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t. We present an atta
k on plain ElGamal and plain RSA en-
ryption. The atta
k shows that without proper prepro
essing of theplaintexts, both ElGamal and RSA en
ryption are fundamentally inse-
ure. Namely, when one uses these systems to en
rypt a (short) se
retkey of a symmetri
 
ipher it is often possible to re
over the se
ret keyfrom the 
iphertext. Our results demonstrate that prepro
essing mes-sages prior to en
ryption is an essential part of both systems.1 Introdu
tionIn the literature we often see a des
ription of RSA en
ryption as C = hMei modN (the publi
 key is hN; ei) and a des
ription of ElGamal en
ryption as C =hMyr; gri mod p (the publi
 key is hp; g; yi). Similar des
riptions are also givenin the original papers [17, 9℄. It has been known for many years that this simpli-�ed des
ription of RSA does not satisfy basi
 se
urity notions, su
h as semanti
se
urity (see [6℄ for a survey of atta
ks). Similarly, a version of ElGamal 
om-monly used in pra
ti
e does not satisfy basi
 se
urity notions (even under theDe
ision DiÆe-Hellman assumption [5℄) 1. To obtain se
ure systems using RSAand ElGamal one must apply a prepro
essing fun
tion to the plaintext priorto en
ryption, or a 
onversion to the en
ryption fun
tion (see [10, 16, 13℄ forinstan
e). Re
ent standards for RSA [15℄ use Optimal Asymmetri
 En
ryption1 Implementations of ElGamal often use an element g 2 Z�p of prime order q where q ismu
h smaller than p. When the set of plaintexts is equal to the subgroup generatedby g, the De
ision DiÆe Hellman assumption implies that ElGamal is semanti
allyse
ure. Unfortunately, implementations of ElGamal often en
rypt an m-bit messageby viewing it as an m-bit integer and dire
tly en
rypting it. The resulting system isnot semanti
ally se
ure { the 
iphertext leaks the Legendre symbol of the plaintext.



Padding (OAEP) whi
h is known to be se
ure against a 
hosen 
iphertext atta
kin the random ora
le model [4℄. Currently, there is no equivalent prepro
essingstandard for ElGamal en
ryption, although several proposals exist [1, 10, 16, 13℄.Unfortunately, many textbook des
riptions of RSA and ElGamal do not viewthese prepro
essing fun
tions as an integral part of the en
ryption s
heme. In-stead, 
ommon des
riptions are 
ontent with an explanation of the plain systems.In this paper we give a simple, yet powerful, atta
k against both plain RSAand plain ElGamal en
ryption. The atta
k illustrates that plain RSA and plainElGamal are fundamentally inse
ure systems. Hen
e, any des
ription of these
ryptosystems 
annot ignore the prepro
essing steps used in full RSA and fullElGamal. Our atta
k 
learly demonstrates the importan
e of prepro
essing. It
an be used to motivate the need for prepro
essing in introdu
tory texts.Our atta
k is based on the fa
t that publi
 key en
ryption is typi
ally usedto en
rypt session-keys. These session-keys are typi
ally short, i.e. less than 128bits. The atta
k shows that when using plain RSA or plain ElGamal to en
ryptan m-bit key, it is often possible to re
over the key in time approximately 2m=2.In environments where session-keys are limited to 64-bit keys (e.g. due to gov-ernment regulations), our atta
k shows that both plain RSA and plain ElGamalresult in a 
ompletely inse
ure system. We experimented with the atta
k andshowed that it works well in pra
ti
e.1.1 Summary of resultsSuppose the plaintext M is m bits long. For illustration purposes, when m = 64we obtain the following results:{ For any RSA publi
 key hN; ei, given C =Me mod N it is possible to re
overM in the time it takes to 
ompute 2 � 2m=2 modular exponentiations. Theatta
k su

eeds with probability 18% (the probability is over the 
hoi
e ofM 2 f0; 1; : : : ; 2m � 1g). The algorithm requires 2m=2m bits of memory.{ Let hp; g; yi be an ElGamal publi
 key. When the order of g is at most p=2m,it is possible to re
over M from any ElGamal 
iphertext of M in the timeit takes to 
ompute 2 � 2m=2 modular exponentiations. The atta
k su

eedswith probability 18% (over the 
hoi
e of M), and requires 2m=2m bits ofmemory.{ Let hp; g; yi be an ElGamal publi
 key. Suppose p � 1 = qs where s > 2mand the dis
rete log problem for subgroups of Z�p of order s is tra
table, i.e.takes time T for some small T . When the order of g is p � 1, it is possibleto re
over M from any 
iphertext of M in time T and 2 � 2m=2 modularexponentiations. The atta
k su

eeds with probability 18% (over the 
hoi
eof M), and requires 2m=2m bits of memory.{ Let hp; g; yi be an ElGamal publi
 key. Suppose again p � 1 = qs wheres > 2m and the dis
rete log problem for subgroups of Z�p of order s takestime T for some small T . When the order of g is either p�1 or at most p=2m,it is possible to re
over M from any 
iphertext of M in time T plus onemodular exponentiation and 2 � 2m=2 additions, provided a pre
omputation



step depending only on the publi
 key. The su

ess probability is 18% (overthe 
hoi
e of M). The pre
omputations take time 2m=2T and 2m=2 modu-lar exponentiations. The spa
e requirement 
an optionally be de
reased to2m=4 log2 s bits without in
reasing the 
omputation time, however with aloss in the probability of su

ess.All atta
ks 
an be parallelized, and o�er a variety of trade-o�s, with respe
t tothe 
omputation time, the spa
e requirement, and the probability of su

ess. Forinstan
e, the su

ess probability of 18% 
an be raised to 35% if the 
omputationtime is quadrupled. Note that the �rst result applies to RSA with an arbitrarypubli
 exponent (small or large). The atta
k be
omes slightly more eÆ
ient whenthe publi
 exponent e is small. The se
ond result applies to the usual methodin whi
h ElGamal is used in pra
ti
e. The third result applies when ElGamalen
ryption is done in the entire group, however p�1 has a small smooth fa
tor (a64-bit smooth fa
tor). The fourth result de
reases the on-line work of both these
ond and the third results, provided an additional pre
omputation stage. It
an optionally improve the time/memory trade-o�. The third and fourth resultsassume that p� 1 
ontains a smooth fa
tor: su
h a property was used in otheratta
ks against dis
rete-log s
hemes (see [2, 14℄ for instan
e).1.2 Splitting probabilities for integersOur atta
ks 
an be viewed as a meet-in-the-middle method based on the fa
tthat a relatively small integer (e.g., a session-key) 
an often be expressed asa produ
t of mu
h smaller integers. Note that re
ent atta
ks on padding RSAsignature s
hemes [7℄ use related ideas. Roughly speaking, these atta
ks expe
t
ertain relatively small numbers (su
h as hashed messages) to be smooth. Here,we will be 
on
erned with the size of divisors. Existing analyti
 results for thebounds we need are relatively weak. Hen
e, we mainly give experimental resultsobtained using the Pari/GP 
omputer pa
kage [3℄.Let M be a uniformly distributed m-bit integer. We are interested in theprobability that M 
an be written as:{ M =M1M2 with M1 � 2m1 and M2 � 2m2 . See table 1 for some values.{ M =M1M2M3 with Mi � 2mi . See table 2 for some values.{ M =M1M2M3M4 with Mi � 2mi . See table 3 for some values.The experimental results given in the tables have been obtained by fa
toringa large number of randomly 
hosen m-bit integers with uniform distribution.Some theoreti
al results 
an be obtained from the book [11℄. More pre
isely, for1=2 � � < 1, let P�(m) be the probability that a uniformly distributed integerM in [1 : : : 2m � 1℄ 
an be written as M =M1M2 with both M1 and M2 less orequal to 2�m. It 
an be shown that P1=2(m) tends (slowly) to zero as m grows toin�nity. This follows (after a little work) from results in [11℄[Chapter 2℄ on thenumber H(x; y; z) of integers n � x for whi
h there exists a divisor d su
h thaty � d < z. More pre
isely, the following holds (where log denotes the neperian



logarithm): P1=2(m) = O� log logm � plogmmÆ � ; (1)where Æ = 1 � 1+log log 2log 2 � 0:086. On the other hand, when � > 1=2, P�(m)no longer tends to zero, as one 
an easily obtain the following asymptoti
 lowerbound, whi
h 
orre
ts [8, Theorem 4, p 377℄:lim inf P�(m) � log(2�); (2)This is be
ause the probability must in
lude all numbers that are divisible bya prime in the interval [2m=2; 2�m℄, and the bound follows from well-knownsmoothness probabilities.Our atta
ks o�er a variety of trade-o�s, due to the freedom in the fa
tor-ization form, and in the 
hoi
es of the mi's: the splitting probability gives thesu

ess probability of the atta
k, the other parameters determine the 
ost interms of storage and 
omputation time.Table 1. Experimental probabilities of splitting into two fa
tors.Bit-length m m1 m2 Probability40 20 20 18%21 21 32%22 22 39%20 25 50%64 32 32 18%33 33 29%34 34 35%30 36 40%
Table 2. Experimental probabilities of splitting into three fa
tors.Bit-length m m1 = m2 = m3 Probability64 22 4%23 6.5%24 9%25 12%

1.3 Organization of the paperIn Se
tion 2 we introdu
e the subgroup rounding problems whi
h inspire all ouratta
ks. In Se
tion 3 we present rounding algorithms that break plain ElGamal



Table 3. Experimental probabilities of splitting into four fa
tors.Bit-length m m1 = m2 = m3 = m4 Probability64 16 0.5%20 3%en
ryption when g generates a \small" subgroup of Z�p. Using similar ideas, wepresent in Se
tion 4 an atta
k on plain ElGamal en
ryption when g generatesall Z�p, and an atta
k on plain RSA in Se
tion 5.2 The subgroup rounding problemsRe
all that the ElGamal publi
 key system [9℄ en
rypts messages in Z�p for someprime p. Let g be an element of Z�p of order q. The private key is a number inthe range 1 � x < q. The publi
 key is a tuple hp; g; yi where y = gx mod p.To en
rypt a message M 2 Zp the original s
heme works as follows: (1) pi
k arandom r in the range 1 � x < q, and (2) 
ompute u = M � yr mod p and v =gr mod p. The resulting 
iphertext is the pair hu; vi. To speed up the en
ryptionpro
ess one often uses an element g of order mu
h smaller than p. For example,p may be 1024 bits long while q is only 512 bits long.For the rest of this se
tion we assume g 2 Z�p is an element of order q whereq � p. For 
on
reteness one may think of p as 1024 bits long and q as 512 bitslong. Let Gq be the subgroup of Z�p generated by g. Observe that Gq is extremelysparse in Z�p. Only one in 2512 elements belongs to Gq . We also assume M is ashort message of length mu
h smaller than log2(p=q). For example, M is a 64bits long session-key.To understand the intuition behind the atta
k it is bene�
ial to 
onsider aslight modi�
ation of the ElGamal s
heme. After the random r is 
hosen oneen
rypts a message M by 
omputing u = M + yr mod p. That is, we \blind"the message by adding yr rather than multiplying by it. The 
iphertext is thenhu; vi where v is de�ned as before. Clearly yr is a random element of Gq . Weobtain the following pi
ture:
g2y r

u

M

p0 g gg 34The � marks represent elements in Gq . Sin
eM is a relatively small number,en
ryption of M amounts to pi
king a random element in Gq and then slightlymoving away from it. Assuming the elements of Gq are uniformly distributed inZ�p the average gap between elements of Gq is mu
h larger than M . Hen
e, withhigh probability, there is a unique element z 2 Gq that is suÆ
iently 
lose tou. More pre
isely, with high probability there will be a unique element z 2 Gq



satisfying ju� zj < 264. If we 
ould �nd z given u we 
ould re
over M . Hen
e,we obtain the additive version of the subgroup rounding problem:Additive subgroup rounding: let z be an element of Gq and� an integer satisfying� < 2m. Given u = z+� mod p �nd z. Whenm is suÆ
iently small, z is uniquelydetermined (with high probability assuming Gq is uniformly distributed in Zp).Going ba
k to the original multipli
ative ElGamal s
heme we obtain themultipli
ative subgroup rounding problem.Multipli
ative subgroup rounding: let z be an element of Gq and � an integersatisfying� < 2m. Given u = z�� mod p �nd z. Whenm is suÆ
iently small z, isuniquely determined (with high probability assumingGq is uniformly distributedin Zp).An eÆ
ient solution to either problem would imply that the 
orrespondingplain ElGamal en
ryption s
heme is inse
ure. We are interested in solutionsthat run in time O(p�) or, even better, O(log�). In the next se
tion we showa solution to the multipli
ative subgroup rounding problem.The reason we refer to these s
hemes as \plain ElGamal" is that messagesare en
rypted as is. Our atta
ks show the danger of using the system in thisway. For proper se
urity one must pre-pro
ess the message prior to en
ryptionor modify the en
ryption me
hanism. For example, one 
ould use DHAES [1℄ ora result due to Fujisaki and Okamoto [10℄, or even more re
ently [16, 13℄.3 Algorithms for multipli
ative subgroup roundingWe are given an element u 2 Zp of the form u = z �� mod p where z is a randomelement of Gq and j�j < 2m. Our goal is to �nd �, whi
h we 
an assume to bepositive. As usual, we assume that m, the length of the message being en
rypted,is mu
h smaller than log2(p=q). Then with high probability � is unique. Forexample, take p to be 1024 bits long, q to be 512 bits long and m to be 64.We �rst give a simple meet-in-the-middle strategy for multipli
ative subgrouprounding. By redu
tion to a knapsa
k-like problem, we will then improve boththe on-line 
omputation time and the time/memory trade-o� of the method,provided that p satis�es an additional, yet realisti
, assumption.3.1 A meet-in-the-middle methodSuppose � 
an be written as � = �1 ��2 where �1 � 2m1 and �2 � 2m2 . Forinstan
e, one 
an take m1 = m2 = m=2. We show how to �nd � from u in spa
eO(2m1) and 2m1 + 2m2 modular exponentiations. Observe thatu = z �� = z ��1 ��2 mod p:Dividing by �2 and raising both sides to the power of q yields:(u=�2)q = zq ��q1 = �q1 mod p:



We 
an now build a table of size 2m1 
ontaining the values �q1 mod p for all�1 = 0; : : : ; 2m1 . Then for ea
h �2 = 0; : : : ; 2m2 we 
he
k whether uq=�q2 mod pis present in the table. If so, then � = �1 � �2 is a 
andidate value for �.Assuming � is unique, there will be only be one su
h 
andidate, although therewill probably be several suitable pairs (�1; �2).The algorithm above requires a priori 2m2+2m1 modular exponentiations and2m1 log2 p bits of memory. However, we do not need to store the 
omplete valueof �q1 mod p in the table: A suÆ
iently large hash value is enough, as we are onlylooking for \
ollisions". For instan
e, one 
an take the 2max(m1;m2) least signif-i
ant bits of �q1 mod p, so that the spa
e requirement is only 2m1+1max(m1;m2)bits instead of 2m1 log2 p. Less bits are even possible, for we 
an 
he
k the valid-ity of the (few) 
andidates obtained. Note also that the table only depends on pand q: the same table 
an be used for all 
iphertexts. For ea
h 
iphertext, oneneeds to 
ompute at most 2m2 modular exponentiations. For ea
h exponentia-tion, one has to 
he
k whether or not it belongs to the table, whi
h 
an be donewith O(m1) 
omparisons on
e the table is sorted.It is worth noting that �1 and �2 need not be prime. The probability that arandom m-bit integer (su
h as �) 
an be expressed as a produ
t of two integers,one being less thanm1 bits and the other one being less thanm2 bits, is dis
ussedin Se
tion 1.2.By 
hoosing di�erent values of m1 and m2 (not ne
essarilym=2), one obtainsvarious trade-o�s with respe
t to the 
omputation time, the storage requirement,and the su

ess probability. For instan
e, when the system is used to en
rypta 64-bit session key, if we pi
k m1 = m2 = 32, the algorithm su

eeds withprobability approximately 18% (with respe
t to the session key), and it requireson the order of eight billion exponentiations, far less than the time to 
omputedis
rete log in Z�p.We implemented the atta
k using Vi
tor Shoup's NTL library [19℄. The tim-ings should not be 
onsidered as optimal, they are meant to give a rough idea ofthe atta
k eÆ
ien
y, 
ompared to exhaustive sear
h atta
ks on the symmetri
 al-gorithm. Running times are given for a single 500 MHz 64-bit DEC Alpha/Linux.If m = 40 and m1 = m2 = 20, and we use a 160-bit q and a 512-bit p, the pre-
omputation step takes 40 minutes, and ea
h message is re
overed in less than 1hour and 30 minutes. From Se
tion 1.2, it also means that, given only the publi
key and the 
iphertext, a 40-bit message 
an be re
overed in less than 6 hourson a single workstation, with probability 39%.3.2 Redu
tion to knapsa
k-like problemsWe now show how to improve the on-line 
omputation time (2m=2 modular ex-ponentiations) and the time/memory trade-o� of the method. We transform themultipli
ative rounding problem into a linear problem, provided that p satis�esthe additional assumption p�1 = qrs where s � 2m is su
h that dis
rete logs insubgroups of Z�p of order s 
an be eÆ
iently 
omputed. For instan
e, if pe11 � � � pekkis the prime fa
torization of s, dis
rete logs in a 
y
li
 group of order s 
an be
omputed with O(Pki=1 ei(log s +ppi)) group operations and negligible spa
e,



using Pohlig-Hellman and Pollard's � methods (see [12℄). Let ! be a generatorof Z�p. For all x 2 Z�p, xqr belongs to the subgroup Gs of order s generated by!qr.The linear problem that we will 
onsider is known as the k-table problem:given k tables T1; : : : ; Tk of integers and a target integer n, the k-table problemis to return all expressions (possibly zero) of n of the form n = t1 + t2+ � � �+ tkwhere ti 2 Ti. The general k-table problem has been studied by S
hroeppel andShamir [18℄, be
ause several NP-
omplete problems (e.g., the knapsa
k problem)
an be redu
ed to it. We will apply (slightly modi�ed) known solutions to thek-table problems, for k = 2; 3 and 4.The modular 2-table problem Suppose that� 
an be written as� = �1��2,with 0 � �1 � 2m1 and 0 � �2 � 2m2 , as in Se
tion 3.1. We have uq =�q1�q2 mod p and therefore: uqr = �qr1 �qr2 mod p;whi
h 
an be rewritten aslog(uqr) = log(�qr1 ) + log(�qr2 ) mod s;where the logarithms are with respe
t to !qr.We build a table T1 
onsisting of log(�qr1 ) for all �1 = 0; : : : ; 2m1 , and a tableT2 
onsisting of log(�qr2 ) for all �2 = 0; : : : ; 2m2 . These tables are independentof �. The problem is now to express log(uqr) as a modular sum t1 + t2, wheret1 2 T1 and t2 2 T2. The number of targets t1 + t2 is 2m1+m2 . Hen
e, weexpe
t this problem to have very few solutions when s � 2m1+m2 . The probleminvolves modular sums, but it 
an of 
ourse be viewed as a 2-table problem withtwo targets log(uqr) and log(uqr) + s. The 
lassi
al method to solve the 2-tableproblem with a target n is the following:1. Sort T1 in in
reasing order;2. Sort T2 in de
reasing order;3. Repeat until either T1 or T2 be
omes empty (in whi
h 
ase all solutions havealready been found):(a) Compute t = �rst(T1) + �rst(T2).(b) If t = n, output the solution whi
h has been found, and delete �rst(T1)from T1, and �rst(T2) from T2;(
) If t < n delete �rst(T1) from T1;(d) If t > n delete �rst(T2) from T2;It is easy to see that the method outputs all solutions of the 2-table problem, intime 2min(m1;m2)+1. The spa
e requirement is O(2m1 + 2m2).Sin
e the original problem involves modular sums, it seems at �rst glan
ethat we have to apply the previous algorithm twi
e (with two di�erent targets).However, we note that a simple modi�
ation of the previous algorithm 
an in fa
tsolve the modular 2-table problem (that is, the 2-table problem with modular



additions instead of integer additions). The basi
 idea is the following. Sin
eT2 is sorted in des
ending order, n � T2 is sorted in as
ending order. The set(n � T2) mod s though not ne
essarily sorted, is almost sorted. More pre
isely,two adja
ent numbers are always in the right order, to the ex
eption of a singlepair. This is be
ause n � T2 is 
ontained in an interval of length s. The singlepair of adja
ent numbers in reverse order 
orresponds to the two elements a andb of T2 surrounding s � n. These two elements 
an easily be found by a simpledi
hotomy sear
h for s � n in T2. And on
e the elements are known, we 
ana

ess (n � T2) (mod s) in as
ending order by viewing T2 as a 
ir
ular list,starting our enumeration of T2 by b, and stopping at a.The total 
ost of the method is the following. The pre
omputation of ta-bles T1 and T2 requires 2m1 + 2m2 modular exponentiations and dis
rete log
omputations in a subgroup of Z�pof order s, and the sort of T1 and T2. Thespa
e requirement is (2m1 +2m2) log2 s bits. For ea
h 
iphertext, we require onemodular exponentiation, one eÆ
ient dis
rete log (to 
ompute the target), and2min(m1;m2)+1 additions. Hen
e, we improved the on-line work of the method ofSe
tion 3.1: loosely speaking, we repla
ed modular exponentiations by simpleadditions. We now show how to de
rease the spa
e requirement of the method.The modular 3-table problem The previous approa
h 
an easily be extendedto an arbitrary number of fa
tors of �. Suppose for instan
e � 
an be writtenas � = �1 ��2 ��3 where ea
h �i is less than 2mi . We obtainlog(uqr) = 3Xi=1 log(�qri ) mod s;where the logarithms are with respe
t to !qr. In a pre
omputation step, we
ompute in a table Ti all the logarithms of �qri mod p for 0 � �i < 2mi . We areleft with a modular 3-table problem with target log(uqr). The modular 3-tableproblem with target n modulo s 
an easily be solved in time O(2m1+min(m2;m3))and spa
e O(2m1+2m2+2m3). It suÆ
es to apply the modular 2-table algorithmon tables T2 and T3, for all targets (n� t1) mod s, with t1 2 T1.Hen
e, we de
reased the spa
e requirement of the method of Se
tion 3.2, by(slightly) in
reasing the on-line 
omputation work and de
reasing the su

essprobability (see Se
tion 1.2 for the probability of splitting into three fa
tors).More pre
isely, if m1 = m2 = m3 = m=3, the on-line work is one modularexponentiation, one dis
rete log in a group of order s, and 22n=3 additions. Sin
ean addition is very 
heap, this might be useful for pra
ti
al purposes.The modular 4-table problem Using 3 fa
tors did not improve the time/memorytrade-o� of the on-line 
omputation work. Indeed, for both modular 2-table andmodular 3-table problems, our algorithms satisfy TS = O(2m), where T is thenumber of additions, and S is the spa
e requirement. Surprisingly, one 
an obtaina better time/memory tradeo� with 4 fa
tors.



Suppose � 
an be written as � = �1 ��2 ��3 ��4 where ea
h �i is less than2mi . For instan
e, one 
an take m1 = m2 = m3 = m4 = m=4. We show how to�nd � from log(uqr) in time O(2m1+m2 +2m3+m4) and spa
e O(P4i=1 2mi), pro-vided a pre
omputation stage ofP4i=1 2mi modular exponentiations and dis
retelog 
omputations in a group of order s.We have log(uqr) =P4i=1 log(�qri ) mod s: Again, in a pre
omputation step,we 
ompute in a table Ti all the logarithms of �qri mod p for 0 � �i < 2mi .We are left with a modular 4-table problem, whose solutions will reveal possible
hoi
es of �1, �2, �3 and �4. S
hroeppel and Shamir [18℄ proposed a 
leversolution to the basi
 4-table problem, using the following idea. An obvious solu-tion to the 4-table problem is to solve a 2-table problem by merging two tables,that is, 
onsidering sums t1 + t2 and t3 + t4 separately. However, the algorithmfor the 2-table algorithm des
ribed in Se
tion 3.2 a

esses the elements of thesorted supertables sequentially, and thus there is no need to store all the possible
ombinations simultaneously in memory. All we need is the ability to generatethem qui
kly (on-line, upon request) in sorted order. To implement this idea,two priority queues are used :{ Q0 stores pairs (t1; t2) from T1�T2, enables arbitrary insertions and deletionsto be done in logarithmi
 time, and makes the pairs with the smallest t1+ t2sum a

essible in 
onstant time.{ Q00 stores pairs (t3; t4) from T3�T4, enables arbitrary insertions and deletionsto be done in logarithmi
 time, and makes the pairs with the largest t3 + t4sum a

essible in 
onstant time.This leads to the following algorithm for a target n:1. Pre
omputation:{ Sort T2 into in
reasing order, and T4 into de
reasing order;{ Insert into Q0 all the pairs (t1; �rst(T2)) for t1 2 T1;{ Insert into Q00 all the pairs (t3; �rst(T4)) for t3 2 T3.2. Repeat until either Q0 or Q00 be
omes empty (in whi
h 
ase all solutionshave been found):{ Let (t1; t2) be the pair with smallest t1 + t2 in Q0;{ Let (t3; t4) be the pair with largest t3 + t4 in Q00;{ Compute t = t1 + t2 + t3 + t4.{ If t = n, we output the solution, and apply what is planned when t < nor t > n.{ If t < n do� delete (t1; t2) from Q0;� if the su

essor t02 of t2 in T2 is de�ned, insert (t1; t02) into Q0;{ If t > n do� delete (t3; t4) from Q00;� if the su

essor t04 of t4 in T4 is de�ned, insert (t3; t04) into Q00;At ea
h stage, a t1 2 T1 
an parti
ipate in at most one pair in Q0, and a t3 2 T3
an parti
ipate in at most one pair in Q00. It follows that the spa
e 
omplexity of



the priority queues is bounded by O(jT1j+ jT3j) = O(2m1 +2m3). Ea
h possiblepair 
an be deleted from Q0 at most on
e, and the same holds for Q00. Sin
eat ea
h iteration, one pair is deleted from Q0 or Q00, the number of iterations
annot ex
eed the number of possible pairs, whi
h is O(2m1+m2 + 2m3+m4).Finally, as in the 2-table 
ase, we note that this algorithm 
an be adapted tomodular sums, by 
hanging the starting points in T2 and T4 to make sure thatthe modular sets are enumerated in the 
orre
t order. Hen
e, it is not ne
essaryto apply the 4-table algorithm on 4 targets. If m1 = m2 = m3 = m4 = m=4, weobtain a time 
omplexity of O(2m=2) and a spa
e 
omplexity of only O(2m=4),whi
h improves the time/memory tradeo� of the methods of Se
tions 3.2 and 3.2.The probability that a random m-bit integer (su
h as �) 
an be expressed as aprodu
t of four integers�i, where�i has less thanmi bits, is given in Se
tion 1.2.Di�erent values ofm1;m2;m3 andm4 (not ne
essarilym=4), give rise to di�erenttrade-o�s with respe
t to the 
omputation time, the storage requirement, andthe su

ess probability.Our experiments show that, as expe
ted, the method requires mu
h less
omputing power than a brute-for
e atta
k on the 64-bit key using the symetri
en
ryption algorithm. We implemented the atta
k on a PII/Linux-400 MHz.Here is a numeri
al example, using DSS-like parameters:q = 762503714763387752235260732711386742425586145191p = 12445297195020897327961146684569284985257444765520858655057634418042792682183038633894759924784265833354926964504544903320941144896341512703447024972887681The 160-bit number q divides the 512-bit number p � 1. The smooth part ofp� 1 is 4783 � 1759 � 1627 � 139 � 113 � 41 � 11 � 7 � 5 � 27, whi
h is a 69-bit number.Our atta
k re
overed the 64-bit se
ret message 14327865741237781950 in only 2hours and a half (we were lu
ky, as the maximal running time for 64 bits shouldbe around 14 hours).4 An atta
k on ElGamal using a generator of Z�pSo far, our atta
ks on ElGamal en
ryption apply when the publi
 key hp; g; yiuses an element g 2 Z�p whose order is mu
h less than p. Although many imple-mentations of ElGamal use su
h g, it is worth studying whether a \meet-in-the-middle atta
k" is possible when g generates all of Z�p. We show that the answer ispositive, although we 
annot dire
tly use the algorithm for subgroup rounding.Let hp; g; yi be an ElGamal publi
 key where g generates all of Z�p. Supposean m-bit message M is en
rypted using plain ElGamal, i.e. the 
iphertext ishu; vi where u = M � yr and v = gr. Suppose s is a fa
tor of p � 1 so that inthe subgroup of Z�p or order s the dis
rete log problem is not too diÆ
ult (asin Se
tion 3.2), i.e. takes time T for some small T . For example, s may be aninteger with only small prime divisors (a smooth integer).We show that when s > 2m it is often possible to re
over the plaintext fromthe 
iphertext in time 2m=2m plus the time it takes to 
ompute one dis
rete login the subgroup of Z�p of order s. We refer to this subgroup as Gs. Note that



when M is a 64-bit session key the only 
onstraint on p is that p� 1 have a 64bit smooth fa
tor.Let u = M � yr and v = gr be an ElGamal 
iphertext. As before, supposeM =M1 �M2 where both M1 and M2 are less than 2m=2. Let q = (p�1)=s then:M1yr = u=M2 mod p. Hen
e,Mq1 (yr)q = uq=Mq2 mod pWe 
annot use the te
hnique of Se
tion 3.1 dire
tly sin
e we do not know thevalue of yrq. Fortunately, yrq is 
ontained in Gs. Hen
e, we 
an 
ompute yrqdire
tly using the publi
 key y and v = gr. Indeed, suppose we had an integera su
h that yq = (gq)a. Then yrq = grqa = vqa. Computing a amounts to
omputing a single dis
rete log in Gs. On
e a is found the problem is redu
edto �nding hM1;M2i satisfying:Mq1 vqa = uq=Mq2 mod p (3)The te
hniques of Se
tion 3.1 
an now be used to �nd all su
h hM1;M2i in thetime it takes to 
ompute 2m=2 exponentiations. Sin
e the subgroup Gs 
ontainsat least 2m elements the number of solutions is bounded by m. The 
orre
tsolution 
an then be easily found by other means, e.g. by trying all m 
andidateplaintexts until one of them su

eeds as a \session-key".Note that all the te
hniques of Se
tion 3.2 
an also be applied. The on-line work of 2m=2 modular exponentiations is then de
reased to 2m=2 additions,provided the pre
omputation of many dis
rete log in Gs. Indeed, by taking loga-rithms in (3), one is left with a modular 2-table problem. Splitting the unknownmessageM in a di�erent number of fa
tors leads to other modular k-table prob-lems. One 
an thus obtain various trade-o�s with respe
t to the 
omputationtime, the memory spa
e, and the probability of su

ess, as des
ribed in Se
-tion 3.2.To summarize, when g generates all of Z�p the meet-in-the-middle atta
k 
anoften be used to de
rypt ElGamal 
iphertexts in time 2m=2 as long as p � 1
ontains an m-bit smooth fa
tor.5 A meet-in-the-middle atta
k on plain RSATo 
on
lude we remark that the same te
hnique used for the subgroup roundingproblem 
an be used to atta
k plain RSA. This was also noti
ed in [8℄. In itssimplest form, the RSA system [17℄ en
rypts messages in ZN where N = pq forsome large primes p and q. The publi
 key is hN; ei and the private key is d,where e � d = 1 mod �(N) with �(N) = (p � 1)(q � 1). A message M 2 ZN isthen en
rypted into 
 = Me mod N . To speed up the en
ryption pro
ess oneoften uses a publi
 exponent e mu
h smaller than N , su
h as e = 216 + 1.Suppose the m-bit messageM 
an be written asM =M1M2 withM1 � 2m1and M2 � 2m2 . Then: 
Me2 =Me1 mod N:



We 
an now build a table of size 2m1 
ontaining the values Me1 mod N for allM1 = 0; : : : ; 2m1 . Then for ea
h M2 = 0; : : : ; 2m2 , we 
he
k whether 
=Me2 modN is present in the table. Any 
ollision will reveal the message M . As in Se
-tion 3.1, we note that storing the 
omplete value of Me1 mod N is not ne
essary:for instan
e, storing the 2max(m1;m2) least signi�
ant bits should be enough.The atta
k thus requires 2m1+1max(m1;m2) bits of memory and takes 2m2 mod-ular exponentiations (we 
an assume that the table sort is negligible, 
omparedto exponentiations).Using a non-optimized implementation (based on the NTL [19℄ library), weobtained the following results. The timings give a rough idea of the atta
k eÆ-
ien
y, 
ompared to exhaustive sear
h atta
ks on the symmetri
 algorithm. Run-ning times are given for a single 500 MHz 64-bit DEC Alpha/Linux. If m = 40andm1 = m2 = 20, and we use a publi
 exponent 216+1 with a 512-bit modulus,the pre
omputation step takes 3 minutes, and ea
h message is re
overed in lessthan 10 minutes. From Se
tion 1.2, it also means that, given only the publi
 keyand the 
iphertext, a 40-bit message 
an be re
overed in less than 40 minuteson a single workstation, with probability at least 39%.6 Summary and open problemsWe showed that plain RSA and plain ElGamal en
ryption are fundamentallyinse
ure. In parti
ular, when they are used to en
rypt an m-bit session-key, thekey 
an often be re
overed in time approximately 2m=2. Hen
e, although anm-bit key is used, the e�e
tive se
urity provided by the system is only m=2bits. Theses results demonstrate the importan
e of adding a prepro
essing stepsu
h as OAEP to RSA and a pro
ess su
h as DHAES to ElGamal. The atta
kpresented in the paper 
an be used to motivate the need for prepro
essing inintrodu
tory des
riptions of these systems.There are a number of open problems regarding this atta
k:Problem 1: Is there a O(2m=2) time algorithm for the multipli
ative subgrouprounding problem that works for all �?Problem 2: Is there a O(2m=2) time algorithm for the additive subgroup round-ing problem?Problem 3: Can either the multipli
ative or additive problems be solved intime less than 
(2m=2)? Is there a sub-exponential algorithm (in 2m)?A
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