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Encryption 
Standard 
(DES) and 
its strength 
against  attacks 

The  Data  Encryption  Standard  (DES)  was 
developed  by  an IBM team  around 1974 and 
adopted  as  a  national  standard in 1977. Since 
that  time,  many  cryptanalysts  have  attempted 
to find  shortcuts  for  breaking  the  system. In 
this paper,  we  examine  one  such  attempt, the 
method  of  differential  cryptanalysis,  published 
by  Blham  and  Shamir.  We  show  some  of  the 
safeguards  against  differential  cryptanalysis 
that  were  built  into  the  system  from  the 
beginning,  with  the  result  that  more  than 1015 
bytes of  chosen  plaintext  are  required  for  this 
attack  to  succeed. 

Introduction 
Cryptography has long  been  in use by governments, 
particularly in the realms of military  and diplomatic 
communication. It is hard to imagine military 
communication without cryptography; cryptanalysis, or 
secretly deciphering the opponent’s messages, is perhaps 
of even greater value. Much has been written about 
cryptography in the military; see reference [l] for 
example. 

During the early 1970s, it became apparent that the 
commercial sector also has a legitimate  need for 
cryptography. Corporate secrets must be transmitted 
between distant sites, without the possibility of 
eavesdropping by industrial spies. Personal data on 
databases need to be protected against espionage and 
alteration. 

A familiar example is the communication between an 
automatic teller machine  (ATM)  and a central computer. 
The user inserts a magnetic card and types a few numbers. 
The ATM sends messages to the computer. The computer 
checks the account balance and returns a message 
authorizing the ATM to dispense funds. Obviously, if these 
messages are unprotected, a thief  can tap the wires, find 
the message authorizing the dispensing of funds, and send 
multiple copies of that message to the ATM, thereby 
“cleaning out’’ the supply of cash from the ATM. 

develop a system for encrypting ATM data. With this 
problem as a starting point, a team was formed  from 

In the early 1970s, a banking customer asked IBM to 
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people at two IBM sites (Kingston and Yorktown Heights, 
New York). Developers included  Roy Adler, Don 
Coppersmith, Horst Feistel, Edna Grossman, Alan 
Konheim,  Carl  Meyer, Bill Notz, Lynn Smith, Walt 
Tuchman, and Bryant Tuckerman. This team, along with 
several consultants, developed a cryptographic algorithm. 
This  algorithm was then submitted to the National Bureau 
of Standards (NBS, which later became the National 
Institute of Standards and Technology, or NIST) and 
was adopted in  1977 as a national standard: the Data 
Encryption Standard, or DES. The National Security 
Agency (NSA) also provided technical advice to IBM. 

The entire algorithm was published  in the Federal 
Register  [2], but the design considerations, which we 
present here, were not  published at that time. The  design 
took advantage of knowledge of certain cryptanalytic 
techniques, most prominently the technique of “differential 
cryptanalysis,” which were not  known in the published 
literature. After discussions with NSA,  it was decided that 
disclosure of the design considerations would reveal the 
technique of differential cryptanalysis, a powerful 
technique that can be used against many ciphers. This  in 
turn would weaken the competitive advantage the United 
States enjoyed over other countries in the field of 
cryptography. 

disclosure was due to some “trap door” or hidden 
weakness in the DES.  One of the purposes of the present 
paper is to dispel this notion and to indicate that, in fact, 
the reason for not  publishing the criteria lay in the hidden 
strengths of the algorithm,  not  hidden weaknesses. 

Many people speculated, however, that the lack of 

Contents of this paper 
We  begin by describing DES, giving  enough detail to 
understand what follows. We then describe the attack 
based on  differential cryptanalysis. We continue with a 
disclosure of the design criteria of the S-boxes and 
permutation, and a discussion of the role of these criteria 
in defeating differential cryptanalysis. 

Description of DES 
We  give here a brief description of DES, primarily to 
establish terminology. We do not provide the various 
tables that are necessary for a full description of the 
standard; for those, see [2] or [3]. 

under the 56-bit key k, to produce a 64-bit ciphertext 
message block c = E,(m). (The sizes of message blocks 
and keys, 64 bits and 56 bits respectively, are specified in 
the standard.) Decipherment, or recovering plaintext from 
ciphertext, is denoted m = Dk(c ) .  

The plaintext message block m is subjected to an initial 
permutation IP, and the result is broken into two 32-bit 

244 message halves, m, and m,. Intermediate message halves 

We wish to encipher a 64-bit plaintext message block m 
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m,, , mI7 are then created in sixteen rounds, according 
to the procedure described below. Finally, the 64-bit 
ciphertext c is generated by applying the inverse 
permutation IP” to the two message halves m,,, m16. 
(Notice the inversion: ml,, mI6 rather than the natural 
order. This is to allow decryption and encryption to use 
the same hardware.) 

halves m,, m,, m,, * , mI7 are related as follows: 

mi+l = mi-l 0 f(k,,, mi) i = 1, 2, , 16. 

Here k is the secret 56-bit key, and i is the number of the 
round (from 1 through 16).  Also, kp)  is a selection of  48 
bits from the 56 bits of k ;  this selection, or key schedule 
(described in  [2]), depends on the round number, i .  The 
symbol 0 denotes bit-by-bit “exclusive OR” (addition 
modulo  2), which we  call “XOR” in the text. 

Now we describe the function f. There are eight 
S-boxes, SI, , S,, described in the standard. Each 
S-box is a table lookup,  using six bits as input and 
providing four bits as output. For each S-box, say S,, 
six consecutive bits are selected from the 48 bits of 
namely bits 6j - 5, 6j - 4, * * , 6j. Also, six 
consecutive bits are selected from mi, namely bits 
4j - 4, 4j - 3, , 4j + 1 (mod  32).  The  “mod  32”  is 
shorthand for the convention that for j = 1 the bits are 
32, 1, 2, 3,  4, 5, and  for j = 8 the bits are 28,  29,  30,  31, 
32, 1. Two adjacent S-boxes share two message bits; for 
instance, SI uses message bits 32, 1, 2,  3,  4, 5, while S, 
uses message bits 4, 5, 6, 7,  8,  9, and they share bits 4 and 
5. (Key bits are not shared among S-boxes on one round.) 
S, and S, are considered to be “adjacent” because they 
share message bits 32 and 1. 

The six key bits and the six message bits are XORed 
together bitwise, and the resulting six bits are used as 
input for a table lookup. That is, the six inputs to S-box Sj 
at round i are 

The plaintext message halves and intermediate message 

... 
mi[4j + 11 0 +,[6jl, 

or, written another way, 

m1[4j - 4,  4j - 3,  4j - 2, 4j - 1, 4j, 4j + 13 
0 k(J6j - 5, 6j - 4, 6j - 3,  6j - 2, 6j - 1, 6jl. 

Each of the eight S-boxes implements a different table, 
each with 26 entries of four bits each. These tables are 
described in the standard. 

The  eight S-boxes together put out 8 X 4 = 32 bits. 
These bits are permuted according to a permutation P that 
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is fixed for all rounds i. The resulting 32-bit quantity is the 
value  off(k(,,, m,). 

permutation ZP to  produce  two 32-bit message  halves m, 
and m,. Then we  compute  the 32-bit quantityf(k(,,, m,), 
and XOR that  quantity  with m, to  produce m2. We  use  this 
new  quantity m2 to  compute f(k(,,, mJ, and XOR that 
quantity with m, to  produce m3. We  continue in a like 
fashion until m16 and m,, have  been  computed.  These two 
message  halves are interchanged and  then  subjected  to  the 
permutation ZP-’, to produce the ciphertext c. 

Decryption  is  easily  accomplished by a user in 
possession of the  same  key k .  First,  one applies  the 
permutation ZP to c to  produce  the message  halves 
m17,  m16. Next,  one  computesf(k(,,,, m16) and  XORs 
that  quantity  with m,, to  recover mIj. Recalling that 

In  summary, the 64-bit message  undergoes  a 

m17 = m1.5 0 flk(16),  m16)> 

we  have 

m17 flk(16)’ m16) 

= Km1j @ f lk(16)7 m16)l 0 flk(16)’ m16) = ml, 3 

because of the  identity (A 0 B )  0 B = A .  Similarly, one 
computes m,4 = mI6 @f(k , , , , ,  mlj) and  continues in like 
fashion until one has  computed m, and m,. Applying ZP” to 
the  pair (m,,, m,), one recovers  the plaintext message m. 

Any function  could be used in place off,  and  we would 
still have a  reversible encryption method.  Different choices 
off, however,  yield different levels of security in the 
overall  algorithm. The function f used in DES  was 
designed to provide  a high level of security. 

Differential cryptanalysis 
We  present  here  an  overview of the  cryptanalytic  attack 
known  as “differential  cryptanalysis.” The terminology 
and  notation  are  as  presented  by Biham and  Shamir [4] 
(within IBM, the  attack  was formerly  known as  the 
“T attack”).  Our  purpose in presenting  this is to  show 
how  the criteria  for the  S-boxes  and  the  permutation  were 
developed to  thwart  such  attacks. 

A cryptanalyst trying to  break  the  system  may  be in 
possession of large amounts of plaintext and  corresponding 
ciphertext,  but  not  the  secret  key  under which the  text  was 
enciphered. He  knows  the  complete specification of the 
system (ZP, S-boxes, P, key  schedule);  he would like to 
deduce  the key. 

As one  can imagine, if he  starts with  a known plaintext 
m and unknown key k and tries  to  trace  the  encipherment 
through 16 rounds of DES  encryption,  he  soon  becomes 
hopelessly  entangled, because  bits of the  unknown  key k 
are XORed with  the message at  the input of every  S-box. 

In differential cryptanalysis, however, he  starts  with two 
messages, m and m’,  differing by a  known  difference Am. 
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That is, 

Am = m @ m’. 

He considers  the difference between  the  intermediate 
message  halves: 

Am, = mi @ m:. 

The input to  S-box S,,  for example, at  round i of the 
encipherment of message m is 

mi[32,1,2,3,4,51 0 k,,[1,2,3,4,5,61, 

and  the input to SI at  round i of the  encipherment of 
message m ’ is 

m,’[32,1,2,3,4,51 0 kiiJ1,2,3,4,5,61. 

From  the  identity ( a @ c )  0 (b@c) = a a b ,  we  see  that 
the XOR of these two inputs is 

(mi[32,1,2,3,4,51 0 k,,1[l,2,3,4,5,61) 

0 (mJ32,1,2,3,4,51 0 k,,[1,2,3,4,5,61) 

= m,[32,1,2,3,4,5] @ m([32,1,2,3,4,5] 

= Ami[32,1,2,3,4,5]. 

The  dependence on k has  disappeared. 
Now  suppose  that  there is a  relation between input 

differences and  output differences  for some S-box. That is, 
the 64 possible 6-bit inputs  to S, can be divided into 32 
pairs, so that  the XOR of the  two  inputs in each pair  is the 
given nonzero  value Ami[32,1,2,3,4,5]. We call this 
difference AZi,,, because  this  is  the  change of inputs  on  the 
ith round  for SI. For  each  such pair of inputs,  consider the 
pair of 4-bit outputs,  and  consider their  XOR,  called AO,,,. 
Differential cryptanalysis  depends on the  fact  that  many 
input  pairs  with a  given  input  difference AZi,j give rise  to 
the  same  output difference AOi,,. For example, if AZi,l is 
110100, only eight of the 16 possible values of AO;,, can 
occur,  and  one  value of AOi,, (0010) occurs  for eight of the 
32 input  pairs  sharing  the difference AZi,, = 110100. (This 
example  is  from  Table 27 of [4].) 

The quantitiesf(k(,,, mi) andf(ko, mc!) are  the  permuted 
outputs of the S-boxes.  Recall that 

m,+, = mi-1 0 f(k(,), mi), 

m;+, = m;-, 0 f(k,l,, m;). 

h i + ,  = @ mt’+1 

Taking the XOR of these two equations,  we find 

= b - 1  0 f(k(,,, m,)l 0 [mL”, 0 f(k,,, m;)l 

= A”,-, 0 [f(k(,, mi) 0 f (k(L) ,  mJ1. 

So if Ami-, and Ami are known with high probability, and 
if Am, gives  rise to  any difference,f(k(,,, mL) @f(k(, , ,  m,‘), 
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with high probability, we know Ami+, with high 
probability. 

In  differential cryptanalysis, we begin with two 
plaintext messages m and m' with a specified difference 
Am = (Am,,, Am,) (known with certainty). We trace 
through a probable pattern of round-by-round differences 
Am,,  Am,, * , Am,,,  Am,,. If the ciphertexts 
Ek(m) = ZP-'(rnl7,  m,,) and E,(m') = ZP-'(rni7,  mi,) 
exhibit the difference of our probable pattern 

we suspect that this probable pattern is in fact the pattern 
of round-by-round differences.  Assuming this probable 
pattern to be correct, we can then make deductions about 
the key bits on the basis of this one plaintext-ciphertext 
pair, and eventually discover the key. The reader is 
referred to [4] for further discussion. 

Notice that, under the "chosen  plaintext" assumption, 
we can choose the plaintexts m and m' to exhibit a desired 
difference Am, chosen to optimize the cryptanalytic 
process, and  we can observe their ciphertexts 
E,(m) = ZP-'(m17,  m,,) and Ek(m') = ZP-'(mi7,  mi6) 
and their difference ZP-'(AmI7,  Am,,), and compare this 
difference with the difference predicted by the pattern. 
We cannot observe the intermediate results, mi and mi, 
or their differences, Am, (2 I i I 15). 

Differential cryptanalysis will succeed if one of these 
probable patterns, extending over the 16 rounds of the 
encipherment, has a high enough probability that it  will be 
observed among the ciphertext resulting from the corpus 
of chosen plaintext that the cryptanalyst is able to have 
encrypted on  his  behalf.  In fact, a given probable pattern 
has only a very low probability of matching a given  pair of 
messages for the entire 16 rounds, so that an enormous 
number of plaintext messages (more than must  be 
enciphered in order to have a reasonable probability of 
success. 

Biham  and Shamir [5] show ways to bypass the 
requirements of matching the probable pattern on the first 
one or two rounds and the last one or two rounds of the 
encipherment, so that the probable pattern need only be 
matched during twelve rounds of encipherment, rather 
than sixteen. This is significant, because the probability 
of existence of a given pattern decreases roughly 
exponentially with the length of the pattern. 

With a particular probable pattern in mind, we say that 
S-box Si is active on round i if AZi,j (the set of six bits of 
Am, that are input to S,) is not all zero. For each active 
S-box on each round, we can calculate the probability that 
the predicted value arises from the input AZ,,j, given 
that all input pairs resulting in AZi,, are equally likely. To a 
first approximation, we can estimate the probability of the 
entire probable pattern as the multiplicative product of 
these individual probabilities over all of the active S-boxes 246 
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on all 12 or 16 rounds. (In doing so, we are treating the 
events at different S-boxes on  different rounds as being 
statistically independent, while they are in fact dependent; 
this makes the analysis easier without materially affecting 
the outcome.) As the number of rounds increases, the total 
number of active S-boxes on these rounds also increases, 
and the probability decreases exponentially. 

History  and  discussion 
Differential cryptanalysis was not  known in the open 
literature until quite recently. Some of the ideas were 
present in Bert Den Boer's 1988 cryptanalysis [6] of the 
four-round FEAL cryptographic scheme proposed by 
NTT. This cryptanalysis examined the difference between 
encryptions of two related chosen plaintext messages. At 
the Securicom meeting in 1989, Adi Shamir demonstrated 
an attack against an eight-round, shortened version of 
DES, but without making the techniques known; he and 
Eli  Biham  had been investigating differential cryptanalysis 
since 1988. In 1990, Sean Murphy published the method 
[7], as used in his cryptanalysis of NTT's newer, eight- 
round version of FEAL. This was soon followed by 
several papers of  Biham and Shamir, among  them 
[4, 5,  8, 91. 

Differential cryptanalysis was well known, however, 
to the IBM team that designed DES, as early as 
1974. Knowledge of this technique, and the necessity to 
strengthen DES against attacks using  it, played a large part 
in the design of the S-boxes and the permutation P .  We 
list the relevant design criteria employed during the design 
of the S-boxes and the permutation, and show how they 
contributed to the defense of DES against differential 
cryptanalysis. (Many of these criteria have been noted in 
the open literature; see for example [lo], where several of 
the criteria were discovered by reverse engineering.) 
Because of this careful design, a differential cryptanalysis 
attack against DES requires enormous amounts of chosen 
plaintext. Biham  and  Shamir [5] estimate the amount of 
plaintext necessary for their attack as 247.2 = 1.6 x 1014 
chosen plaintext messages (of eight bytes each), or more 
than 1.2 X lo1' bytes of chosen plaintext. 

It is important to notice that these messages are chosen 
plaintext. The attacker must arrange for this much 
plaintext to be enciphered by a target machine, namely, a 
machine  in possession of the secret key.  In general, this is 
much  more  difficult to arrange than computations on one's 
own  machine.  Biham  and Shamir's attack aroused much 
interest because the number of chosen plaintext messages, 
247.2, was less than the number of encipherments, 
256 = 7.2 x lo',, required for "key exhaustion," or 
trying  all possible keys until one finds the correct one. But 
the comparison is between chosen plaintext messages 
(encipherments on the target machine)  and computations 
on one's own  machine, so that a direct one-for-one 
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comparison is misleading.  At any rate, the amount of 
necessary chosen plaintext is so enormous as to render the 
attack infeasible. 

We remark that iterated encryption enhances the 
strength of DES against both key exhaustion and 
differential cryptanalysis. Some installations use  triple 
encryption under two independent keys (encipher under 
the first  key, decipher the result under the second key, and 
re-encipher the result under the first  key).  This raises the 
cost of key exhaustion to 211* = 5 X encipherments 
(but see [ll] for a decrease in this estimate when a large 
corpus of known plaintext and corresponding ciphertext is 
available), while the cost of differential cryptanalysis 
suffers an exponential growth to something exceeding 
chosen plaintexts and corresponding ciphertexts. At this 
point the size of message space (2@ = 1.8 X 1019 possible 
messages of  64 bits) becomes the limiting factor in 
security. 

did not publish any reference to it. That was because the 
tool can be a very powerful cryptanalytic tool,  useful 
against  many schemes, and there was concern that placing 
such information in the public  domain  could adversely 
affect national security. 

The IBM team knew about differential cryptanalysis but 

Design  criteria 
We list here the criteria tor the S-boxes and the 
permutation P, which were used in the original 
specifications, and which are satisfied by the 
design of DES. 

The relevant criteria for the S-boxes are as 
follows: 

(S-1) Each S-box has six bits of input  and four bits of 
output. (This was the largest size that we could 
accommodate and  still fit all  of DES onto a single 
chip in 1974 technology.) 

(S-2) No output bit of  an S-box should be too close to a 
linear function of the input bits. (That is, if we 
select any output bit position and any subset of the 
six input bit positions, the fraction of inputs for 
which this output bit equals the XOR of these input 
bits should not  be close to 0 or 1, but rather should 
be near 1/2.) 

(S-3) If we fix the leftmost  and  rightmost  input bits of the 
S-box and vary the four middle bits, each possible 
4-bit output is attained exactly once as the middle 
four input bits range over their 16 possibilities. 

(S-4) If two inputs to an S-box differ  in exactly one bit, 
the outputs must  differ  in at least two bits. (That is, 
if I A Z j , j l  = 1, then IAOi,jl 2 2, where 1x1 is the 
number of 1-bits in the quantityx.) 

(S-5) If two inputs to an S-box differ  in the two middle 
bits exactly, the outputs must  differ  in at least two 
bits. (If AZi,j = 001100, then IAO,,,I 2 2.) 

(S-6) If two inputs to an S-box differ  in their  first two bits 
and are identical in their last two bits, the two 
outputs must  not be the same. (If = llxy00, 
where x and y are arbitrary bits, then AO,,j f 0.) 

(S-7) For any nonzero 6-bit  difference between inputs, 
AZj,,, no  more than eight of the 32 pairs of inputs 
exhibiting AZi,, may result in the same output 
difference AO,,,. 

(S-8) Similar to (S-7), but with stronger restrictions in the 
case AOi,, = 0, for the case of three active S-boxes 
on  round i .  See the discussion below. 

Other criteria dealt with ease of implementation; those 
presented above are the only cryptographically relevant 
criteria. 

The criteria for the permutation P are the following: 

(P-1) The four output bits  from  each S-box at round i are 
distributed so that two of them  affect (provide input 
for) “middle bits” of S-boxes at round i + 1 (the 
two middle bits of input to an S-box, not shared 
with adjacent S-boxes), and the other two  affect 
“end bits” (the two left-hand bits or the two  right- 
hand bits, which are shared with adjacent S-boxes). 

(P-2) The four output bits from  each S-box affect six 
different S-boxes; no two affect the same S-box. 
(Remember that each “end bit” affects two adjacent 
S-boxes.) 

(P-3) For two S-boxes j ,  k ,  if  an output bit  from S, 
affects a middle bit of S,, then an output bit  from S, 
cannot affect a middle  bit  of S,. This  implies that in 
the case j = k ,  an output bit  from S, must  not 
affect a middle  bit of S,. 

Discussion of criteria 
(S-2) was needed because the S-boxes constitute the only 
nonlinear part of DES. If they were linear [each output bit 
being a linear combination of the input bits in the finite 
field GF(2)], the entire algorithm  would  be linear and thus 
trivially broken; if they were close to being linear, the 
entire algorithm  would be too close to linearity, and thus 
susceptible to attacks based on near-linearity. 

Most of the criteria are aimed at increasing the number 
of active S-boxes involved over the 12 or 16 rounds of the 
probable pattern. If this total number  is n, then (S-7), 
along  with the simplifying assumption of independence, 
puts an upper  bound of (1/4)“ on the overall probability of 
this probable pattern. 247 
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At least one of any two consecutive rounds i ,  i + 1 
must  have a nonzero number of active S-boxes; otherwise 
the pattern is the trivial one of  all 0’s over all rounds. 
Suppose that round i has at least one active S-box. We 
break our analysis into cases, based on the number of 
active S-boxes on round i .  In each case, we show that if 
round i has a small nonzero number of active S-boxes, 
then either round i - 1 or round i + 1 has at least one 
active S-box as well.  The  goal  is to show that, summing 
over the 12 or 16 rounds of the pattern, there will  be a 
large  number of active S-boxes, on average at least 1.6 
per round. 

Two active S-boxes 
Suppose first that round i has exactly two active S-boxes 
and that they are adjacent, Si and Sit,. (The nonadjacent 
case is  similar to the case of one active S-box, which  is 
treated below.) Because Sj-,  is inactive on this round, we 
know that the two left-hand bits of AZi,, are zero; because 
S,,, is inactive on this round, the two right-hand bits 
of AZi,j+l are zero. We claim that either AOi,, f 0 or 
AOi,,+, f 0 (or both); the proof  is by contradiction. If 
do,,, = 0, then (S-3) and the fact that the left-hand two bits 
of AZiJ are 0 together  imply  that the rightmost  bit of NiJ is 1. 
[We  know that  the  leftmost  bit  is 0. If the  rightmost  bit were 
also 0, this  would  imply that for  the two inputs to S, on 
round i in the two encipherments, m and m’, the  leftmost 
and  rightmost  input  bits of Sj would  be  fixed.  Some  of the 
other four  bits are vaned, however. (S-3) implies that 
the two outputs must  be  different, so AOiJ f 0. This 
contradicts our assumption, so we  conclude  the  rightmost 
bit  is 1.1 Because of the sharing of message  bits,  the 
rightmost  bit  of gJ is  also the second  bit  from  the  left of 
AZiJtl. Similarly, if AOijtl = 0, then  (S-3)  and the fact 
that the two right-hand  bits of AZ,Jtl are 0 imply  that  the 
leftmost  bit of AZiJtl is 1. Combining these  facts: if 
AOiJ = AOi,jtl = 0, then MiJtl is of the  form 11xyoO. In 
this case, (S-6)  implies  that AOiJtl f 0. The  conclusion  is 
that  we  cannot  have AOiJ = AOiJ+l = 0. 

f(k,,, m,) 0 f(k(,, m:) = Amitl 0 Ami-, , 
we see that each of the nonzero bits of AOi,,, AOij+, 
(there is at least one such nonzero bit) forces the 
corresponding bit of either Ami-, or Ami,, to be nonzero. 
Thus, either round i - 1 or round i + 1 (or both) has at 
least one active S-box. 

This contributes to our conclusion that there will be a 

Remembering that the bits of AOi,i,  AOi,j+l are part of 

large  number of active S-boxes over the course of the 
12-round or 16-round pattern. 

One active S-box 
Suppose next that round i has only one active S-box, 

248 namely S,. Because Si-, is inactive on this round, we 
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know that the two left-hand bits of AZi,, are zero; because 
S,,, is inactive on this round, the two right-hand bits of 
AZi,, are zero. Now either (S-4) (if only one of the middle 
bits of AZi,, is 1) or (S-5) (if they are both 1) implies that 
IAOi,,I 2 2. As stated before, AOi,, is part of 

Amit, 0 Ami-, 7 

and each of the (at least two) nonzero bits of AOi,i forces 
an active S-box either in round i - 1 or in round i + 1. 
Because of  (P-2), there are at least two different active 
S-boxes included  in rounds i - 1 and i + 1 together. 
As before, this helps assure us that there will be a large 

number of active S-boxes over the course of the 12-round 
or 16-round pattern. 

Consider the possibility of exactly one active S-box per 
round. Suppose lAOi,,l = 2, its minimum possible value. 
Of the two 1-bits in AOi,,, one cancels the 1-bit that had 
activated some S-box, say Sa, on round i - 1, and the 
other activates S, on round i + 1. Because only one box 
is activated by each bit, the bit  must be one of the two 
middle inputs to the S-box in each instance. That is, an 
output bit  from Si affects a middle  input  bit of Sa, and  an 
output bit  from Sa affects a middle input bit of S-box j .  
But (P-3) outlaws this situation, so a pattern of exactly one 
active S-box per  round  is  impossible. 

By these and  similar arguments, we find a lower bound 
on the average number of active S-boxes per round. 
Except in the case of “three active S-boxes” (see below), 
this lower bound works out to an average of  1.6 active 
S-boxes per round.  By (S-7) and the simplifymg 
assumptions of statistical independence, each active S-box 
contributes a multiplicative factor of at most 1/4 to the 
probability of a given probable pattern. Thus, we have 
effectively constrained the probability of such a probable 
pattern to be less than some minuscule upper bound, of 
the order of 

Three active S-boxes 
The  most  promising case for the cryptanalyst (thus the 
most  difficult case for the designers of the system) turns 
out to be three adjacent active S-boxes S,, Sjtl, and S,,, 
on one round i ,  and  no active S-boxes on adjacent rounds 
i - 1 and i + 1. Extending this pattern, we have three 
adjacent active S-boxes on even-numbered rounds and 
none on odd-numbered rounds. 

A feature of this type of pattern is that, for i even, we 
have Amitl = 0, so that AOitl,, = 0 for allj, and 

f(k,,,), mjtJ 0 f(k(itl)9 m;+J = h i  0 h i t ,  = 0. 

This  implies that 

Ami = Amit2 = Ami+4 = * . 
We need only examine one nonzero value of Ami, and the 
same analysis holds for rounds i + 2, i + 4, . 
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The analysis is similar to the case of two active S-boxes 
previously discussed. The three S-boxes have a total of 14 
input bits, which  we  label as in Figure l(a). The labeled 
bits such as a and b are understood to  be XORs of input 
bits, i.e., part of Ami. Since Ami-1 = Ami+l = 0, we must 
have AOi,k = 0 for all k .  Since j - 1 is inactive, the 
leftmost two bits of AZ,,j are 0. That fact, together with 
AOi,j = 0 and criterion (S-3), enable us to conclude (as we 
did  in the case of two active S-boxes) that the  rightmost 
bit of A4,j  is 1. Similarly, the rightmost two bits of AZi , j+z  

are 0, and the leftmost bit is 1. So far, our knowledge of 
the input bits is as summarized in Figure l(b). 

applying (S-3) to Sj+l, we  find that e = 1, so our 
information  is as in  Figure l(c). That is, 

Applying (S-6) to Sj+2,  we find that j = 0. Then, 

= 0 0 c d 1 1, 

AZi,J+, = 1 1 g h 10, 

A4,j+2 = 1 0 k m 0 0. 

The unknown bits (c, d, g, h, k, m) are the middle two bits 
of each S-box, not shared with adjacent S-boxes. This 
simplifies the subsequent analysis. 

To find the attack with the highest probability of 
success, we choose bits c, d so as to maximize the 
probability that AOi,j = 0 given that AZi,j = 0 0 c d 1 1. 
Making  similar choices of bits g, h and k, m, we can 
estimate the probability that "0, = 0, given the choice of 
location of the S-boxes S,, SJ+l, and Sj+,. We maximize 
this over the eight choices of j = 1, 2, , 8 (S, and SI 
are considered to be adjacent) to find the most  likely 
pattern of this form, which occurs when j = 1 and 
Ami = 19600000 (hex). This choice leads to the following 
probabilities: 

for A4,1 = 0 0 0 0 1 1, prob(AOi,, = 0) = 7/32, 

for AZi,2 = 1  1 0 0 1 0, prob(AOi,2 = 0) = 4/32, 

for A4,3 = 1 0 1 1 0 0, prob(AOi,3 = 0) = 5/32. 

Thus, 

prob[AO, = OIAmi = 19600000 (hex)] 

7 4 5 3 5  
32  32  32  8192 

= - ) ( - x - = -  

= 0.004272. 

This is the pattern investigated in [4, 51. 
Because this situation (three active S-boxes on even- 

numbered rounds, alternating with 0 active S-boxes on 
odd-numbered rounds) is so attractive to the cryptanalyst, 
the design  team instituted condition (S-8) to lower the 
probability of success with such a pattern. With this 
background, we can now state (S-8): 
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a b c d e f g h i j k m n p  
& 

'1 +2 

r- I 

I I ' j  +I 

(C) 

f Three stages of knowledge about inputs to three S-boxes: (a) ini- 1 tially; (b) partial knowledge; (c) with eight bits determined. 

(S-8) Define 

qo,j = max prob(AOt,, = OIA(,j = 0 0 c d 1 l), 
c.d 

ql,j = max prob(AOi,j = O(A4,j = 1  1 g h IO), 
0 

q2,j = max prob(AUi,j = 01A4,j = 1 0 k m 0 0 ). 
lqn 

Arrange S-boxes so as to minimize 
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As stated above, the objective function we achieved 
was 

7 4 5 3 5  
32 32 32  8192 ’ 

obtained when j = 1. 

- x - x - = -  

Linear  cryptanalysis 
Very recently, Mitsuru Matsui has developed a 
related attack (not yet published), known as “linear 
cryptanalysis.” This attack is stronger than differential 
cryptanalysis on two counts: It uses less text (about 
1014 rather than 1015 characters), and it requires known 
plaintext and corresponding ciphertext, rather than chosen 
plaintext. Text must still be enciphered on a machine 
containing the secret key, but the cryptanalyst can use 
any such text, without needing to specify it  himself. Of 
course, collecting this amount of known plaintext and 
corresponding ciphertext from the attacked machine is 
still a huge  logistical problem, and this attack does not 
represent a viable threat against DES; it is still  much more 
difficult than simple key exhaustion. 

The design criterion related to this attack is (S-2). The 
following stronger criterion (S-2’) would  be  more  useful, 
but to the best of my recollection it was not part of the 
design criteria: 

(S-2’ ) No linear combination of output bits of an S-box 
should be too close to a linear function of the input 
bits. (That is, if we select any subset of the four 
output bit positions and any subset of the six input 
bit positions, the fraction of inputs for which the 
XOR of these output bits equals the XOR of these 
input bits should not be close to 0 or 1, but rather 
should be near 1/2.) 

Neither (S-2) nor (S-2’) can be achieved perfectly, with  all 
probabilities being exactly equal to 1/2. However, the fact 
that (S-2) was a design criterion and was almost achieved 
helped DES to resist this new attack. Even higher 
resistance could have been achieved by including (S-2’). 
One  could achieve tighter controls [probabilities much 
closer to 1/2 for both (S-2) and (S-2‘)] by using larger 
S-boxes. Using a larger number of rounds would also 
blunt this attack. Future cryptographic systems should 
take these modifications into consideration. 

Summary:  Design  criteria  and  differential 
cryptanalysis 
We have summarized Biham and Shamir’s attack. We have 
outlined the criteria that IBM used to design the S-boxes 
and permutation. These criteria were developed 
specifically to thwart attacks based on differential 

cryptanalysis; we have shown here the relationship 
between these criteria and these attacks. 

A measure of the success of  IBM’s approach to the 
design of S-boxes and permutation is the enormous amount 
of chosen plaintext (in excess of 1015 bytes) required by 
Riham and Shamir’s attack. 
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