive integer s and a string $X, \operatorname{Trunc}_{s}(X)$ is the string comprised of bits $X[0]$ to $X[s-1]$. For example, $\operatorname{Trunc}_{2}(10100)=10$.
$X \oplus Y \quad$ For strings X and Y of equal bit length, $X \oplus Y$ is the string that results from applying the Boolean exclusive-OR operation to X and Y at each bit position. For example, $1100 \bigoplus 1010=0110$.
$X \| Y \quad$ For strings X and $Y, X \| Y$ is the concatenation of X and Y. For example, 11001 || $010=11001010$.
m / n
$m \bmod n$
For integers m and $n, m \bmod n$ is the integer r for which $0 \leq r<n$ and $m-r$ is a multiple of n. For example, $11 \bmod 5=1$, and $-11 \bmod 5=4$.

For a real number $x,\lceil x\rceil$ is the least integer that is not strictly less than x. For example, $\lceil 3.2\rceil=4,\lceil-3.2\rceil=-3$, and $\lceil 6\rceil=6$.
$\log _{2}(x) \quad$ For a positive real number $x, \log _{2}(x)$ is the real number y such that $2^{y}=x$.
$\min (x, y) \quad$ For real numbers x and $y, \min (\mathrm{x}, \mathrm{y})$ is the minimum of x and y. For example, $\min (9,33)=9$.

2.4 Specified Functions

The following higher-level functions are specified in this Standard:
$\theta, \rho, \pi, \chi, \mathrm{l} \quad$ The five step mappings that comprise a round.
$\operatorname{Keccak}[c] \quad$ The Keccak instance with KECcaK- $f[1600]$ as the underlying permutation and capacity c.

KECCAK- $f[b] \quad$ The family of seven permutations originally specified in [8] as the underlying function for KECCAK. The set of values for the width b of the permutations is $\{25,50,100,200,400,800,1600\}$.
$\operatorname{KeccaK}-p\left[b, n_{r}\right] \quad$ The generalization of the KECCAK- $f[b]$ permutations that is defined in this Standard by converting the number of rounds n_{r} to an input parameter.
pad10*1 The multi-rate padding rule for KECCAK, originally specified in [8].
RawSHAKE128 An intermediate function in the definition of SHAKE128.

RawSHAKE256 An intermediate function in the definition of SHAKE256.
$r c$
The function that generates the variable bits of the round constants.
Rnd The round function of a KECCAK-p permutation.
SHA3-224
SHA3-256

SHA3-384
SHA3-512
The SHA-3 hash function that produces 512-bit digests.
SHAKE128
The SHA-3 XOF that generally supports 128 bits of security strength, if the output is sufficiently long; see Appendix A.1.1.

The SHA-3 XOF that generally supports 256 bits of security strength, if the output is sufficiently long; see Appendix A.1.1.
$\operatorname{SPONGE}[f, \mathrm{pad}, r] \quad$ The sponge function in which the underlying function is f, the padding rule is pad, and the rate is r.

3 KECCAK-p PERMUTATIONS

In this section, the KесcaK-p permutations are specified, with two parameters: 1) the fixed length of the strings that are permuted, called the width of the permutation, and 2) the number of iterations of an internal transformation, called a round. The width is denoted by b, and the number of rounds is denoted by n_{r}. The KECCAK- p permutation with n_{r} rounds and width b is denoted by KесcaK- $p\left[b, n_{r}\right]$; the permutation is defined for any $b \in\{25,50,100,200,400,800$, $1600\}$ and any positive integer n_{r}.

A round of a KECCAK-p permutation, denoted by Rnd, consists of a sequence of five transformations, which are called the step mappings. The set of values for the b-bit input to the permutation, as it undergoes successive applications of the step mappings, culminating in the output, is called the state.

The notation and terminology for the state are described in Sec. 3.1. The step mappings are specified in Sec. 3.2. The KECCAK-p permutations are specified in Sec. 3.3. The relationship of the Keccak- p permutations to the KECcaK-f permutations that were defined for Keccak in [8] is described in Sec. 3.4.

3.1 State

The state for the KEccak-p $\left[b, n_{r}\right]$ permutation is comprised of b bits. The specifications in this Standard contain two other quantities related to $b: b / 25$ and $\log _{2}(b / 25)$, denoted by w and ℓ, respectively. The seven possible values for these variables that are defined for the KECCAK-p permutations are given in the columns of Table 1 below.

b	25	50	100	200	400	800	1600
w	1	2	4	8	16	32	64
ℓ	0	1	2	3	4	5	6

Table 1: KECCAK-p permutation widths and related quantities

It is convenient to represent the input and output states of the permutation as b-bit strings, and to represent the input and output states of the step mappings as $5-$ by-5-by- w arrays of bits.

If S denotes a string that represents the state, then its bits are indexed from 0 to $b-1$, so that

$$
S=S[0]\|S[1]\| \ldots\|S[b-2]\| S[b-1] .
$$

If A denotes a 5-by-5-by- w array of bits that represents the state, then its indices are the integer triples (x, y, z) for which $0 \leq x<5,0 \leq y<5$, and $0 \leq z<w$. The bit that corresponds to (x, y, z) is denoted by $\mathbf{A}[x, y, z]$. A state array is a representation of the state by a three-dimensional array that is indexed in this manner.

3.1.1 Parts of the State Array

Figure 1: Parts of the state array, organized by dimension [8]

The state array for a KЕССаК- p permutation, and its lower-dimensional sub-arrays, are illustrated in Figure 1 above for the case $b=200$, so that $w=8$. The two-dimensional sub-arrays are called sheets, planes, and slices, and the single-dimensional sub-arrays are called rows, columns, and lanes. The algebraic definitions of these sub-arrays are given in the Glossary, in Sec. 2.1.

3.1.2 Converting Strings to State Arrays

Let S denote a string of b bits that represents the state for the KECCAK- $p\left[b, n_{r}\right]$ permutation. The corresponding state array, denoted by \mathbf{A}, is defined as follows:

For all triples (x, y, z) such that $0 \leq x<5,0 \leq y<5$, and $0 \leq z<w$,

$$
\mathbf{A}[x, y, z]=S[w(5 y+x)+z] .
$$

For example, if $b=1600$, so that $w=64$, then

$\mathbf{A}[0,0,0]=S[0]$	$\mathbf{A}[1,0,0]=S[64]$	$\mathbf{A}[2,0,0]=S[128]$	$\mathbf{A}[3,0,0]=S[192]$
$\mathbf{A}[0,0,1]=S[1]$	$\mathbf{A}[1,0,1]=S[65]$	$\mathbf{A}[2,0,1]=S[129]$	$\mathbf{A}[3,0,1]=S[193]$
$\mathbf{A}[0,0,2]=S[2]$	$\mathbf{A}[1,0,2]=S[66]$	$\mathbf{A}[2,0,2]=S[130]$	$\mathbf{A}[3,0,2]=S[194]$
\vdots	\vdots	\vdots	\vdots
$\mathbf{A}[0,0,62]=S[62]$	$\mathbf{A}[1,0,62]=S[126]$	$\mathbf{A}[2,0,62]=S[190]$	$\mathbf{A}[3,0,62]=S[254]$
$\mathbf{A}[0,0,63]=S[63]$	$\mathbf{A}[1,0,63]=S[127]$	$\mathbf{A}[2,0,63]=S[191]$	$\mathbf{A}[3,0,63]=S[255]$

and

$\mathbf{A}[4,0,0]=S[256]$	$\mathbf{A}[0,1,0]=S[320]$	$\mathbf{A}[1,1,0]=S[384]$	$\mathbf{A}[2,1,0]=S[448]$
$\mathbf{A}[4,0,1]=S[257]$	$\mathbf{A}[0,1,1]=S[321]$	$\mathbf{A}[1,1,1]=S[385]$	$\mathbf{A}[2,1,1]=S[449]$
$\mathbf{A}[4,0,2]=S[258]$	$\mathbf{A}[0,1,2]=S[322]$	$\mathbf{A}[1,1,2]=S[386]$	$\mathbf{A}[2,1,2]=S[450]$
\vdots	\vdots	\vdots	\vdots
$\mathbf{A}[4,0,62]=S[318]$	$\mathbf{A}[0,1,62]=S[382]$	$\mathbf{A}[1,1,62]=S[446]$	$\mathbf{A}[2,1,62]=S[510]$
$\mathbf{A}[4,0,63]=S[319]$	$\mathbf{A}[0,1,63]=S[383]$	$\mathbf{A}[1,1,63]=S[447]$	$\mathbf{A}[2,1,63]=S[511]$

etc.

3.1.3 Converting State Arrays to Strings

Let \mathbf{A} denote a state array. The corresponding string representation, denoted by S, can be constructed from the lanes and planes of \mathbf{A}, as follows:

For each pair of integers (i, j) such that $0 \leq i<5$ and $0 \leq j<5$, define the string Lane (i, j) by

$$
\operatorname{Lane}(i, j)=\mathbf{A}[i, j, 0]\|\mathbf{A}[i, j, 1]\| \mathbf{A}[i, j, 2]\|\ldots\| \mathbf{A}[i, j, w-2] \| \mathbf{A}[i, j, w-1] .
$$

For example, if $b=1600$, so that $w=64$, then

$$
\begin{aligned}
& \text { Lane }(0,0)=\mathbf{A}[0,0,0]\|\mathbf{A}[0,0,1]\| \mathbf{A}[0,0,2]\|\ldots\| \mathbf{A}[0,0,62] \| \mathbf{A}[0,0,63] \\
& \text { Lane }(1,0)=\mathbf{A}[1,0,0]\|\mathbf{A}[1,0,1]\| \mathbf{A}[1,0,2]\|\ldots\| \mathbf{A}[1,0,62] \| \mathbf{A}[1,0,63] \\
& \text { Lane }(2,0)=\mathbf{A}[2,0,0]\|\mathbf{A}[2,0,1]\| \mathbf{A}[2,0,2]\|\ldots\| \mathbf{A}[2,0,62] \| \mathbf{A}[2,0,63]
\end{aligned}
$$

etc.
For each integer j such that $0 \leq j<5$, define the string Plane (j) by

$$
\text { Plane }(j)=\operatorname{Lane}(0, j)| | \text { Lane }(1, j)|\mid \text { Lane }(2, j)| \mid \text { Lane }(3, j)|\mid \text { Lane }(4, j) .
$$

Then
S= Plane (0) || Plane (1) || Plane (2) || Plane (3) || Plane (4).

For example, if $b=1600$, so that $w=64$, then

$$
\begin{aligned}
S= & \mathbf{A}[0,0,0]\|\mathbf{A}[0,0,1]\| \mathbf{A}[0,0,2]\|\ldots\| \mathbf{A}[0,0,62] \| \mathbf{A}[0,0,63] \\
& \|\mathbf{A}[1,0,0]\| \mathbf{A}[1,0,1]\|\mathbf{A}[1,0,2]\| \ldots\|\mathbf{A}[1,0,62]\| \mathbf{A}[1,0,63] \\
& \|\mathbf{A}[2,0,0]\| \mathbf{A}[2,0,1]\|\mathbf{A}[2,0,2]\| \ldots\|\mathbf{A}[2,0,62]\| \mathbf{A}[2,0,63] \\
& \|\mathbf{A}[3,0,0]\| \mathbf{A}[3,0,1]\|\mathbf{A}[3,0,2]\| \ldots\|\mathbf{A}[3,0,62]\| \mathbf{A}[3,0,63] \\
& \|\mathbf{A}[3,4,0]\| \mathbf{A}[3,4,1]\|\mathbf{A}[3,4,2]\| \ldots\|\mathbf{A}[3,4,62]\| \mathbf{A}[3,4,63] \\
& \|\mathbf{A}[4,4,0]\| \mathbf{A}[4,4,1]\|\mathbf{A}[4,4,2]\| \ldots\|\mathbf{A}[4,4,62]\| \mathbf{A}[4,4,63] .
\end{aligned}
$$

3.1.4 Labeling Convention for the State Array

In the diagrams of the state that accompany the specifications of the step mappings, the lane that corresponds to the coordinates $(x, y)=(0,0)$ is depicted at the center of the slices. The complete labeling of the x, y, and z coordinates for those diagrams is shown in Figure 2 below.

Figure 2: The x, y, and z coordinates for the diagrams of the step mappings

3.2 Step Mappings

The five step mappings that comprise a round of $\operatorname{KECCAK}-p\left[b, n_{r}\right]$ are denoted by θ, ρ, π, χ, and u . Specifications for these functions are given in Secs. 3.2.1-3.2.5.

The algorithm for each step mapping takes a state array, denoted by \mathbf{A}, as an input and returns an updated state array, denoted by \mathbf{A}^{\prime}, as the output. The size of the state is a parameter that is omitted from the notation, because b is always specified when the step mappings are invoked.

The 1 mapping i_{r} has a second input: an integer called the round index, denoted by i_{r}, which is defined in Algorithm 7 for Keccak- $p\left[b, n_{r}\right]$ (Sec. 3.3). The other step mappings do not depend on the round index.

3.2.1 Specification of $\boldsymbol{\theta}$

Algorithm 1: $\theta(\mathbf{A})$

Input:

state array \mathbf{A}.

Output:

state array \mathbf{A}^{\prime}.
Steps:

1. For all pairs (x, z) such that $0 \leq x<5$ and $0 \leq z<w$, let

$$
C[x, z]=\mathbf{A}[x, 0, z] \oplus \mathbf{A}[x, 1, z] \oplus \mathbf{A}[x, 2, z] \oplus \mathbf{A}[x, 3, z] \oplus \mathbf{A}[x, 4, z] .
$$

2. For all pairs (x, z) such that $0 \leq x<5$ and $0 \leq z<w$ let $D[x, z]=C[(x-1) \bmod 5, z] \oplus C[(x+1) \bmod 5,(z-1) \bmod w]$.
3. For all triples (x, y, z) such that $0 \leq x<5,0 \leq y<5$, and $0 \leq z<w$, let $\mathbf{A}^{\prime}[x, y, z]=\mathbf{A}[x, y, z] \oplus D[x, z]$.

Figure 3: Illustration of θ applied to a single bit [8]

The θ step mapping is illustrated in Figure 3 above.
The effect of θ is to XOR each bit in the state with the parities of two columns in the array. In particular, for the bit $\mathbf{A}\left[x_{0}, y_{0}, z_{0}\right]$, the x-coordinate of one of the columns is $x_{0}-1 \bmod 5$, with the same z-coordinate, z_{0}, while the x-coordinate of the other column is $x_{0}+1 \bmod 5$, with z coordinate $z_{0}-1 \bmod w$. In Figure 3, the summation symbol, \sum, indicates the parity, i.e., the XOR sum of all the bits in the column.

3.2.2 Specification of ρ

Algorithm 2: $\rho(\mathbf{A})$

Input:

state array \mathbf{A}.

Output:

state array \mathbf{A}^{\prime}.

Steps:

1. For all z such that $0 \leq z<w$, let $\mathbf{A}^{\prime}[0,0, z]=\mathbf{A}[0,0, z]$.
2. Let $(x, y)=(1,0)$.
3. For t from 0 to 23:
a. for all z such that $0 \leq z<w$, let $\mathbf{A}^{\prime}[x, y, z]=\mathbf{A}[x, y,(z-(t+1)(t+2) / 2) \bmod w] ;$
b. let $(x, y)=(y,(2 x+3 y) \bmod 5)$.
4. Return \mathbf{A}^{\prime}.

The effect of ρ is to rotate the bits of each lane by a length, called the offset, which depends on the fixed x and y coordinates of the lane. Equivalently, for each bit in the lane, the z coordinate is modified by adding the offset, modulo the lane size. The offsets for each lane that result from the computation in Step 3a in Algorithm 2 are listed in Table 2.

	$\boldsymbol{x}=\mathbf{3}$	$\boldsymbol{x}=\mathbf{4}$	$\boldsymbol{x}=\mathbf{0}$	$\boldsymbol{x}=\mathbf{1}$	$\boldsymbol{x}=\mathbf{2}$
$\boldsymbol{y}=\mathbf{2}$	153	231	3	10	171
$\boldsymbol{y}=\mathbf{1}$	55	276	36	300	6
$\boldsymbol{y}=\mathbf{0}$	28	91	0	1	190
$\boldsymbol{y}=\mathbf{4}$	120	78	210	66	253
$\boldsymbol{y}=\mathbf{3}$	21	136	105	45	15

Table 2: Offsets of ρ [8]

An illustration of ρ for the case $w=8$ is given in Figure 4 below. The labeling convention for the x and y coordinates in Figure 4 is given explicitly in Figure 2, corresponding to the rows and columns in Table 2. For example, the lane $\mathbf{A}[0,0]$ is depicted in the middle of the middle sheet, and the lane $\mathbf{A}[2,3]$ is depicted at the bottom of the right-most sheet.

Figure 4: Illustration of ρ for $b=200$ [8]

For each lane in Figure 4, the black dot indicates the bit whose z coordinate is 0 , and the shaded cube indicates the position of that bit after the execution of ρ. The other bits of the lane shift by the same offset, and the shift is circular. For example, the offset for the lane $\mathbf{A}[1,0]$ is 1 , so the last bit, whose z coordinate is 7 , shifts to the front position, whose z coordinate is 0 . Consequently, the offsets may be reduced modulo the lane size; e.g., the lane for $\mathbf{A}[3,2]$, at the top of the left-most sheet, has an offset of $153 \bmod 8$, i.e., 1 .

3.2.3 Specification of π

Algorithm 3: $\pi(\mathbf{A})$

Input:

state array \mathbf{A}.

Output:

state array \mathbf{A}^{\prime}.
Steps:

1. For all triples (x, y, z) such that $0 \leq x<5,0 \leq y<5$, and $0 \leq z<w$, let

$$
\mathbf{A}^{\prime}[x, y, z]=\mathbf{A}[(x+3 y) \bmod 5, x, z] .
$$

2. Return \mathbf{A}^{\prime}.

The effect of π is to rearrange the positions of the lanes, as illustrated for any slice in Figure 5 below. The convention for the labeling of the coordinates is depicted in Figure 2 above; for example, the bit with coordinates $x=y=0$ is depicted at the center of the slice.

Figure 5: Illustration of π applied to a single slice [8]

3.2.4 Specification of χ

Algorithm 4: $\chi(\mathbf{A})$
Input:
state array \mathbf{A}.
Output:
state array \mathbf{A}^{\prime}.
Steps:

1. For all triples (x, y, z) such that $0 \leq x<5,0 \leq y<5$, and $0 \leq z<w$, let

$$
\mathbf{A}^{\prime}[x, y, z]=\mathbf{A}[x, y, z] \oplus((\mathbf{A}[(x+1) \bmod 5, y, z] \oplus 1) \cdot \mathbf{A}[(x+2) \bmod 5, y, z]) .
$$

2. Return \mathbf{A}^{\prime}.

The dot in the right side of the assignment for Step 1 indicates integer multiplication, which in this case is equivalent to the intended Boolean "AND" operation.

The effect of χ is to XOR each bit with a non-linear function of two other bits in its row, as illustrated in Figure 6 below.

Figure 6: Illustration of χ applied to a single row [8]

3.2.5 Specification of t

In the specification of KECCAK-p[b, $\left.n_{r}\right]$ in Algorithm 7, the step mapping t is parameterized by the round index, i_{r}. In the specification of t in Algorithm 6, this parameter determines $\ell+1$ bits of a lane value called the round constant, denoted by $R C$. Each of these $\ell+1$ bits is generated by a function that is based on a linear feedback shift register. This function, denoted by $r c$, is specified in Algorithm 5.

Algorithm 5: $r c(t)$

Input:

integer t.
Output:
bit $r c(t)$.
Steps:

1. If $t \bmod 255=0$, return 1 .
2. Let $R=10000000$.
3. For i from 1 to $t \bmod 255$, let:
a. $R=0 \| R$;
b. $R[0]=R[0]+R[8]$;
c. $\quad R[4]=R[4]+R[8]$;
d. $\quad R[5]=R[5]+R[8]$;
e. $R[6]=R[6]+R[8]$;
f. $\quad R=\operatorname{Trunc}_{8}[R]$.
4. Return $R[0]$.

Algorithm 6: $\mathfrak{l}\left(\mathbf{A}, i_{r}\right)$

Input:
state array \mathbf{A};
round index i_{r}.

Output:

state array \mathbf{A}^{\prime}.
Steps:

1. For all triples (x, y, z) such that $0 \leq x<5,0 \leq y<5$, and $0 \leq z<w$, let $\mathbf{A}^{\prime}[x, y, z]=\mathbf{A}[x, y, z]$.
2. Let $R C=0^{w}$.
3. For j from 0 to ℓ, let $R C\left[2^{j}-1\right]=r c\left(j+7 i_{r}\right)$.
4. For all z such that $0 \leq z<w$, let $\mathbf{A}^{\prime}[0,0, z]=\mathbf{A}^{\prime}[0,0, z] \oplus R C[z]$.
5. Return \mathbf{A}^{\prime}.

The effect of t is to modify some of the bits of Lane $(0,0)$ in a manner that depends on the round index i_{r}. The other 24 lanes are not affected by 1 .

3.3 KеССАК-p[b, $\left.n_{r}\right]$

Given a state array \mathbf{A} and a round index i_{r}, the round function Rnd is the transformation that results from applying the step mappings θ, ρ, π, χ, and \imath, in that order, i.e.,:

$$
\operatorname{Rnd}\left(\mathbf{A}, i_{r}\right)=\mathfrak{\imath}\left(\chi(\pi(\rho(\theta(\mathbf{A})))), i_{r}\right)
$$

The KECCAK- $p\left[b, n_{r}\right]$ permutation consists of n_{r} iterations of Rnd, as specified in Algorithm 7.

Algorithm 7: KECCAK- $p\left[b, \underline{n_{r}} \underline{\underline{r}}\right](S)$

Input:

string S of length b;
number of rounds n_{r}.

Output:

string S^{\prime} of length b.
Steps:

1. Convert S into a state array, \mathbf{A}, as described in Sec. 3.1.2.
2. For i_{r} from $2 \ell+12-n_{r}$ to $2 \ell+12-1$, let $\mathbf{A}=\operatorname{Rnd}\left(\mathbf{A}, i_{r}\right)$.
3. Convert \mathbf{A} into a string S^{\prime} of length b, as described in Sec. 3.1.3.
4. Return S^{\prime}.

3.4 Comparison with Keccak-f

The Keccak-f family of permutations, originally defined in [8], is the specialization of the Keccak- p family to the case that $n_{r}=12+2 \ell$:

$$
\text { KECCAK- } f[b]=\text { KECCAK }-p[b, 12+2 \ell] .
$$

Consequently, the KECCAK-p[1600, 24] permutation, which underlies the six SHA-3 functions, is equivalent to KECCAK- $f[1600]$.

The rounds of KECCAK- $f[b]$ are indexed from 0 to $11+2 \ell$. A result of the indexing within Step 2
 vice versa. For example, KECCAK-p[1600, 19] is equivalent to the last nineteen rounds of Keccak- f [1600]. Similarly, Keccak-f [1600] is equivalent to the last twenty-four rounds of KECcaK- $p[1600,30]$; in this case, the preceding rounds for $\operatorname{KECCAK-p}[1600,30]$ are indexed by the integers from -6 to -1 .

4 SPONGE CONSTRUCTION

The sponge construction [4] is a framework for specifying functions on binary data with arbitrary output length. The construction employs the following three components:

- An underlying function on fixed-length strings, denoted by f,
- A parameter called the rate, denoted by r, and
- A padding rule, denoted by pad.

The sponge construction is illustrated in Figure 7 below, adapted from [4].

Figure 7: The sponge construction: $Z=\operatorname{SPONGE}[f, \operatorname{pad}, r](M, d)[4]$

The function that is constructed from these components, denoted by SPONGE[f, pad, $r]$, is called a sponge function. The analogy to a sponge is that the function "absorbs" an arbitrary number of input bits into its state, after which an arbitrary number of output bits are "squeezed" out of its state.

The function f maps strings of a single, fixed length, denoted by b, to strings of the same length. As in Sec. 3, b is called the width of f. The SHA-3 functions, specified in Sec. 6 are instances of the sponge construction in which the underlying function f is invertible, i.e., a permutation, although the sponge construction does not require f to be invertible.

The rate r is a positive integer that is strictly less than the width b. The capacity, denoted by c, is the positive integer $b-r$. Thus, $r+c=b$.

The padding rule, pad, is a function that produces padding, i.e., a string with an appropriate length to append to another string. Within the sponge construction, padding is appended to the message to ensure that it can be partitioned into a sequence of r-bit strings. In general, given a positive integer x and a non-negative integer m, the output $\operatorname{pad}(x, m)$ is a string with the property that $m+\operatorname{len}(\operatorname{pad}(x, m))$ is a positive multiple of x. Algorithm 9 in Sec. 5.1 specifies the padding rule for the KECCAK functions and, hence, the SHA-3 functions.

Given these three components, f, pad, and r, as described above, the SPONGE $[f$, pad, $r]$ function is specified by Algorithm 8 on (M, d), where M is the input message to the sponge function, and d is the desired length of the output in bits. The width b is determined by the choice of f.

Algorithm 8: SPONGE $[f, \operatorname{pad}, r](M, d)$

Input:

string M,
nonnegative integer d.

Output:

string Z such that $\operatorname{len}(Z)=d$.
Steps:

1. Let $P=M \| \operatorname{pad}(r, \operatorname{len}(M))$.
2. Let $n=\operatorname{len}(P) / r$.
3. Let $c=b-r$.
4. Let P_{0}, \ldots, P_{n-1} be the unique sequence of strings of length r such that $P=P_{0}\|\ldots\| P_{n-1}$.
5. Let $S=0^{b}$.
6. For i from 0 to $n-1$, let $S=f\left(S \oplus\left(P_{i} \| 0^{c}\right)\right)$.
7. Let Z be the empty string.
8. Let $Z=Z \| \operatorname{Trunc}_{r}(S)$.
9. If $d \leq|Z|$, then return $\operatorname{Trunc}_{d}(Z)$; else continue.
10. Let $S=f(S)$, and continue with Step 8.

Note that the input d determines the number of the bits that Algorithm 8 returns, but it does not affect their values. In principle, the output can be regarded as an infinite string, whose computation, in practice, is halted after the desired number of output bits is produced.

5 Keccak

KЕССак is a family of sponge functions, originally defined in [8]. The padding rule for КЕССак, called multi-rate padding, is specified in Sec. 5.1. The parameters and the underlying permutations for KECCAK are described in Sec. 5.2, and a smaller family of KECCAK functions is specified explicitly, which will suffice to define the SHA-3 functions in Sec. 6.

5.1 Specification of pad10*1

The multi-rate padding rule, denoted by pad10*1, is specified in Algorithm 9.
Algorithm 9: pad10*1(x, m)

Input:

positive integer x;
non-negative integer m.

Output:

string Z such that $m+\operatorname{len}(Z)$ is a positive multiple of x.
Steps:

1. Let $j=(-m-2) \bmod x$.
2. Return $1\left\|0^{j}\right\| 1$.

Thus, the asterisk in "pad10*1" indicates that the " 0 " bit is either omitted or repeated as necessary in order to produce an output string of the desired length.

5.2 Specification of Keccak[c]

KECCAK is the family of sponge functions with the $\operatorname{KECCAK}-p[b, 2 \ell+12]$ permutation (defined in Sec 3.3) as the underlying function and padding rule pad10*1 (defined in Sec. 5.1) as the padding rule. The family is parameterized by any choices of the rate r and the capacity c such that $r+c$ is in $\{25,50,100,200,400,800,1600\}$, i.e., one of the seven values for b in Table 1.

When restricted to the case $b=1600$, the Keccak family is denoted by Keccak $[c]$; in this case r is determined by the choice of c. In particular,

$$
\operatorname{KECCAK}[c]=\operatorname{SPONGE}[\operatorname{KECCAK}-p[1600,24], \operatorname{pad10*} 1,1600-c] .
$$

Thus, given a message M and an output length d,
$\operatorname{Keccak}[c](M, d)=\operatorname{SPONGE}[\operatorname{KECCAK}-p[1600,24], \operatorname{pad10*1,1600-c]}(M, d)$.
In Sec. 6, the variable " M " also represents the message input to the SHA-3 functions, but either two or four bits are appended to this string before $\operatorname{KECCAK}[c]$ is invoked.

6 SHA-3 FUNCTION SPECIFICATIONS

In Sec. 6.1, the four SHA-3 hash functions are defined, and in Sec. 6.2, the two SHA-3 XOFs are defined, via an intermediate function.

6.1 SHA-3 Hash Functions

The four SHA-3 hash functions are defined from the $\operatorname{KECCAK}[c]$ function specified in Sec. 5.2 by appending two bits to the message and by specifying the length of the output, as follows:

$$
\begin{aligned}
& \text { SHA3-224 }(M)=\operatorname{KECCAK}[448](M \| 01,224) \\
& \text { SHA3-256 }(M)=\operatorname{KECCAK}[512](M \| 01,256) \\
& \text { SHA3-384 }(M)=\operatorname{KECCAK}[768](M \| 01,384) \\
& \text { SHA3-512 }(M)=\operatorname{KECCAK}[1024](M \| 01,512) .
\end{aligned}
$$

In each case, the capacity is double the digest length, i.e., $c=2 d$. The two bits that are appended to the message (i.e., 01) support domain separation; i.e., they distinguish the messages for the SHA-3 hash functions from messages for the SHA-3 XOFs discussed in Sec. 6.2, as well as other domains that may be defined in the future.

6.2 SHA-3 Extendable-Output Functions

The two SHA-3 XOFs, SHAKE128 and SHAKE256, are defined from two intermediate functions below, called RawSHAKE128 and RawSHAKE256, which are defined from the $\operatorname{KECCAK}[c]$ function specified in Sec. 5.2.

In particular, if the message is denoted by M, and the output length is denoted by d, then

$$
\begin{aligned}
& \operatorname{RawSHAKE} 128(M, d)=\operatorname{KECCAK}[256](M \| 11, d), \\
& \operatorname{RawSHAKE} 256(M, d)=\operatorname{KECCAK}[512](M \| 11, d) .
\end{aligned}
$$

The two bits that are appended to the message, i.e., 11 in this case, support domain separation.
The two SHA-3 XOFs are
SHAKE128 $(M, d)=\operatorname{RawSHAKE} 128(M \| 11, d)$,

SHAKE256 $(M, d)=\operatorname{RawSHAKE} 256(M \| 11, d)$.
In this case, the bits 11 are appended to the message for compatibility with the Sakura coding scheme [6]. This scheme will facilitate the development of an extension of the functions, called tree hashing [7], in which parallel processing can be applied to compute, and update, digests of long messages more efficiently.

The two SHA-3 XOFs can also be defined directly from KECCAK, as follows:
$\operatorname{SHAKE} 128(M, d)=\operatorname{KECcaK}[256](M \| 1111, d)$,
SHAKE256(M, d) $=\operatorname{KECCAK[512]~}(M \| 1111, d)$.

7 Conformance

Implementations of the KECCAK- $p[1600$, 24] permutation and the six SHA-3 modes of this permutation-SHA3-224, SHA3-256, SHA3-384, SHA3-512, SHAKE128, and SHAKE256may be tested for conformance to this Standard under the auspices of the Cryptographic Algorithm Validation Program [9].

SHA3-224, SHA3-256, SHA3-384, SHA3-512 are approved hash functions, for which approved uses are already specified. SHAKE128, and SHAKE256 are approved XOFs, whose approved uses will be specified in NIST Special Publications.

The KECCAK $-p$ [1600, 24] permutation is only approved for use in the context of approved modes of operations, such as the SHA-3 functions. Similarly, the other intermediate functions that are defined in this Standard-e.g., Keccak[c], RawSHAKE128, and RawSHAKE256-are only approved in the context of an approved mode of operation of the underlying KECCAK- p permutation.

Other KECCAK- p permutations may become approved if any modes of operation for them are developed and approved within a FIPS Publication or a NIST Special Publication.

For every computational procedure that is specified in this Standard, a conforming implementation may replace the given set of steps with any mathematically equivalent set of steps. In other words, different procedures that produce the correct output for every input are permitted.

APPENDIX A: Additional Information

A. 1 Security Analysis

The detailed analysis of the security properties of KECCAK in [8] applies to the SHA-3 family of hash and extendable output functions. The SHA-3 family also inherits security properties from the sponge construction; these properties are analyzed in detail in [4].

Applications of hash functions often require the properties of collision resistance, preimage resistance, and/or second preimage resistance; these properties are summarized for the SHA-3 family of hash functions and XOFs in Sec. A.1.1. XOFs differ from hash functions in the generation of closely related outputs; this important security consideration is discussed in Sec.
A.1.2.

A.1.1 Security Summary

As of the publication of this Standard, the security strengths of the SHA-1, SHA-2, and SHA-3 functions are summarized in Table 3 and discussed below. For the security strength against second preimage attacks on a message M, the function $L(M)$ is defined as $\left\lceil\log _{2}(\operatorname{len}(M) / B)\right\rceil$, where B is the block length of the function, i.e., 512 bits for SHA-1, SHA-224, and SHA-256, and 1024 bits for SHA-512.

Function	Output	Security Strengths in Bits		
		Collision	Preimage	2nd Preimage
SHA-1	160	<80	160	$160-L(M)$
SHA-224	224	112	224	$\min (224,256-L(M))$
SHA-512/224	224	112	224	224
SHA-256	256	128	256	$256-L(M)$
SHA-512/256	256	128	256	256
SHA-384	384	192	384	384
SHA-512	512	256	512	$512-L(M)$
SHA3-224	224	112	224	224
SHA3-256	256	128	256	256
SHA3-384	384	192	384	384
SHA3-512	512	256	512	512
SHAKE128	d	$\min (d / 2,128)$	$\geq \min (d, 128)$	$\min (d, 128)$
SHAKE256	d	$\min (d / 2,256)$	$\geq \min (d, 256)$	$\min (d, 256)$

Table 3: Security strengths of SHA-1, SHA-2, and SHA-3 functions

The four SHA-3 hash functions are alternatives to the SHA-2 functions, and they are designed to provide resistance against preimage, second preimage, and collision attacks which equals or exceeds the resistance that the corresponding SHA-2 functions provide. The SHA-3 functions are also designed to resist other attacks, such as length-extension attacks, that would be resisted by a random function of the same output length, providing security strength up to the hash function's output length in bits, when possible.

The two SHA-3 XOFs are designed to resist collision, preimage, second- preimage attacks, and other attacks that would be resisted by a random function of the requested output length, up to the security strength of 128 bits for SHAKE128, and 256 bits for SHAKE256. A random function whose output length is d bits cannot provide more than $d / 2$ bits of security against collision attacks and d bits of security against preimage and second preimage attacks, so SHAKE128 and SHAKE256 will provide less than 128 and 256 bits of security, respectively, when d is sufficiently small, as described in Table 3.

A.1.2 Additional Consideration for Extendable-Output Functions

XOFs are a powerful new kind of cryptographic primitive that offers the flexibility to produce outputs with any desired length. It is possible to use XOFs as hash functions by selecting a fixed output length. However, XOFs have the potential for generating related outputs-a property that designers of security applications/protocols/systems may not expect of hash functions. This property is important to consider in the development of applications of XOFs.

By design, the output length for an XOF does not affect the bits that it produces, which means that the output length is not a necessary input to the function. Conceptually, the output can be an infinite string, and the application/protocol/system that invokes the function simply computes the desired number of initial bits of that string. In terms of previously standardized cryptographic primitives, these functions behave like a hash function when they are processing input and like a stream function when they are producing output.

Consequently, when two different output lengths are chosen for a common message, the two outputs are closely related: the longer output is an extension of the shorter output. For example, given any positive integers d and e, and any message M, $\operatorname{Trunc}_{d}(\operatorname{SHAKE128}(M, d+e))$ is identical to SHAKE128 (M, d). The same property holds for SHAKE256.

No two distinct SHA-3 functions would be expected to ever exhibit this property in practice. For example, for a randomly chosen message M, SHA3-256(M) will almost certainly not be an extension of SHA3-224(M), or of SHAKE128($M, 224$), even though the three functions have almost identical structure. The same statement applies to previously approved hash functions, including the truncated versions of SHA-512 in FIPS 180-4 (e.g., SHA-512/256).

However, existing mechanisms for constructing functions with arbitrary output length-by concatenating and/or truncating digests from hash functions-generally do exhibit this property.

The possibility of closely related outputs can affect the security of the application/protocol/system that invokes an XOF. For example, a naïve (and non-approved) way for two parties to agree to derive a 112-bit Triple DES key from a message designated as keymaterial would be to compute SHAKE128(keymaterial, keylength), where keylength is 112. However, if an attacker is able to induce one of the parties to use a different value for keylength, say 168 bits, then the two parties will end up with the following keys:

$$
\begin{aligned}
& \text { SHAKE128(keymaterial, 112) }=\mathbf{f g} \\
& \text { SHAKE128(keymaterial, 168) }=\mathbf{f g h},
\end{aligned}
$$

where the bolded letters of the digest represent 56-bit strings, e.g., the parts of a Triple DES key. Because of the structure of Triple DES, these keys are vulnerable to attack.

In practice, the use of an XOF as a key derivation function (KDF) could preclude the possibility of related outputs, by incorporating the length and/or type of the derived key into the message input to the KDF. In that case, a disagreement or misunderstanding between two users of the KDF about the type or length of the key they are deriving would almost certainly not lead to related outputs.

Where extended digests are problematic, a more general solution is domain separation, by which different instances of the XOFs could be created and tailored to different purposes. All of the SHA-3 functions are designed to allow for extensions to new, separate domains that NIST may develop in the future.

A. 2 Examples

Examples of the five step mappings and of the six SHA-3 functions are available at the examples page at NIST's Computer Security Resource Center web site: http://csrc.nist.gov/groups/ST/toolkit/examples.html.

The bit strings for these examples are represented as strings of the sixteen hexadecimal digits: 0 , $1,2,3,4,5,6,7,8,9, A, B, C, D, E$, and F, where A is the digit for ten, B is the digit for eleven, etc. Each digit represents four bits; thus each pair of digits represents eight bits, i.e., a byte. In this section, specific hexadecimal strings are indicated in the Courier New font, preceded by the marker " $0 x$."

The convention for interpreting hexadecimal strings as bit strings for the inputs and outputs of the SHA-3 examples is different from the convention for other functions on the examples page, such as SHA-2: the order of the bits within each complete byte is reversed. Table 4 illustrates the two different interpretations for 0 x A3 as a single byte S :

Family	Interpretation of 0xA3	$S[0]$	$S[1]$	$S[2]$	$S[3]$	$S[4]$	$S[5]$	$S[6]$	$S[7]$
SHA-2	10100011	1	0	1	0	0	0	1	1
SHA-3	11000101	1	1	0	0	0	1	0	1

Table 4: Illustration of bit ordering conventions for a single byte

In both cases the pair of hexadecimal digits can be interpreted as an integer in base 16 with the most-significant digit first; thus, 0 x A3 represents $10 \cdot 16^{1}+3 \cdot 16^{0}$, i.e., 163 . For SHA-2, the binary expansion of this integer is also written in decreasing order in significance, with the most significant bit first; thus, in this example,

$$
10100011=1 \cdot 2^{7}+0 \cdot 2^{6}+1 \cdot 2^{5}+0 \cdot 2^{4}+0 \cdot 2^{3}+0 \cdot 2^{2}+1 \cdot 2^{1}+1 \cdot 2^{0}=163
$$

For SHA-3, by contrast, the least significant bit is first, and the bits increase in significance:

$$
11000101=1 \cdot 2^{0}+1 \cdot 2^{1}+0 \cdot 2^{2}+0 \cdot 2^{3}+0 \cdot 2^{4}+1 \cdot 2^{5}+0 \cdot 2^{6}+1 \cdot 2^{7}=163
$$

In general, each pair of hexadecimal digits in the representation of a SHA-3 string is replaced by eight bits, as illustrated above; the truncation function is applied to the result, if necessary. For example, 0x A3 2E represents 1100010101110100 , so the 14-bit message that is represented by $0 x A 32 \mathrm{E}$ is $\operatorname{Trunc}_{14}(1100010101110100)$, i.e., 11000101011101.

The conversion function from hexadecimal strings to the SHA-3 strings that they represent, denoted $h 2 b$, is formally specified in Algorithm 10.

Algorithm 10: $h 2 b(H, n)$.
Input:
positive integer n;
hexadecimal string H consisting of $2[n / 8]$ digits.

Output:

bit string S such that len $(S)=n$.
Steps:

1. Let $m=\lceil n / 8\rceil$.
2. For each integer i such that $0 \leq i<2 m-1$, let H_{i} be the i th hexadecimal digit in H :
$H=H_{0} H_{1} H_{2} H_{3} \ldots H_{2 m-2} H_{2 m-1}$.
3. For each integer i such that $0 \leq i<m$:
a. Let $h_{i}=16 \cdot H_{2 i}+H_{2 i+1}$.
b. Let $b_{i 0} b_{i 1} b_{i 2} b_{i 3} b_{i 4} b_{i 5} b_{i 6} b_{i 7}$ be the unique sequence of bits such that $h_{i}=b_{i 0} \cdot 2^{0}+b_{i 1} \cdot 2^{1}+b_{i 2} \cdot 2^{2}+b_{i 3} \cdot 2^{3}+b_{i 4} \cdot 2^{4}+b_{i 5} \cdot 2^{5}+b_{i 6} \cdot 2^{6}+b_{i 7} \cdot 2^{7}$.
4. For each pair of integers (i, j) such that $0 \leq i<m$ and $0 \leq j<8$, let $T[8 i+j]=b_{i j}$.
5. Return $S=\operatorname{Trunc}_{n}(T)$.

If the bit length n is not specified explicitly, then $h 2 b(H)$ is assumed to be $h 2 b(H, 4 m)$, where m is the number of hexadecimal digits in H.

The conversion function from SHA-3 strings to the hexadecimal strings that represent them, denoted $b 2 h$, is specified in Algorithm 11.

Algorithm 11: $b 2 h(S)$.

Input:

bit string S.

Output:

hexadecimal string H consisting of $2\lceil\operatorname{len}(S) / 8\rceil$ digits.
Steps:

1. Let $n=\operatorname{len}(S)$.
2. Let $T=S \| 0^{-n \bmod 8}$ and $m=\lceil n / 8\rceil$.
3. For each pair of integers (i, j) such that $0 \leq i<m$ and $0 \leq j<8$, let $b_{i j}=T[8 i+j]$.
4. For each integer i such that $0 \leq i<m$:
a. Let $h_{i}=b_{i 0} \cdot 2^{0}+b_{i 1} \cdot 2^{1}+b_{i 2} \cdot 2^{2}+b_{i 3} \cdot 2^{3}+b_{i 4} \cdot 2^{4}+b_{i 5} \cdot 2^{5}+b_{i 6} \cdot 2^{6}+b_{i 7} \cdot 2^{7}$;
b. Let $H_{2 i}$ and $H_{2 i+1}$ be the unique hexadecimal digits such that $h_{i}=16 \cdot H_{2 i}+H_{2 i+1}$.
5. Return $H_{0} H_{1} H_{2} H_{3} \ldots H_{2 m-2} H_{2 m-1}$.

The formal bit-reordering function that was specified in [10]-for the KECCAK submission to the SHA-3 competition-gives equivalent conversions of byte strings, i.e., when n is a multiple of 8 .

A. 3 Object Identifiers

Object identifiers (OIDs) for SHA3-224, SHA3-256, SHA3-384, SHA3-512, SHAKE128, and SHAKE256 are posted at http://csrc.nist.gov/groups/ST/crypto apps_infra/csor/algorithms.html.

APPENDIX B: References

[1] Federal Information Processing Standards Publication 180-4, Secure Hash Standard (SHS), Information Technology Laboratory, National Institute of Standards and Technology, March 2012, http://csrc.nist.gov/publications/fips/fips180-4/fips-180-4.pdf.
[2] G. Bertoni, J. Daemen, M. Peeters, and G. Van Assche, "Keccak Specifications," Submission to NIST (Round 3), January 2011, http://keccak.noekeon.org/Keccak-submission-3.pdf.
[3] The SHA-3 Cryptographic Hash Algorithm Competition, November 2007-October 2012, http://csrc.nist.gov/groups/ST/hash/sha-3/index.html.
[4] G. Bertoni, J. Daemen, M. Peeters, and G. Van Assche, "Cryptographic sponge functions," January 2011, http://sponge.noekeon.org/CSF-0.1.pdf.
[5] Ethan Heilman to hash-forum@nist.gov, October 5, 2012, Hash Forum, http://csrc.nist.gov/groups/ST/hash/email_list.html.
[6] G. Bertoni, J. Daemen, M. Peeters, and G. Van Assche, "SAKURA: a flexible coding for tree hashing," http://keccak.noekeon.org/Sakura.pdf.
[7] R. C. Merkle, "A digital signature based on a conventional encryption function," Advances in Cryptology - CRYPTO '87, A Conference on the Theory Applications of Cryptographic Techniques, Santa Barbara, California, USA, 1987, 369-378.
[8] G. Bertoni, J. Daemen, M. Peeters, and G. Van Assche, "The KECCAK reference, Version 3.0," January 2011, http://keccak.noekeon.org/Keccak-reference-3.0.pdf.
[9] NIST Cryptographic Algorithm Validation Program (CAVP), http://csrc.nist.gov/groups/STM/cavp/index.html.
[10] G. Bertoni, J. Daemen, M. Peeters, G. Van Assche, and R. Van Keer, "KECCAK implementation overview," January 2011, http://keccak.noekeon.org/Keccak-implementation-3.0.pdf.

[^0]: ${ }^{1}$ More precisely, the competition called for four hash functions, and KECCAK is a larger family of functions.
 ${ }^{2}$ For many hash functions, there is a (very large) bound on the length of the input data.
 ${ }^{3}$ The name "SHAKE" was proposed in [5] to combine the term "Secure Hash Algorithm" with "KECCAK."
 ${ }^{4}$ An exception is when the output length is relatively small; see the discussion in Appendix A.1.1.

