
A Toolbox for Mental Card GamesChristian SchindelhauerMedizinische Universit�at L�ubeck�September 17, 1998AbstractMental card games are played without a trusted party and without cards. It is well knownthat the problem of mental card games can be solved in principle. But the schemes known sofar are too messy to be used in practice. Only for the mental poker game a suitable solutionis known [Cr�ep 87] that achieves security against player coalition and complete con�dentialityof a player's strategy. Here, we present a general-purpose scheme that may be used as basictoolbox for straight-forward implementations of card games.We present a data structure for cards and decks that is secure against player coalitionsand enables standard operations like picking up a card, opening it, and (re-)mixing stacks.Futhermore, we introduce tools for special operations like inserting a card into the deck,splitting the deck, parting the game. The correctness of all operations is testi�ed by zero-knowledge proofs.Finally, we discuss security problems that are typical for mental card games and suggestsolutions to enable all players maximum possible fairness.1 IntroductionCard games have always been strongly in
uencing the development of mathematics and computerscience. Researchers were interested in unterstanding the structure of randomness, the combi-natorics, and the probabilism involved. Nowadays, not only the analysis of the game, but itssimulation engages scienti�c imagination. The simplest example of a mental game is coin 
ippingby telephone [Blum 81]: Two partners want to generate a random bit, without the assistance of atrusted referee. Both partners are interested in manipulating the outcome of the game.The problem of how to play mental poker was investigated by [GoMi 82]. Their protocol realizesall necessary features of a poker game. The main drawback is that after the game all cards will bepublicized and so the players' strategy will be revealed, which is not acceptable. Another drawbackis the exhaustive use of prime numbers: The scheme uses 2� 52 pairs of prime numbers and eachcard is encoded by the quadratic residuosity of 2 � 6 six numbers w.r.t. two products of primenumbers. Picking up a card implies the publishing of an integer factorization.Due to lack of space we cannot mention the variety of approaches to mental poker [SRA 78,BaF�u 83, FoMe 85, Yung 85, Cr�ep 86, GMW 87] made so far. A su�cient and complete solutionof mental poker is presented in [Cr�ep 87]. It achieves: Uniform random distribution of cards,absence of a trusted third party, cheating detection, complete con�dentiality of cards, minimale�ect of coalition, and complete con�dentiality of strategy. The last points include that cardspicked up are not published after the game. Furthermore, if k is the number of players, thescheme uses only 2k prime numbers as secret keys and k products of two prime numbers as publickeys.Crepeau's poker scheme is based on the all-or-nothing disclosure of secrets-protocol (ANDOS)[BCR 87]. Alice knows some t secret strings ak 2 f0; 1gn . For f1; : : : ; tg and j 2 f1; : : : ng let�Institut f�ur Theoretische Informatik, Wallstra�e 40, 23560 L�ubeck, Germanyemail: schindel@informatik.mu-luebeck.de 1



ak;j denote a single bit. Alice wants to disclose Bob only one of these strings ak . Bob wants toknow this string but without Alice getting any knowledge which string he has chosen. Furthermore,Alice wants to avoid Bob getting more information than included in ak whilst k remains unknownfor Alice.For this, Bob sends Alice P� : This includes a permutation � over f1, . . . , tg and is de�ned forrandom r�;� 2 Z�m and a�;� 2 f0; 1g asP� := (qk;j j k 2 f1; : : : ; tg; j 2 f1; : : : ; ngwhere qk;j = zi;j(rk;j)2yak;j mod m and i = ��1(k)) :ANDOS [BCR 87]Step Alice Bob1. Alice creates public key m and y 2 NQR �m2. Alice chooses nt random num-bers xj;k 2 Z�m and computesan encoding of her secret stringsb�;�: zj;k := (xj;k)2ybj;k mod mfor j 2 f1; : : : tg, k 2 f1; : : : ng. z�;��!3. P� �� Bob chooses a permutation �and constructs P� .4. Bob proves Alice the correctness P� .5. k � Bob chooses i 2 f1; : : : ; tg andsends k = �(i).6. Alice computes for qk;1, . . . qk;nthe vector c1; : : : ; cn such thatcj := � 1 ; qk;j 2 QRm0 ; qk;j 62 QRm : c1;:::;cn����!7. Bob computes bi;j = cj � ak;j :Later on, we will adapt the following protocol verifying that Bob uses a correct formed P� .
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Proof of P� [BCR 87]Step Alice Bob1. Alice chooses security parameters. s�!P1;:::;Ps ����� B chooses s permutations�1; : : : ; �s over f1; : : : tg. Bobproduces P�1 ; : : : ; P�s .3. Alice chooses a random subsetX � f1; : : : sg. X�!4. For all ` 2 f1; : : : sg:4a. Alice checks whether �` is a cor-rect permutation and whetherfor all k 2 f1; : : : ; tg andj 2 f1; : : : ng it holds: sqk;j � zi;j(rk;j)2yak;j (mod m)and i = ��1` (k).
�`;r�;�;a�;� ������ If ` 2 X Bob sends all secret in-formation of P` and the permu-tation �`.4b. Alice checks whether ��1` �� is apermutation and whether valuesc�;�; e�;� are correct. ��1` � � ����c�;�;e�;� ���� If ` 62 X Bob sends permu-tation ��1` � �. Bob provesthat he can can present queriesq�;� of P� by queries q0 inP`. He succeeds, if he com-putes in the representationqk;j � (ck;j)2yek;j q0��1` (�(k));j(mod m) ck;j and ek;j and sendsthem to Alice.Crepeau uses this ANDOS-scheme and de�nes the following mental card protocols: Prepare themental poker game, get a card, detect cheaters, trace restoration, discard, open a card. Theseprotocols must only be used in some sequential ordering, e.g. after drawing a card further mixingis impossible. Discarded cards cannot be reused. Of course this scheme is absolutely su�cientfor poker. But it cannot be used for games using more sophisticated basic game steps. Further-more, some protocols like traces restoration are very expensive with respect to communication andcomputation.There is no straightforward way to apply this scheme to general card games, e.g. Crepeau's schemerelies on the uniqueness of cards (which is not given in general). Further, there are many exoticoperations that occur in some card games which the mentioned scheme is not able to deal with:Introduction of new cards, drawing a card out of another player's hand, controlling whether aplayer lays a card of a certain color covered on the stack, etc. It turns out that very simple gameslike scrabble or old maid need more complicated protocols than poker.[Cr�ep 87]: We have achieved the �rst complete solution to the mental poker problem.. . . In order to solve even more problems of card playing or similar games (such asscrabble), with special operations such as returning cards into the deck, the full powerof Boolean circuit simulation suggested in [BrCr 86] can be used. But unfortunately,the resulting protocol is too messy to be explained here.We modify and extend many ideas and techniques of [Cr�ep 87] and introduce a general toolboxfor mental card games that provides e�cient and secure communication protocols for transformingevery multi-player card game into an e�cient and secure mental game. Such a card game is playedby k players with contrary interest. The players are separated and communicate via a broadcastchannel where each player can send, such that all partners can hear the message and identify itssender. There is no trustable party in the game. Maybe the players have adversary interests, butalso some secret coalition of players (exchanging information secretly) may be possible.11Note that in principle we cannot avoid that some players publish their own private cards. We only guaranteethat no coalition can �nd any private card of a player against his will.3



We will de�ne a data structure for cards which encodes the type of the card, e.g. 10 of spades.More formally, there is a �nite set of types, which can be computed using a function. Whether thetypes of the cards are unique depends on the rules of the game. A player can only determine thetype of a card if all other players allow this. If cards are gathered in stacks, this is simply denotedby tuple of cards D = (C1; C2; : : : ; Cd). Only the type of a card is hidden. Every player knowsthe number and the encoding of all cards.All players know the rules of the game that may be probabilistic. Every step should be at leastcheckable by one player who may change during the game. We will discuss how to check all stepsaccording to the rules during the game. For simplicity we do not formalize that aspect. These aresome of the possible basic steps that may be used in arbitrary order: Create of new/additionalcards, set operation on stacks, split a stack, stack cards, mix a stack, pick up a card, open a card,checking rules of the game that apply to private cards, insert a card at a hidden position of a stack.This extended abstract is organized as follows: After introducing some notational and number-theoretical background we show the computation of the players' public and private keys. Then wepresent a masking operation for numbers which forms the cryptographic backbone of the scheme'ssecurity. Further, we present the data structure for cards and give protocols for the basic operationson cards and on stacks. In the last section we discuss possibilities of attacking a mental card gameand practical issues needed for mental games on computer networks. At last we discuss securityissues and present some open problems.2 Notations and Number-Theoretic BackgroundLet Zn := f0; 1; : : : ; n � 1g and Z�n := fa 2 Zn j gcd(a; n) = 1g , where gcd(a; n) denotesthe greatest common divisor of a and n . Further, P denotes the set of prime numbers. Forn = pe11 : : : pemm with prime number p1 < p2 < : : : pm Euler's function '(n) denotesjZ�nj = (p1 � 1)p1e1�1 : : : (pm � 1)pmem�1 =: '(n) :The set of quadratic residues QRn and non-quadratic residues NQRn is de�ned byQRn := fi 2 Z�n j 9a 2 Zn a2 � i (mod n)g ;NQRn := Z�n n QRn :The Legendre-symbol is de�ned for a prime number p and a 2 Z�p as:�ap� := � +1 ; a 2 QR p ;�1 ; a 2 NQR p :The Jacobi-Legendre-symbol enhances this symbol for all numbers n 2 N and a 2 Z�n, where�an� := 8><>: �an� ; n is prime number ;�ap� � � am� ; n = p �m and p is prime number :Further, we de�ne Z�m := fz 2 Z� j � zm� = 1g and NQR �m := Z�m \ NQRm . The law of quadraticreciprocity allows an e�cient computation of the Jacobi-Legendre-symbol, whereas in general itis assumed to be intractable to determine whether x 2 QRn , if n factors into two large primenumbers and � xn� = 1 . This security assumption stated by Adleman is called IntractabilityAssumption of Quadratic Residuosity (QRA) [GoMi 82]:Let 0 < � < 1. For each positive integer k let Ck;� be the minimum size of circuits Cthat decide correctly quadratic residuosity mod n for a fraction � of the k bit integersn . Then, for every 0 < � < 1 and every polynomial Q there exists ��;Q such thatk > ��;Q implies C�;k > Q(k).For x 2 Z�m we de�ne the quadratic residuosity of x by qr(x;m) := 0, if x 2 QRm andqr(x;m) := 1 elsewhere. 4



3 The ToolboxFor the moment let us assume, that all communication can be received by all players and that eachmessage's sender can be detected. Furthermore, all participants obey all syntactical restrictions ofthe protocols. Later on, we will discuss what happens if these assumptions are weakened.3.1 PreparationEach player i 2 f1; : : : ; kg chooses large prime numbers pi; qi 2 P forming i 's secret key. Hispublic key consists of mi = pi � qi and yi 2 NQR �mi . By the following protocol, a player veri�esthe correct form of m and y [GHY 85]. It is su�cient to verify that m consists of some powersof two distinct prime numbers. Create public key (m; y)Step Alice All other players1. Alice chooses two secure primes p; q and computesm = p � q. Alice chooses y 2 NQR �m. m;y�! check y 2 Z�m.2. Alice proves Bob that m has only two primes factors [GHY 85]3. Alice proves Bob that y 2 NQR �mThe following number-theoretic fact enables a zero-knowledge proof of the number of prime factorsof m .Fact 1 If m has k di�erent odd prime factors, then it holds jQRmj = jZ�mj2k :9p; q 2 P; �; � � 1 : m = p�q� [GHY 85]Step Alice Bob1. Bob checks, that mj�1 for j 2f1; : : : ; logmg are not prime num-bers.2. r1;:::;rs ���� Bob chooses security parame-ter s and s random numbersr1; : : : ; rs 2 Z�m.3. For each ` 2 f1; : : : ; sg3a. If r` 2 QRm then Alice proves Bob that r` 2 QRm3b. If r` 2 NQRm then Alice proves Bob that r` 2 NQRm4. Bob accepts ifjQRm \ fr1; : : : ; rsgj � 3=8 � s :Bob can sabotage Alice with 50% probability. For this, he can choose r1 2 NQRm , with probabilityof 1=2 and then he continuesly sends numbers ri = r2r1 . Hence, it holds ri 2 NQRm . So, Alice hasno chance to convince Bob and all witnesses that m has the desired factorization. We can avoid thissituation if Bob sends only trusted random numbers that Alice and Bob have determined via coin
ipping per telephone [Blum 81]. Under additional cryptographic assumption we have developedan e�cient and secure multi-player protocol for 
ipping a large quantity of many random bits[Jako 98].
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y 2 NQRmStep Alice Bobknown p; q 2 P, m = pq, y 2 NQR �m m 2 N, y 2 ZCm1. Bob chooses security parameter s.2. s;c� � Bob chooses random numbersr1; : : : ; rs 2 Z�m. With 50 % prob-ability Bob sends ci = yr2i mod mor ci = r2i mod m.3. For all i 2 f1; : : : ; sg Alice com-putes bi = qr(ci;m). b��! Bob checks for all i 2 f1; : : : ; sg:bi = 0 () ci = r2i mod m :This protocol is not a zero-knowledge proof, since Bob gets the quadratic residue property of thenumbers c1; : : : ; cs .If hidden cards were already generated, the complete secret information of cards could be decoded.So, this protocol must only be used for establishing the public key. Later on, we show how toconstruct a protocol that is perfect zero-knowledge and may be used even during the game.The following protocol proves that t 2 QRm using a zero-knowledge proof:t 2 QRmAlice Bobknows p; q 2 P, m = pq, t 2 QRm m 2 N, t 2 Z�m1. s � Bob chooses security parameters.2. Alice randomly choosesr1; : : : ; rs 2 Z�m and com-putes t1; : : : ; ts 2 Z�m suchthat t � r2i � s2i (mod m) :Let Ri = r2i mod m, Si =s2i mod m.
R�;S����!X � Bob checks 8i 2 f1; : : : ; sg : t �Ri � Si (mod m) and chooses arandom subset X � f1; : : : ; sg.

3. For all i 2 f1; : : : ; sg:3a. If i 2 X then Alice sends ri ri�! Bob checks Ri = r2i mod m3b. If i 62 X then Alice sends si ri�! Bob checks Si = s2i mod mAs soon as a trusted non quadratic residue y 2 NQR �m is testi�ed, we can use the followingzero-knowledge proof for verifying t 2 NQR �m .t 2 NQR �m using y 2 NQR �mAlice Bobknows p; q 2 P, m = pq, t; y 2 NQR �m m 2 N, t 2 Z�m, y 2 NQR �m1. Alice computes r 2 QRm suchthat t � y � r (mod m). r�! Bob checks t � y � r (mod m).2. Alice proves Bob that r 2 QRm3.2 Masking NumbersThe data structure for cards consists of numbers z 2 Z�m, which are called the reverse side of acard. Alice computes a new reverse side by masking each entry z byz0 = z � r2 � yc mod mi6



for some r 2 Z�m , c 2 f0; 1g . We denote this relationship between z and z0 by z ,! z0 . Using thefactorization of m given z; z0 one can always establish such a relationship, and if one can establishsuch a relationship for given z; z0 , this gives the factorization of m :Lemma 1 Let m be a product of two prime numbers. A polynomial time bounded algorihm thatcomputes for given z; z0 2 Z�m; y 2 NQRm a number r 2 Z�m such that z0 = z � r2 � yb mod m forb 2 f0; 1g can be used to compute the factorization of m in expected polynomial time.Proof: First note that every square s 2 Z�m has four roots r1; r2;�r1;�r2 2 Z�m, where gcd(r1 +r2;m) is a non-trivial factor of m . Further, note that z0 �z�1 �y�b 2 QRm has square root r . So, wechoose random numbers r; z 2 Z�m , and a random bit b 2 f0; 1g and compute z = z �r2 �yb mod m .Assume that such an algorithm exists then it computes r1 = r and �r1 with probability 1=2 andr2 or �r2 with probability 1=2. The latter case gives the prime factorization.Without the knowledge of factorization of m one cannot relate x to z in general, but can buildarbitrary large sets of numbers masking some given x; z to x ,! x1 ,! x2; : : : ; z ,! z1 ,! z2; : : : .These sets form polynomial-time sampleable equivalence classes: The mask operation is re
exivez ,! z ; commutative z1 ,! z2 () z2 ,! z1 ; and transitive z1 ,! z2 ,! z3 () z1 ,!z3 . So, these sets x� and z� remain disjunct, so long as Alice cannot factor m in expectedpolynomial time. To every other player Alice's built relationship is perfectly hidden, since themask operation produces uniform distributed numbers over Z�m. Nevertheless, Alice can prove themask relationship by the following zero-knowledge proof.Proof that z ,! z0Step Alice Bobknows m 2 N, z; z0 2 Z�m, y 2 NQR �m, r 2 Z�m, b 2f0; 1g, z0 = z � r2 � yb mod m m 2 N, z; z0 2 Z�m, y 2NQR �m1. s � chooses s.2. Alice computes t1; : : : ; tn such that 8i 2f1; : : : sg : z0 ,! ti, i.e.ti = z0 � r2i � ybi mod mfor random ri 2 Z�m, bi 2 f0; 1g.
t��!X � Bob chooses a randomsubset X � f1; : : : ; sg.3. For all i 2 f1; : : : ; sg:3a. If i 2 X then Alice publishes the secret pa-rameters of z0 ,! ti ri;bi���! checks z0 ,! ti3b. If i 62 X then Alice publishes the secret pa-rameters of z ,! ti, namely b0i = b � bi andr0i = ri � r � yb(b+bi)=2c r0i;b0i���! checks z ,! tiLemma 2 If Alice cannot deduce an r 2 Z�m and b 2 f0; 1g such that z0 = z � r2 � yb mod m(z ,! z0 ) then Bob can convict Alice with probability 1 � 2s using this protocol. Moreover, thisprotocol is perfect zero-knowledge.Proof:� Perfect zero-knowledge: We show that an uninvolved party M can generate in polynomialtime the same probability distribution of the communication as by the protocol. For this,1. M randomly chooses X .2. M randomly chooses ri 2 Z�m, bi 2 f0; 1g for i 2 f1; : : : ; sg .3. If ` 2 X then M computes t` = z0 � r2̀ � ybi mod m .7



4. If ` 62 X then M computes t` = z � r2̀ � ybi mod m .� Security: Assume that z 6,! z0 from Alice's point of view. Then either one of the followingthree cases hold:1. z ,! t` and z0 6,! t`2. z 6,! t` and z0 ,! t`3. z 6,! t` and z0 6,! t`With at least 50% probability Bob can convict Alice in any of these cases, since Alice has topublish the secret parameters of z ,! t` or z0 ,! t` .A special case of masking is 1 ,! z , i.e. Alice proves Bob that she knows r 2 Z�m and b 2 f0; 1gsuch that z = yb � r2 mod m . Proof of 1 ,! tAlice Bobknows m 2 N, y 2 NQR �m, r 2 Z�m, b 2f0; 1g, t = ybr2 mod m, r 2 Z�m,b 2 f0; 1g m 2 N, y 2 NQR �m, t 2 Z�m1. s � Bob chooses security parameters.2. Alice randomly choosesr1; : : : ; rs 2 Z�m; b1; : : : ; bs 2f0; 1g. Then she computest1; : : : ; ts 2 Z�m; c1; : : : ; cs 2f0; 1g such thatt � r2i � s2i � ybi+ci (mod m) :Let Ri = r2i ybi mod m, Si =s2i yci mod m.
R�;S����! Bob checks8i 2 f1; : : : ; sg : t � Ri�Si (mod m)and chooses a random subsetX � f1; : : : ; sg.3. For all i 2 f1; : : : ; sg:3a. If i 2 X then Alice sends ri; bi ri�! Bob checks Ri = r2i � ybi mod m3b. If i 62 X then Alice sends si; ci ri�! Bob checks Si = s2i � yci mod mA zero-knowledge proof of non-quadratic residuosity Note that for the standard proof oft 2 NQR �m either the prover has to publish the quadratic residue property of some numbers orall players have to use the public key information y 2 NQR �m . The protocol of 1 ,! z helps toovercome these disadvantages and enables us to decrease the error probability of y 2 NQR �m evenduring the game.
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Zero-knowledge proof of y 2 NQRmStep Alice Bobknown p; q 2 P, m = pq, y 2 NQR �m m 2 N, y 2 ZCm1. Bob chooses security parameter s.2. s �t� � Bob chooses random numbersr1; : : : ; rs 2 Z�m and chooses arandom subset X � f1; : : : ; sg. For all` 2 X Bob computest` = r2̀ mod mand for all ` 62 Xt` = r2̀ � y mod m :3. For all ` 2 f1; : : : ; sg3a. Bob proves Alice that 1 ,! t`4. Alice computes Y = fi j ti 2QRmg. Y�! Bob checks X = Y .3.3 The Data Structure for CardsEvery card is represented by an encoding, called reverse which is known to all players. Thisinformation does not help (if QRA holds) to decode unless all players allow it a player. To keepthe card secret the information is spread among the players secret coding schemes (see �g. 2). Theinformation on the reverse is encoded by all the players' cryptographic schemes. Only if all playersreveal their encoding the type of a card can be read.Let T be the number of di�erent types of cards, k the number of players and w = dlog2 T e . Areverse consists of k � w numbers (z1;1; : : : ; zk;w). For i 2 f1; : : : ; kg , j 2 f1; : : : ; kg , it holdszi;j 2 Z�mi . Every number zi;j encrypts a bit. This bit can be computed bybi;j = qr(zi;j ;mi) = � 0 ; zi;j 2 QRmi ;1 ; else. :The type t of a card can be computed by the term:t = 1 + wXj=1 2j�1 � kMi=1 bi;j :The quadratic residuosity of numbers solely encodes the type of a card. So, throughout all protocolsno information about quadratic residuosity may be published unless there is a proof that thenumbers are related by consecutive mask operations. Then, the owners of the secret keys do notpublish new information that could have been produced by public-key information if all the playersplayed honestly.Creation of an open card For a card of type t a player computes the binary representationb1; : : : ; bk 2 f0; 1g of t and publishesC = ((yb11 ; : : : ; ybk1 ); (1; : : : ; 1); : : : ; (1; : : : ; 1))using only public known information. 9
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Furthermore, a mask operation for cards forms an equivalence class: Masking is re
exive, transitiveand commutative. These facts help us to create the following zero-knowledge proof of a correctmasking. Given random cards C;C 0 of the same type no other player than the creator can deduceall the secret information of C # C 0 since w �k masking operations of k cryptographic public-keysystems are involved. But every player can mask a card and if all players do this, none can deduceall secret parameters. Proof that C # C0Step Alice All other playersAll know the public keys and cards C, CAlice knows secret parameters of C #C 01. s � choose security parameter s.2. Alice computes C1; : : : ; Cs such that8` 2 f1; : : : sg : C 0 # C`. C��!X � choose a random subset X �f1; : : : ; sg.3. For all ` 2 f1; : : : ; sg:3a. If ` 2 X Alice publishes the secret pa-rameters of C 0 # C` r�;b����! checks C 0 # C`3b. If ` 62 X : Alice publishes the secretparameters of C # C` r0�;b0����! checks C # C`Theorem 2 This protocol is perfect zero-knowledge and proves to all other players the correctnessof the masking-operation with an error probability of at most 2�s .Proof:1. We can produce the same probability distribution as the communications only with theknowledge of C ,C 0 , and the public keys as follows.We choose a random subset X � f1; : : : ; sg . Then we compute C 0 # C for all ` 2 X andC # C` elsewhere. In both cases we publish the secret mask parameters.2. For the error probability note that C 0 # C` and C # C` imply C # C 0 , since the maskoperation is commutative and transitive. Therefore in each round all other player have a50% chance to convict Alice if C 6# C 0 .Creation of private card is another application of the 1 ,! z -protocol.Create a private cardAlice other playersknows all public keys and her secret key know all public keys1. Alice creates an open card C oftype t for internal use only.2. Alice masks C # C 0 = (z�;�) C0�!3. Alice proves 1 ,! zi;j for all i 2 f1; : : : ; kg, j;2 f1; : : : ;mg.The last step ensures that Alice does not use numbers for the card which give information aboutother cards.Theorem 3 The encoding of such a generate private card cannot be decoded by all other players,if QRA holds.Proof: The j -th bit of the type of the card is given by the parity with qr(z1;j), which is chosenrandomly. So, a coalition of all but one players has no chance to compute a bit if QRA holds.12



Generation of covered random cards The players want to generate a covered card withrandom type of f1; : : : ; Tg . For the beginning assume that T = 2w .Create covered random card1. Every player i 2 f1; : : : ; kg randomly chooses zi;j 2 Z�mi for j 2 f1; : : : ; wg and pub-lishes it.2. The card C is given by z�;�In this protocol the proof of correct masking is obsolete, since each player only uses his key.Although every player uses only public key information it is not desirable to allow other players tocreate one's encoding, simply because the card is not trustable random. But also when the cardis picked up or opened, this player could achieve information about the quadratic residuosity ofnumbers on the reverse sides of other cards.Suppose that T is no power of 2. Then the situation becomes more complicated. We will choosew such 2w�1 � T � 2w and use the original protocol for the creation of the covered card. If Alicepicks up a card she sees whether its type is out of range. Then Alice opens this cards and mayget a new covered card using the protocol shown above. Now she privatizes this card and thiscontinues as long as a correct card appears. Of course the expected number of rounds is less than2 and Alice gets her card considerably faster than using a mix-protocol of a deck with T cardsshown below.This way all players may compute trustable random numbers in every range, e.g. simulating
ipping coins or cubes: They compute a covered random card and then open it (see below).Pick up a card In the following protocol a player gets the decoding of a covered card. Allother players eaves-dropping the protocol gain no information, since the crucial information staysencoded: Pick up a cardAlice Bob Charlyknow all public keys and the covered card C = (z�;�)knows her secret key p1; q1 his secret key p2; q2 his secret key p3; q31. Bob sends the informa-tion qr(z2;j ;m2) for j 2f1; : : : ; wg Charly sends the informa-tion qr(z3;j ;m3) for j 2f1; : : : ; wg2. Bob proves Alice the cor-rectness. Charly proves correctness.All used proofs used are perfect zero-knowledge. But by sending the quadratic residuosity there isa way for Alice to get information that may not be designated for her.Consider Alice creating the card C without proving the correct form w.r.t. masking. So, she canget secret information about another covered card D . For this, she may directly copy all entriesof D to C or she may mask the entries z using z ,! z0 . So, Alice can read both cards C and Dusing one pick-up operation. Therefore, the proof of correct masking a card is essential.Theorem 4 If a card C is the result of a create-open-card, create-random-covered-card, or create-private-card operation followed by a sequence of mask-card operations, then the pick-up operationdoes only give further information as the type of the card picked up. All players besides Alice cannotextract the type of the card picked up unless they already know it.Proof:1. Consider a player Z getting all public and secret parameters of creation and masking a card.Further Z gets the public key information. We prove the �rst claim by showing that this Zis now able to compute the same information published in the pick-up procedure.13



Let C0 be the at �rst published card and C the card that is picked up. Further, let C0 #C1 # � � �# C be the masking steps. These steps can be contracted to C0 # C by Z suchthat he knows the secret parameters of this masking. There are three cases:(a) C0 was an open card. Then, Z can compute all secret parameters in C and thereforeqr(zi;j) for i 2 f1; : : : ; kg , j 2 f1; : : : ; wg .(b) C0 was a private card. Since Z has the private mask parameters this case can bereduced to the above situation.(c) C0 was a covered random card. Again Z has collected all private mask parameters,which gives the same situation as for a private card.This completes the proof since all mask operation use only public key information and there-fore the overall operation of hiding and picking up a card is an operation that Z could havedone by himself with the same probability distribution.2. Note that the security of a covered card does not depend on the mask operations but themissing knowledge of the quadratic residuosity of the �rst card. The decisive secure part isthe quadratic residuosity w.r.t. the module of the player picking up the cards, which is theonly one that an all but one player coalition cannot decode.Open a private card This protocol is similar to the last stated. Note that Alice cannot provethe correctness of the other players' encodings. This has to be done by them.Open a cardAlice Bob Charlyknow all public keys and the covered card C = (z�;�)knows her secret keyp1; q1 his secret key p2; q2 his secret key p3; q31. Alice sends all other play-ers qr(zi;j ;mi) for i 2f1; : : : ; kg, j 2 f1; : : : ; wg2. Alice proves the correct-ness of qr(z1;j ;m1) for j 2f1; : : : ; wg Bob proves the correct-ness of qr(z2;j ;m2) for j 2f1; : : : ; wg Alice proves the correct-ness of qr(z3;j ;m3) for j 2f1; : : : ; wgAgain it is crucial that the card was created by the mask operation (that should have been provedbefore this step). If not, some player (the one that at last should have masked the card) may getsome additional information.Theorem 5 If a card C is the result of a create-open-card, create-random-covered-card, or create-private-card operation followed by a sequence of mask-card operations, then the open operation doesonly give information about C .Proof: analogously to Theorem 4.3.4 Operations on the DeckA deck is modelled by a tuple of cards. Stacks are not necessarily disjunct subsets of the deck.In the beginning of the game some player may create the deck. This operation corresponds toa number of creations of open cards shown above. Contrary to the protocols known so far, it isalways possible to include a new deck later on.
14
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Figure 3: Some available operations on stacks.Stacking the cards Alice stacks a set of d cards S , i.e. she masks all cards and applies a secretpermutation � to the stack. Stack the cards S to S0 : S � S01. Alice masks each card Ci 2 S : Ci # C 0i , for i 2 f1; : : : ; dg .2. Alice changes the position of all cards using her secret permutation � and publishes thenew covered stack S0 = (C 0�(1); : : : ; C 0�(d)).3. Alice proves all players the correctness of S � S0 .The secret parameters of this permutation are called P� , similary to the ANDOS-scheme [BCR 87].W.r.t ANDOS additional information is encoded that allows the publication of the new permutedstack: P� = 0B@ �(1) b1;(1;1) : : : b1;(k;w) r1;(1;1) : : : r1;(k;w)... ... . . . ... ... . . . ...�(d) bd;(1;1) : : : bd;(k;w) rd;(1;1) : : : rd;(k;w) 1CA :Alice's transformation of the stack is denoted by S P�� S0 . Alice does not use her secrets p andq for this operation. So, even an uninvolved party can create and prove a valid P� only by usingpublic available information. Since for the open- and pick-up-protocols it is essential that all entriesof the cards are masked correctly Alice has to prove the correctness of her stacking-operation.For given P� and P� we compute P��� , where S P�� S0 P�� S00 () S P���� S00 : Let P� givenby P� = 0B@ �(1) c1;(1;1) : : : c1;(k;w) s1;(1;1) : : : s1;(k;w)... ... . . . ... ... . . . ...�(d) cd;(1;1) : : : cd;(k;w) sd;(1;1) : : : sd;(k;w) 1CA :
15



Then P��� is given byP��� = 0B@ �(�(1)) b�(1);(1;1) � c�(1);(k;w) : : : b�(1);(k;w) � c1;(k;w) t1;(1;1) : : : t1;(k;w)... ... . . . ... ... . . . ...�(�(d)) b�(d);(1;1) � cd;(1;1) : : : b�(d);(k;w) � cd;(k;w) td;(1;1) : : : td;(k;w) 1CA ;where t�;(i;j) = �r�(�);(i;j) � s�;(i;j) � yb(b�(nu);(i;j)+c�;(i;j))=2ci � mod miOn the other hand, the knowledge of P��� and P� enables the computation of P� using onlypublic keys. In the following protocol Alice proves the correctness of her P� , by proving that sheproperly masks the cards analogously as above in the mask-operation.Proof of P�Step Alice All other playersAlice has P� kept in secret, such that S P�� S0. know S; S01. s � agree on a security pa-rameter s.2. Alice chooses s permutations �1; : : : ; �s overf1; : : : ; tg and corresponding P�1 ; : : : ; P�s . Us-ing this information, Alice creates new permu-tations of the stack S0 P�1� S1, . . . , S0 P�s� Ss andpublishes them. S��!X � agree on a random subsetX � f1; : : : ; sg.3. For all ` 2 f1; : : : ; sg:3a. If ` 2 X Alice publishes P�` . P�`���! check whether S0 P��̀ S`.3b. If ` 62 X Alice publishes P�`�� . P�`�����! check whether S P�`��� S`.Theorem 6 The stacking operation is perfect zero-knowledge and can be performed by only usingthe public keys. It performs a permutation on the given stack which stays secret to all otherplayers. A series of stacking operations followed by a pick-up or open-operation does not revealany additional information but the type of the addressed card and its former place in the stack.Proof:1. Proof of P� is perfect zero-knowledge:Generate a random subset X � f1; : : : ; sg . For all ` 2 f1; : : : ; sg : if ` 2 X then computeS0 � S` and else compute S � S` . In both cases output the secret parameters.2. It performs a permutations on the given stack which stays secret to all other players:Let S be the original stack and S0 the output of the operation. Assume that the stackingoperation is not a permutation. Then a type t exists such that it occurs n times in S andn0 times in S0 , such that n 6= n0 . Let n` be the number of occurences of t in S` . For n`there are three cases:(a) n = n` , n0 6= n`(b) n 6= n` , n0 = n`(c) n 6= n` , n0 6= n`Since Alice has to prove S � S` or S0 � S` by publishing all secret parameters withoutknowing which one in advance. All other players can convict Alice with at least a 50%probability in each of the s rounds.Since the masking operation produces a uniform probability distribution over all cards of thesame type. That part of the cards in the new stack, which a all-but-one coalition of playerscan decode and analyze, is produced by the same uniform probability distribution.16



3. Assume that after a pick-up procedure all players who performed a stacking procedure publisha trace of the picked-up or opened card through all permutations. Then, we get a sequenceC0 # C1 # � � �# C . Now, the claim follows by Theorem 4 and 5.Mixing a stack The best way to mix a stack is to let each of the players stack the cards. Such astack may consist of private, open, or random covered cards and this operation may be performedin every state of the game whenever the rules allow this operation.Mix a stackAlice Bob CharlyThey know all public keys and the covered stack S1. stacks S to S0. stacks S0 to S00. stacks S00 to the resulting stack S000.2. Alice proves S � S03. Bob proves S0 � S004. Charlie proves S00 � S000Drawing a card from a private or open stack If some player wants to draw a card from astack, at �rst he informs all players which card he is going to take by quoting its encoded side.Then the above mentioned \pick up a card"-protocol follows. If he wants to draw a card from thehand of a player, according to the rules of the games the other player may stack his cards before hegets a card picked away. If all other players insist on a random card they can determine a randomnumber which gives the position (shown above).Set-comparisons of private and public stacks Consider a private stack S and a stack ofopen cards U . A player can easily prove that S is a permuted version of U by constructing acorresponding P� and prove its correctness. If a player wants to prove that a private stack S isa subset of an open stack U without revealing S he creates the missing cards U n S and mixesthem into S getting S0 . Now he proves the equality between S0 and U :Proof of S � UStep Alice All other playersknown Alice has private stack S. U isan open stack. open stack U , covered stack S.1. Alice creates hidden cards A =U nS. and combines S and A inthis ordering to stack S0 S0�! verify that the reverse sides of Sare on top of S02. Alice stacks U to S03. Alice proves that U � S0Proof of S � UStep Alice All other playersknown private stack S, open stack U . open stack U , reverse sides of S.1. Alice creates hidden cards A =S nU . and combines U and A inthis ordering to stack U 0 S0�! verify that the reverse sides of Uare on top of U 02. Alice stacks U 0 to S3. Alice proves that U 0 � SFor the following protocol we assume that all types of cards only appear once and thus identify acard: 17



Proof of S \ U = ;Step Alice All other playersknown Alice has private stack S. U isan open stack, set of all types U . open stack U , reverse sides of S,set of all types U .1. Alice combines S, U and the cre-ated hidden cardsA = Un(U[S)to stack S0. S0�! verify that U , S are on top of S02. Alice stacks S0 toD, which is thedeck.3. Alice proves that S0 � DIf a type of a cards may appear more than once, we use multisets as a representation of all cardsand insert a card of a type jSj times in the set of all types. The rest of the protocol is analogously.Rule control In some games like \Skat" or \Schafkopf" there are some restrictments accordingto cards that a player may lay on the open stack, e.g. on a card of spades only a card of di�erenttype may be put, if the player cannot serve, i.e. has no spades in his private stack. Normally, suchrules cannot be controlled during the game without a referee. In fact our scheme can prevent thebreaking of such a rule just in time.More formally, let U � f1; : : : ; Tg be a set of types of cards. Let S denote the private stack ofAlice. The following protocol proves that Alice chooses a card C 2 S such that if U \ S 6= ; thenC 2 U without publishing the type of C and whether U \ S 6= ; .Alice serves card C of type U if possibleStep Alice All other playersknown Alice has private stack S withcard C 2 S, U is an open stack,U1 is the �rst card of U , H is anarbitrary subset of D nU of sizejSj. open stacksH ,U , reverse sides ofS;C.1. s � agree on a security parameter s.2. Alice generates a random subsetX � f1; : : : ; sg.3. For all ` 2 f1; : : : ; sg:3a. If ` 2 X then Alice gener-ates S � S 1̀, U1 # C 1̀, H � S 2̀,C # C 2̀. S1̀;S2̀���!C1̀;C2̀���!3b. If ` 62 X then Alice gener-ates S � S 2̀, U1 # C 2̀, H � S 1̀,C # C 1̀. S1̀;S2̀���!C1̀;C2̀���!4. Y � All players agree on a randomsubset Y � f1; : : : ; sg.5. For all ` 2 f1; : : : ; sg:5a. If ` 2 X \ Y thenAlice proves that S 1̀ � S, S 2̀ � H , C # C 2̀,U1 # C 1̀5b. If ` 2 Y nX thenAlice proves that S 2̀ � S, S 1̀ � H , C # C 1̀,U1 # C 2̀5c. If ` 2 X n Y then Alice proves that S 2̀ \ U = ;, fC 1̀g � U5c. If ` 62 X [ Y then Alice proves that S 1̀ \ U = ;, fC 2̀g � U18



Split the cards Splitting the cards means that a player chooses a secret number of cards of thetop of a stack and places them in this order to the end of the stack. This operation correspondsto a cyclic shift. Since all player can see the card by their reverse sides we cannot simulate thisoperation in its original setting | the secret shift parameter could be seen by all the participants.Note that cyclic shifts are a subset of permutation that are closed against iteration. The basicidea for a protocol for proving the correctness of a secret cyclic shift, is an adaption of the stackingoperation: Secret cyclic shift1. Alice masks every card Ci of S : Ci # C 0i .2. Alice performs her secret cyclic shift operation. For this, she removes c cards from topof the stack and places them at the bottom: S0 = (C 0c+1; : : : ; C 0t; C 01; : : : ; C 0c).The secret parameters of this permutation are called Pc consist of c and all secret mask-parameters.We denote S Pc� S0 for this operation. Of course the correctnes of this operation has to be proven.Here, we use the closure of cyclic shifts, i.e. two succeeding cyclic shift operations can be describedby one cyclic shift. Proof of PcStep Alice All other playersknown Alice has Pc in secret, such thatS Pc� S0 : S; S0
1. s � agree on a security parameter s.2. Alice chooses s cyclic shift pa-rameters c1; : : : ; cs and corre-sponding Pc1 ; : : : ; Pcs . Usingthis information Alice createsshifted versions of the stack S0,namely S0 Pc1� S1, . . . , S0 Pcs� Ssand publishes them. S��!X � All players agree on a randomsubset X � f1; : : : ; sg.
3. For all ` 2 f1; : : : ; sg:3a. If ` 2 X Alice publishes Pc` . P�`�! check whether S0 Pc�̀ S`.3b. If ` 62 X : Alice publishes Pc`+c. Pc`+c���! check whether S Pc`+c� S`.Test of equal cards A # B or C # D A , B , C , and D are cards where Alice maskedA# B or C # D . She wants to show that she performed at least one of these mask-operations.
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Proof of A# B or C # DStep Alice All other playersknown mask information of A # B orC # D reverse sides of A;B;C;D1. s � agree on a security parameter s.2. Alice generates a random subsetX � f1; : : : ; sg.3. For all ` 2 f1; : : : ; sg:3a. If ` 2 X then Alice gener-ates A# A0, B # B0, C # C 0,D # D0. A0;B0;C0;D0������!3b. If ` 62 X then Alice gener-ates A# C 0, B # D0, C # A0,D # B0. A0;B0;C0;D0������!4. Y ��� All players agree on a randomsubset Y � f1; : : : ; sg.5. For all ` 2 f1; : : : ; sg:5a. If ` 2 X \ Y thenAlice proves that A# A0, B # B0, C # C 0, D # D0.5b. If ` 2 Y nX thenAlice proves that A# C 0, B # D0, C # A0, D # B0.5c. If (` 2 X n Y and A # B) or(` =2 X [ Y and B # D) thenAlice proves that A0 # B05d. If (` 2 X n Y and B # D) or(` =2 X [ Y and A# B) thenAlice proves that C 0 # D0Secretly insert a card into a stack Alice wants to insert a hidden card C into a stack S ata secret position. For this Alice shows that a cyclic shifted version S0 of the resulting stack S00consists of C on the top and a cycled version S in the rest. It remains to prove that both cyclicshifts combined preserve the order of S . Note that the �rst card of S has to correspond to the�rst card S00 or the last card S to the last card S00 . Alice proves this by the above shown protocol.Insert a card C in a secret position of a stack SStep Alice All other playersknown reverse sides C, S C, S1. Alice chooses position c 2f1; : : : ; jSjg and computes an en-coded stack that corresponds tothe cyclic shift of S by c cards:S � S0. S0�!
2. Alice proves that S � S03. Alice computes the resultingstack S00 as the cyclic back-shifted stack of S0 (i.e. shift byPjSj�c+1) (C; S0) � S00 S00�!4. Alice proves that (C; S0) � S005. Alice proves that S[1]# S00[1] or S00[jSj]# S00[jSj+ 1]20



Glueing and separating cards The encoding of the binary representation gives more oppor-tunities. If partial information like the color of a card is stored in corresponding positions of thebinary representation other information can be discarded and further operations may work onlywith the interesting partial information.On the other hand, some cards may be glued together, forming a new card data structure whichfor example may be used to mix up stacks, completely preserving their cards and order. After themix-operations the separation of the large cards (stacks) gives the original data structure.Moreover, the binary representation may be used for sharing-of-secrets schemes. Now the pick-upprocedure for a player alone does not give all the needed information. The card has to be sharedamong some players.Introduction of a new player is a delicate operation, if some game steps already took place,e.g. Charly, the new player, has no guarantee that the others really mixed stacks. Even so, he cantestify all protocols despite the veri�cation whether creation of covered random cards and mixingoperations were fair against him.Introduction of a new player1. Charly publishes and proves his public key.2. All (private and covered) cards in the game get an additional row containing (1; : : : ; 1).3. The owners of private cards mask them, all covered cards are masked by Charly.4. Charly performs secret permutations on all covered stacks that are claimed to be mixedand proves the correctness of each operation.Leaving a game In some games there are situations where a player, e.g. Charly, is not involvedin the rest of the game, e.g. they play \old maid" and a player has laid down all his cards. In theabove shown scheme Charly is involved in all the protocols for the rest of the game. If he does notwant to control the game anymore, his encodings are removed from the data structure. Of coursethis operation makes only sense if at least two players continue the game. If only the adversaryplayers' coalition remains, then they can get all information of covered cards which Charly hasleft for them in the game. Charly's private cards and public covered cards that are not needed forthe rest of the game stay securely encoded. Of course the danger stays that some of his strategicdecisions or card information may be detected from now on and he is no longer able to keep thegame under surveillance. All this has to be considered before using the following protocol:Parting from a gameStep Charly All other players1. S � ask Charly for the encoding ofthe covered cards S that remainin the game.2. For every card C 2 S he pub-lishes his encoding.3. Charly proves his encoding of S.4. S0 � ask Charly for the proof ofhis encoding of all their privatecards S0.3. Charly proves his encoding of S0.
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Figure 4: Sabotage! The diabolic player disconnects Charlie and claims that he left withoutquitting. Alice and Bob cannot disprove that claim.4 Discussion and Conclusion4.1 Cheating and AttacksHow can a player cheat or sabotage a game? We classify six categories and discuss whether thistoolbox prevents them.Sabotage This includes all syntactical errors violating the protocol. The most important caseis that a player leaves the game without quitting. This case is mostly relevant for a sabotage ofa bad loser who wants to spoil the whole game. But note that we cannot di�er between a badloser disconnecting and a local network breakdown. An implementation of an electronic card gameshould take special care to those kinds of errors (see �g. 4). If a saboteur attacks the game, theonly possibility seems to quit the game, identify the saboteur(s) and the kind of attack.Protocol attack Here the o�ender tries to attack the cryptographical protocols, e.g. he claimsthat m has only two prime numbers in its integer factorization, while it has more, he tries to factorm , he uses wrong mask-operations trying to muddle through the proof of it. We have proved thatunder QRA our scheme is secure against such an attack.Cheating The o�ender tries to break the rules of the underlying game, e.g. he serves the wrongcard. We have given an example of on-line control of rules that even refer to private cards. Mostof the underlying games provide rules for the treatment of cheaters.Secret coalitions At least two players exchange private information and use it for their advance.At least we can guarantee that their coalition does not enable to turn covered cards or decodeprivate cards of other players. The attempt to try to avoid any secret communication is of coursehopeless. There is only one way to ensure that their strategic decisions are independent from theknowledge of an allied partner's private cards: Every player has to �x his strategy before the gamesstarts by programming it into a probabilistic Turing machine. During the game he has to verifythat all his (secret) decisions coincide with the (secret) output of this machine. In principle sucha scheme can be implemented, but this method fails since most of the human players are not ableand willing to describe their strategy.Public coalitions A coalition of players discriminates a player, only with public known infor-mation. A commonly practiced example is a game of three people where two of them are a couple.Here, even the approach of a secret strategic Turing machine does not help, since the strategycould provide sensors that identify the partner by his strategic decisions.Ghost players A player invents new virtual players to increase the probability of winning.Many games support this strategy, e.g poker, whilst for other games the probability of loosingincreases. Like secret and public coalitions ghost players cannot be detected, since the players playanonymously. Since this problem highly depends on the sort of game, players participating thesegames should always be aware that this can happen.22



In the beginning we assumed that all players use a broadcast channel, where everybody hearseverything and the sender of a message can be identi�ed. In the real world we have point-to-point-communication which has to emulate the broadcast channel. For identi�cation a digital signaturescheme should be used. Signing all messages can prevent also the problem of byzantine agreementwhen convicting an o�ender: Consider Charly playing fair with Alice while cheating Bob andclaiming that Bob cheats. Now, without signed copies of all messages sent so far, Alice would haveno chance to identify Charly as o�ender.4.2 Conclusion and Open ProblemsWe presented an intuitive and simple data structure for cards. Cards may be covered, open, orprivate to one or more players. Further, we presented protocols for mixing a stack consisting ofopen and hidden cards, picking up cards, opening cards, inserting cards in the stack, splitting thestack, and many more. It is possible to control that players obey the rules even when they makehidden moves without disclosure of their secrets.All proofs can be repeated such that it is always possible to decrease the probability that a protocolattack was not detected. Only the insecurity caused by too small secret keys cannot be diminished.Like in Cr�epeau's scheme private cards have not to be revealed after the game keeping the player'sstrategy secret. Furthermore, secret and public keys can be used for many games.At last we discussed the problem of secret and public coalitions and ghost players in mental cardgames. It is an open problem how these problems can be solved in practice. Another open problemis the question how rules can be controlled just in time applying to covered cards without publishingthis secret information. Further, it is open whether and how other cryptographical methods, e.g.discrete logarithm, or modular exponentiation, can replace the quadratic residuosity used here.AcknowledgementThis work was inspired by the discussions with a group of interested students, namely ThomasArand, Matthias Holm, Matthias Kolberg. Further I have to thank Andreas Jakoby for the verydetailed explanation of mixing tradition in \Doppelkopf" which led me to the glueing and separa-tion operation. Special thanks are given to Stephan Weis and Barbara Goedecke for proof-readingand R�udiger Reischuk for drawing my attention to cryptographic protocols.At last I want to mention that there is at our institut an ongoing student project of an interactive,graphical implementation of parts of this system that in its �nal state will allow a transparantsecure mental card game in the internet.References[BaF�u 83] I. Banary, Z. F�uredi, Mental Poker with Three or More Players, Information andControl, 59, pp. 84-93, 1983.[BrCr 86] G. Brassard, C. Cr�epeau, Zero-Knowledge Simulation of Boolean Circuits, Crypto 86,LNCS 263, pp. 223-233, 1986.[BCR 87] G. Brassard, C. Cr�epeau, J.-M. Robert, All-or-nothing disclosure of secrets (extendedabstract), Crypto'86, pp. 234-238, 1987.[Blum 81] M. Blum, Coin Flipping by Telephone, A Protocol for Solving Impossible Problems,SIGACT News, 1981, pp. 23-27, 1987.[Cr�ep 86] C. Cr�epeau, A Secure Poker Protocol That Minimizes the E�ect of Player Coalitions,Adavances in Cryptology: Proc. of Crypto 85, LNCS 218, Springer, pp. 73-86, 1986[Cr�ep 87] C. Cr�epeau, A Zero-Knowledge Poker Protocol that Achieves Con�dentiality of thePlayers' Strategy or How to Achieve an Electronic Poker Face, Crypto'86, pp. 239-247, 1987. 23
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