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Introduction 
 
 The theory of elliptic curves is a classical topic in many branches of algebra and 
number theory, but recently it is receiving more attention in cryptography. An elliptic 
curve is a two-dimensional (planar) curve defined by an equation involving a cubic 
power of coordinate x and a square power of coordinate y.  One class of these curves is 
elliptic curves over finite fields, also called Galois fields. These elliptic curves are finite 
groups with special structures, which can play naturally, and even more flexibly, the roles 
of the modulus groups in the discrete logarithm problems.  
 Elliptic curves have been used actively in designing many mathematical, 
computational and cryptographic algorithms, such as integer factoring, primality proving, 
public key cryptosystems and pseudo-random number generators, etc. Essentially, elliptic 
curve cryptosystems promise a better future for cryptography: more security against 
powerful attacks in the era of computing capability. 
 Many research papers in Elliptic Curve Cryptography (ECC) have been published 
by researchers all over the world.  However, the idea of using elliptic curves in 
cryptography is still considered a difficult concept and is neither widely accepted nor 
understood by typical technical people. The problem may stem from the fact that there is 
a large gap between the theoretical mathematics of elliptic curves and the applications of 
elliptic curves in cryptography.  
 A large amount of ECC literature was collected and organized in the development 
of this survey on ECC.  Part I (Introductory) of this survey gives a modest overview of 
how elliptic curves have been applied to public key cryptography.  The objective is to 
introduce a bridge between the mathematical facts of elliptic curves and its application 
for cryptography. The document attempts to provide clear, intuitive and elementary 
explanations to guide a typical technical reader into the world of elliptic curve 
cryptography. However, basic knowledge of cryptography and abstract algebra, including 
group theory and number theory, would be helpful for readers in several technical areas. 
Part II of this survey, that will be developed, intends to focus more on practical 
implementations. 
 The materials cover elliptic curves and their basic mathematical rules, the Elliptic 
Curve Discrete Logarithm Problem (ECDLP) and many typical attacks on ECDLP-based 
cryptosystems. Also included are descriptions of elliptic curve public key cryptosystems 
or schemes (encryption/decryption, digital signature, key agreement and key transport 
schemes). The document concludes with discussions of elliptic curve implementations, 
the security and advantages of ECC. 
 It is hoped that this survey could provide readers good initial background on the 
path into the new and exciting area of  elliptic curve cryptography, that is attracting more 
attention from cryptographers, computer scientists and researchers all over the world. 
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Notations & Acronyms 
 
 These are two tables of basic notations and acronyms that will be frequently used 
in the document.   

Notation Meaning Notation Meaning 
Fq or GF(q) Finite field of order q ℜ(x + iy) = Real part of a complex 
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(consisting of q elements) ℜ(z) = x number z = x + iy 
Fp or GF(p) Prime finite field of order p 

(consisting of p elements) 
ℑ(x + iy) =  
ℑ (z) = y 

Imaginary part of a complex 
number z = x + iy 

Fq
* = Fq\{0} 

GF(q)* = 
GF(q) \{0} 

Multiplicative subgroup of 
the finite field Fq or GF(q) 

a·P, (a·P), 
aP or (aP) 

Scalar point multiplication of 
an elliptic curve point P with 
a scalar a 

mF
2

or  
GF(2m) 

Binary finite field of order 
2m (consisting of 2m 
elements) 

a|b a divides b  
(or b is divisible by a) 

E(Fq) or 
E(GF(q)) 

Elliptic curve E over finite 
field Fq or GF(q) 

a∤b a does not divide b (or b is 
not divisible by a) 

#E or #E(Fq) 
or #E(GF(q)) 

Order of an elliptic curve E 
over finite field Fq or 
GF(q) 

Tr(·) Trace function 

#(Fq) or 
#(GF(q)) 

Order of a finite field Fq or 
GF(q) 

Z Ring of integers 

Ẽ or E’ Twisted curve of E Q Field of rational numbers 
〈P〉 or 〈g〉 Group generated by an 

element P or g  
R Field of real numbers 

P = (xP, yP) 
P = (Px, Py) 

An elliptic curve point 
represented with its x- and 
y-coordinates 

[a, b] Closed interval consisting of 
all real values x, such that  
a ≤ x ≤ b  

∆ Discriminant mod n Modulo n 
O The point at infinity of an 

elliptic curve 
a·b or ab Scalar multiplication  of two 

numbers 
( )p

·  Legendre symbol  
(modulo a prime number p)

lcm (a, b) Least common multiplier of 
a and b 

( )b
·  Jacobi symbol  

(b is composite number) 
gcd (a, b) Greatest common divisor of 

a and b 
ZN, where 
N = pq 

Ring of integers modulo N, 
where N is composite 

⎡a⎤ 
⎣a⎦ 

The smallest integer ≥ a 
The biggest integer ≤ a 

Table i.  Notations 
 

Acronym Meaning Acronym Meaning 
ABC Anomalous binary curve or 

binary anomalous curve 
MIPS Million instructions per 

second 
AES Advanced encryption 

standard 
MOV Menezes-Okamoto-Vanstone 

algorithm 
CM Complex Multiplication MQV Menezes-Qu-Vanstone key 

agreement scheme 
DES Data Encryption Standard MY MIPS year 
DH Diffie-Hellman algorithm NAF Non-adjacent form 
DHP Diffie-Hellman problem OEF Optimal extension field 
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DDHP Decision Diffie-Hellman 
problem 

ONB Optimal normal basis 

DLP Discrete logarithm problem 
 

PDA Personal Digital Assistant 

DPA Differential Power 
Analysis  

PKI Public key infrastructure 

ECC Elliptic curve cryptosystem RSA Rivest-Shamir-Adleman 
cryptosystem 

ECDDHP Elliptic curve Decision 
Diffie-Hellman problem 

SHA-1 Standard – Secure hash 
algorithm, (revision 1) 

ECDHP Elliptic curve Diffie-
Hellman problem 

SKE Symmetric key encryption 

ECDLP Elliptic curve discrete  
logarithm problem 

SPA Simple Power Analysis 

ECDSA Elliptic curve digital 
signature algorithm 

SSA Smart-Satoh-Araki attack 

IFP Integer factoring problem VLSI Very Large Scale Integration 
KMOV Koyama-Maurer-Okamoto-

Vanstone cryptosystem 
  

Table ii.  Technical Acronyms 
 

Chapter 1 – Elliptic Curves over Finite Fields 
 
  The first chapter will introduce basic information about elliptic curves in order to 
build a foundation of the subject: definitions of the elliptic curves and finite fields, group 
structure of the elliptic curves and many other basic properties which are employed in 
cryptography.  
 Since 1985, two mathematicians Miller and Koblitz have been considered the co-
founders of elliptic curve cryptography. It is a new branch in cryptography that uses an 
old, interesting and difficult topic in mathematics or, particularly, algebra: elliptic curves 
over finite fields. This has both fortunate and “unfortunate” consequences for elliptic 
curve cryptography. It is fortunate because ECC is based on a strong fundamental 
mathematical background. This makes the solution of the Elliptic Curve Discrete 
Logarithm Problem still infeasible; hence it still serves as the security core of elliptic 
curve cryptosystems. The “unfortunate” aspect is that the background of ECC is too 
complicated to be explained elementarily. The theory of RSA (Rivest-Shamir-Adleman) 
cryptosystems, which are based on the Integer Factoring Problem, is fortunately rather 
easy to discuss using high-school mathematics. The cryptosystems, which are based on 
the Discrete Logarithm Problem defined on a finite field, require only elementary number 
theory knowledge about modular multiplications and additions. To understand the theory 
of ECC, the reader must study elliptic curves and get familiar with basic mathematical 
concepts related to elliptic curves.   
 
1.A.  Finite fields 
1.A.1.  Basic facts 
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 Here, we state briefly, without proof, basic facts on finite fields, necessary for 
further discussion on the subject. For more details, please refer to books on the theory of 
finite fields. 
 Finite fields, also called Galois fields, are fields consisting of a finite number of 
elements. 
 A finite field has pm elements where p is a prime number and m is a natural 
number. We call pm the order of the finite field. There is no finite field of order n, if n is 
not a positive power of a prime number. 
 For any prime p and positive integer m, there always exists a Galois field of order 
pm. 
 Two finite fields of the same number of elements pm are isomorphic, or roughly 
speaking, they are the same finite field. We then call it the Galois field (or finite field) of 
order pm, which is denoted by either GF(pm) or .  mp

F

 We call p the characteristic of the finite field GF(pm). In general, the characteristic 
of a field F is the smallest positive integer p such that p·1 = 43421L

 terms

11
p

++  = 0, where 1 is the 

multiplicative identity of the field. We write char(F) = p.  Then the arithmetic operations 
over a finite field are reduced simply to multiplications and additions modulo p. 
 It can be shown that p must be a prime number, because otherwise we can find a 
prime factor p1 of p, (hence p1 < p) such that p1·1 = 0. The contradiction on the minimum 
of prime p proves the claim. 
 A cyclic group G is a group that can be generated from any one of its elements. 
For multiplicative cyclic group G (whose operation is a multiplication ·) and any given 
element g in G, there is an element a in G and a positive number k such that: ak = 

43421 K
  termsk

aaa ⋅⋅⋅ = g. For an additive cyclic group (whose operation is an addition +) and any 

given element g in G, there is an element a in G and a positive number k such that: ka = 
 = g.  4434421 L

  termsk

aaa +++

 The multiplicative subgroup of a finite field Fq, written as Fq
* = Fq\{0} is 

consisting of non-zero elements, or invertible elements of a finite field Fq. This group is 
cyclic of order (q – 1). Particularly, we have: aq–1 = 1, ∀a ∈ Fq

*. 
1.A.2.  Prime and binary finite fields 
 Let Fq be the Galois finite field of q elements, where q = pm for some prime p and 
positive integer m.  
 When m = 1, we usually denote the finite field Fp by Z/pZ or  (if there will be 
no confusion with the p-adic field). The arithmetic operations on F

Zp

p are the usual addition 
and multiplication modulo p.  
 When m ≥ 2,  then we have: mpmp

ZF ≅/ . In fact,  is only a ring, and it is even 

not a field, let alone Galois field, since, for instance, any element that is a multiple of p is 
equal to 0, not 1; hence it has no inverse. 

mp
Z

 From now on, we will consider only elliptic curves E(Fq) defined over finite field 
Fq, where q = pm and char(Fq) = p. Particularly, there are two cases: 
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 If p is a prime number > 3, then q = p. In this case, the finite field is Fp and its 
characteristic char(Fp) = p > 3. Particularly, Fp = {0, 1, 2,…, (p – 1)} whose field 
operations are addition and multiplication modulo p.  It is called a prime finite field. 
 If p = 2, then q = 2m for some positive integer m. The finite field is GF(2m) or  
and its characteristic is char (GF(2

mF
2

m)) = 2. It is called a binary finite field.  
 The simplest case of a finite field is when m = 1.  The finite field F2 = {0,1} has 
the following operations: 
   0 + 0 = 1 + 1 = 0    0·0 = 0·1 = 1·0 = 0    
   1 + 0 = 0 + 1 = 1    1·1 = 1. 
 We consider a less obvious case m = 2: the finite field GF(22). Let α3 = 1 and α ≠ 
1. The elements of GF(22) are 0, 1, α and α2 = α + 1. Using the standard trinomial basis, 
we can write: GF(22) = {(00) = 0, (01) = 1, (10) = α, (11) = α2}. Simple operations on 
GF(22) are: 
   α + α = α2 + α2 = 1 + 1 = 0  α + α2 = 1  1 + α2 = α  
   α ·α = α2    α ·α2 = 1 α2·α2 = α  
 
1.B.  The curve and the group 
 Let E be an elliptic curve over a finite field Fq whose equation is given as follows.  
 Over prime finite field Fp where prime p ≠ 2, 3, we use elliptic curves of equation  

y2 = x3 + ax + b, where ∆ = –16(4a3 + 27b2) ≠ 0. 
 Over binary finite field GF(2m), we use non-supersingular elliptic curves of 
equation:  y2 + xy = x3 + ax2 + b , where ∆ = b ≠ 0. 
 We will also discuss supersingular elliptic curves over binary finite field GF(2m) 
whose equations are of the form:   

y2 + cy = x3 + ax + b, where ∆ = c4 ≠ 0. 
 All the points of E(Fq), including the point at infinity, (which is denoted 
conveniently as O), form an abelian (or commutative) group whose identity element is O 
and the group law is addition +, which is defined as follows. We will then consider E as 
both a curve and a group simultaneously.  This group of elliptic curve points is the group 
on which an elliptic curve cryptosystem will be defined. It is similar to the case of Diffie-
Hellman cryptosystem, (Diffie & Hellman [DH76] or more generally, any cryptosystem 
based on the Discrete Logarithm Problem, defined on a group of elements of a prime 
finite field. 
Additive inverse of a point P 
 First, we have –O = O. For any point P = (x, y) ≠ O on E, the additive inverse 
point (–P) of point P is defined as in the table 1.1. 

Equation of elliptic curve E over a finite field Fq –P = –(x, y) 
y2 = x3 + ax + b (over Fp where prime p ≠ 2, 3) –P = (x, –y) 
y2 + xy = x3 + ax2 + b (non-supersingular elliptic curve over GF(2m)) –P = (x, y + x) 
y2 + cy = x3 + ax + b (supersingular elliptic curve over GF(2m)) –P = (x, y + c) 
Point addition rules 
 For any point P ≠ O and Q ≠ O on E, we have P + Q = Q + P = R, where the 

inverse point (– R) is the intersection point of the elliptic 
curve E with the line going through P and Q if P ≠ Q or with 
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the tangent line to the elliptic curve at the point P if P = Q.  (There is exactly one such 
point of intersection (– R), since the intersection of a straight line and a cubic curve will 
give at most 3 points.)  The addition rules, which are also called chord-and-tangent laws, 
will be best illustrated with the field of real numbers R as in the graph in Figure 1.1.  
Figure 1.1. Point addition rules (or chord-and-tangent rules) for an elliptic curve 
 However, for finite fields, an elliptic curve is not a continuous curve, but it is a 
collection of scattered points and the point at infinity O (which is not drawn). Refer to 
Figure 1.2 and 1.3. 
 For example, let us consider the elliptic curve E: y2 = x3 + x + 6 over the finite 
field F11, which has order #E(F11) = 13.  
E= 〈P〉={(2,7), (5,2), (8,3), (10,2), (3,6), (7,9), (7,2), (3,5), (10,9), (8,8), (5,9), (2,4), O}. 
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Figure 1.2.  
The graph of an elliptic curve E((GF11)): y2 = x3 + x + 6 
includes 12 points and the point at infinity O.   
The number of points is #E((GF11)) = 13.  
The point addition rules over finite field GF11. 

 
 
 

 
Figure 1.3.  
The graph of an elliptic curve E(GF(23)): y2 = x3 + x + 1 has 
13 points and the point at infinity O.   
The number of points is #E(GF(23)) = 14. 
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 We have, trivially, P + (–P) = O. One can imagine that the third intersection point 
of the elliptic curve and the line going through 2 points P and (–P) is at infinity. Hence O 
is called the point at infinity. 
 The explicit formulae for the addition of two non-identity points P = (x1, y1) and 
Q = (x2, y2) in all three cases discussed above are given in table 1.2. There is a basic 
property of cubic equations that was used in deriving those formulae.   
 If x1, x2 and x3 are three roots of a cubic equation X3 + aX2 + bX + c = 0, then  

x1 + x2 + x3 = – a. 
Point doubling formula 
 When P = Q, the addition formula is called the formula for doubling a point P.  
This is the basic arithmetic for scalar point multiplication that will be used the most in 
implementations of elliptic curves. 
Scalar multiplication of a point (or Scalar point mutiplication) 
 Given a point P on an elliptic curve E and an integer k, the scalar point 
multiplication of P by k is the point k·P that is computed by the following formula: 

k·P = 44 344 21 L
  termsk

PPP +++  if k > 0, and k·P = (–k)·(–P), if  k < 0. 
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The notation k·P is usually replaced by other equally popular notations: kP, (kP) or (k·P) 
where the context is clear. 
 Obviously, we have: 0·P = P + (– P) = O. 
Equation of elliptic curve E over a 

finite field Fq

R = (x3, y3) = (x1, y1) + (x2, y2) where 

Over Fp where prime p ≠ 2, 3 
y2 = x3 + ax + b,    
∆ = –16(4a3 + 27b2) ≠ 0 
P = (x1, y1) 
Q = (x2, y2) 
 

x3 = λ2 – x1
 – x2 

y3 = λ (x1
 – x3) – y1 

where λ =

−
−

≠ ±

+
=

⎧

⎨
⎪⎪

⎩
⎪
⎪

y y
x x

    P Q

x a
y

    P Q.

2 1

2 1

1
2

1

3
2

if

if
  

If y1
 = 0, then P = (x1, 0) = – P. Hence 2.P = O. 

Non-supersingular elliptic curve 
over GF(2m) 
y2 + xy = x3 + ax2 + b, b ≠ 0 
P = (x1, y1) 
Q = (x2, y2) 
 

Let κ =
+
+

y y
x x

1

1 2

2  and µ = +x
y
x1

1

1
.  

 
 
 
 
 
 

x

y y
x x

+
y y
x x

x x a    

x x a  P Q

x +
b
x

a                        P Q

3

1 2

1 2

2
1 2

1 2
1 2

2
1 2

1
2

1
2

2

=

+
+

⎛
⎝
⎜

⎞
⎠
⎟

+
+

+ + +

= + + + + ≠ ±

= + + =

⎧

⎨

⎪
⎪
⎪

⎩

⎪
⎪
⎪

κ κ

µ µ

         if

 if

 

,

 

y

y y
x x

x x x y          

x x x y P Q

x + x
y
x

x x

x + x              P Q.

 3

1 2

1 2
1 3 3 1

1 3 3 1

1
2

1
1

1
3 3

1
2

31

=

+
+

⎛
⎝
⎜

⎞
⎠
⎟ + + +

+ + + ≠ ±

+
⎛
⎝
⎜

⎞
⎠
⎟ +

= + =

⎧

⎨

⎪
⎪
⎪⎪

⎩

⎪
⎪
⎪
⎪

( )

.( )

.

( ).

=          if 

  if

κ

µ

If x1 = 0, then P = (0, b ) = – P. Hence 2P = O. 
Supersingular elliptic curve over  
GF(2m) 
y2 + cy = x3 + ax + b,    
c ≠ 0 
P = (x1, y1) 
Q = (x2, y2) 
 

Let κ =
+
+

y y
x x

1

1 2

2  and 
c

ax +
=

2
1η  

x

y y
x x

x x       

x x  P Q
x a

c
                      P Q

3

1 2

1 2

2

1 2

1 2

1
4 2

2
2

=

+
+

⎛
⎝
⎜

⎞
⎠
⎟ + +

+ + ≠ ±

+
= =

⎧

⎨

⎪
⎪
⎪

⎩

⎪
⎪
⎪

=                     if

              if

 2κ

η ,

 

y

y y
x x

x x y  c         

x x y  c  P Q

x a
c

x x y  c          

x x y  c  P Q.

3

1 2

1 2
1 3 1

1 3 1

1
2

1 3 1

1 3 1

=

+
+

⎛
⎝
⎜

⎞
⎠
⎟ + + +

+ + + ≠ ±

+⎛
⎝
⎜

⎞
⎠
⎟ + + +

= + + + =

⎧

⎨

⎪
⎪
⎪⎪

⎩

⎪
⎪
⎪
⎪

( )

.( )

( )

.( )

=           if

          if

 
κ

η
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Table 1.2.  Point addition formulae for elliptic curves over finite fields 
 The order n of a point P is the smallest positive integer such that n·P = O. 
 In fact, the graph of an elliptic curve over a finite field consists of a finite number 
of points (together with the point at infinity). It is not a continuous curve as in the case 
where an elliptic curve is defined over real numbers. But we still have a similar property: 
a line going through any two points will pass through one and only one other point. 
 
1.C.  Order of the group over finite fields 
1.C.1. Hasse’s theorem 
 The order of the group E(Fq) is #E(Fq) = q + 1 – t, where | t | ≤ 2 q1/2. 
 By this theorem, the order of an elliptic curve is roughly about the order of the 
finite field.  For any element a ∈ Fq, if it is the x-coordinate of a point P in E(Fq), then it 
is also the x-coordinate of the point (–P). Hence, the probability for a ∈ Fq to be the x-
coordinate of a point in E(Fq) is roughly equal to ½. 
 This theorem is commonly called the Riemann Hypothesis for elliptic curves over 
a finite field. It was proved, for many of its cases, by Artin in his Ph.D. thesis, for elliptic 
curves by Hasse, and for curves of higher genus. Note that this is not the same as the 
Riemann Hypothesis for the Riemann zeta function. 
Property: In general, any value | t | ≤ 2p1/2 can occur if gcd (t, p) =1, for any 
characteristic p.  Particularly: 
 When q = p, a prime, every possible value of t (i.e., | t | ≤ 2p1/2) can be attained by 
some elliptic curve.  When | t | ≤ p1/2, the elliptic curves are roughly equally distributed. 
 When q is even (or p = 2), every odd value of t such that | t | ≤ 2q1/2  can be 
attained by some non-supersingular elliptic curve. 
Waterhouse’s lemma ([W69]): For q = pm, there exists an elliptic curve E over a finite 
field Fq such that the elliptic curve order #E(Fq) = q + 1 –  t, if and only if one of the 
following conditions holds:     
   (i)   t ≢ 0 (mod p) and t2 ≤ 4q. 
  (ii)  m is odd and one of the followings holds: 
   (1)    t = 0. 
   (2)    t2 = pq = pm+1  if p = 2 or 3. 
 (iii)  m is even and one of the followings holds: 
    (1)    t2 = 4q. 
   (2)    t2 = q and p ≢ 1 (mod 3). 
   (3)    t = 0 and p ≢ 1 (mod 4). 
1.C.2. Formulae and algorithms on elliptic curve group orders 
Hasse-Weil’s theorem (Weil’s conjecture, proved by Helmut Hasse in 1934.)  
 Let E be an elliptic curve over a finite field Fq. Then E is also an elliptic curve 
over an extension field GF(qk) of Fq.  As a group, we have the inclusion relationship: 
E(Fq) ⊂ E(GF(qk)). That is, the elliptic curve order #E(Fq) must divide the elliptic curve 
order # E(GF(qk)). Moreover, if #E(Fq) = q + 1 – t, then # E(GF(qk)) = qk + 1 – α k – β k, 
where α and β are complex numbers satisfying the equation:  

qT2 – tT + 1 = (1 – αT) (1 – βT). 
 This theorem helps to compute the order of an elliptic curve defined over a 
composite extension finite field from the order of the same elliptic curve over one of its 
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subfields.  Explicitly, we have two relationships between elements α and β: α + β = t  
and αβ = q. Then the order #E(GF(qk)) can be computed via the sum Sk = αk + βk that is 
given by the following recursive formula (also called a Lucas sequence): 

Sk = (α + β)Sk –1 – αβSk –2 = t Sk –1 – q Sk –2 , for k ≥ 2, where S0 = 2 and S1 = α + β = t. 
Direct formulae for the orders of elliptic curves over finite fields 
 When the finite field is of computationally small order, one still can use direct 
formulae to find the order of an elliptic curve. For each and every element x ∈ Fq, we 
will determine whether there is (are) 0, 1 or 2 corresponding values of y by the Legendre 
symbol (in prime finite field Fp) and the trace function (in binary finite field GF(2m)). 
Summary of results is in the table 1.3. 

Equation of elliptic 
curve E over a finite 

field Fq

Order of the elliptic curve  
#E(Fq) 

Over Fp, p ≠ 2, 3 
y2 = x3 + ax + b 
∆ = –16(4a3 + 27b2) ≠ 
0 

#E = 1 + ∑
∈

⎥
⎦

⎤
⎢
⎣

⎡
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ ++

pFx p
baxx 1

3

= p + 1 ∑
∈

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ ++

pFx p
baxx3

, 

where ( )p
*  denotes the Legendre symbol. 

Non-supersingular 
elliptic curve over 
GF(2m) 
y2 + xy = x3 + ax2 + b     
b ≠ 0  
 
 

#E = 2 + ( )∑
∈≠

++ −

−+
mFx

xbxaTr

2
0

).( 2

)1(1  

     = 2m  + 1 + (–1)Tr(a) ∑
∈≠

+ −

−
)2(0

).( 2

)1(
mGFx

xbxTr  

When x = 0, we always have one solution: y = b1/2 =  . 
12 −m

b
The order must be an even number. 

Supersingular elliptic 
curve over GF(2m) 
y2 + cy = x3 + ax + b      
c ≠ 0 
 
 
 

#E = 1 + ( )∑
∈

++−

−+
)2(

)]([ 32

)1(1
mGFx

baxxcTr  

      = 2m + 1 +   ∑
∈

+− −

−−
)2(

)]([)( 322

)1()1(
mGFx

axxcTrbcTr

The order must be an odd number of possible values: 
#E = 2m + 1, 2m + 1 ± 2m/2, 2m + 1 ± 2(m+1)/2, or 2m + 1 ± 2(m+2)/2. 

Table 1.3. Direct formulae for computing the orders of elliptic curves over finite fields 
Other algorithms 
 Many particular elliptic curves over particular finite fields, whose the orders are 
easily computed or formulated, are implemented in cryptography for different purposes. 
For examples, the Koblitz curves or elliptic curves over a prime finite field Fp of the form  

    Ep(a,0): y2 = x3 + ax, for a ≢ 0 (mod p) or Ep(0,b): y2 = x3 + b,  for b ≢ 0 (mod p). 
 For a general elliptic curve over larger finite field Fq, one should use Shanks’ 
Baby-step-Giant-step algorithm (Buchmann & Müller [BM91]). The idea is to pick up a 
random point P on the elliptic curve and to compute an integer n such that: q + 1 – 2q1/2 ≤ 
n ≤ q + 1 + 2q1/2 and nP = O. If we can find only one such number, then it is the order of 
the elliptic curve.  If not, we find another point and continue. The groups, generated by 
all the points that we picked, will eventually have the order of the elliptic curve. Its 
running time is about O(q1/4). 
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 Shanks’ Baby-step-Giant-step algorithm can fail when multiple values of n are 
available for every point P.  Mestre [M86] showed that if Shanks’ algorithm fails for an 
elliptic curve, then it will not fail on its twisted curve.  
 If an elliptic curve has Complex Multiplication properties, there are other efficient 
algorithms to count the points.  Refer to Lenstra & Lenstra [LL90], Atkin & Morain 
[Mo91] and Lay & Zimmer [LZ94]. 
 In 1985, Schoof’s algorithm, which is of polynomial running time, was proposed 
and later has been improved both theoretically and practically to be used to compute the 
order of an elliptic curve over very large finite fields. 
1.C.3. Supersingularity 
 An elliptic curve over a finite field Fq, where q = pm, is supersingular if p divides 
t, where #E(Fq) = q + 1 – t. If otherwise, it is a non-supersingular elliptic curve. 
Lemma (i) If char(Fq) = 2 (or 3), the elliptic curve E(Fq) is supersingular if and only if 
its j-invariant is equal to 0. 
 (ii) The elliptic curve E(Fq) is supersingular if and only if either t2 = 0, q, 2q, 3q 
or 4q.   
 From the lemma, we observe that: If q is even (i.e., q = 2m), then E is non-
supersingular, when #E(GF(2m))  is even or t is odd.  Otherwise, if E is supersingular, 
when t is even, or the order #E(GF(2m)) is odd.   
 Explicitly, the possible values of #E(GF(2m)) for supersingular elliptic curves are:  

2m + 1, 2m + 1 ± 2m/2, 2m + 1 ± 2(m+1)/2 and 2m + 1 ± 2(m+2)/2. 
Each value can be attained provided it is an integer, of course. 
 If q = p, a prime > 3, then the elliptic curve E(Fq) E is supersingular if and only if 
its order #E(Fp) = p + 1. 
 Indeed, the simple reason is that | t | ≤ 2p1/2 < p.  Hence the condition p|t implies 
that t = 0.  
 The class of supersingular elliptic curves also is an interesting area of research in 
cryptography. The supersingular elliptic curves over either finite fields Fp or GF(2m) are 
vulnerable to the MOV attack (Menezes, Okamoto & Vanstone [MOV93]). 
 We now re-state Waterhouse’s lemma in a different way, taking consideration of 
supersingularity [BS91]. 
Lemma: There exists an elliptic curve E over a finite field Fq where q = pm, such that 
#E(Fq) = q + 1 – t, if and only if one of the following conditions holds: 
 (i) For the case of supersingular curves,  
   m is even: t = ±2q1/2 = ± 2pm/2. 
   m is even and p ≢ 1 (mod 3): t = ±q1/2 = ± pm/2. 
    m is odd and p = 2 or 3: t = ± (pq)/12 = ± p(m+1)/2. 
   m is odd or m is even and p ≢ 1 (mod 4): t = 0. 
 (ii) For the case of non-supersingular curves, two conditions | t | ≤ 2q1/2 and gcd 
(t, p) = 1 must hold. 
1.C.4.  Structure of the group 
 The group E(Fq) is either a cyclic group or a direct sum of two cyclic groups 

⊕ , where n
1nZ

2nZ 2|n1 and n2|(q –1). That is, we have n2| gcd(n1, q –1). 

 The elliptic curve has order # E(Fq) = n1n2. 
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 This result together with the theory of abelian groups can help us determine the 
group structure. One effective technique in algebra is counting the number of points of 
particular order. There are many special cases to consider. In an easiest case, the order of 
a point to be considered is 2. In fact, points of order 2 are of the form (x, 0) when 
char(Fq) ≠ 2, 3.  For non-supersingular elliptic curves when char(Fq) = 2, there is only 
one point of order 2. It is (0, 1/2). 
Lemma: If the order #E(Fq) is square-free, then E(Fq) is a cyclic group. 
 In other words, if any prime number s such that s2|#E(Fq) must satisfy the 
condition s∤(q – 1), then the group E(Fq) is cyclic. 
1.C.5.  Schoof’s algorithm and improvements 
 This is a short historical summary of developments of the Schoof’s algorithm 
since its original version in 1985. Many developed steps of the complete algorithm are 
described in more details in the cited references. 
a. Schoof ([S85],[S87]) presented an algorithm for counting the number of points N 
on an elliptic curve. It originally applied in the case where q = pm and p > 3. 
 Schoof used the theory of division polynomials and Frobenius endomorphisms to 
determine the order N  (modulo l) for a collection of small primes l.  If the number of 
such primes is large enough, such that the product of such primes ∏l > 4q1/2, then one 
can use the Chinese remainder theorem to determine the number N uniquely. Schoof’s 
algorithm is a deterministic method. This algorithm has a running time of about O(ln8 q) 
or O(ln9 q). 
 Buchmann & Müller [BM91] gave experimental results using a combination of 
Schoof’s algorithm and Shanks’ Baby-step-Giant-step algorithm for the case p > 3. First, 
we compute the order #E(Fq) mod (l1l2…ls) for a few small primes l1, l2,…, ls, using 
Schoof’s algorithm.  This helps to reduce the table size in the Baby-step-Giant-step 
algorithm by a factor of the inverse product (l1 l2…ls) –1. 
 Menezes, Vanstone & Zuccherato [MVZ93] discussed Schoof’s algorithm 
implemented for finite fields of characteristic 2.  
b. Since Schoof’s algorithm’s running time is too slow, it was not practical in 
applied cryptography. Later, improvements in both theory and implementation were 
made by Elkies and Atkin in their unpublished manuscripts from 1986 to 1992.  Atkin 
and Elkies used the properties of modular polynomials to get the possible values of N 
modulo l. This method introduced new concepts: Atkin primes and Elkies primes.  It 
involves the isogeny between two l-isogenous elliptic curves. Atkin and Elkies also 
proposed using more modular equations and modular forms to improve the 
implementation.  
 The improvements have provided more efficient implementation of Schoof’s 
algorithm over finite fields of any large characteristic. The improved Schoof’s algorithm 
is then called Schoof-Elkies-Atkin (SEA) algorithm.  
 Implementations of this algorithm were presented in a few works, such as  Morain 
[Mo95] and Joux & Lercier [JL]. Couveignes & Morain [CM94] showed an improvement 
in case of powers of small Elkies primes by using a structure called an “isogeny cycle.” 
Lehmann, Maurer, Müller & Shoup [LMMS94] presented a variant of Atkin’s method 
and its implementation. More details were also organized in Schoof [S95]. The author 
also discussed Mestre’s method and Cornacchia’s algorithm. 
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 Mestre’s method is to simplify to Shanks’ Baby-step-Giant-step algorithm in the 
special cases. This method is practical for finite fields that are not too large. 
 Cornacchia’s algorithm uses the natural lattice structure of the endomorphism 
ring of the elliptic curve and then it is very effective if the ring is known. It is the basis 
for the primality test by Atkin & Morain [Mo91]. 
c. The problem remains for the case p = 2, or in fact, for small characteristics less 
then l, the prime degree of isogenies.  Couveignes [C94] proposed a method to 
work for any p, hence, helped to solve the case p = 2, using the formal group associated 
to an elliptic curve. It is an important theoretical breakthrough that speeds up the 
computations significantly. The first successful implementation of this algorithm was 
presented in Lercier & Morain ([LM95], [LM95a]). Its running time is of O(l3) 
elementary field operations and need a memory storage of O(l2). The main cost for a 
counting algorithm in this case is the computation of isogenies of prime degree l between 
two isogenous elliptic curves.  
d. Later, Lercier [L96] proposed a heuristic algorithm for computing the isogenies, 
for the case of characteristic 2, to replace that method in Couveignes’ algorithm since this 
is too slow and requires too much memory. Lercier’s method works on the elliptic curve 
itself instead of on its formal group. Its running time is also O(l3) field operations, but it 
is faster by a significant constant factor in practice and conceptually simpler. The 
memory space required is reduced to only O(l). It is not known whether this method can 
be generalized to the case of any other characteristic. 
 In turn, Couveignes proposed a general algorithm (method II) using elementary 
Galois properties of the p-torsion points, without using the formal group. It works for any 
characteristic.  It was based on the ideas in Lercier & Morain’s work above. 
 This algorithm allows the use of fast multiplication for polynomials to achieve its 
running time at O(l2+ε) field operations. This method seems to reduce significantly the 
burden of implementation of a point counting algorithm. The memory required is also 
O(l). 
e. References on current developments of the algorithm are discussed in Couveignes 
[C96], Couveignes, Dewaghe & Morain [CDM96], Müller & Paulus[MP97], Dewaghe 
[D98], Lercier ([L97],[L97a]), Elkies [E98], Galbraith [G99] and later works. Some 
surveys are helpful to understand the general ideas: Buchmann, Müller & Shoup 
[BMS95] and Lercier & Morain ([LM95a],[LM97]).  
f. Satoh [Sa00] proposed a completely different algorithm (from Schoof-Elkies-
Atkin algorithm) with running time O(log3+aq) or O(log5q) for small fixed characteristic 
p ≥ 5 and suggested that algorithm can be applied for the case of characteristic 2 and 3. 
Satoh’s method is based on the canonical p-adic lift of an ordinary elliptic curve. 
 Fouquet, Gaudry & Harley [FGH00] extended Satoh’s method to the case of 
characteristic 2 and 3. The authors also showed in [FGH01] an implementation of the 
Satoh-FGH algorithm and an early-abort strategy based on the Schoof-Elkies-Atkin 
(SEA) algorithm to find secure random elliptic curves in finite fields of characteristic 2 in 
a faster time than previous methods. 
 

Chapter 2 – Elliptic Curve Cryptosystems 
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 We will discuss basic cryptosystems using elliptic curves, such as 
encryption/decryption, digital signatures and key agreement, etc. For each scheme, we 
provide brief discussions and analyses on their security against some known attacks that 
are already published. We also mention RSA-type elliptic curve cryptosystems that have 
interesting applications. 
 
2.A. Introduction to elliptic curve cryptosystems 
2.A.1.  The discrete logarithm problem 
 The discrete logarithm problem can be defined over any abelian group.  For 
simplicity, we recall the definition of DLP over finite cyclic group. 
 Let G be a finite cyclic group of order n and generated by g, i.e., G = 〈g〉. Given a 
point y ∈ G, find an integer m, 0 ≤ m ≤ n – 1, such that y = gm. 
 We call m = logg y the discrete logarithm of y to the base element g. 
 The DLP can be solved in a sub-exponential running time.   
 In cryptography, one usually takes group G as the cyclic (multiplicative) 
subgroup of a modulo group Zp where p is a prime number. Then 

 G = Zp
* = Zp\ {0} and its order is |G| = |Zp

*| = p – 1. 
 Let g be a generator of G.  Then given y ∈ G = 〈g〉 = Zp

*, the DLP is to find an 
integer m, 0 ≤ m ≤  p – 1, such that y = gm (mod p). 
 More generally, group G can be the multiplicative group in a finite field GF(pm)  
Then its order is n = |G| = |GF(pm)*| = pm – 1. In fact, for cryptographic security reasons, 
one prefers to work on a cyclic subgroup of G whose order is a prime number that divides 
the number (pm –1). 
 A variety of groups are used in this problem instead of the modulo groups. Now 
we will consider using the group of points on an elliptic curve over finite fields. 
2.A.2.  The cryptographic problems on elliptic curves 
a.  The elliptic curve discrete logarithm problem 
 Given a point P of order n in an elliptic curve E over a finite field Fq and a point 
Q in the subgroup of E generated by P, denoted by 〈P〉, the ECDLP is to find an integer 
m, where 0 ≤ m  ≤ n – 1, such that Q = m·P. 
 Another way to describe the problem is: 
 Given a point P of order n in an elliptic curve E over a finite field Fq and a point 
Q in E, the ECDLP is to find an integer m, 0 ≤ m ≤ n – 1, such that Q = m·P if such a 
number exists. 
 Point P is called the base point in this problem. We call m = logPQ the elliptic 
curve discrete logarithm of Q to the base point P. 
 The ECDLP is believed to be unsolvable in sub-exponential time, while there are 
already algorithms to solve the DLP in sub-exponential time. 
 The following lemma from group theory tells us whether a solution for an ECDLP 
exists. 
Lemma: Let N be the order of the elliptic curve E and n be the order of the subgroup 〈P〉 
(generated by point P).  Let l = N/n be the cofactor, or the index, of subgroup 〈P〉. If 
gcd(n, l) = 1, then a point Q in the elliptic curve E is in subgroup 〈P〉 if and only if n·Q = 
O. 
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 The condition gcd(n, l) = 1 is easily satisfied, since in practice, n should be a 
prime number. 
b. Elliptic curve Diffie-Hellman problem 
 Elliptic curve Diffie-Hellman problem (ECDHP) ([DH76]): Given a point P of 
order n in an elliptic curve E over a finite field Fq and two points (k·P) and (l·P),the 
ECDHP is to find the point (kl·P). 
 This problem is also used in the elliptic curve Diffie-Hellman key exchange 
algorithm. Boneh & Lipton [BL96] proved that: If the ECDLP cannot be solved in sub-
exponential time, then neither can the ECDHP. 
 Elliptic curve decision Diffie-Hellman problem (ECDDHP) (Boneh [B98]): Given 
a point P of order n in an elliptic curve E over a finite field Fq and three points (k·P), 
(l·P) and (m·P), the ECDDHP is to decide whether m = kl (modulo the order of point P). 
 The ECDDHP is not harder than the ECDHP. Boneh & Venkatesan [BV96] and 
Boneh & Shparlinski [BS01] discussed many issues on security of the ECDHP and 
related schemes. 
2.A.3.  Approaches in elliptic curve cryptosystems 
 In 1985, Koblitz and Miller independently introduced the use of the group of 
points of an elliptic curve over a finite field in cryptosystems based on the elliptic curve 
discrete logarithm problem. (Koblitz’ work [K87] was not published until two years later 
than Miller’s [Mi85]). 
 They are called elliptic curve cryptosystems. In the current cryptography 
literature, there are basically three approaches. 
 (i)  Diffie-Hellman/DSA-type elliptic curve cryptosystems 
 Many proposed elliptic curve cryptosystems of this type are mentioned, such as 
ElGamal, Menezes-Vanstone, Massey-Omura, Schnorr, Nyberg-Rueppel schemes, MQV 
schemes.  They are also used in many Standards such as ANSI X9.62 & ANSI X9.63 and  
IEEE P1363. 
 (ii) RSA-type elliptic curve cryptosystems: KMOV, Demytko schemes and other 
schemes:Koyama’s “K scheme,” Koyama & Kuwakado, Meyer-Müller, Chua-Ling, 
Fujioka-Fujisaki-Okamoto and McCurley schemes. 
 (iii) Other elliptic curve cryptosystems: using supersingular elliptic curves or 
Koblitz curves. 
 A Koblitz curve over GF(2m) is a non-supersingular elliptic curve whose defining 
function has coefficients in F2. In literature, they are also referred as anomalous binary 
curves (ABC’s) or binary anomalous curves. These curves must have the form Ea: y2 + xy 
= x3 + ax2 + 1, where a = 0 or 1. These curves are non-supersingular elliptic curves (in 
order to resist MOV attack) and not vulnerable to the SSA attack. They are easy to create 
and implementbecause of Complex Mulitplication properties. 
 We will present the outline of practical approaches of elliptic curve cryptosystems 
that are proposed in cryptography literature. They are grouped into: message 
encryption/decryption schemes, digital signature schemes with and without message 
recovery, authentication schemes, key exchange and key agreement schemes, RSA-type 
elliptic curve cryptosystems,  and elliptic curve digital signature schemes over a ring ZN. 
 Each scheme or cryptosystem will be presented in its basic algorithms. Simple 
analyses on security that should be widely known in literature and a few typical features 
will be also pointed out where possible. 
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2.A.4. Public key and private key generation 
 Let E be a non-supersingular elliptic curve defined over the finite field Fq, where 
either q = 2m, for some positive integer m or q is a prime greater than 3.  Choose P as a 
base point of a big prime order n in E(Fq). We will work on the group generated by the 
point P: 〈P〉 = {O, P, 2P,…, (n – 1)P}. 
 Key generation: The signer will select a random integer d in the interval [2, n – 
2], and compute the point Q = d·P. The private key is d and public key is Q or, in fact, a 
pair of points P and Q on the elliptic curve. 
 
2.B.   Message encryption/decryption schemes 
 Unless stated otherwise, the elliptic curve E is a non-supersingular curve defined 
over a (Galois) finite field Fq, where q is a prime p > 3, or q = 2m, where m is a positive 
integer. Simple analyses on security and specification features are occasionally discussed.  
2.B.1. Elliptic curve analogue of the ElGamal cryptosystem ([E85]) 
 A point P of order n on an elliptic curve E is fixed and publicly known. User A 
chooses a random number d, keeps it secretly, and publishes the key Q = d·P. To send a 
message m to user A, user B first embeds m to a point M = (mx, my) on E, then chooses a 
random integer k.  User B will send a pair of points (k·P, M + k·Q), assuming k·Q ≠ O. 
 To decrypt the message, user A will use his secret key to compute: M = (M + kQ) 
– d(kP). 
 A disadvantage of this cryptosystem is that one must use a point M = (mx, my) on 
the elliptic curve to embed the message m. Hence it limits the plaintext space somehow. 
This is another drawback, since the eavesdropper can recover the full message if he 
somehow knows only one part of it, either mx or my. 
 An alternative version of this cryptosystem is to replace the elliptic curve addition 
in (M + kQ) by a regular finite field addition in both encryption and decryption. This 
avoids the above disadvantage; now message M is not necessarily embedded on the 
elliptic curve.  
 Encryption: Assuming that kQ ≠ (0,0), then the ciphertext is the pair of data that 
includes: M ⊕ (kQ) = (mx + (kQ)x, my + (kQ)y) and point (kP). Here the addition + is the 
regular finite field addition. 
 Decryption: Using his secret key a, user A can recover the plaintext as: 

[M ⊕ (kQ)] – d(kP) = (mx + (kQ)x – (kQ)x, my + (kQ)y – (kQ)y) = (mx, my) = M. 
        In this algorithm, one does not need to compute the order of the elliptic curve. But 
in practice, we need to do so for security confidence on the infeasibility of the ECDLP. 
 The ciphertext is expanded by a factor of 2 (or only 3/2 if one uses compressing 
techniques). The same drawback: if someone knows mx (or my), he can solve for (kQ)x 
then (kQ)y and my (or mx) easily. 
 Another version of this scheme is just to use the x-coordinate of a point, and 
hence the message M is now just written as M = mx. Then the message will be XOR-ed 
with (kQ)x and concatenated with k·P to form the ciphertext: kQ || M ⊕ (kQ)x. The 
decryption is similar to the method described above, after (k·P) is extracted from the 
ciphertext. 
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 Alternative version using symmetric key encryption: The message will be 
encrypted by a symmetric key encryption scheme SKE with (k·Q) as a secret key and will 
be sent together with (k·P) to user A.  
 User A receives the ciphertext, the pair e = SKE(kQ)(M) and point (k·P). User A 
then uses his secret key a to compute a· (k·P) = k·Q and uses (k·Q) to decrypt the 
message:  ).(1

).( eSKEM Qk
−=

2.B.2.  Massey-Omura elliptic curve cryptosystem ([MO86]) 
 This cryptosystem will be used to send a message m that is embedded as a point P 
on a fixed elliptic curve whose order N is computed and also publicly known.  Each user 
will choose at random an integer e such that gcd(e, N) = 1, and compute d such that e.d ≡ 
1 (mod N). Both e and d are kept secret. That is, for some integer k,  

(ed)·P = (1 + kN) ·P = P + kN·P = P + O = P. 
 User A sends eAP to user B. Then user B sends back eB(eAP) to user A. Then user 
A does his decryption by computing: dA.(eB(eAP) = eB.P and sends it back to user B. No 
one can read the message yet, up to this stage. Finally, user B does his decryption to read 
the message: dB(eBP) = P. 
 The security of this cryptosystem is obviously based on the infeasibility of 
ECDLP. Massey-Omura elliptic curve cryptosystem can be considered a variant version 
of the original Diffie-Hellman key exchange scheme. 
2.B.3.   Menezes-Vanstone elliptic curve cryptosystem ([MV90],[MV93]) 
 This is also mentioned as a version of ElGamal cryptosystem in many 
cryptography literature. Let E be a non-supersingular elliptic curve defined over a finite 
field Fp, where prime p > 3. Choose a point P in E(Fp) of order n and compute the point 
Q = d·P with the secret key d.  The pair (P, Q) are public keys. 
 Encryption: The sender will choose a secret random number k in the interval [1, n 
–1]. The ciphertext of a message m = (m1, m2) ∈ Zp

*×Zp
* will be the triple including the 

point k.P and two finite field elements y1 and y2 where y1 = c1m1 (mod p) and y2 = c2m2 
(mod p), and assuming kQ = (c1, c2) ≠ (0,0). 
 Decryption: The receiver uses his secret key d to compute the point d·(k·P) that 
should be exactly kQ = (c1, c2). Hence the receiver can recover the message by:  

 = (m))(mod),(mod( 1
22

1
11 pcypcy −−

1, m2). 
 Analysis: There is also a message expansion of factor 2 (or 3/2 if one uses 
compressing techniques). The same drawback: if one knows mx (or my), he can solve for 
my (or mx) easily. To prevent this attack, one should send only k·P and one finite field 
element y = c1 m (mod p). 
 There are other proposals/standards computing y1 and y2 in more complex 
algorithms from c1, c2, m1 and m2 in order to prevent an eavesdropper, who knows y1, y2 
and half the message, say m1, from recovering the other half message m2 or from 
substituting m1 by his own message. 
 
2.C.  Digital signature & authentication schemes 
2.C.1.  Elliptic curve digital signature schemes 
a.  Elliptic curve digital signature algorithm (ECDSA) – ANSI X9.62. 
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 This is a version of ElGamal elliptic curve digital signature scheme and is an 
analogue to DSA, Digital Signature Algorithm. In this document, the hash function H is 
the Secure Hash Algorithm (SHA-1), whose output e is a 160-bit string. 
Step 1. Initial Setup: All users will use the same underlying finite field Fq, where either q 
= 2m or q is a prime greater than 3. Let E be a non-supersingular elliptic curve defined 
over the finite field Fq. Choose P as a base point of prime order n in E(Fq). We will work 
on the group 〈P〉 = {O, P, 2P,…, (n – 1)P}. 
Step 2. Key generation: The signer will select a statistically unique and unpredictable (or 
random) integer d in the interval [1, n –1], and compute point Q = d·P. The signer’s 
private key is d and his public key is Q. 
Step 3. Signature generation: The signer will select a statistically unique and 
unpredictable integer k in the interval [1, n –1], and compute kP = (x1, y1) and check that 
r = x1 ≠ 0 (mod n). If r = 0, then select another k. Compute e = H(M) and check that s = k 

–1(e + dr) mod n ≠ 0. If s = 0, then select another k. The signature for message M is a pair 
(r,s). 
Step 4. Signature verification: The verifier will compute the values e = H(M), u1 = es–1 

(mod n) and u2 = rs–1(mod n). Then compute the elliptic curve point u1P + u2Q = (x2, y2), 
using the signer’s public key Q, then the value v = x2 (mod n). The signature is accepted 
if v = r. 
 The security of this cryptosystem does not depend on the choice of the base point 
P as long as its order n satisfies the requirements: n > 2160 (or n has at least 161 bits.) 
 Signature size: To achieve the same security level (in terms of MIPS years to 
break-in using the best attacks) of DSA (160-bit q and 1024-bit p), or RSA (1024-bit 
modulus n), the parameter n should have at least 161 bits. This could help ECDSA to 
resist against Vaudenay’s attack.  
 Public key size: By the point compression technique, a point (x, y) on the elliptic 
curve can be represented simply by x-coordinate and a single bit of y-coordinate. Hence 
in the above case, a public key size is 161 bits only.  
 Note that the security of such schemes also depends on the security of hash 
function that is used. In current estimation, for short-term security, n should have at least 
161 bits; for medium-term security, 180 bits. One always expect that these lower bounds 
should be increased as technology advances. 
 Brown [B00] proved that ECDSA is secure against existential forgery by adaptive 
chosen-message attack if the goup of points on the elliptic curve is modeled by a generic 
group and the hash function is collision-resistant. Nguyen & Shparlinski [NS01] 
discussed the insecurity of the ECDSA with partially known nonces. 
b. Other schemes (Agnew, Mullin & Vanstone [AMV90]) 
 The setup and key generation are similar to those in ECDSA described above.  
Instead of computing the inverse k–1 in the formula s = k–1(e + dr) mod n, we define: s = 
d–1(e + kr) mod n.  Hence, we need to compute only one fixed inverse d–1 of the private 
key d for all messages.  Recall that: kP = (x1, y1), r = x1

 ≠ 0 (mod n), e = H(M). The 
signature for message M is a pair (r, s). 
 To verify signature, we compute: e = H(M), u1 = – er–1(mod n) and u2 = sr–1(mod 
n). Then using the signer’s public key Q to compute: u1P + u2Q = (x2, y2) and v = x2 (mod 
n). The signature is accepted if v = r. 
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 The security of this scheme is based partially on the intractability of the following 
problem:  
 Given Q = (xQ, yQ), find a point P = (xP, yP), such that s(xP, yP) = (xQ, yQ), where s 
= (xP mod n), if such a point exists.  
 This problem is thought to be more difficult than ECDLP. The existence is also 
not proven yet. This scheme is basically similar to a general version of Nyberg-Rueppel’s 
signature scheme with message recovery. 
 Modified ElGamal digital signature schemes are discussed in Saryazdi [S90], 
Horster, Michels & Petersen ([HMP94],[HMP94a]), and He & Kiesier [HK94]. 
c. Schnorr signature scheme 
 Schnorr [S91] proposed another modification of the ElGamal scheme to avoid the 
inverse computation. It also requires a hash function H(M, x), for a message M using a 
key x.  Its signature can be smaller than the ElGamal scheme. The setup and key 
generation steps are similar as those steps in ECDSA described above. 
 Signature generation: Select a random integer k in the interval [1, n – 1], then 
compute the point kP = (x1, y1). Then compute e = H(M, x1) and s = (k + de) mod n. The 
signature for message M is a pair (e, s). 
 Signature verification: Compute the point sP – eQ = (z, t), using the signer’s 
public key Q.  The signature is accepted if H(M,z) = e. 
 The Schnorr scheme is secure against passive attacks but not yet known for active 
attacks. In order to resist against some known attacks, the hash function H(M, x) used in 
this scheme must satisfy two basic conditions: H(M, x) must be almost uniformly 
distributed with respect to variable x, and be a one-way function with respect to variable 
M. Otherwise, for fixed message M and value e, if the hash function H(M, x) is not 
uniform with respect to x, one can compute the point (a, b) = sP – eQ, for a random s 
until the equality e = H(M, a) holds.  This attack yields a signature (s, e) for the given 
message M.  
 There is another case: chosen message attack. One can choose an arbitrary 
signature (s, e) and compute the point  (z, t) = sP – eQ. Then he can solve for message M 
from the equation e = H(M, z), if the hash function H is not a one-way function with 
respect to M. The hash function is not required to be collision-free with respect to M. If 
we have: H(M, x) = H(M’, x), the signature for message M cannot be used to sign 
message M’ since it depends also on a random number k, hence on a random point kP = 
(x, y). 
2.C.2.  Elliptic curve digital signature schemes with message recovery 
a. Nyberg-Rueppel’s signature scheme with message recovery ([NR96]) 
 Signature generation: The signer will select a random integer k in the interval [1, 
n – 1], then compute the point R = kP = (x1, y1). This is called a one-time key pair (k, R). 
Then the signer will compute e and check that e = (x1 + M) mod n ≠ 0. If e = 0, the signer 
must select another k and repeat.  Compute the integer s = k – de (mod n). Then the 
signature for message M is a pair (e,s). 
 Signature verification: One cannot verify directly the signature in this scheme. 
The signature is accepted if the message is recovered properly. This can be achieved by 
adding redundancy to the message before it is signed and checking the redundancy after 
it is recovered. 
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 Message recovery: Compute the point sP + eQ = (z, t). The message is decrypted 
by M = (e – z) mod n. 
 Nyberg-Rueppel’s scheme is similar to Schnorr’s scheme in which the hash 
function H is replaced simply by: H(M + x1) = M + x1. In Nyberg-Rueppel’s scheme, we 
are interested in recovering the message embedded in the signatures without verifying the 
signature itself.  In Schnorr’s scheme, the receiver can attain the message somehow and 
use it to verify the signature. 
An alternative scheme 
 Signature generation: Embed the message into a point M on the elliptic curve. 
Select a random integer k in the interval [1, n – 1]; then compute the point R = kP + M = 
(x1, y1). The signature is a pair (R,s) where s = k – dx1 (mod n). 
 Signature verification: One also cannot verify the signature in this scheme. The 
signature is accepted if the message is recovered properly. 
 Message recovery: From R = (x1, y1), one can compute the point (sP + x1Q). Then 
the message is recovered by computing the point: (sP + x1Q) – R = M. 
 In a more general term, in Nyberg-Rueppel’s schemes, the integer s satisfies a 
signature equation Ad + Bk + C = 0 (mod n), where (A, B, C) is a fixed permutation of 
(±x1, ±s, ±1). Nyberg & Rueppel [NR96] also discussed details on alternative schemes. 
 Nyberg-Rueppel’s scheme can be also used as a key agreement algorithm in the 
multiplicative group setup. El Mahassni, Nguyen & Shparlinski [MNS01] discussed the 
insecuriry of Nyberg-Rueppel schemes with partially known nonces. 
b.  Vanstone’s signature scheme with message recovery 
 It is another modified version of the ElGamal scheme and is also an enhancement 
of Nyberg-Rueppel’s scheme. The setup and key generation steps are similar to those 
steps in ECDSA described above. In place of the hash function H, one uses a symmetric 
key encryption/decryption scheme, Ex and Dx in order to recover the encrypted message. 
 Signature generation: Select a random integer k in the interval [1, n –1], where the 
prime n is order of the base point P, as usual. Then compute the point kP = (x’, y’). Then 
compute: e = Ex’(M), e’ = H(e) and s = (k + de’) mod n. The signature for message M is a 
pair (e, s). 
 Signature verification: One cannot verify directly the signature in this scheme. 
The signature is accepted if the message is recovered properly. This can be achieved by 
adding redundancy to the message before it is signed and checking the redundancy after 
it is recovered. 
 Message recovery: Compute an integer e’ = H(e) and the point sP – e’Q = (z,t).  
The message is recovered as: Dz(e) = M. 
 In fact, because of the relation (z,t) = (x’, y’), as the same point on the elliptic 
curve, the encryption E and decryption D, that used x-coordinate as a secret key, can be 
designed generally as a symmetric key encryption scheme with the key (kP): 

E = SKE(kP)(M) = e and D = (e) = M. 1
)(

−
kPSKE

 Signature size: This scheme produces a signature of the size equal to the sum of 
message size and elliptic curve size (or order n). 
2.C.3.  Summary of digital signature schemes 
Digital Signature 

Schemes 
Signature Generation Signature 

Verification 
Message Recovery 
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ECDSA  
(ANSI X9.62) 

R = kP = (x1, y1) 
r = x1 ≠ 0 (mod n) 
e = H(M) 
s = k–1(e + dr) mod n 
Signature: (r, s) 
 

e = H(M) 
u1 = es–1(mod n) 
u2 = rs–1(mod n) 
u1P + u2Q = (x1, y1) 
v = x1 (mod n) 
Accept the signature 
if v = r 

No. Message is 
encrypted and then 

decrypted in a 
separate scheme. 

 

Agnew, Mullin & 
Vanstone’s scheme 
([AMV90]) 

R = kP = (x1, y1) 
r = x1 ≠ 0 (mod n) 
e = H(M) 
s = d–1(e + kr) mod n 
Signature: (r, s) 

e = H(M) 
u1 = – er–1(mod n) 
u2 = sr–1(mod n) 
u1P + u2Q = (x1, y1) 
v = x1 (mod n) 
Accept the signature 
if v = r 

No. Message is 
encrypted and then 

decrypted in a 
separate scheme. 

 

Schnorr’s scheme R = kP = (x1, y1) 
e = H(M, x1)  
s = (k + de) (mod n) 
Signature: (e, s) 

sP – eQ = (z,t) 
Accept the signature 
if H(M,z) = e. 

No. Message is 
encrypted and then 

decrypted in a 
separate scheme. 

    

Vanstone’s scheme e = Ex’(M)  
e’ = H(e) 
s = (k + de’) (mod n) 
Signature: (e, s) 

Not directly. The 
signature is accepted 

if the message is 
recovered properly. 

e’ = H(e)  
sP – e’Q = (z,t) 
Accept the message 
if Dz(e) = M 

Nyberg-Rueppel’s 
scheme 1 

e = (x1 + M) mod n 
s = (k – de) (mod n) 
Signature: (e, s) 

Not directly. The 
signature is accepted 

if the message is 
recovered properly. 

sP + eQ = (z,t) 
Message: 
M = (e – z) mod n 

Nyberg-Rueppel’s 
scheme 2 
(alternative) 

R = kP + M = (x1, y1)  
s = k – dx1 (mod n) 
Signature: (R, s) 

Not directly. The 
signature is accepted 

if the message is 
recovered properly. 

Message: 
(sP + x1Q) – R = M 
 

Table 2.1.   Summary of digital signature schemes 
Initial setup & Key generation 
 All users will use the same underlying finite field Fq, where either q = 2m or q is a 
prime greater than 3. Let E(Fq) be a non-supersingular elliptic curve defined over a finite 
field Fq. Choose P as a base point of prime order n in E(Fq). Each user selects a random 
integer d in the interval [1, n – 1], then computes the point Q = dP. His private key is d 
and public key is Q.  
 For all schemes, the sender always selects a random integer k in the computation. 
Both sides need a good hash function H. 
2.C.4. Signcryption schemes 
 The original “signcryption” schemes were propsed Zheng and Imai’s works, 
[Z98] and [IZ98]. It is a cryptographic method that fulfils both functions of encryption 
and digital signature with a smaller cost than the cost required by a typical signature-
then-encryption procedure. 
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Signcryption: The signer will select a random integer k in the interval [1, n –1], and 
compute kP = (x1, y1), r = H(M, kP) and s = k (r + d)–1. The signature is (r, s). 
Unsigncryption: Compute the elliptic curve point K = s(rP + Q), using the signer’s public 
key Q, then check whether H(M, K) = r. 
 In the other version, compute s = k (1 + rd)–1 in signcryption step and compute K 
= s(P + rQ) in unsigncryption step. 
2.C5. Schnorr’s authentication schemes ([S91]) 
 The setup and key generation steps are similar to those steps in the ECDSA 
described above or in Schnorr’s signature scheme. 
 Initiation: Prover A selects a random integer k in the interval [1, n –1] then 
computes the point kP = (x1, y1). Then prover A uses the hash function H to compute the 
value h = H(0, x1). Prover A sends to verifier B its identification string I, its public key Q, 
the signature S for the pair (I, Q) and h. Verifier B then verifies the signature S and send a 
random integer e ∈ [1, n – 1] to A. Prover sends to B: s = k + de (mod n). 
 Verification: Verifier B verifies the pair (I, Q) either by checking the signature S 
or computing sP – eQ = (z, t) and checking that H(0, z) = h. 
 An attack C can cheat by guessing e and sending to verifier B a wrong proof: h = 
H(0, x1) where (x1, y1) = kP – eQ, for a random integer k and s = k. The probability for 
successful guessing e is only (n – 1)–1. Verifier B can also choose e freely in order to 
learn prover A’s method of authentication. 
 
2.D. Key agreement & key exchange schemes 
 In a key agreement or key exchange scheme, every party contributes 
information/data in order to compute a session key. While in a key transfer scheme, one 
party sends the computed session key to the other parties in a secure way. 
2.D.1.  Elliptic curve Diffie-Hellman key agreement ([DH76]) 
 Two users A and B first agree on a base point P on an elliptic curve E. User A 
will choose a random number a, compute a·P, then send a·P publicly to user B, while 
keeping a secret.  User B will choose a random number b, compute b·P then send b·P 
publicly to user A, while keeping b secret.  
 Both users now can compute the common secret key (ab·P) by one user’s secret 
key and other’s public key.  
 For user A, it is the point a·(b·P); for user B, it is the point b·(a·P) = a·(b·P).  
 Anyone else could know the public information P, aP, and bP, but it is infeasible 
to find the secret keys a, b and (ab·P) (by the property of ECDHP.) 
 Both ElGamal and Massey-Omura cryptosystems are variants of Diffie-Hellman 
key exchange scheme. 
2.D.2. Elliptic curve MTI key agreement (Imai, Matsumoto & Takashima, [IMT86]) 
 Each user has a key pair. User A has (a, QA), where QA = aP and user B has (b, 
QB), where QB = bP. User A selects a random integer kA, then computes and sends to user 
B the point KA = kA .QB. Similarly, user B will send to A the point KB = kB .QA, where kB is 
a random integer. Each user now can compute the shared secret value K by: 
 For user A, it is K = a–1kAKB = a–1kAkB aP = kAkBP, 
 For user B, it is K = b–1kBKA = b–1kBkA bP = kAkBP. 
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  An alternative version: User A selects a random integer kA then computes and 
sends to user B two points KA = kAP and QA. Similarly, user B will send to A two points 
KB = kBP and QB. Each user now can compute the shared secret value K by: 
 For user A, it is K = aKB + kAQB = (akB + kAb)P.     
 For user B, it is K = bKA + kBQA = (bkA + kBa)P. 
 In general, these schemes are vulnerable to a few active attacks, including 
unknown key-share attacks. 
2.D.3. Elliptic curve Menezes-Qu-Vanstone key agreement ([MQV95]) 
 Setup: One will construct an appropriate elliptic curve E as usual, such that n is a 
prime factor of its order #E (usually, it is order of the base point P on E.)  Let us define: h 
= ⎡(log2 n)/2⎤.   
 User A has two key pairs (a1, A1) and (a2, A2), where private keys a1, a2 ∈ [1, n – 
1] and public keys A1 = a1P (that is called long term or static key) and A2 = a2P = (x, y) 
(which is called the short term or ephemeral key.) User B also has two key pairs (b1, B1) 
and (b2, B2), where B1 = b1P and B2 = b2P = (x’, y’), with two secret keys b1, b2 ∈ [1, n – 
1].  Let tA = f(A2) = f(x, y) = (x mod 2h) + 2h and  tB = f(B2) = f(x’, y’) = (x’ mod 2h) + 2h. 
Then two users will do computations using one’s own secret keys and the other’s public 
keys. 
User A will compute  
     an integer eA = (tAa1 + a2) mod n   
     a point RA = eA(tBB1 + B2). 
Check if RA = (xA, yA) ≠ O. 

User B will compute  
    an integer eB = (tBb1 + b2) mod n   
    a point RB = eB(tAA1 + A2). 
Check if RB = (xB, yB) ≠ O. 

 Table 2.2.   Computations in the MQV key exchange scheme 
 Then K = xA = xB is the shared secret value or shared key for both users A and B. 
Verification: One can observe simply that aiBj = aibjP = bjAi, for i, j = 1, 2. Hence it is 
easy to verify the scheme: 
  RA = eA(tBB1 + B2) = [(tAa1 + a2) mod n] (tBB1 + B2) 
       = [(tAa1 + a2) mod n] [(tBb1 + b2) mod n]P, (since point P has order n) 
       = [(tBb1 + b2) mod n] (tAA1 + A2) = eB(tAA1 + A2) = RB. 
 Note that in this scheme, one needs both x- and y-coordinates of elliptic curve 
points in computation. The special feature of this scheme requires both public and private 
keys of both parties implied in the signatures and their verifications. Hence the MQV 
scheme can prevent efficiently the man-in-the-middle attack. Refer also to Law, 
Menezes, Qu, Solinas & Vanstone [LMQSV98]. 
 
2.E.  RSA-type elliptic curve cryptosystems 
 We now mention RSA-type elliptic curve cryptosystems may be both 
controversial and interesting to many researchers. There are works on designing such 
cryptosystems or exploiting the connections with RSA cryptosystems.  
2.E.1. Public key cryptosystem using elliptic curves over a ring ZN
a. Elliptic curves over a ring ZN

 The elliptic curve over ZN is of the form: Ea,b: y2 = x3 + ax + b, where a, b ∈ ZN, 
and gcd(4a3 +27b2, N) = 1. In general, over a ring ZN, the set of points in Ea,b(ZN) 
(including the point at infinity denoted by ON) does not form a group.  The same addition 
rules defined for an elliptic curve over a finite field cannot be extended to the ring ZN. 
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The simple reason is that the inversion of a non-zero number n works in modulo a prime 
p but does not work in modulo a composite number N, if gcd(n, N) > 1. 
 Under modulo p, for p being some prime factor of N, the elliptic curve Ea,b over 
ZN is reduced to an elliptic curve Ea b,  over the prime finite field Fp, where we denote 

paa = = a (mod p). Let P = (x, y) ∈ E(ZN), then Pp = ),( yx  ∈ E(Fp), and (ON)p = Op, the 
point at infinity of E(Fp). We may drop subscripts a and b where there is no confusion. 
 From now on, we are interested in the case that N is a product of two distinct odd 
big primes p and q.  For convenience, we also use the notation q for a prime factor of the 
composite number N.  Do not confuse with the subscript q for finite fields where q = pm. 
By the Chinese remainder theorem, any x ∈ ZN can be represented uniquely as a pair 

),( qp xx ∈ Fp × Fq. We consider the product Ẽ(ZN) of two groups E(Fp) and E(Fq).  Hence 
Ẽ(ZN) is a group. We have Ẽ(ZN) = E(Fp) × E(Fq) = {(Pp, Pq), where Pp = ),( pp yx  ∈ 
E(Fp) and Pq = ),( qq yx  ∈ E(Fq)} and ON = (Op, Oq).  
 For the elliptic curve E(ZN), we observe that each point P ∈ E(ZN) corresponds to 
a unique element (Pp, Pq) ∈ Ẽ(ZN), except for elements in which exactly one of the points 
(Pp or Pq) in the pair is the point at infinity. Then we have # Ẽ(ZN) = #E(Fp)×#E(Fq). The 
number of elements in the set E(ZN) - which is a subset of E~ (ZN) - is easily computed by: 
#E(ZN) = (#E(Zp) – 1).(#E(Zq)– 1) + 1 = E~# (ZN) – #E(Zp) – #E(Zq) + 2. This number was 
not used anywhere in the cryptosystems. Instead we are interested in 

#Ẽ(ZN) = #E(Fp).#E(Fq) or  MN = lcm(#E(Fp), #E(Fq)). 
b.  Addition rule and factorization algorithm 
 Also let Q = (x’, y’) ∈ E(ZN) corresponding to a unique element (Qp, Qq) ∈ Ẽ(ZN). 
The addition operation on E(ZN) is defined by the component-wise addition in each group 
of the product group Ẽ(ZN).  That is, P + Q = (Pp + Qp, Pq + Qq). Particularly, we have 
the scalar point multiplication formula: kP = (kPp, kPq), for any integer k. 

 The points (Pp, Oq) and (Op, Pq), for any Pp or Pq that is not the point at infinity, 
are called non-realizable points. They cannot be the result of adding any two points on 
E(ZN) If p and q are very large primes, then the percentage of non-realizable points is 
negligible.  
 In fact, the addition defined for E(ZN) above is undefined if and only if the 
resultant is a non-realizable point of the form [Pp, Oq] or [Op, Pq]. When the point 
addition would result in non-realizable points with non-negligible probability, one could 
have a feasible integer factoring algorithm for N.  In other words, one can claim: 
Lemma: If P and Q are two points on E(ZN) whose addition is undefined, then the 
knowledge of points P and Q is sufficient to factor N. 
 In the next section, we will discuss public key cryptosystems, digital signature 
and key agreement schemes based on elliptic curves over a ring ZN.  We will use the 
following result that can be proved simply. 
Lemma: If MN = lcm(#E(Fp), #E(Fq)), then for any point P ∈ E(ZN), and any integer k, 
we have the identity: (kMN + 1)P = P. 
 As the RSA cryptosystem, two distinct large primes p and q are kept secret and 
the modulus N = pq is publicly known. The security of RSA-type elliptic curve 
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cryptosystems is based on the difficulty of factoring modulus N.  The group orders 
#E(Fp) and #E(Fq) are served as the trapdoor. 
 The public key e is chosen to be relatively prime to both #E(Fp) and #E(Fq). Then 
e is also relatively prime to MN = lcm(#E(Fp), #E(Fq)). That is: gcd (e, MN) = 1. Then the 
secret key can be defined as: d = e–1(mod MN).  Hence we have (ed) ·P = P. 
2.E.2.  RSA-type elliptic curve cryptosystems 
a. KMOV elliptic curve cryptosystem 
 Three KMOV cryptosystems were proposed by Koyama, Maurer, Okamoto & 
Vanstone [KMOV92]. As an analogue of the RSA cryptosystem, the security of these 
systems are based on the difficulty of factoring n.  
 Type 0 scheme requires computation of the order of a general elliptic curve. It can 
be used only in digital signature schemes. The signature is about twice the message. To 
sign a message M, one embeds it as a point P = (x, y) ∈ E(ZN), and the signature is the 
point Q = (u, v) = d·P, using his private key. To verify the signature, the receiver 
computes the point P = (x, y) = e·Q, using the sender’s public key, and extracts the 
message M.  The drawback of this system is also common for all cryptosystems using 
elliptic curves with large primes p, the Schoof’s algorithm to compute the order #E(Fp) is 
still infeasible. This scheme cannot be used for a public-key cryptosystem, since 
knowledge of the trapdoor is required to create a point on E(ZN), that corresponds to a 
message.  
 Type 2 scheme is a Rabin-type generalization of type 1, where the public key e = 
2.  It also has the 4-ambiguity in decrypted message, as in the original Rabin scheme.  
 Type 1 scheme is the most practical of three schemes. To set up, user A has the 
modulus N = pq where p and q are two distinct large primes, which are kept secret and 
satisfy either case of these two special cases: 
 Case p ≡ q ≡ 2 (mod 3): The elliptic curve E(ZN) is of the form E0,b: y2 = x3 + b, 
where coefficient b is determined by the message, m = (mx, my) ∈ Zn × Zn, to be 
encrypted: b ≡  (mod N). (Or also by the ciphertext: b ≡  (mod N) as we 
will observe below.) But we do not need b explicitly in the computation. 

32
xy mm − 32

xy cc −

 Case p ≡ q ≡ 3 (mod 4): The elliptic curve E is of the form Ea,0: y2 = x3 + ax, 
where a must be computed by the sender using the message or plaintext m = (mx, my), a ≡ 

(mod N), or by the receiver by the encrypted message or ciphertext c = (c132 )( −− xxy mmm x, 

cy), a ≡ (mod N). 132 )( −− xxy ccc
 Key generation: In both cases, the elliptic curve orders are easily computed,  
#E(Fp) = p + 1 and #E(Fq) = q + 1. Let MN = lcm(p + 1, q + 1) that is also kept secret.  
His public key will be N and e, where e is randomly selected such that gcd(e, MN) = 1. 
His private key will be d, such that ed ≡ 1(mod MN). 
 Encryption: To send a message to user A, user B will encrypt a message m = (mx, 
my) using user A’s public key e: e.(mx, my) = (cx, cy) over E(ZN)  
 Decryption: User A uses his secret key d to recover the message: d.(cx, cy) = (mx, 
my) over E(ZN). 
b.  Demytko’s elliptic curve cryptosystem ([D94]) 
 Like KMOV schemes, this cryptosystem is defined over a ring ZN. It uses only the 
x-coordinate of a point on an elliptic curve. Its security is also based on the difficulty of 
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factoring N, where N = pq and p and q are two secret large primes.  The elliptic curve E is 
of the form E: y2 = x3 + ax + b and gcd (4a3 + 27b2, N) = 1. Let Ep denote the elliptic 
group modulo p of elements (x, y) satisfying the equation y2 = x3 + ax + b (mod p)  
together with the point at infinity O. Its order is #Ep= p + 1 – tp. Then its twist curve E’p 
has order #E’p = p + 1 + tp. We do the same for the other prime number q. 
 Key generation: His public key will be a pair N and e. There are four secret keys 
d1, d2, d3 and d4 for decryption, which are defined by edi ≡ 1 (mod Ni), for 1 ≤ i ≤ 4 and 
the moduli Ni are defined as in the table 2.3. 
 Encryption: The message M is embedded as an x-coordinate of a point P on the 
elliptic curve E.  We write eP = ((eP)x, (eP)y). The ciphertext C will be the x-coordinate 
of the point (eP): C = (eP)x. 
 Decryption: First, we compute: u = C3 + aC + b (mod N). Then we determine 
whether u is a quadratic residue modulo p and/or modulo q and refer to the table 2.3. for 
the right decryption key (secret key) di.  
 We have the decrypted message as: M = (di.(C,*))x (mod N), and we can do so 
without using the y-coordinate. 
u= C3 + aC + b(mod N) Modulus Ni Decryption 
( )p

u  = 1 ( )q
u  = 1 N1 = lcm (p + 1 – tp, q + 1 – tq) M = (d1.(C, *))x (mod N) 

( )p
u  = 1 ( )q

u  = – 1 N2 = lcm (p + 1 – tp, q + 1 + tq) M = (d2.(C, *))x (mod N) 

( )p
u  = – 1 ( )q

u  = 1 N3 = lcm (p + 1 + tp, q + 1 – tq) 
 

M = (d3.(C, *))x (mod N) 

( )p
u  = – 1 ( )q

u  = – 1 N4 = lcm (p + 1 + tp, q + 1 + tq) M = (d4.(C, *))x (mod N) 

 Table 2.3.   Demytko’s elliptic curve cryptosystem: moduli and decryptions 
  Knowing prime numbers p and q, it is easy to observe whether the modular 
equations x2 ≡ u (mod p) and x2 ≡ u (mod q) have solutions and find those solutions. But 
finding a solution for x2 ≡ u (mod N) is a much more difficult problem. It is claimed to be 
equivalent to factoring N. One must know p and q to compute Ni’s. The decryption time 
can be reduced by a factor of 4 if one computes M modulo p and q then combine the 
result using the Chinese remainder theorem. This scheme is also used for digital 
signatures where a sender uses one of his secret keys di to sign a message and the 
receiver uses the sender’s public key to verify the signature.  
c.   Koyama & Kuwakado’s elliptic curve cryptosystem  
 Koyama & Kuwakado [KK94] proposed an elliptic curve cryptosystem using the 
elliptic curves of the form: EN (a, 0): y2 = x3 + ax, a ≢ 0 (mod p) or EN (0, b): y2 = x3 + b, 
b ≢ 0 (mod p) over a ring ZN, where N = pq. This can be considered a special case of 
Demytko’s scheme. It is also a complement to KMOV case in term of restriction on 
prime numbers p and q. 
Case 1: EN (a, 0): y2 = x3 + ax, a ≢ 0 (mod p) 
 If p ≡ q ≡ 3 (mod 4), it is a case of KMOV cryptosystem. 
 If p ≡ q ≡ 1 (mod 4), we have the formulae to find the order of the elliptic curve 
that is non-supersingular. The algorithm discussed in chapter 4 will show all four 
possible values of these orders. Then the Koyama & Kuwakado scheme is similar to 
KMOV for the case p ≡ q ≡ 3 (mod 4). 
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 Key generation: The public key e can be chosen universally such that gcd (e, #Ep) 
= gcd (e, #Eq) = 1, for all 4 possible values of each order #Ep and #Eq.The private keys 
are computed to satisfy conditions edp ≡ 1 (mod #Ep) and edq ≡ 1 (mod #Eq) for each 
particular elliptic curve that will be used.  
 Private keys depend on the message (plaintext and ciphertext). In order to have a 
message-independent private key, we can modify a little (to make it similar to KMOV 
scheme): edp ≡ 1 (mod Lp), where Lp is the least common multiplier of all 4 possible 
values of orders #Ep. 
 The plaintext m = (mx, my) that is embedded as an elliptic curve point such that the 
coefficient a ≡ (mod N) must satisfy the condition a ≢ 0 (mod N). 132 ).( −− xxy mmm
 Encryption will be performed on the elliptic curve EN (a, 0): y2 = x3 + ax. The 
ciphertext is: C = (cx, cy) = e. (mx, my). 
 Decryption: From ciphertext C, the receiver computes ap ≡  (mod p) 

and a

132 )( −− xxy ccc

q ≡ (mod q) to determine the proper elliptic curve and the associated 
private keys to use for decryption: m

132 )( −− xxy ccc

p = dp. (cx, cy) over Ep(ap, 0) and mq = dq. (cx, cy) over 
Eq(aq, 0). Then using the Chinese remainder theorem, the receiver can obtain the message 
m = (mx, my) from mp and mq. 
 If p ≡ – q = 1 (mod 4), then the elliptic curve modulo q is supersingular and its 
order is (q + 1).  The scheme is the same as in the previous case, except we fix the value 
#Eq = q + 1. 
Case 2: EN (0, b): y2 = x3 + b, b ≢ 0 (mod p) 
 If p ≡ q ≡ 2 (mod 3), it is a case of KMOV cryptosystem. 
 If p ≡ q ≡ 1 (mod 3), there are formulae to find the order of the elliptic curve that 
is non-supersingular. The algorithm discussed in chapter 4 will show all 6 possible values 
of these orders. Then Koyama & Kuwakado scheme is similar to KMOV for the case p ≡ 
q ≡ 2 (mod 3), where b will be computed from the plaintext b ≡ (mod N) and 

from the ciphertext b

32
xy mm −

p ≡  (mod p) and b32
xy cc − q ≡ (mod q). 32

xy cc −

 If p ≡ – q = 1 (mod 3), again, the scheme is the same as in the previous case, 
except we fix the value #Eq = q + 1. 
d. Elliptic curve cryptosystem of Meyer-Müller ([MM96]) 
 Let N be a publicly known product of two large secret primes p and q, and p ≡ q ≡ 
11(mod 12). We use the elliptic curve of the form E: y2 = x3 + ax + b over a ring ZN and 
satisfying the condition gcd (4a3 + 27b2, N) = 1. 
 Encryption: The sender chooses randomly 0 ≠ r ∈ ZN, and embeds the message m 
into a point P = (m2, rm3) on E where a = r3 and b = (r2 – 1)m6 – am2. Check that gcd(4a3 
+ 27b2, N) = 1. Otherwise, if gcd(4a3 + 27b2, N) > 1, then a factor of N can be found.  
 Then the sender computes Q = 2.P = (xQ, yQ). Let l = lsb (yQ) and type t be 
represented by a Jacobi symbol t = ( )N

yQ . The ciphertext will consist of (a, b, xQ, t, l). 
 Decryption: The receiver computes the unique square root yQ of ( + ax3

Qx Q + b), 
with type t and the least significant bit l.  Let Q = (xQ, yQ). Then the receiver computes 
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the index set  I = {1 ≤ i ≤ s | 2Pi = Q, a2 = }. The set I must have only one point P96 . −
iPiP xy I, 

and the message is m = . 143 −− axy
IPIP

 The security of this cryptosystem is based on the intractability of solving “square 
root” (or half-point problem) in E(ZN). Joye & Quisquater ([JQ95],[JQ96]) showed that 
one can determine two polynomials f(x), g(x) ∈ ZN [x] such that m2 is a root, by using the 
expressions of a, b and coordinates of two points P and Q on E. This can be done simply, 
since these coordinates are functions of m. Then m2 will be a root of the polynomial h(x) 
= gcd (f(x), g(x)).  There is a very high probability that we can choose f(x) and g(x) such 
that h(x) is of degree 1. Hence we can solve trivially for the root m2. This cryptosystem is 
equivalent to the Rabin-Williams cryptosystem because it enables the user to recover the 
value of square of a message. Hence, it is equivalent to a factorization problem. Since m2 
has 4 roots modulo N, we can decrypt the message m simply from yQ and its type t and 
the least significant bit l. 
 Signature scheme: To sign a message m, we hash a message m by m’ = H(m).  
Then we find integers r and d ∈ ZN

* such that for points P = (d2, rd3) and Q = 2·P on an 
elliptic curve of the form E: y2 = x3 + r3 x + b. We will get xQ = m’ and yQ has type t = 1.  
The signature for m is (d, r). 
 Verification: Let P = (d2, rd3) and compute a = r3 and b = (r2 – 1)d6 – ad2. 
Compute Q = 2.P on the elliptic curve E: y2 = x3 + ax + b. The signature is accepted if  yQ 
has type t = 1, and xQ = m’ and m’ = H(m). 
e. Elliptic curve cryptosystem of Chua-Ling 
 For further interest, Chua & Ling [CL97] proposed a special cryptosystem using 
singular cubic curves instead of standard elliptic curves. Chua-Ling cryptosystem used 
the similar idea of Meyer-Müller on the singular cubic curve of the form C: y2 = x3 + bx2 

over a ring ZN, where N is a publicly known product of two large secret primes p and q, 
and p ≡ q ≡ 11 (mod 12). (Notice that the cubic polynomial has multiple roots; hence the 
discriminant ∆ vanishes.) 
 Encryption: The sender chooses randomly r ∈ ZN \{0,±1} and embeds the 
message m into a point P = (m2, rm3) on C.  Then the sender computes Q = 2P = (xQ, yQ), 
a = r3, b = (r2 – 1)m2, l = lsb (yQ) and t = ( )N

yQ .  The ciphertext will consist of (a, b, xQ, t, 
l). 
 Decryption: The receiver computes the unique square root yQ of  with 
type t and lsb l.  Letting Q

)( 23
QQ bxx +

p = Q (mod p), the receiver then computes Ip = {1 ≤ i ≤ 2 | 2Pp,i 
= Qp and a2 = } and m9

,
6

,
−

iPpiPp xy p = (mod p). Similarly, the receiver gets m14

,

3

,

−− axy
ipPipP q 

from the equation: Qq = Q (mod q). The receiver can have m by using the Chinese 
remainder theorem such that m = mp(mod p) and m = mq(mod q) 
 Joye & Quisquater [JQ95a] showed that one needs the expressions of xQ and a, b 
to find out 2 polynomials f(x) and g(x) of degree 2 and 3. Hence, with very high 
probability, one can solve for m2 and then message m. 
f. Paillier’s elliptic curve encryption scheme 
 Paillier ([P99], [P00]) proposed three encryption schemes, which are defined on 
an elliptic curve over a ring ZN, where N = pq, is the product of two large odd prime 
numbers. Over each finite field Fp and Fq, the elliptic curve E: y2z = x3 + axz2 + bz3 is the 
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quadratic twist of an anomalous elliptic curve.  Hence, the elliptic curve orders are:  
#E(Fp) = p + 2 and #E(Fq) = q + 2. Therefore,  #E(ZN) = (p + 2)(q + 2). 
    For one encryption scheme, Paillier used the elliptic curve over the ring R = 
Z/p2qZ. Then he computed: #E(Z/p2qZ) = (p + 2)p×#E(Fq). The twist of this elliptic curve 
has the order: #E(d)(Z/p2qZ) = p2×#E(d)(Z/qZ), where ( ) 1−=p

d . 
 For another encryption scheme, Paillier used the elliptic curve over the ring R = 
Z/N2Z. Then he computed: #E(Z/N2Z) = (p + 2)(q + 2)pq. 
 Galbraith [G02] proposes a generalization of Paillier schemes over elliptic curves 
on rings ZN, where N = pq, a product of two large odd primes. 

E: y2z = x3 + axz2 + bz3, where gcd(N, 6(4a3 + 27b2)) = 1. 
Let M = lcm(#E(Fp), #E(Fq)). The user needs a point Q = (x : y : z) that has order dividing 
M in the elliptic curve E(Z/N2Z). That point can be of the form Q = NQ’, where Q’ is any 
ramdom number. The public key will be N, a, b and Q. The secret key will be M. 
Encryption: A message m is embedded in ZN as usual. Let Pm = (mN : 1 : 0).  The sender 
chooses a random number r and sends the point S = rQ + Pm to the receiver who has the 
secret key M. 
Decryption: The receiver computes: MS = r(MQ) + MPm = MPm = (mMN : 1 : 0).  Given 
the x-coordinate, one can devide by N and M to recover m. 
 Other works related to Paillier cryptosystems are in Damgård & Jurik [DJ01] and 
Catalano, Gennaro & Howgrave-Graham [CGH01]. 
g. Security on RSA-type elliptic curve cryptosystems 
 Many researchers have proposed and attacked RSA-type elliptic curve 
cryptosystems. They showed that the RSA-types of elliptic curve cryptosystems provide 
no significant benefits or advantages over RSA cryptosystems, even though they do resist 
to some known attacks on the RSA cryptosystems, if those attacks do not use integer 
factoring algorithms. Kurosawa, Okada & Tsujii [KOT95], Kaliski [K97] gave 
discussions to discourage the use of all RSA-type elliptic curve cryptosystems.  Meyer & 
Müller [MM96] discussed that all RSA-type elliptic curve cryptosystems could be 
vulnerable to chosen ciphertext attacks. Håstad [H85]) proposed the low encryption 
multiplier/exponent attacks that is originally applied to RSA or Rabin cryptosystems 
when a message is encrypted with many different moduli Ni (to be sent to different users) 
and the encryption (public) key e is small. Håstad showed that one could solve systems of 
k congruence polynomials of degree e in polynomial time if Ni > 2(e+1)(e+2)/4(e + 1)(e+1) and 
k > e(e + 1)/2. Roughly, we can have Ni >> 2k.  This attack is also applicable even when 
many public keys ei are used instead of one, but e = max{ei} satisfies the above 
conditions. For elliptic curve cryptosystems, this attack is called low multiplier attack (on 
public key). Koyama & Kuwakado [KK94a] showed that if e ≥ 5 and Ns = min(Ni) ≥ 2511, 
then KMOV and Demytko’s cryptosystems are secure against the Håstad attacks. In case 
of KMOV scheme against Håstad attack (low multiplier attack) in broadcast applications, 
instead of solving congruence polynomials, one must deals with congruence rational 
functions that could be transferred to polynomials of bigger degree,  

Bleichenbacher attack [B97] does not depend on the encryption key (public key) 
e, and is based on this algorithm to solve the system of equations: b ≡  
(mod N). It is based on a work of Coppersmith who proposed an algorithm to solve 
polynomial equations: f(x) ≡ g(x) ≡ 0 (mod N), where f(x) is of small degree (about 2

3232
xyxy ccmm −≡−

32 
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and g(x) is a rational function of degree less than that of f(x), and g(x) can be computed in 
a small number of arithmetic steps. 

Wiener [W90] showed the Small decryption key (secret key) attack  that one can 
use the theory of continued fractions to find the secret key d of the RSA cryptosystems 
and RSA-type elliptic curves cryptosystems. Later, Pinch [Pi95] showed that possibility 
if the order of secret key d is at most N1/8. 
Homomorphism attacks. Passive homomorphism attack can be applied when the 
encryption E and decryption D schemes implemented are homomorphic functions to 
addition; that is, E(M1 + M2) = E(M1) + E(M2) and D(M1 + M2) = D(M1) + D(M2), where 
messages M1 and M2 are embedded on the same elliptic curve. That is, from the 
signatures for messages M1 and M2, one can forge a signature for the message (M1 + M2) 
and so on for any linear combination of M1 and M2. The passive attack using 
homomorphism is usually probabilistically ineffective. 
 There is an active attack (chosen-plaintext attack) based on homomorphism.  If an 
attacker wants a user B to sign a message M, he will send to user B another message: M’= 
M + E(uM) using B’s public key and a random number u. User B’s signature for M’ is S’ 
= D(M’) = D[M + E(uM)] = D(M) + uM. Then the attacker will be able to forge a 
signature for message M to be: S = D(M) = S’ – uM.   

A hash function should be applied on the plaintext to destroy its homomorphic 
property if any. However, homomorphic property is not the only condition for an RSA-
type cryptosystem being vulnerable under chosen message attacks. Bleichenbacher, Joye 
& Quisquater [BJQ97] showed that some RSA-cryptosystems, which have no 
homomorphic property, are also vulnerable under even better chosen-message attacks. 
These attacks, which use the extended Euclidean algorithm, need only one message. 
Isomorphism attacks. Passive isomorphism attack: Two elliptic curves E1: y2 = x3 + a1x 
+ b1 and E2: y2 = x3 + a2x + b2  over a prime finite field Fp, where p > 3, are isomorphic if 
and only if there exists an element u ∈ Fp

* such that   a2 = u4a1 and b2 = u6b1. The change 
of variables (x, y) → (u2x, u3y) will transform E1 to E2. For elliptic curves defined over a 
ring ZN the isomorphic property is similar, except the condition u ∈ ZN

*. If this situation 
is satisfied, for any integer d, if we have the scalar point multiplication (cx, cy) = d.(mx, 
my) on the elliptic curve E1, then we have  (u2cx, u3cy) = d(u2mx, u3my) on the elliptic 
curve E2. 
 For two randomly given plaintexts (or ciphertexts), (mx, my) and (m’x, m’y), there 
is a negligible probability to have an element u ∈ GF(p)* such that m’x = u2mx and m’y = 
u3my . Hence the passive attack using isomorphism is usually probabilistically ineffective.  
 There is an active attack (chosen-plaintext attack) based on this isomorphism.  If 
an attacker wants a user B to sign a message M = (mx, my), he will send to user B another 
message M’ = (u2mx (mod N), u3my (mod N)), using user B’s public modulus N and a 
random number u. User B’s signature for M’ is S’ = d.(u2mx (mod N), u3my (mod N)) = 
(s’x, s’y). Then the attacker will be able forge a signature for message M to be S = d.(mx, 
my) = (u–2s’x (mod N), u–3s’y (mod N). To resist against this attack, a hash function should 
be applied on the plaintext 
Concealing-message problem. Unconcealable message has its ciphertext the same as the 
message (plaintext) itself. Blakley & Borosh [BB79] showed that there are at least 9 
messages that are unconcealable (including three trivial messages 0, –1 and 1). But there 
was no literature showing an analoguous problem for RSA-type elliptic curve 
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cryptosystems for a long time until 1997. Joye, Quisquater & Takagi [JQT97] started to 
analyze the concealing-message problem for RSA-type elliptic curve cryptosystems. The 
maximum number of unconcealable messages is bound by (e + 1)2, where e is the RSA-
encryption key (public key). Hence the probability that a message is unconcealable for a 
1024-bit RSA modulus is as small as about 10–299. But this can be open for some active 
attacks. 
2.E.3. Elliptic curve digital signature & key agreement schemes 
a. Fujioka-Fujisaki-Okamoto’s scheme [FFO93]  
 This could be considered an elliptic curve version of the ESIGN (Efficient Digital 
Signature) that based on Okamoto’s digital signature scheme.  The idea is to extend 
Okamoto’s scheme, whose signature involves a one-variable polynomial function, to a 
scheme involving a two-variable rational function. Refer to the original paper for a more 
detailed description.  The elliptic curve used in this scheme has the form CN: y2 = x3 + ax 
+ b over ZN where N = p2q. The main disadvantage of this scheme is the excessive 
complexity of advanced calculus used to describe the algorithm. It makes the scheme less 
desirable for typical technical people. 
 The security of this scheme depends on the difficulty of factoring N = p2q.  There 
is no known attack for this scheme so far. We did not know whether factoring N = p2q is 
as difficult as factoring N = pq. Note that the quadratic version of Okamoto’s scheme was 
broken by Brickell & DeLaurentis [BD85] and this attack was generalized by Girault, 
Toffin & Vallée [GTV88]. 
b. An analogue of McCurley’s scheme (McCurley [Mc88], Boyd & Smith [BS95]) 
 McCurley’s key agreement scheme ([Mc88]) is an enhanced variation of the 
Diffie-Hellman scheme. In order to break this scheme, one needs to break the ordinary 
Diffie-Hellman scheme and also factor big numbers. Boyd & Smith [BS95] proposed an 
analogue of McCurley’s scheme using an elliptic curve over a ring ZN. Then the 
procedure is analogous to the elliptic curve Diffie-Hellman key exchange scheme 
discussed earlier. 
 The scheme is still secure if an attacker can factor N or solve the ECDHP in the 
groups E(Fp) and E(Fq) but cannot do both. The authors also proved that if there exists an 
algorithm to solve the ECDHP over a ring ZN, then it can be a feasible algorithm for 
factoring the modulus N. 
c. Sakazaki-Okamoto-Mambo ID-based key distribution scheme 
 Okamoto [O88] proposed an ID-based key distribution system whose security 
depends on the Integer Factoring Problem as in the RSA cryprosytems. The drawback of 
this scheme is that it cannot be constructed on an elliptic curve over a ring ZN  in a 
straightforward way because the point corresponding to a user’s identity may not be a 
point on the elliptic curve.  
 Mambo, Okamato & Sakazaki [MOS99] gave a solution to the above problem in 
order to construct it over a ring ZN. The elliptic curve EN(a, b): y2 = x3 + ax + b, where N 
= pq, the product of two large primes, as in the RSA cryptosystems. The Center has 
private key consisting of p, q and k, where k = lcm (#Ep(a, b), (#Eq(a, b)). Let P be the 
point on EN(a, b) of order k. Given N, a, b and P, computing k is assumed to be 
intractable without knowledge of the prime factors p and q. 
Step 1. Issuing private key to a user A whose public identifying information is IDA. 
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 Let iA = h(IDA) be user A’s hashed identity.  Suppose that gcd(iA, k) =1. The 
Center computes: dA = iA

–1 (mod k) and SA  = – dAP ( = – iA
–1 P). The Center transmits the 

pair (iA, SA) to user A over a secure channel. Then the user A’s private key is SA
 and 

public key is iA. It follows that iASA = – P.  
Step 2. Key exchange scheme: First, Alice chooses a random number rA in the interval [1, 
N – 1] and computes the point on the elliptic curve EN(a, b): CA = SA + rAiBP, and sends it 
to Bob. Similarly, Bob chooses a random number rB ∈ [1, N – 1] and sends to Alice the 
point: CB = SB + rBiAP. Alice computes the point KAB = rA(iBCB + P) and Bob the point 
KBA = rB(iACA + P). Then the share secret point is: K = KAB = KBA  = rArBiAiBP. 
 The above scheme can work also on the ring ZN  itself. 
 Qu, Stinson & Vanstone [QSV01] discussed that the scheme has multiplicative 
homomorphism-like properties; hence it could be vulnerable to homomorphism attacks:  
Sx = – ySxy and Sy = – xSxy. 
 Suppose that gcd(x, y) = 1, Sx = – x–1P and Sy = – y–1P. Then Sxy = k1Sx + k2Sy, 
where k1x + k2y = 1. 
 The attack: Suppose that one knows enough public keys Ii and secret key Si (by 
interacting with the Center) to construct a database D = {x, Sx} for small primes x, using 
the above lemma. Given a public key I that can be factored into primes in the database D, 
he/she can compute the private key SI of that public key I.  
 
2.F.  Advantage features of elliptic curve cryptosystems 
 All the users can use the same underlying finite field that can be selected to 
optimize the finite field arithmetic. Thus it requires the same hardware to perform such 
arithmetic. Users still can select a different elliptic curve or can change to other elliptic 
curves at any time for security reasons. 
 All the known attacks so far can reveal a single private key at a time. The same 
effort has to be repeated for other private key. This is true assuming that each user 
employs a different elliptic curve. There is a security risk if multiple users employing the 
same elliptic curve and the same base point.  It will take only about (k)1/2 times as long to 
reveal k single private keys on the same elliptic curves.  
 ECC has higher cryptographic security strength with smaller in key sizes and 
signature sizes in comparison to other cryptosystems, RSA or DSA. An estimation by 
Odlyzko was presented in the table 3.1. 

DSA/RSA key size Elliptic curve key size Time to break (MIPS Years) 
512 bits 106 bits       Insecure 
768 bits 132 bits       ≈ 108 (not recommended) 
1024 bits 160 bits       ≈ 1011

2048 bits 210 bits       ≈ 1020

2500 bits 239 bits       ≈ 1023

21000 bits 600 bits       ≈ 1078

Table 3.1.   Key sizes for comparable security of DSA/RSA and ECC 
Remark: A MIPS machine can perform a million microprocessor instructions per second. 
In cryptography literature, it is usually estimated (optimistically) that a machine rated at 
1 MIPS can perform roughly 40,000 elliptic curve additions per second. A 1-MIPS year 
(MY) is equivalent to the computing power of a MIPS computer utilized for one year.  
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 Computational efficiencies of ECC: faster speed in implementation and 
execution. Although the elliptic curve operations (such as additions or scalar point 
multiplications) require more arithmetic operations than modular multiplications in 
modulo groups, but, if the same security level is required, we will work on a much 
smaller size of finite fields for elliptic curves than the size of modulo groups. As a result, 
it is estimated that elliptic curve operations are about 8 to 10 times faster than modular 
multiplication in a modulo group whose order is of the same security level.  There are 
subsequent advantages from this approach: better storage efficiencies and bandwidth 
savings, smaller certificates and codes, which then require smaller memory, and low cost 
of implementation: integrated circuit (IC) chips of smaller number of gates and lower 
power consumption.  
 The uses of elliptic curve cryptosystems will have the most benefit in applications  
in highly contrained and low resources environments, where bandwidth, memory, power 
and processing capacity are limited, such as smart cards, wireless communication devices 
and handheld/mobile electronics devices and computers... Hence elliptic curve 
cryptosystems will be the most important and efficient cryptographic technology for the 
next generation products of the Internet, banking, electronic commerce systems and many 
other security solutions. For latest work on selecting appropriate key sizes for a 
cryptosystem, refer to Lenstra & Verheul [LV00]. 

 
Chapter 3 – Attacks on Elliptic Curve Cryptosystems 

 
 We will briefly scan many well-known cryptographic attacks or algorithms on the 
ECDLP, the security core of elliptic curve cryptosystems.  This is an active research area 
which will provide new algorithms on cryptographic attacks as well as counter-attacks 
toward the ECDLP. 
 
3.A.  Running time of algorithms 
 For the running time, one can count on both the number of bit operations and the 
number of group operations such as elliptic curve additions or scalar point multiplications 
or other finite field arithmetic operations… 
 For any integer x, the number of bits b(x) of x is  [log2

 x] + 1 = [(log x)/(log 2)] + 
1. Then we can write: b(x) = O(log x). 
 Recall the usual notation of running time function L that is usually written as a 
function of variable log x: L(x, c, α) = O{exp[(c + o(1))(log x)α (log log x)1–α ]}, where α 
is a real number, 0 ≤ α ≤ 1 and o(1) is a number that approaches 0 as x increases to 
infinity. 
   When α = 0, L(x, c, 0) = O((log x)c’), then the running time is polynomial in (log x). 
   When α = 1, L(x, c, 1) = O[exp(c’log x)], then the running time is fully exponential in 
(log x). If written in terms of x, it is L(x, c, 1) = O(xc’). 
   Otherwise, 0 < α < 1, the running time is sub-exponential in (log x).  Fixing x and c, 
and for α in the interval [0,1], the smaller value of α will give the quicker running time. 
 One may distinguish two types of algorithms: General-purpose algorithm attempts 
to solve general problems; hence its running time depends on the size of the input. It is 
independent of the underlying group representation. Special-purpose algorithm attempts 
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to solve a particular problem; hence its running time depends not only on the size of the 
input but also on special features of the input or the underlying group representation. 
 
3.B.  Algorithms on the discrete logarithm problem 
 We will give brief discussions of most practical algorithms known in literature to 
find the discrete logarithm m in the equality y = gm. 
Shanks’ Baby-step-Giant-step 
 This algorithm works on any group. It requires pre-computing a look-up table of 
powers of the base element g. Let h = ⎣ n1/2⎦.  We pre-compute two lists of data: {g0, gh, 
g2h,…, } and  {y, yg

2hg –1,…, yg–h}. Compare them to check if there is a match: guh = yg– t, 
or y = guh+t. Then m = loggy = uh + t, for 0 ≤ u and t ≤ h. 
 This algorithm takes fully exponential running time in length of the largest prime 
factor of the order n of the group.  Particularly, it is about n1/2 steps (or group operations.)  
By its running time, this method is also named a square root method. It also requires 
memory size of n1/2. It is a time-memory trade-off version of exhaustive search. 
 To resist this attack, we should have the order n of the group divisible by a big 
prime p, say p ≥ 1040 ≈ 2132. 
Pohlig-Hellman’s method ([HP78]) 
 This method (also referred as Silver-Pohlig-Hellman’s method) reduces the 
problem to a determination of m modulo pi, each of the primes pi in the prime 
factorization of n, the order of the group. Then we use the Chinese Remainder theorem to 
recover m.  
 Let n =  be the order of g.  Let p be any prime in the set {pse

s
e pp ...1
1 1,…, ps}. Then 

z = m (mod pe) = a0 + a1p + …+ ae–1pe–1, where 0 ≤ aj ≤ p – 1, for 0 ≤ j ≤ e – 1. We can 
write yn/p = (gn/p)m

 = (gn/p)z = , since g0/ )( apng n/p has order p.  Now, a0 is the discrete 
logarithm of yn/p to the base gn/p. For a1, we write: 

.)()()( 1//)0(/
2/)0(2/0 apnpampnpnampna gggyg === −−−  

Each term aj now is a discrete logarithm to the base element gn/p. Hence it reduces from a 
difficult DLP to many easier baby-DLPs. Each baby-DLP can be solved using other 
algorithms. 
 Its running time, O(Σei(log n + pi)) group multiplications, depends mostly on the 
largest prime factor. Hence it works efficiently only when n is a smooth number, that is, 
all primes pi are small. Therefore, in order to resist Pohlig-Hellman’s algorithm, n should 
be divisible by a large prime number (> 280), or indeed, n must be prime > 280 for the 
maximum security possible. 
Pollard’s rho-method and lambda-method 
 This method is a randomized version of Shanks’ Baby-step-Giant-step algorithm, 
and it requires no significant storage of pre-computations.  
 The algorithm was described in Pollard [P78] later also explained in much 
cryptography literature. In short, we partition the group into 3 subsets, and then perform 
the following recursive search: xi+1 = xiu, where u is either xi, g or y depending on which 
subset xi belongs to.  The search is completed until we find a value j such that xj = x2j. 
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 By its running time, this method is also named a square root method.  This 
algorithm also works on any group, and it takes about (πn/2)1/2/R steps (group operations) 
if R microprocessors are used in parallel. Refer to van Oorschot & Wiener [OW94] and 
[OW99].  When n > 2160, the DLP is still infeasible.  
 Pollard’s “lambda-method for catching kangaroos” is applicable when the result 
is known to be in a certain range. If the length of that range is w, then the running time is 
about w1/2. 
 The above algorithms, as Shanks’ Baby-step-Giant-step, Pollard-rho and Pohlig-
Hellman, are called generic algorithms. The algorithms can work on any group and 
require no special group structure except that each element in the group has a unique 
representation.  
 Shoup [Sh97] showed that the lower bounds of running time for generic methods 
to solve DLP are proved that match the known upper bounds, about O((n)1/2), under some 
assumptions.  That is, in order to improve the attack efficiently, one must know more 
about the structure of the group. There was also a method proposed by R. Silverman & 
Stapleton [SS97], to solve multiple discrete logarithms: loggy1,…, loggyM. This method 
was originally to attack the ECDLP. 
Index-calculus algorithm 
 First we try to select an appropriate fixed subset, called the “factor base” B, of 
small primes gi of the group G, such that most elements in  can be represented as 
products of such primes.  

*
pZ

 We hope to be able to find the discrete logarithms logg gi of elements gi in the 
factor base B to the base point g, by setting up a system of (a large enough number of) 
linear equations of the form k = (log∑

∈Bg
i

i

a ggi) mod(p –1), where gk = ∏
∈Bg

a
i

i

ig . 

 If we can represent the given element y as a factorization over elements gi in the 
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 This algorithm has a sub-exponential running time:  
L(p, c, ½) = exp[(c + o(1))(log p)1/2(log log p)1/2]. 

It is the fastest general-purpose algorithm for DLP. 
 The original (or classical) works on index-calculus methods are due to many 
researchers such as Maurice Kraitchik, A. E. Western & J. C. P. Miller, Adelman, Ralph 
C. Merkel, Pollard, Hellman & Justin M. Reyneri and Blake, Fuji-Hara, Mullin & 
Vanstone. 
 There are two sieving methods, which are under current active research. 
Number field sieve algorithm  
 Lenstra, Lenstra, Manasse & Pollard [LLMP90] developed the Number Field 
Sieve method for factoring numbers (originally, of the form n = re ± s, for r and s small.) 
Its running time is known heuristically as 
 L(n, c, 1/3) = exp[(c + o(1))(log n)1/3(log log n)2/3], where  ...526.1)3/2(2 3/2 ≈=c
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It is independent of the size of factors of n.  A general version of this algorithm has the 
value c = (64/9)1/3 ≈ 1.923… 
 Refer to the works of Coppersmith, Odlyzko & Schroeppel [COS86] the case of 
finite fields of characteristics 2, c ≈ 1.587. Refer to Gordon  [G93] and Schirokauer 
[Sc93] on the case of prime finite field Fp, c ≈ 1.923... For finite field GF(pm), when m < 
(log p)1/2, or log p ≥ m2, the running time is heuristically sub-exponential:  

L(pm, c, 1/3) = exp[(c + o(1))(log pm)1/3(log log pm)2/3], for c ≈ 1.923... 
Function field sieve algorithm (Work of Adleman, Huang, Coppersmith, Semaev…) 
 The works of Coppersmith and others are considered a special case of function 
field sieve algorithm.  For finite field GF(pm), when m > (log p)2, or log p ≤ m1/2, it has a 
sub-exponential running time: L(pm, c, 1/3) = exp[(c + o(1))(log pm)1/3(log log pm)2/3], for 
c ≈ 1.526... 
 
3.C.  Algorithms on the elliptic curve discrete logarithm problem (ECDLP) 
 There is no known attack of sub-exponential time for this problem. First, in order 
to avoid exhaustive search, the order N of the group should be divisible by a prime n > 
280. To avoid the square-root attacks, n should be greater than 2160. For convenience, we 
may now assume the base point P in the ECDLP has order n. 
Shanks’ Baby-step-Giant-step 
 It takes fully exponential time in length of the largest prime factor of the order N 
of the elliptic curve. To resist against this attack, we should have the order divisible by a 
big prime n, say n > 2160. This is one of the fastest generic algorithms for ECDLP on non-
supersingular elliptic curves. It is also claimed that the best general-purpose algorithm for 
ECDLP is the combination of Shanks’ Baby-step-Giant-step method and Pohlig-Hellman 
method discussed below. 
Pollard’s ρ-method 
 It takes about (πn/2)1/2/R steps (i.e., elliptic curve additions), if R microprocessors 
are used in parallel. Refer to van Oorschot & Wiener [OW94] and [OW99]. This is 
known as one of the best generic algorithms for ECDLP.  It is also claimed that the best 
general-purpose algorithm for ECDLP is the combination of Pollard’s ρ-method and the 
Pohlig-Hellman method. A well-known cryptographic fact is that exhaustive search 
through a k-bit symmetric key cipher takes about the same time as the Pollard ρ-
algorithm applied to an elliptic curve cryptosystem having a 2k-bit n.  Currently, the 
standard n is required to be greater than 2160. 
Pohlig-Hellman’s method 
 This algorithm works on any group by exploiting the subgroup structure. The idea 
is to determine elliptic curve discrete logarithm m in the ECDLP by determining m(mod 
pi) for all primes pi in the prime factorization of the order n of the base point P.  Then we 
use the Chinese remainder theorem to recover m.  This algorithm works efficiently if the 
primes pi are small. That is, n is a smooth number. Therefore, in order to resist the 
Pohlig-Hellman’s algorithm, n should be divisible by a large prime number (> 2160) and 
moreover, to attain the maximum security level possible, n must be prime. 
 In summary, no generic algorithm on ECDLP can perform substantially better 
than the Pohlig-Hellman algorithm combined with either Shanks’ Baby-step-Giant-step 
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or Pollard’s ρ-method. Currently, there is no other breakthrough improvement on 
implementation of the known attacks or of new attacks. 
Method of solving multiple elliptic curve discrete logarithms (R. Silverman & 
Stapleton [SS97]) 
 The method was proposed to find multiple elliptic curve discrete logarithms: 
logPQ1, logPQ2,…, logPQM.  The idea is to apply the parallelized Pollard-rho method M 
times to find each logPQi. In each search, one may encounter two types of collisions: 
ordinary collisions within itself and special collisions with other searches. If the running 
time to find a logPQi is T, then the running time to find all M discrete logarithms logPQi’s 
is TK1/2. Hence if multiple users are using the same elliptic curve and same base point, 
there is a security risk, since it takes only about K1/2 times to recover K secret keys on the 
same elliptic curve. Therefore, we should choose parameters such that solving each 
single discrete logarithm is infeasible by itself. 
Index-calculus method 
 Over finite fields where the DLP is defined, there is another “additional structure” 
beyond the “multiplicative structure.”  The index-calculus methods take advantage of this 
extra structure. It is generally believed that it is much more complicated, or even 
impossible, to apply index-calculus method to elliptic curves. In ECDLP, the group of 
points has no extra structure other than the basic operation: addition of two points. A 
similar approach as in DLP, by choosing a “factor base” B, could not work for E(Fq). The 
questions are: How to create a factor base for an elliptic curve? And may there be a 
method without requiring a factor base of elliptic curve points? 
 Flassenberg & Paulus [FP97] discussed that the sieving methods are still not 
efficient on ECDLP yet.  Miller [Mi98] discussed “lifting” points on E(GF(pn) to points 
on an elliptic curve Ẽ(Q) where Q is the rational field. That is, given P ∈ E(GF(pn), find 
an elliptic curve Ẽ(Q) and a point Q ∈ Ẽ(Q) such that Q ≡ P (mod p). The natural 
candidate for a factor base is a set of points of small height on Ẽ(Q).  The height of an 
elliptic curve point that is defined as the number of bits in the numerator and 
denominator of the x-coordinate of that point. But these points are too sparse to generate 
all points on the elliptic curve by scalar point multiplications. In order to have such a 
lifting with probability c, the points need to have a height of at least 2cp, which is 
impossible. Even when such a base exists, it is still a very difficult problem to find an 
efficient method for the lifting.  Recently, Silverman & Suzuki ([S99],[SS99]) gave a 
more detailed proof to confirm the impossibility of index calculus method for the 
ECDLP.  The main reason is that a factor base for the ECDLP is exponentially bigger 
than a DLP factor base.  
 In summary, the ECDLP is considered more difficult than the DLP for DSA and 
more difficult than the IFP (Integer Factoring Problem) on which RSA cryptosystems are 
based. 
 
3.D.  Application of Weil pairing and MOV reduction attack 
 The Weil pairing can be used to embed an elliptic curve E(Fq) into the 
multiplicative group of the finite field GF(qk) for some positive integer k.  This helps to 
reduce the elliptic curve discrete logarithm problem (ECDLP) on the curve E(Fq) to the 
ordinary discrete logarithm problem in the multiplicative group GF(qk)*

 = GF(qk)\{0}. 
This method is called MOV reduction (proposed by Menezes, Okamoto & Vanstone 
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[MOV93]). We need an assumption that gcd(#(E(Fq), q) = 1, and it works on both cases, 
either q = p > 3, or q = 2m. The supersingular elliptic curves automatically satisfy the 
assumption that gcd(#E(Fq), q) = 1, since if q = p, then E(Fq) = p + 1, while if q = 2m then 
#E(Fq) must be an odd number. 
 Let P be the base point of order n used in the ECDLP.  Let Q be a fixed GF(qk)-
point of order n that is not in the subgroup 〈P〉, generated by point P.  The mapping 
defined by Weil pairing, P a en(P, Q), is the embedding of subgroup 〈P〉 into the 
multiplicative subgroup GF(qk)* of the finite field GF(qk). The necessary condition for 
this embedding is obviously that: 
 (a) The order n of point P must divide (qk – 1). 
Then the finite field GF(qk) contains all n n-th roots of unity.  We need one more 
condition for MOV working on the finite field GF(qk): 
 (b) The elliptic curve E(GF(pk) contains n2 points of prime order n. Hence we 
have E[n](Fq) ⊆ E(GF(pk). 
 It was shown that statement (b) implies statement (a) and the proof did not 
require either condition n| #E(Fq) or n∤(q – 1). 
 Balasubramanian & Koblitz [BK98] showed that the statement (a) implies 
statement (b), if two conditions n| #E(Fq) and n∤(q – 1) are satisfied. Indeed, since n| 
#E(Fq), the elliptic curve E(Fq) contains a point P ≠ Ο of order n.  The condition n| (qk – 
1) implies that gcd(n, q) = 1. Hence the elliptic curve E(GF(ps)  contains n2 points of 
order n, for some positive integer s.  Using Frobenius mapping and the critical condition 
n∤(q –1), they proved that, in fact, s must be k.  We have (b).               q.e.d. 
Theorem (Balasubramanian & Koblitz [BK98]): Let n be a prime such that n|#E(Fq) and 
n∤(q – 1). Then the elliptic curve  E(GF(qk)) contains n2 points of order n if and only if n| 
(qk – 1), for some positive integer k. 
 That is, the necessary condition n| (qk – 1) is in fact also sufficient for MOV 
reduction, provided a crucial assumption that n∤(q –1). Otherwise the result is wrong 
even if one assumes that n2 | #E(Fq). 
 The running time for DLP in this situation will be sub-exponential in log(qk), by 
index calculus method, L(qk, c, 1/3) = exp[(c + o(1))(log qk)1/3(log log qk)2/3].  In fact, the 
algorithm is not proved for the case q prime and k > 1, but cryptography researchers 
would prefer to assume so “optimistically.”  Refer to Gordon [G93] for the case k = 1. 
 Hence the MOV reduction is significant only when k is small enough. 
Particularly, if we have k ≥ (log q)2, its running time will be greater than 
   =])log(log))(log'exp[( 3/2)(log3/1)(log 22 qq qqc
   = exp[(c’)log q (3log log q)2/3] > exp[(c’)log q]. 
 This running time is fully exponential in (log q) and hence there is no significant 
advance in the MOV reduction. When k = log q, we can estimate that  
[(log qlog q)1/3(log log qlog q)2/3] = (log q)2/3.(2log log q)2/3 < (log q)2/3(log q)1/3 = log q. 
Then the running time is sub-exponential. Hence the borderline value for k could be log q 
< k < (log q)2. One could choose roughly k0 = (logq)2/[s(log logq)2], for a value s such 
that 0 < s < q, for k to be on the borderline of exponential and sub-exponential time. 
 We consider supersingular and non-supersingular elliptic curves separately. 
 When E is supersingular, the MOV reduction needs the extension field to be of 
degree k ≤ 6 only.  Let #E(Fq) = q + 1 – t. Then the values of k are computed as follows: 
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t2 0 q 2q 3q 4q 
k 2 3 4 6 1 

Table 3.2.   Values of k versus t2 

 Hence the MOV method is successful on attacking the ECDLP on supersingular 
elliptic curves. That is the reason that one generally prefers non-supersingular elliptic 
curves in applied cryptography. 
 When E is non-supersingular, to resist the MOV attack, we must have k > (log q)2 
(with a very high margin of security) and this can be done simply. Particularly, the order 
n of base point P must be checked to satisfy the MOV condition, that is: n∤(qk –1) for all 
k ≤ (log q)2. In practice, we do not need value of k to be near (log q)2 (as we also 
observed above), but k = 20 is sufficient.  In the future, we should replace this value by a 
number b such that the DLP on GF(qb)  is intractable with the up-to-date technology 
capability. 
 Assume that n is divisible by a large prime u (or if n is a prime itself, then u = n) 
in order to resist the Pohlig-Hellman attack. To ensure the condition: E[u] ⊄ E(GF(qt)) 
for each t, 1 ≤ t ≤ k, it is sufficient to check either u2∤ #E(GF(qt)) or  n∤(qt – 1).  
 With such requirements, the ECDLP on non-supersingular elliptic curves has no 
known sub-exponential time algorithm. The best-known algorithms (which still run at 
exponential speed) are Shanks’ Baby-step-Giant-step and MOV reduction followed by a 
number field sieve (Koblitz, 1991), or combination of Pollard-ρ and Pohlig-Hellman 
methods. Refer to [HMV93]. Currently, there is no other breakthrough improvement on 
implementation of the known attacks or of new attacks. 

Supersingular elliptic curves #E(Fq) 
Over Fp, p > 3  E: y2 = x3 + ax + b when #E(Fp) = p + 1 
Over GF(2m) E: y2 + cy = x3 + ax + b whose order will be one of the followings:  

2m + 1, 2m + 1 ± 2m/2, 2m + 1 ± 2(m+1)/2 or 2m + 1 ± 2(m+2)/2. 
Table 3.3.   A checklist of orders of supersingular elliptic curves that should be avoided 

 Chao, Tanada & Tsujii [CTT94] discussed that the minimum k satisfies n| (qk – 
1), or qk ≡ 1 (mod n), must be a factor of φ(n), that is equal to (n – 1) in the case n is 
prime. Hence in order to check that k > B, some lower boundary, one may only check that 
φ(n) is B-nonsmooth, (i.e., φ(n) has no prime factors less than B), instead of factoring 
φ(n) completely. 
 
3.E.  SSA attack (Smart-Satoh-Araki attack) 
 The SSA attack is to solve the ECDLP on non-supersingular elliptic curves of 
trace t = 1 or #E(Fp) = #(Fp), where p > 3. They are called anomalous curves. The idea is 
to reduce the ECDLP to a simpler equation in a p-adic field.  There are a few independent 
works on this problem by Smart, Samaev and Araki & Satoh. The generalized work is 
done recently by Rück. The SSA attack cannot apply to other cases since its proof uses 
the essential identity: #E(Fp) = #(Fp) = p. In order to resist this attack, the SSA condition 
(or anomalous condition) should be satisfied: #E(Fp) ≠ #(Fp) = p. 
 One should note that the anomalous binary curves (ABC’s) or “Koblitz curves,” 
which are defined over finite fields GF(2m), are not susceptible to the Smart-Satoh-Araki 
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attack.  It was known that trace-1 elliptic curve case was mentioned earlier at the West 
Coast Number Theory conference, 1996, as a “well known fact” and hence unpublished. 
Araki & Satoh’s work ([AS98]) is to solve the ECDLP on non-supersingular elliptic 
curves of trace t = 1 or #E(Fp) = #(Fp). The method is based on an elliptic curve version 
of Fermat quotient that is defined as Lp(a) = (ap–1 –1)/p (mod p) ∈ Fp, for a such that 
gcd(a, p) = 1. It is well-defined because of Fermat’s Little theorem, ap–1 – 1 ≡ 0 (mod p). 
 The detailed proof is out of context. It utilized the concept of formal group, 
associated with an elliptic curve, and its properties. This algorithm has a linear running 
time O((log p)3) to solve the ECDLP on an anomalous elliptic curve.  It also works on 
non-prime finite fields Fq, where q = pr, where p > 3.  
Smart’s work ([Sm99]): claimed that this attack works just on prime finite fields. The 
idea is to reduce the ECDLP to a simpler equation in a p-adic field. We consider the 
ECDLP as usual, Q = m·P, on an elliptic curve, and neither point has order two. We then 
lift these points to points P  and Q  on the same elliptic curve but over the p-adic field 
Qp by P = (x, y) where x is the x-coordinate of P and y is computed via Hensel’s lemma, 
and similarly for the point Q . Then we have: RPmQ =− ∈ E1(Qp), where En(Qp) = {P 
∈ E(Qp): vp(x(P)) ≤ –2n} ∪ {O}, as a subgroup of the elliptic curve E(K), and vp is the 
discrete valuation in Qp. Then we have two following equivalence relations: 

E0(Qp)/ E1(Qp) ≅ E(Fp) and En(Qp)/En+1(Qp) ≅ E1(Qp)/ E2(Qp) ≅ Fp, for n ≥ 1. 
If the elliptic curve satisfies the condition: #E(Fp) = #(Fp) = p, we can multiply the above 
equation by p: RpPpmQp =− · ∈ E2(Qp).  Taking the p-adic elliptic logarithm Ξp 
(which is easy to compute but its context is not able to be described yet within this 
document), we have: Ξp( pQ  – m. Pp ) = Ξp( Rp ) ≡ 0 (mod p2). This reduces the ECDLP 
to a single linear equation of one unknown over the p-adic field Qp.  Its solution is m = 
Ξp( pQ ) / Ξp( Pp ) (mod p). 
 This attack has a linear running time O(log p), since the only non-trivial 
computation needed to be performed is to compute pQ  and Pp . Both computations 
need a number of (log p) group operations on an elliptic curve.  
 Semaev [Se98] showed a more general result on the elliptic curve discrete 
logarithm problem in a subgroup of order p of an elliptic curve E(Fq), where q = pk.  
Semaev showed how to construct an isomorphism from such a subgroup to an additive 
subgroup of some finite field GF(pk). Then the problem can be solved in polynomial 
running time, O(log p) field operations. As an immediate result, the ECDLP in 
anomalous elliptic curves over prime finite fields then can be solved easily in polynomial 
running time. Rück [R97] generalized the result of Semaev [Se98] for more general 
curves. 
 
3.F.  Differential and power attacks 
 More rigorous proofs for those estimations are still needed in order to evaluate 
and compare the security of various cryptosystems.  More powerful attacks are expected 
for the years to come when elliptic curve cryptosystems are more extensively studied and 
widely implemented.  There are a few estimations on the security of elliptic curve 
cryptosystems, in comparisons with other cryptosystems, scattered in cryptography 
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literature.  For example, refer to the table 3.4 for the case n > 2160, where Vaudenay’s 
attack on DSA (or DLP) was blocked in ECDSA (or ECDLP). 
(Length 
in bits) 

System 
parameter  

Public key ° Private key Signature size Encrypted 100-
bit message 

RSA N/A 1024+64 2048 1024 1024 
DSA 2208 1024 160 320 depend 
ECC 481 161 160 320 321 

Table 3.4.   Comparisons of the cryptosystems RSA, DSA and ECC 
(°: For time to break of about 1011 MIPS years) 

 The software attack is to use an exhaustive search for a solution of an ECDLP.  
 The hardware attack is to build special-purpose hardware for a parallel search by 
Pollard-ρ method that is considered one of the best algorithms so far, or used in 
combination with other methods or even by new algorithms hopefully to be developed. 
Both software and hardware attacks are still infeasible for elliptic curve cryptosystems 
with at least n > 2160, unless there will be significant breakthroughs in hardware designs, 
computational or cryptanalytic algorithms. 
 Side-channel attacks: The timing and differential power attacks belong to the 
family of attacks, called “side-channel” attacks, which devise to exploit the leakage of 
information from implementations of cryptosystems. 
 Timing attacks, which are proposed by Kocher [Ko96] are based on repeatedly 
measuring the exact execution times of modular exponentiation operations. Kocher also 
proposed attacks using differential power analyses based on the power assumption of 
cryptographic devices. This later type is usually referred as Simple Power Attacks (SPA). 
To defend against such attacks, in general, one should uniformize or homogenize the 
computations to make running time and power independent of key bits or randomize 
inputs and key bits. Particularly for elliptic curve cryptosystems, one should use 
Montgomery’s method for point scalar multiplication or add dummy operation to 
homogenize the point adding operations. 
 Differential fault & power analyses are one of important issues recently for 
cryptographic attacks, particularly against ECC. Refer to Biehl, Meyer & Müller 
[BMM00], Coron [C99], Aigner & Oswald [AO01] and Joye & Tymen [JT01] for 
discussions on both attacks and counter-attacks. The differential fault attack induces 
computational errors to the device and deduce key bits from the leaked information by 
the faulty results. To defend againt DFA attack, one should check the consistency of the 
computational results. For example, for elliptic curve cryptosystems, verifying the 
resulting point being on the elliptic curve is implicit consistency relation which should be 
used at all time.  
 The differential power attack attack applies statistical tests to intermediate results 
in order to detect correlations between plaintext and ciphertext. To defend against DPA 
attack, one should decorrelate the intermediate results, key bits, plaintexts and ciphertexts 
by randomization. Particularly for elliptic curve cryptosystems, we can also use the 
randomized projective coordinates. 
 Later works, such as Bellezza [Be01], also discussed many methods of counter-
attacks against the side-channel attacks, especially for the elliptic curve cryptosystems, 
such as: moving to a random isomorphic elliptic curve, changing the field representation, 
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(such as using projective coordinates…) and adding a random point to the input and 
subtracting a suitable multiple of that point at the end.  But in a general sense, designers 
should be aware that design and implemention of a countermeasure against one physical 
cryptanalysis may benefit another attack or attacks. 
 

Chapter 4 – Implementations of Elliptic Curve Cryptosystems 
 
 We will discuss many technical issues in implementations of elliptic curve 
cryptosystems such as how to implement finite fields, elliptic curves and arithmetic 
operations on them. More techniques and algorithms are likely being developed to 
improve the efficiency of elliptic curve cryptosystems. An elliptic curve cryptosystem 
requires a process of setting up common system parameters. These parameters, once 
generated, will be used by all users within a group using that cryptosystem. Each user 
will have his/her own pair of private and public keys. 
 
4.A. Implementations of finite fields 
 First, one has to decide which finite fields will be used for an elliptic curve 
cryptosystem. One must choose an appropriate finite field and its basis to represent field 
elements. 
4.A.1. Finite fields 
 In order to implement finite fields, we will deal with these tasks:  
   Selecting the underlying finite field Fq. 
   Selecting a basis representation for the finite field elements, 
  Implementing the arithmetic on the finite field Fq.  
 The cost, speed and feasibility of elliptic curve cryptosystems depend on the finite 
field Fq, where q = pm, on which it is implemented. There are usually two finite fields to 
work on: prime finite field Fp = Zp (i.e., m = 1) when p is a prime number > 3 and binary 
finite field GF(2m). 
a. Prime finite fields Fp, where p is a large prime number > 3 
 The prime p should be large enough such that the ECDLP is infeasible over prime 
finite field Fp. The minimum threshold of the choice of p should increase as new 
technology and theory develops to attack the ECDLP. In fact, it is the order of an elliptic 
curve that is the first factor in selecting the elliptic curve. As we will discuss later, that 
order must be divisible by a prime > 2160. It is also within a relatively small range around 
p, the order of Fp, as we knew already: | p – #E(Fp)| ≤ 1+ 2 p . 
Mersenne primes. The prime p is suggested to be a Mersenne prime for maximum 
security and efficient implementation. There is also general doubt that the more special 
internal structures are embedded in a finite field chosen for an elliptic curve 
cryptosystem, the more vulnerable this cryptosystem will be. 
 A Mersenne prime is of the form p = 2t – 1, where t is, obviously, a prime. We 
call t a Mersenne exponent. For example, t = 2, 3, 5, 7, 17, 31, 89, 127, 521 and 607, we 
have (2t – 1) to be a Mersenne prime.  
 A Mersenne number is of the form (2t – 1), where t is not necessarily a prime. Not 
any prime can be a Mersenne exponent; e.g., 211 – 1 = 2047 = 23·89 is a composite 
number. 
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Pseudo Mersenne primes. In Crandall’s patent [C92], the Mersenne primes are a subset 
of fast class numbers, which are primes of the form p = 2t – C, where C is a very small 
positive number in practice. They are called pseudo Mersenne primes. Then the modular 
reduction (modulo p) can be implemented very efficiently in this case: using only cyclic 
shifts and additions, with no divisions required. This advantage is also for the Fermat 
primes of the form p = + 1. 

s22
Generalized Mersenne primes. Generalized Mersenne primes are also implemented for 
prime finite fields. They are primes of the form p = 2n – 2s – 1. 
Modular reduction method. The binary form of a number a is represented as  
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where each set of t bits, starting from the far right side, are grouped. Let p = 2t – C. Then 
we have: 2t ≡ C (mod p). Hence 
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That is, to compute Ai (mod p) we just shift its bits to the positions for those of A0, then 
we compute its decimal value. Adding them up, we get the modulo p of a  

a (mod p) ≡ An –1 (mod p) + … + A0 (mod p). 
 When C = ±1, the algorithm will have only shiftings and additions/subtractions.  
 When C ≠ ±1, the algorithm will actually have shiftings, multiplications by C, and 
then additions/subtractions. 
b. Finite fields GF(2m) of characteristic 2 (binary finite fields) 
 We now discuss more on the bases of GF(2m) that is considered a vector space of 
dimension m over F2. A basis is a set of elements {e0, e1,…, em–1} in GF(2m) such that 

each element a ∈ GF(2m) can be represented uniquely by the form a = , where ai

m

i
iea∑

−

=

1

0
i ∈ 

F2, i.e., ai = 0 or 1. Then one can write: a = (a0, a1,…, am –1). 
 There are many different bases of GF(2m). The most natural bases are, of course, 
polynomial bases, normal bases and optimal normal bases.  
c. Extension finite fields 
 Extension finite fields are special cases of practical implementation. They are 
divided into two groups: composite finite fields of characteristic 2 are of the form 
GF(2n)m) and Optimal Extension Fields (OEF) of the form GF(2n ± c)m) have 
characteristic  greater than 2. We can summarize all types of finite fields, which are 
currently implemented, into the table 4.1. 

Finite Fields 
Prime finite fields GF(p), p > 2 Extension finite fields GF(pm) 

Special form primes char (p) = 2 General 
primes (& 
Mersenne) 

Pseudo 
Mersenne 

Generalized 
Mersenne 

Binary Composite 
char (p) > 2 

OEF 

GF(p) GF(2n– c) GF(2n–2s–1) GF(2n) GF((2n)m) GF((2n± c)m)
Table 4.1. Finite field classifications 

4.A.2. Polynomial bases 
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 Let f(x) = xm + fm–1 xm–1 + … + f1x + f0, where fi ∈ F2, be an irreducible polynomial 
of degree m over F2. We call f(x) the reduction polynomial (or sometimes, field 
polynomial). Let α = x + (f(x)) be a root of f(x). Hence the set {αm–1,…,α2, α, 1} is a 
polynomial basis, where αi= xi + (f(x)), for 0 ≤ i ≤ m – 1.  
 Then the elements of the finite field GF(2m) can be represented as the set of all 
polynomials of degree 0 ≤ d ≤ m – 1: a(x) = am –1 xm –1 + … + a1x + a0, where ai = 0 or 1. 
One can also write: a(x) = (am–1,…, a1, a0). Particularly, we can write the zero element 0 
= (0, 0,…, 0) and the multiplicative identity 1 = (0, 0,…, 1). 
a. Irreducible polynomials 
 A polynomial f(x) is called irreducible if we cannot write f(x) = g(x).h(x), for any 
polynomials g(x), h(x) of degree strictly less than the degree of f(x). 
 An irreducible polynomial f(x) = xm + fm –1 xm –1 + … + f1x + f0 of degree m over F2 
should satisfy these necessary conditions:
 The constant term f0 = 1; otherwise, we can factor x out. Hence from now on, we 
always write the general form as: f(x) = xm + fm –1 xm –1 + … + f1x + 1. 
 There is an odd number (≥ 3) of nonzero terms; otherwise,  f(x) whose number of 
nonzero terms is even has a factor (x + 1). 
 There must be at least one term of odd degree; otherwise,  f(x) of all even powers 
is a square of a polynomial of degree (m/2). 
 It is easy to verify this property:  
 If f(x) = xm + fm –1 xm –1 + … + f1x + 1 is an irreducible polynomial of degree m, 
then so are polynomials g(x) = f(x + 1) and h(x) = xm.f(1/x) = xm + f1 xm –1 + … + fm –1x + 
1. 
 The compositions of g(x) and h(x) will give us a few more irreducible 
polynomials. 
b. Primitive polynomials 
 If f(x) = fm xm + … + f1x + f0 is an irreducible polynomial of degree m over F2 and 
r is a root of f(x) in an extension field of F2 (that is a finite field GF(2m)), then r, r2, 

22r ,...,
12 −m

r are all roots of f(x). Indeed, if f(r) = 0, then for any d, we have  =  f
d

if
2

i, 
since fi equals either 0 or 1. Hence: 
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Property: All the roots of the polynomial f(x) have the same multiplicative order, that is 
called the period (or order) of the function  f(x). 
PROOF: Indeed, if order of r is k, i.e., rk = 1, then k| (2m – 1). Hence k is odd. We also 
have  = 1. Therefore, the order of kddk rr )( 22. = r

d2  is some integer l such that: l | k and 
ld

r .2 = 1. Hence, k| (2dl). Since k is odd, we have k | l.  Hence k = l.    q.e.d. 
 The period (or order) of a polynomial f(x) can also be defined as the least positive 
integer e such that f(x) divides the polynomial (xe + 1). 
Definition: If the period of f(x) is (2m – 1), that is the order of the multiplicative subgroup 
GF(2m)* = GF(2m)\{0}, then f(x) is called a primitive polynomial.  
 All roots of a primitive polynomial f(x) are primitive elements of GF(2m). For 
example, the polynomial h(x) = xm + … + x + 1 divides (xm+1 + 1).  Hence its period is 
equal to (m + 1) or less and h(x) is not a primitive polynomial of GF(2m), unless m = 2. 
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 A primitive polynomial can be built from a primitive element a of a finite field 
GF(2m) by the formula: f(x) = (x + a)(x + a2)  ).

)

                                                          

()(
1222 −

++
m

axax L

 If another primitive polynomial g(x) = (x + b)(x + b2)  is 

built from a primitive element b, such that b ∉{ | 0 ≤ n ≤ m –1}, then g(x) ≠ f(x). 

()(
1222 −

++
m

bxbx L
n

a2

 In other words, each primitive element is a root of only one primitive polynomial 
of GF(2m).  In fact, the set of roots of all primitive polynomials for a finite field are 
exactly all primitive elements in GF(2m)* = GF(2m)\{0}. Hence there can be many 
primitive polynomials for a finite field GF(2m), when m ≥ 3. And in fact, a primitive 
polynomial cannot be reducible over F2. ℵ
 Recall that the number of non-zero terms for a reduction polynomial must be odd. 
Hence the first polynomials to be considered are of 3 non-zero terms since we prefer the 
fewest terms in reduction polynomials. But irreducible trinomials are relatively sparse; 
hence the next candidates are polynomials of 5 non-zero terms or pentanomials. In 
practice, the most-used polynomial bases are trinomial and pentanomial bases. We can 
choose such a reduction polynomial f(x) such that the computations modulo f(x) can be 
performed efficiently in software and hardware implementations.  
c.  Trinomial basis representation 
 Its reduction polynomial is an irreducible trinomial of the form Tm,k(x) = xm + xk + 
1, where 1 ≤ k ≤ m –1. In fact, a trinomial Tm,k(x) = xm + xk + 1 is irreducible if and only if 
its reciprocal trinomial Tm,m–k(x) = xm + xm–k + 1 is irreducible. Hence, we should be 
interested in trinomials of the following form only: Tm,k(x) = xm + xk + 1, where 1 ≤ k ≤ 
m/2. Such trinomials exist for certain values of m only. If they exist, we should choose 
the reduction polynomial with the smallest k. Such a trinomial generally will have the 
most efficient implementation. 
d.  Pentanomial basis representation 
 Its reduction polynomial is an irreducible pentanomial of the form 

P(x) = , where 1 ≤ k1123 ++++ kkkm xxxx 1 < k2 < k3 ≤ m –1.  
Such pentanomials always exist for m ≥ 4. In practice, it was recommended to use 
pentanomials whose coefficient triples (k1, k2, k3) or (k3, k2, k1) will have the first 
coefficient as small as possible and next coefficients are kept as small as possible after 
fixing the previous one or ones in the triple order. These polynomials would have more 
efficient computations of finite field operations. 
e.  The field arithmetic 
 Its operations are performed via modulo f(x) over the finite field F2 as follows: 
 The reduction modulo f(x) of a polynomial g(x) is just the remainder when g(x) is 
divided by f(x). 
 Field addition is performed component-wise by XOR-ing. 

 
ℵ  Number theory tip – Number of primitive polynomials 
 There are a total of φ(2m – 1) primitive elements in the multiplicative subgroup 
GF(2m)* = GF(2m) \{0}. 
Property:  For any integer m > 0, we have m| φ(2m – 1), or more generally, m| φ(pm – 1), 
for any prime p. Hence the number of primitive polynomials of a finite field GF(2m) is 
equal to φ(2m – 1)/m.  
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(am–1,…, a1, a0) + (bm–1,…, b1, b0) = (cm–1,…, c1, c0) where ci = ai ⊕ bi. 
  Field multiplication: (am–1,…, a1, a0) · (bm–1,…, b1, b0) = (rm–1,…, r1, r0), where 
the polynomial (rm –1xm–1 + …+ r1x + r0) is the remainder when the product  

(am –1xm–1 + …+ a1x + a0) · (bm –1xm–1 + …+ b1x + b0) 
is divided by f(x) over F2. 

Refer also to Schönhage [S77] and Pincin [P89] for more disccusions.  Kim, 
E. J. Lee & P. J. Lee [KLL98]  proposed a new inversion algorithm, called MAIA 
(Modified Almost Inverse Algorithm), which is suited especially for Optimal Extension 
Fields. 
Squaring. In particular, the squaring operation of a polynomial (am –1xm–1 + …+ a1x + a0) 
that is performed in modulo 2 is in fact a linear operation; that is,  

(am –1xm–1 + …+ a1x + a0)2 = am –1x2(m–1) + am –2x2(m–2)  + …+ a1x2 + a0. 
In terms of bit strings, we write: (am–1,…, a1, a0)2 = (a2(m–1), 0, a2(m–2), 0,…, 0, a1, 0, a0). 
Then we reduce the resulting polynomial by modulo f(x). 
 We should refer to some algorithms using squaring matrices when we need to 
implement many squaring operations in a fixed polynomial basis. 
 Orlando & Paar [OP00] proposed a design for the standard basis field 
representation, and it is based on the transformation from squaring operation into an 
addition and a multiplication by a constant that depends only on the field polynomial. Let 
L = ⎡m/2⎤ and  K = ⎣m/2⎦, then 
 (am –1xm–1 + …+ a1x + a0)2 = am –1x2(m–1) + am –2x2(m–2)  + …+ a1x2 + a0. 
 = x2L[aL+(K–1)x2(K–1) + aL+(L–2)x2(L–2) … +aL+1x2 +  aL] + [aL–1x2(L–1) + … + a1x2 + a0]. 
 = A.B + C, where A = x2L mod f(x) is a constant depending only on the field 
representation and  A could be reduced to a polynomial of degree much less than m and  

B =  aL+(K–1)x2(K–1) + aL+(L–2)x2(L–2) … +aL+1x2 +  aL  and C = aL–1x2(L–1) + … + a1x2 + a0. 
 Inversion: We need to discuss also some methods of computing the inverse of a 
non-zero element. This operation obviously has an important role in field arithmetic. The 
general method is using this identity: a–1

 = 21222 )(
1−− −

=
mm

aa , ∀a ≠ 0. Recall that:  = 
1.  In implementations, we can even analyze further the power exponent (2

12 −m
a

m–1 – 1) of a to 
reduce our computation to a few multiplications. 
 Another well-known method is using the Euclidean algorithm. After finding 
gcd(f(x), a(x)), we can work backward the steps in the Euclidean algorithm to represent 
gcd(f(x), a(x)), as a linear combination of f(x) and a(x). This is called the extended 
Euclidean algorithm: finding polynomials u(x) and v(x) such that gcd(f(x), a(x)) = 
f(x)·u(x) + a(x) ·v(x). When gcd (f(x), a(x)) = 1, we can write 1 ≡ a(x)·v(x) (mod f(x)). In 
other words, the polynomial v(x) is the inverse of a(x), modulo f(x).  
 The explicit algorithm and its hardware architecture can be found easily in 
computer engineering literature. In fact, it is generally referred to as an algorithm to 
compute the ratio b(x)/a(x). Hence inversion is only a special case when we let b(x) = 1. 
 Quite a few methods are mentioned in cryptography literature. For each particular 
finite field and its chosen reduction polynomial, one method can be implemented more 
efficiently or conveniently than others. 
 O’Malley, Orman, Schroeppel & Spatscheck [OOSS95] proposed the “Almost 
Inverse” algorithm on the binary finite field GF(2155)  with its reduction polynomial T(x) 
= x155 + x62 + 1. In fact, this is the only irreducible trinomial of GF(2155) (if one ignores 
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its reciprocal trinomial) and it is not a primitive polynomial. The authors developed the 
“Almost Inverse” algorithm from Elwyn R. Berlekamp’s idea (in his book (Algebraic 
coding theory, 1968)) and the low-end GCD algorithm, which were independently 
discovered by Silver & Terzian, 1962 (never published) and Stein [S67]. 
 The idea of “Almost inverse” algorithm is to compute the almost inverse of a 
polynomial a(x) modulo f(x).  It will compute a polynomial b(x) and an integer j (which is 
less than twice the degree of f(x),) such that a(x) b(x) ≡ x j (mod f(x)).  Then the inverse of 
the polynomial a(x) will be the polynomial b(x) divided by the term xj. 
 They also suggested a few similarly well-behavior irreducible trinomials: x127 + 
x63 + 1, x140 + x65 + 1, x182 + x81 + 1, x191 + x71 + 1, x223 + x91 + 1 and x255 + x82 + 1. 
 Irreducible trinomials are rather sparse.  For finite fields of degrees between 100 
to 199, there are 43 fields having no irreducible trinomials. 
4.A.3. Normal bases and optimal normal bases 
 Normal bases are not special only for finite fields of characteristic 2. In fact, they 
are defined for any finite field GF(qm) where q is a prime power.  
 A normal basis of GF(2m) over F2 is a basis of the form {β, β2, ,…, }, 
where β ∈ GF(2

22β
12 −m

β
m). Such a basis always exists. Then a = (a0, a1,…, am–1) will represent 

the element a  = .  By convention, the ordering of 
bits in normal basis representation is different from that in polynomial basis 
representation. Particularly, we can write the zero element 0 = (0,0,…,0) and 
multiplicative identity 1 = (1,1,…,1). 
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 The most important property of a normal basis is that the square of a field element 
can be computed easily and implemented efficiently on hardware by just a right 1-cyclic 
shift on the register. Indeed, given an element a = (a0, a1,…, am–1) represented in a normal 

basis, we have: a2  = = (a
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for any integer s, 1 ≤ s ≤ m – 1, the 2s-th power of element a can be computed quickly by 
an right s-cyclic shift. That is, = (a

s
a2

m–s, am–s+1, …, a0, a1,…, am–s–1). We can verify 
again the relationship:  = a. Similarly, the square root of a can be computed simply 
by a left 1-cyclic shift:  a

m
a2

1/2 = (a1, a2,…, am–1, a0).  
 Unfortunately, multiplication in a normal basis is more complicated. 
a.  The field arithmetic 
 Field addition is performed component-wise by XOR-ing as on a polynomial 
basis. Field multiplication: (a0, a1,…, am–1) · (b0, b1,…, bm–1) = (c0, c1,…, cm–1), where ck, 
for 0 ≤ k ≤ m – 1, is computed by as follows. First, we have that equality written as: 

 We will compute the products  for 

all 1 ≤ i, j ≤ m – 1, where  = 0 or 1. Replacing them back in the previous equality, we 

have: c
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ck =   ∑∑∑∑∑∑
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Hence we need only the first term in the expansion of the product  
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 This formula for ck is very helpful in hardware implementation. Indeed, each term 
ck can be obtained from the term c0 by the same hardware setup and a left k-cyclic shift of 
the involved variables; that is, adding k to each subscript in the formula for c0. In other 
words, (a0, a1,…, am) and (b0, b1,…, bm) are replaced by (ak, ak+1,…, am, a0, a1,…, ak– 1) 
and (bk, bk+1,…, bm, b0, b1,…, bk– 1) , respectively. 
 The complexity mλ of a normal basis is the number of non-zero terms λi,j. Then 
we have 2m – 1 ≤ mλ ≤ m2. When mλ = 2m – 1, the normal basis is an optimal normal 
basis that will be discussed next. It is the case that λ0,j = 1 for precisely one j, 0 ≤ j ≤ m – 
1 and that for each i, 0 ≤ i ≤ m – 1, λi,j = 1 for precisely two distinct values j, 0 ≤ j ≤ m – 
1. This is the most important and popular normal basis used in cryptography.  
 Inversion: One of the most obvious ways (and also efficient in some setups) is to 
convert to an inversion on a more familiar polynomial basis representation by a basis-
change matrix multiplication and convert the result back to the original normal basis to 
display.  
 Deutsch, Omura, Reed, Shao, Truong & Wang [DORSTW85] proposed a new 
method for inversion, which is derived from the equality: a–1 = , ∀a ≠ 0. Then the 

exponent of a can be manipulated as: 2
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, where we already knew how to compute efficiently each term 

. Considering that (m – 1) cyclic shift operations are of no cost, we still need (m – 2) 
multiplications in the finite field GF(2

∏
−

=

−
=− =∑=

1

1

2
1

1 222
m

s

sm
s

sm
aaa

s
a2

m) for the final product. This method is impractical 
for large m. 
 The most efficient algorithm was proposed by Itoh & Tsujii [IT88] or Itoh, 
Teechai & Tsujii [ITT86]. They exploited a factorization of the exponent (2m – 2) into 
interweaved cyclic shifts (i.e., squares) and multiplications. We can write: 2m – 2 = 2 (2m 

–1 – 1), where 2m–1 – 1 = . Hence, for m odd, 

we can compute  from  with a right [(m – 1)/2]-cyclic shift and one 
multiplication. For m even, we can compute  from  with a total of (m/2) 
right 1-cyclic shifts and two multiplications. It can reduce the computation to exactly 
⎣log
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α 2 1 1m− − α 2 2 2 1( )/m− −

2(m –1) + H(m – 1) – 1 ⎦ ≤ 2log2(m – 1) multiplications and (m – 1) cyclic shifts, 
where H(m) is the Hamming weight of the binary representation of m. We can check this 
formula by induction. However, this method requires storage for intermediate results. 
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 A similar algorithm was proposed independently by Vanstone in a lecture at NTT 
(Nippon Telegraph and Telephone, Japan) in 1987, and it can also be applied to a general 
power operation. 
 Another method for inversion, described in Agnew, Beth, Mullin & Vanstone 
[ABMV93], does not require storage for intermediate results but requires more 
multiplications. 
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 (ii)  in (h – 1) multiplications and (h – 1)g right 1-cyclic shifts. ∏
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Hence, in total, we can compute the inverse α–1 of α in (g + h – 2) multiplications and in 
hg – 1 = m – 2 right 1-cyclic shifts. This number is minimized when both g and h are 
about (m – 1)1/2. 
b.  Miscellaneous implementations 
Trace of an element:  Given a point a = (a0, a1,…, am–1) in a normal basis 
representation, its trace will be easily computed as: Tr(a) = a0 ⊕ a1⊕ … ⊕ am –1. Indeed, 
from the squaring formula discussed above, we have 
  Tr(a) =  

122212 −
++++

m
aaaa L

     = (a0, a1,…, am –1) + (am –1, a1,…, am –2) + … + (a2, a3,…, a1) + (a1, a2,…, a0)  
     = (x, x,…, x), where x = a0 ⊕ a1⊕ … ⊕ am –1.  
We observe: Tr(a) = 0 if x = 0 and Tr(a) = 1 if x = 1. Hence Tr(a) = a0 ⊕ a1⊕ … ⊕ am –1. 
 Therefore, the trace function is also a parity function that indicates whether the 
number of bits 1 is odd or even. Furthermore, since squaring and square root operations 
are just cyclic shifts, we have a trivial proof for the identity: Tr(a) = Tr(a2) = Tr(a1/2). 
Finding the roots of equation x2 + x + b = 0: We can observe again that since Tr(x + x2) 
= 0, the equation has solutions only when Tr(b) = 0. In that case, one root is x, then the 
other root is (x + 1), since (x + 1)2 + (x + 1) = x2 + 1 + x + 1 = x2 + x. 
 In normal basis representation, the roots can be found easily by bit operations. 
Indeed, we can write x = (x0, x1,…, xm–1) and x2 = (xm–1, x0, x1,…, xm–2). Hence the 
equation is:  x2 + x = (x0 ⊕ xm –1, x1⊕ x0,…, xm –1⊕ xm –2) = (b0, b1,…, bm –1) = b. Then one 
can choose xm–1

 = 0 to compute other bits of a root x = (x0, x1,…, xm–1). The other root is 
for xm–1

 = 1. Then we have: x0  = b0 ⊕ xm –1, x1 = b1 ⊕ x0, x2  = b2 ⊕ x1, …, xm –2 = bm –2 ⊕ 
xm –3. 
 More generally, we can solve the equation x2 + ax + b = 0, where a is an 
invertible element, by transferring it to the form X2 + X + a– 2b = 0, where X = a – 1x. 
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Discrete exponentiation: The goal is to compute the power an ∈ GF(2m) where n is its 

binary form n = (ns–1,…, n1, n0) = .  ∑
−

=
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 In a regular way, we then write: an =  . Using normal basis, 

we get terms  simply by cyclic shifts. Thus we need only a number of –1 

multiplications or probabilistically about (r/2) multiplications.  
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 Following the 2d-ary expansion method, we may pad an extra number of bit 0’s to 
the left side of the bit string to make s = dr for some integer r. Then we have n of the 
form n = (Nr–1,…, N1, N0), where each Ni is a d-bit string and Nr–1 ≠ (0…0). Explicitly, 

we can write: n =  and N∑
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The idea is to rewrite n as a sum over wj, the values of the d-bit strings Ni.  We have: 1 ≤ 
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 For a randomly chosen n, the term W(w) will have about (r/2d) non-zero terms in 
it. In a normal basis, aW(w) will be computed in (r/2d) – 1 multiplications. Then computing 
the term (aW(w))w will need probabilistically about (d/2) – 1 multiplications. We need to 
compute all (2d – 1) such terms (aW(w))w; and it is possible to use (2d – 1) microprocessors 
in parallel. Finally, (2d – 2) multiplications will provide the final value of an. 
 Refer to Agnew, Beth, Mullin & Vanstone [ABMV93] for further analysis on the 
numbers of operations. Other works were proposed by Cohen, Miyaji & Ono ([CMO97], 
[CMO98]). 
4.A.4.  Optimal normal bases (ONB) (Gao & Lenstra [GL92]) 
a. Existence of ONBs 
 An optimal normal basis over F2 only exists in finite field GF(2m) for certain 
values of m.  Recall from the previous section, when the complexity mλ of a normal basis 
(i.e., the number of non-zero terms λi,j) is equal to (2m – 1), then the normal basis is 
called an optimal normal basis. There are two types of ONB, type I and type II, 
depending on m and hence on the mathematical formulae defining them. 
Theorem (Mullin, Onyszchuk, Vanstone & Wilson [MOVW89]) 
 (i)  The finite field GF(2m) has an optimal normal basis if and only if (m + 1) is a 
prime and 2 is a primitive element in the finite field Fm+1. (Type I ONB).  
 (ii)  If (2m + 1) is a prime and 2 is a primitive element in the finite field F2m+1, 
then the finite field GF(2m) has an optimal normal basis. (Type II ONB). 
 (iii) If (2m + 1) is a prime such that 2m + 1 ≡ 3(mod 4), and 2 generates the 
quadratic residues in the finite field F2m+1, then the finite field GF(2m) has an optimal 
normal basis. (Type II ONB).  
 The converse of the last two statements is also true. Namely,  

________________________________________________________________________________________ 
A Survey of Elliptic Curve Cryptosystems – Part I: Introductory – 10/27/2003 

Page 51 of 105 



NAS Technical Report - NAS-03-012 August 2003 
--------------------------------------------------------------------------------------------------------------------------------  

 If the finite field GF(2m) has a Type II optimal normal basis, then (2m + 1) is a 
prime and either  
 2 is a primitive element in the finite field F2m+1, or 
 2m + 1 ≡ 3(mod 4) and 2 generates the quadratic residues in the finite field F2m+1. 
(It is useful to observe that 2m + 1 ≡ 3(mod 4) if and only if m is odd.) 
  All ONB’s of Type I or II are obtainable by the three statements in the above 
theorem. The conjecture is that: If m does not satisfy the criteria in the above three 
statements, then the finite field GF(2m) does not contain an optimal normal basis. In a 
later section, we will discuss other low-complexity normal bases, where mλ > 2m – 1. 
 For a more explicit and practical approach to establish algorithms for ONB, we 
consider further analyses on m required by the above theorem.  
 Statement (i): Let s = m + 1. Recall that 2 is not primitive in Fs, for prime s 
satisfying s ≡ ±1(mod 8). Hence we are interested in case of prime s ≡ 3 or 5 (mod 8) 
only when checking the existence of Type I ONB.  
 When m ≡ 2 or 4 (mod 8) and s = m + 1 is prime: Type I ONB exists if and only if 
ords(2) = s – 1 = m. 
 This case is proved in a more general finite field GF(pm) for any prime p. The 
requirement, that s = m + 1 is prime, causes quite a few finite fields having no ONB of 
type I, such as when m is odd. 
 The last two statements depend on whether 2 is primitive (hence, not a quadratic 
residue) in Fp or not primitive. 
  Statement (ii): Let s = 2m + 1. We consider the cases that 2 is primitive in Fs, i.e., 
when s ≡ 3 or 5 (mod 8), or, equivalently, m ≡ 1 or 2 (mod 4). 
 When m ≡ 1 or 2 (mod 4) and s = 2m + 1 is prime: Type II ONB exists if and only 
if we have: ords(2) = s – 1 = 2m. 
 Observe that if ords(2) = s – 1, then 22m ≡ 1 mod(2m + 1), or (2m + 1) | (22m –1). 
The finite field GF(22m) contains a primitive (2m + 1)th root of unity, called β. It 
generates an optimal normal basis of GF(22m) over F2. Moreover, let ε = β + β–1 ∈ 
GF(2m). Then ε will generate an optimal normal basis of GF(2m) over F2.  
 Statement (iii): Let s = 2m + 1. We consider the cases that 2 is a quadratic residue 
in the finite field Fs, i.e., when s ≡ ±1 (mod 8). We need also s ≡ 3 (mod 4). Hence m ≡ 3 
(mod 4) is the only case to be considered. 
 When m ≡ 3 (mod 4) and s = 2m + 1 is prime: Type II ONB exists if and only if 
ords(2) = (s – 1)/2 = m. 
 Observe that if ords(2) = (s – 1)/2, then 2m ≡ 1 mod(2m + 1), or (2m + 1)| (2m – 1). 
The finite field GF(2m) contains a primitive (2m + 1)th root of unity, called β. It generates 
an optimal normal basis of GF(2m) over F2.  
b. Structure of ONBs (Ash, Blake & Vanstone [ABV89]) 
 Type I ONB uses the reduction polynomial (or field polynomial) of the form f(x) 
= xm + xm–1 +… + x + 1. Let β be a primitive (m +1)th root of unity in GF(2m). Then β 
generates the Type I ONB. Since β m+1 – 1 = 0 and β ≠ 1, therefore βm + βm–1 +… + β + 1 
= f(β) = 0. Hence β is a root of the reduction polynomial. We also have 

= 0. Hence all elements in the normal basis are exactly all roots of f(x), 
that is now also called normal polynomial. 

( ) ii
ff 22 )()( ββ =
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Property:  There exists an integer ki such that 1 ≤ ki ≤ m – 1, such that , 
with the exception of one value of i such that 1 ≤ i ≤ m – 1. 

iki 22· βββ =

 Type II ONB uses the reduction (normal) polynomial f(x) = fm(x), where all 
polynomials fi(x) of degree i are computed by the recursive formulae (modulo 2) for all 0 
≤ i ≤ m:  f0(x) = 1,  f1(x) = x + 1 and fi+1(x) = x fi(x) + fi–1(x), (mod 2), for i ≥ 1. 
 Let β be a primitive (2m + 1)th root of unity in GF(22m). Then ε = β+ β–1 
generates the ONB for GF(2m). This idea is also used to create other low complexity 
normal bases. When m ≡ 3 (mod 4), β is in fact in GF(2m). Thus ε = β can generate the 
ONB for GF(2m).  
Property:  There are integers ki and mi such that 1 ≤ ki, mi ≤ m – 1, such that 

, for any i such that 1 ≤ i ≤ m – 1. ii mki 222. εεεε +=
 Note that the generator for the ONB of a finite field is not necessarily a generator 
for non-zero elements of the finite field itself. 
Uniqueness: For every binary finite field GF(2m), there is at most one ONB of each type.  
Normal bases for a finite field GF(pm) where p is an odd prime 
 A normal basis of GF(pm) is a basis of the form {β, βp, ,…, },  where β 
∈ GF(p

2pβ
1−mpβ

m).  Such a basis always exists. Then a = (a0, a1,…, am –1) will represent the 
element  Particularly, we can write the zero 
element 0 = (0, 0,…, 0) and multiplicative identity element 1 = (1,1,…,1). 
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 Given a point a = (a0, a1,…, am –1) represented in a normal basis, we have: 
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Theorem (Mullin, Onyszchuk, Vanstone & Wilson [MOVW89]) 
 Suppose that the finite field GF(pm) contains (m + 1)th roots of unity. If the m non-
unit roots of unity are linearly independent, then GF(pm) contains an optimal normal 
basis. 
 One can write {β, βp, ,…, }, where β is a primitive (m + 1)

2pβ
1−mpβ th root of 

unity. The elements of the set are called conjugates of β. In other words, we now state: 
 The finite field GF(pm) contains an optimal normal basis consisting of m non-unit 
(m + 1)th roots of unity if and only if (m + 1) is a prime and p is primitive in the finite field 
Fm+1. 
 Here is a sketch of the proof.  If (m + 1) is prime then p(m+1)–1 ≡ 1 mod(m + 1). 
That is, (m + 1) | (pm – 1), where (pm –1) is the order of the multiplicative subgroup 
GF(pm)*. Then the finite field GF(pm) contains a primitive (m + 1)th root β of unity. Since 
p is primitive in Zm+1, the minimal polynomial of β is (xm+1 – 1)/(x – 1) and the non-unit 
(m + 1)th roots are linearly independent. Hence the finite field GF(pm) contains an optimal 
normal basis generated by element β. If finite field GF(pm) contains an optimal normal 
basis consisting of m non-unit (m + 1)th roots of unity, then (m + 1) must be prime. Hence 
we have: p(m+1)–1 ≡ 1 mod(m + 1), or  pm ≡ 1 mod(m + 1). ℵ

                                                           
ℵ   Number theory tip – Primitive elements of a finite field 
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4.A.5.  Low-complexity normal bases for GF(2m) (or Gaussian normal bases) (Ash, 
Blake & Vanstone [ABV89]) 
 Recall that the complexity mλ of a normal basis is the number of non-zero terms 
λi,j. When the optimal normal basis does not exist, we could use the low-complexity 
normal basis (or Gaussian normal basis,) where mλ > 2m –1. 
 The ideas of Ash, Blake & Vanstone [ABV89] are from the construction of Type 
II ONB previously described. For a finite field GF(2m), we find a small integer k such 
that (km + 1) is a prime. Under certain conditions, there will exist some element β ∈ 
GF(2km), β ≠ 1 and βkm+1 = 1. We will try to apply on β a trace-like operator from the 
finite field GF(2km) to GF(2m)  in order to find a generator for a low complexity normal 
basis of GF(2m). (In case of Type II ONB, we have k = 2 and the operator is ε = β + β–1.) 
 When m is not divisible by 8, one can use the Gaussian cyclotomic periods to 
construct easily an efficient normal basis for GF(2m). We summarize the results into this 
theorem. 
Theorem:  Given a type T, that is a positive integer, suppose m is not divisible by 8, and 
p = Tm +1 is a prime. Let k = ordp(2), and h = Tm/k = (p – 1)/k. The finite field GF(2m) 
has a normal basis of type T if and only if gcd(h, m) = 1. 
 When T = 1 or 2, it is type I ONB or type II ONB, respectively, which were 
discussed previously. They are the most popular normal bases that are the most efficient 
multiplications in finite fields. 
 When T ≥ 3, it is called a low-complexity normal base of type T (or Type T 
Gaussian normal basis.) If both type I and II ONBs do not exist, then the type T Gaussian 
normal basis of the smallest T should be used. 
Uniqueness: For any positive integer T, every binary finite field GF(2m) has at most one 
Type T Gaussian normal basis.  
Recursive formula for reduction polynomial 
 Let u be an integer of order T modulo p: ordp(u) = T.  For 1 ≤ i ≤ m, let us define 

Zi(z) = )(mod1.12)(mod2.12)(mod.12)(mod12 pTuipuipuipi
zzzz

−−−−−
++++ L . 

Let f0(t,z) = 1, Z(z) = zp–1 + zp–2 + … + z + 1, and fi(t, z) = (t + Zi(z)) fi–1(t, z) mod Z(z). 
Then the reduction polynomial for the normal basis is: f(t) = fm(t, z). 
                                                                                                                                                                             
 A primitive element of  a finite field Fq is an element α such that its order is (q – 
1) and every non-zero element of Fq is a power of α. Thus, a primitive element is a 
generator of the multiplicative subgroup GF(q)*. 
 Let q be an integer ≥ 2. If there is some integer a < q, such that the order of a 
modulo q is (q – 1), then q is a prime number. Thus, q is a prime if and only if there is an 
element of order exactly (q – 1) (modulo q). 
 There are exactly φ(p – 1) primitive elements in the prime finite field Fp, where φ 
denotes the Euler’s φ-function.  
Primitive elements & quadratic residues 
 In general, if x is a quadratic residue, then we can write x = y2, for some y ∈ Fp. 
Hence x(p–1)/2 = yp –1 = 1. Therefore, x cannot be primitive. In other words, 
 If x is primitive, then x is not a quadratic residue. In particular, the quadratic 
residues in Fp are of the form x2n and the quadratic non-residues are of the form x2n+1. 
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 Note that we can write (z – 1)Z(z) = zp – 1. Hence the modulo Z(z) can be 
performed simply by: zp ≡ 1 mod Z(z), zp+1 ≡ z mod Z(z), and generally, zp+j ≡ zj mod Z(z). 
 More calculations for other small finite fields GF(2m) are given in the table 4.2. as 
illustrated examples. 
m Computing polynomials for ONB Type II of finite field 

GF(2m) 
Existence of  

Type I & II ONB 
2 f2(t) = t2 + t + 1 

(The only irreducible polynomial of degree 2 over F2) 
Type I ≡ Type II 

3 f3(t) = t(t2 + t + 1) + t + 1 = t3 + t2 + 1 Type II, no Type I 
4 f4(t) = t(t3 + t2 + 1) + t2 + t + 1= t4 + t3 + t2 + 1 (reducible) Type I, no Type II 
5 f5(t) = t(t4 + t3 + t2 + 1) + t3 + t2 + 1= t5 + t4 + t2 + t + 1 Type II, no Type I 
6 f6(t) = t(t5 + t4 + t2 + t + 1) + t4 + t3 + t2 + 1= t6 + t5 + t4 + t + 1 Type II, no Type I 
7 f7(t) = t(t6 + t5 + t4 + t + 1) + t5 + t4 + t2 + t + 1= t7 + t6 + t4 + 1 

(reducible) 
no Type I 
no Type II 

8 f8(t) = t(t7 + t6 + t4 + 1) + t6 + t5 + t4 + t + 1= t8 + t7 + t6 + t4 + 1 no Type I 
no Type II 

9  f9(t) = t9 + t8 + t6 + t5 + t4 + t + 1 Type II, no Type I 
10 f10(t) = t10 + t9 + t8 + t5 + t4 + t2 + t + 1 (reducible) Type I, no Type II 
11 f11(t) = t11 + t10 + t8 + t4 + t3 + t2 + 1 Type II, no Type I 

Table 4.2.  Computing reduction polynomials for some ONB Type II’s 
4.A.6. Self-dual bases and self-dual normal bases 
a. Dual bases  
 Two bases B = {b0, b1,…, bm–1} and C = {c0, c1,…, cm–1} of a finite field GF(pm)  
over Fp are called dual bases (or complementary bases) if and only if 

Tr(ci.bj) = δij, where δij = 0 if i  ≠ j and δij = 1 if  i  = j. 
The symbol δij is called the Kronecker delta function. 
Fact: Every basis has a unique dual basis. 
 Let s = s0b0 + s1b1 + … + sm–1bm–1 and t = t0c0 + t1c1 + … + tm–1cm–1. Then the 
trace of the product (s.t) is defined by: Tr(st) = s0t0 + s1t1 + … + sm–1tm–1, and is used to 
define a non-degenerate symmetric bilinear form: 〈s, t〉 = Tr(st), which is called the trace 
bilinear form. 
Theorem: Every element a ∈ GF(qm) can be expressed in the dual basis C as: a = 

. i

m

i
i cabTr∑

−

=

1

0

)(

 The above fact still true in general, when the trace function Tr(·) is replaced by 
any nontrivial linear function f (or transformation) from the finite field GF(pm) to the 
finite field Fp. Dual bases have many advantages in hardware designs but they are more 
complex in software implementations, such as field squaring. Current works using 
specially designed dual bases were discussed in literature such as circular dual bases and 
optimal dual bases. 
b. Optimal dual bases  
 Benaissa, Fenn & Taylor ([BFT96],[BFT96a]) proposed an optimal dual basis of 
a given polynomial basis with respect to a linear function g. The authors showed that any 
linear function g can be of the form  
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g(z) = Tr(bz), ∀z ∈ GF(2m), for some element b ∈ GF(2m). 
Hence they can choose an optimal element b such that the elements of the resulting dual 
basis are just a permutation of elements in the given polynomial basis. 
c. Circular dual bases   
 Lee & Lim [LL98] proposed the circular dual basis that is the dual basis of a 
polynomial basis whose reduction polynomial is of the form f(x) = xm + … + x + 1, when 
it is an irreducible polynomial, for proper values of m. This polynomial basis is the Type 
I ONB. In fact, this circular basis exist only in the finite fields, which have Type I ONB. 
Explicitly, if the polynomial basis (or Type I ONB) is {1, α, α2,…, αm –1}, then its 
circular dual basis is {1, c, c2,…, cm –1}, where ci = α + α–i, for 1 ≤ i ≤ m – 1.  A short list 
of degree m of such finite fields are: m = 4, 10, 12, 18, 28, 36, 52, 58, 66, 82, 100, 106, 
130, 138, 148, 162, 172, 178, 180, 196, 210, 226, 268, 292, 316, 346, 348… 
 The authors showed a few advantages and efficiencies of this circular dual basis, 
which should inherit benefits of both dual basis and optimal normal basis, in finite field 
arithmetic implementations: multiplications, squarings, inversions and basis changes. 
d. Self-dual (or self-complementary) bases 
 A basis {e0, e1,…, em–1} is called self-dual (or self-complementary) basis with 
respect to the trace function Tr(·), if and only if  Tr(eiej) = δij . 
 Self-duality will always mean “with respect to the trace function Tr(·),” unless 
stated otherwise.  
Property:  Any polynomial basis cannot be a self-dual basis. 
 As observed above, a polynomial basis can be a dual basis of itself (or of a 
permutation of it) with respect to some linear function other than the trace function Tr(·). 
Theorem ([LS80])  
 A finite field GF(qm) has a self-dual basis over Fq if and only if either q is even, or 
both q and m are odd. 
 A basis satisfying only the condition: Tr(eiej) ≠ 0 if and only if i = j, is called a 
trace-orthogonal basis. Then any finite field GF(qm) always has a trace-orthogonal basis 
over the field Fq. 
e. Self-dual normal bases 
 A normal basis that is also self-dual is called self-dual normal basis. A finite field 
GF(2m) can have more than one self-dual normal basis. For instance, a Type II ONB is a 
self-dual normal basis. 
Theorem (MacWilliams & Sloane [MS77]) 
 If m is odd, then the finite field GF(2m) has a self-dual normal basis over F2. 
Theorem (Existence theorem): A finite field GF(qm) has a self-dual normal basis over Fq 
if and only if either q is even and m ≢ 0 (mod 4), or both m and q are odd. 
 The necessary condition is trivial for q odd, and due to Imamura & Morii [IM85]. 
The sufficient condition is due to Lempel & Weinberger [LW88].  
 Jungnickel, Menezes & Vanstone [JMV90] counted the number of self-dual bases 
and for case q prime only, the number of self-dual normal bases. Later, Beth & 
Geiselmann extended the later result to any finite field. Geiselmann & Gollmann [GG90] 
also mentioned that dual basis multipliers have some advantages when circuits are 
designed from certain standard cells (e.g., TTL), but there seems to be no reason to prefer 
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them in full custom VLSI-design. Deutsch, Hsu, Reed & Truong [DHRT88] gave a 
comparison on  VLSI multipliers using differents bases. 
4.A.7. Primitive normal bases 
 A normal basis {β, βq, ,…, } of the finite field GF(q

2qβ
1−mqβ m) over a finite 

field Fq where q is any prime power, is called a primitive normal basis if β is a primitive 
root of the multiplicative subgroup GF(qm)*. 
Theorem (Lenstra & Schoof [LS87]) 
 For every prime power q > 1, and every positive integer m, there exists a 
primitive normal basis of finite field GF(qm) over Fq. 
 Carlitz ([C52],[C52a]) proved this result with the case q prime and qm sufficiently 
large. Davenport [D69] extended to all m with q = p prime. The author also showed that 
the number of choices for β is at least (p –1)m. 
4.A.8. Non-conventional basis 
a. All-one-polynomial (AOP) basis (Hasan & Wu [HW98]) 
 The reduction polynomial f(x) = xm + xm–1 + … + x + 1 whose coefficients are all 1 
is called all-one-polynomial (AOP).  Let α = x + (f(x)) be a root of f(x). Hence the set {α, 
α2,…, αm} is a non-conventional basis, where αi= xi + (f(x)), for 1 ≤ i ≤ m. 
b. Equally Spaced Polynomial (ESP) basis (Itoh [I91] and Hasan & Wu [HW98]) 
 A polynomial  g(x) = xsm + xs(m–1) + … + xs + 1 = f(xs) over GF(2), where f(x) is a 
AOP of degree m over GF(2) is called an s-equally spaced polynomial (s-ESP) of degree 
sm. 
4.A.9.  The choice of bases 
 The security of an elliptic curve cryptosystem does not depend on the choice of 
basis representation for the finite field GF(2m). Polynomial bases and optimal normal 
bases are equally secure. Moreover, all the bases are mutually transformable by using 
basis-change matrix multiplication, we can also use flexibly one basis for internal 
calculations and another basis for outputting data.  
 Any standard book on linear algebra always discusses the problem of using 
matrix multiplication for basis change or conversion. The implementation should be 
rather simple. The storage requirement is known to be about O(m2) bits over a binary 
finite field GF(2m).  
 Kaliski & Yin ([KY98],[KY98p]) and Kaliski & Liskov [KL98] discussed new 
algorithms for basis conversion over finite field GF(2m). These algorithms require only 
O(m)-bit storage. 
 For software, the polynomial bases could be easier to understand and more 
efficient. But the normal bases are more efficient for hardware implementation by taking 
advantage of the fact that squaring operation is simply a cyclic shift, while in polynomial 
bases, implementation of the squaring operation cannot be easier than that of 
multiplication.  
 However, this advantage must be exchanged for a larger and more complicated 
layouts for multiplications, unless one uses the optimal normal bases. We also take into 
account that the easy squaring operations also reduce the number of multiplications in 
scalar point multiplication, [GG90]. 
4.A.10. Comparisons of finite fields 
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  In implementing elliptic curve cryptosystems on finite fields, the binary finite 
fields GF(2m) are preferred over the prime finite fields Fp, even though Fp has 
performance advantages in software since it is rather more comprehensive.  
 The arithmetic in the binary finite field GF(2m) is easier to implement than it is in 
the prime finite field Fp, especially when optimal normal bases are used. The easy 
squaring operations also reduce the number of multiplications in scalar point 
multiplication. 
  Point compression & recovery or compact point techniques help in reducing the 
encrypted message. 
  In some cryptosystems where the supersingular elliptic curves could be used, we 
can also reduce the number of arithmetic operations. 
 The ability to select the underlying finite field and its basis to optimize the finite 
field operations is also an advantage of an elliptic curve cryptosystem over other systems 
based on the discrete logarithm problem or the integer factoring problem. 
4.A.11. Composite extension finite fields and subfields 
  When m is a composite number, m = rs, then the composite extension finite field 
GF(2m) can be considered an extension field of degree s over finite field GF(2r). The 
finite field GF(2r) is called a subfield of GF(2m). 
 The elliptic curve over a subfield is also used in computing the order of an elliptic 
curve over a composite extension finite field using Hasse-Weil’s theorem. 
 We can also represent elements in a composite extension finite field over its 
subfield using either one of the two bases discussed earlier. 
 We should point out that the finite field GF((2r)s) is isomorphic to the finite field 
GF(2m), but their field operations (additions and multiplications) are different depending 
on the irreducible field polynomials, P(x) of GF((2r)s) over GF(2r) and Q(y) of GF(2r) 
over GF(2).  
 It also depends on the posbbile factorizations of m (other than factors r and s). 
The choice of those field polynomials are essential to determine the algorithmic 
complexity of arithmetic operation of GF((2r)s). 
Using polynomial bases: Let {rs–1,…, r1, r0} be a polynomial basis for GF(2m) over 
GF(2r). Every element a in the finite field GF(2m) can be uniquely written in the form a = 

(cs–1,…, c1, c0) =  , or by the polynomial of the form a = ci

s

i
irc∑

−

=

1

0
s–1xs–1 + …+ c1x + c0, 

where each term ci
 ∈ GF(2r), for s – 1 ≥ i ≥ 0, is also represented in a polynomial basis 

over F2. 

Using normal bases: Let {β, , ,…, } be a normal basis for GF(2
r2β

r22β
rs )1(22 −

β m) 
over GF(2r). Then every element a in the binary finite field GF(2m) will be represented 
by a = (c0, c1,…, cs–1) = c0β + c1

r2β + c2
r22β +…+ cs–1, where ci

 ∈ GF(2r), for 0 ≤ i ≤ s – 

1. In this representation, we observe that  = c
r

ic2
i, then 

r
a2 = cs–1β + c0

r2β + c1
r22β + c2

r32β +…+ cs–2
rs )1(2 −

β . 
 We do not have the rule “squaring is a right 1-cyclic shift” anymore. Instead, the 
2r-th power of an element is a right cyclic shift of coefficients ci. This implementation is 
most useful when, of course, r = 1 only. 

________________________________________________________________________________________ 
A Survey of Elliptic Curve Cryptosystems – Part I: Introductory – 10/27/2003 

Page 58 of 105 



NAS Technical Report - NAS-03-012 August 2003 
--------------------------------------------------------------------------------------------------------------------------------  

 Finally, the elements ci
 ∈ GF(2r)  also can be presented by either basis over F2. 

Recall that the choice of bases is not a security factor. One can always converse simply 
from one basis to another.  
 The arithmetic operations in the composite extension finite field GF(2m) = 
GF((2r)s) over the finite field GF(2r) do not only involve modulo 2 as in the case over F2 
but also involve arithmetic operations in the finite field GF(2r) over F2. There are many 
research efforts in techniques to maximize performing operations over subfields.  
 The following lemma focused on optimal normal bases rather than on normal 
bases. Refer to Mullin [M93] or Agnew, Mullin & Vanstone [AMV93]. 
Lemma: There is an optimal normal basis for finite field GF(2rs) over GF(2r) if and only 
if gcd(r, s) = 1 and there is an optimal normal basis for the finite field GF(2s) over F2. 
 In fact, let B = {α, α2, ,…, } be an optimal normal basis for the finite 
field GF(2

22α
)1(2 −s

α
s) over F2. Since gcd (r, s) = 1, then B is also linearly independent over GF(2r) 

and is an optimal normal basis of the finite field GF(2rs) over GF(2r). The set of elements  
a = d0α + d1α2 + d2

22α  +…+ ds–1 , where d
)1(2 −s

α i
 ∈ GF(2r). 

has cardinality 2rs; hence it is just the finite field GF(2rs). 
Refer to Green & Taylor [GT74], Guajardo [G97], Guajardo & Paar [GP97] and 

Smart [S01] for more discussions on implementations and security issues. 
4.A.12. Optimal extension fields (OEF) (Bailey & Paar, [BP98],[BP99],[BP00]) 
a. The fields ℵ
 Finite fields of the form GF(pm), where m > 1 (and typically small m = 3,…,8) 
and p is a big prime of the form p = 2n ± c, for some small c such that log2c ≤ ⎣n/2)⎦ and 
an irreducible binomial P(x) = xm – w exists over GF(p), for some element a ∈ GF(p). 
 Such number p is called pseudo-Mersenne prime number. In practice, the prime p 
is chosen to be a little bit smaller than the word size of the processor.  In such finite 
fields, we can perform efficient subfield multiplication, by reducing a 2n-bit number to 
roughly 1.5n bit value by “folding” the upper half into the lower half. The small value of 
c helps to improve the subfield modular reduction. There are two special types of OEF 
that can provide additional advantages on arithmetic operations. 
 Type I OEF: p = 2n ± 1. This field allows for subfield modular reduction with 
very low complexity.  For example, good choices for p are: 231 – 1 and 261 – 1. Example 
of implementation of Type I OEF: GF((261 – 1)3) whose reduction binomial is x3 – 37. 

                                                           
ℵ  Number theory tip 
Theorem:  For an integer m ≥ 2, for w ∈ GF(p), the binomial xm – w is irreducible in 
GF(p) if and only if the following two conditions are satisfied: 
 (i)  Each prime factor of m divides the order e of element w in GF(p), but does not 
divide (p – 1)/e; 
 (ii) p ≡ 1 (mod 4) if m ≡ 0 (mod 4). 
Corollary: If w is a primitive element for GF(p) and m is a divisor of (p – 1), then the 
binomial xm – a  is irreducible over GF(p). 
 An important trivial result is for the case m = 2. The binomial x2 – w is irreducible 
over GF(p) when w is a primitive element. 
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 Type II OEF:  has an irreducible binomial xm – 2. This field allows for a reduction 
in the complexity of extension field modular reduction since multiplication by w can be 
implemented using shiftings. Example of Type II OEF: GF((263 – 259)2), GF((263 – 
259)3) and GF((263 – 259)4). 
b. The elliptic curves 
 Over OEFs GF(pm), the elliptic curves have the form: y2 = x3 + ax + b, unless for 
the case p = 3, one uses a non-supersingular elliptic curve of the form: y2 = x3 + ax2 + b. 
Refer also to Baier [B01]. 
c. Implementation issues 
 The inverse algorithm is the most important algorithm to discuss in 
implementation works. Over OEFs, authors developed and modified some efficient 
advanced algorithms implemented in typical finite fields discussed earlier. Refer to 
Bailey, Paar & Woodbury [BPW00], working over finite field GF((28 – 17)17) on low-
end 8-bit processors and Aoki, Hoshino, Kobayashi, Kobayashi & Morita’s [AHKKM]: 
working on finite field GF(pm), where prime p > 3. 
 Kim, E. J. Lee & P. J. Lee [KLL98] implemented OEFs using a choice of p less 
than 216, which allows for the use of look-up tables for subfield inversion.  They also 
proposed a new inversion algorithm, called MAIA (Modified Almost Inverse Algorithm), 
which is suited especially for OEFs. 
 Hoshino, K. Kobayashi, T. Kobayashi & Morita [HKKM99] presented an 
inversion algorithm for OEFs that is based on a direct solution of a set of linear 
equations. This method is efficient for small values of m. 
 
4.B.  Implementations of elliptic curves 
 Now, we will discuss issues on implementing elliptic curves. Related problems 
are choosing an appropriate order, computing the order of a given elliptic curve, and 
constructing a cryptographically good elliptic curve for a cryptosystem. 
4.B.1.  Conditions for selecting appropriate elliptic curves 
 The order of the elliptic curve, N = #E(Fq), must be divisible by a prime number n 
that is sufficiently large, n > 2160. This is to resist against the Pollard ρ-algorithm. 
 The order n of a base point P must satisfy the MOV condition: n ∤ (qk – 1) for all 
values k < (log q)2. In practice, k = 20 is sufficient. 
 The best-known attacks on an elliptic curve cryptosystem satisfying these two 
conditions are a combination of either Pollard-ρ or Shanks’ Baby-step-Giant-step and 
Pollard-Hellman algorithms. 
 The order of the elliptic curve E must also satisfy the anomalous (or SSA) 
condition over prime finite fields, #E(Fp) ≠ p to resist the SSA attack.  
 The choice of point P of order n is not a security factor. In fact, given an elliptic 
curve, there are many different points having that order which can be chosen. 
Cofactor  
 We denote by n the order of the base point P on the elliptic curve whose order is 
denoted by N. Usually, we should have either N = n or N = nl, where l is a small integer, 
called a cofactor. In group theory, we call l the index of a subgroup generated by group 
element P, denoted by 〈P〉, in the group E.  

________________________________________________________________________________________ 
A Survey of Elliptic Curve Cryptosystems – Part I: Introductory – 10/27/2003 

Page 60 of 105 



NAS Technical Report - NAS-03-012 August 2003 
--------------------------------------------------------------------------------------------------------------------------------  

 Recall the inequalities of the order of an elliptic curve, we have: q + 1 – 2q1/2 ≤ 
#E(Fq) = N ≤ q + 1 + 2q1/2. Then (q1/2 – 1)2/n  ≤ N/n = l = (q1/2 + 1)2/n. 
 We can observe that l must be an integer and the difference of the upper and 
lower bounds of l is d = 4q1/2 /n. Hence if n > 4q1/2, then d < 1, we must have: l = ⎣(q1/2 + 
1)2/n⎦. 
Therefore, the order of the elliptic curve can be computed as: #E(Fq) = N = n.l = n ⎣(q1/2 + 
1)2/n⎦, if there exists a point on E of order n > 4q1/2. 
 Furthermore, the condition n > 4q1/2  also implies that n2 > (q1/2 + 1)2 ≥ N = #E. Or 
n2 ∤ N . Therefore, there is exactly one subgroup of order n in E. This is directly from the 
well-known Sylow’s third theorem in group theory and the subgroup is also called the 
Sylow n-subgroup. 
4.B.2.  Methods of constructing elliptic curves 
 There are four methods for constructing an elliptic curve in cryptography. 
  Generating random elliptic curves. 
  Using the Hasse-Weil theorem (on composite extension finite fields). 
  Using selected orders of elliptic curves or also referred as Complex 
Multiplication (CM) methods. 
  Using special elliptic curves such as Koblitz curves. 
a.  Using a random elliptic curve 
 We select an elliptic curve at random and compute its order by some algorithm. 
For special elliptic curves, or over relatively small finite fields, there are a few effective 
formulas or algorithms for the order. The best-known method for a general case is 
Schoof’s algorithm, together with its improvements and/or extensions. 
The advantages:  
 One can change the elliptic curve as frequently as possible for security reasons. 
 In order to break into an elliptic curve cryptosystem, the attacker should use an 
algorithm to solve the ECDLP that can work on any elliptic curve rather than some 
particular classes of weak elliptic curves. 
The disadvantages: 
 It is tedious and still complicated to use Schoof’s algorithm (and even its 
improved versions) to find an elliptic curve of particular order.  
  It is more difficult, generally, to implement a random elliptic curve efficiently, 
while we can optimize implementation on specific elliptic curves, such as in Koblitz 
curves and some cryptosystems using supersingular elliptic curves. 
 It is time-consuming to generate an elliptic curve and to perform operations on a 
general elliptic curve. Other implementations, such as compressing and recovering a 
point, may need more computations than in some particular cryptosystems. 
b.  Using Hasse-Weil’s theorem 
 This method is to construct an elliptic curve over a finite field GF(2m) where m is 
a composite number. We first construct an elliptic curve over a finite field GF(2n) for 
some small factor n of m such that we can compute its order easily. Then we lift it to an 
elliptic curve over a finite field GF(2m) where its order can be computed rather easily 
using the Hasse-Weil’s theorem. 
 We should compute rather easily that #E(GF(2n)) = 2n + 1 – t, then we will have 
#E(GF(2m)) = 2m + 1 – αm/n – βm/n, where α and β are complex numbers satisfying the 
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equation qT2 – tT + 1 = (1 – αT)(1 – βT). More practically, α + β = t and αβ = q = 2n. 
Then the power sum Lk = αk + βk is the k-th term in the sequence of symmetric functions: 

L1
 = t, L2 = t2 – 2q, and for all k ≥ 3, Lk = tLk –1 – q tLk –2. 

 The sequence Lk is usually called Lucas sequence. 
 The order #E(GF(2m)) then has a small factor, namely #E(GF(2n)). This method 
of choosing an elliptic curve works on composite extension finite fields and can create 
only a limited number of elliptic curve orders.  
 This construction method can increase the performance in generating elliptic 
curves and doing elliptic curve operations. But in the security aspect, these elliptic curves 
(also referred as subfield elliptic curves) are considered weak curves.  
c. Complex Multiplication (CM) methods 
 A Complex Multiplication method allows choosing an appropriate elliptic curve 
order, before constructing explicitly an elliptic curve of that order. In practice, this 
method is fast, and the big advantage is to eliminate the need for a point counting 
algorithm. Two methods mentioned in literature are due to Atkin & Morain and Lay & 
Zimmer.  
Atkin-Morain method [Mo91] 
 The method works on a prime finite field Fp. Recall that #E(Fp) = p + 1 – t, where 
t2 ≤ 4p. It is based on a theorem of the primality-testing algorithm using elliptic curves. 
Theorem:  Let p be a prime that can be written as 4p = t2 + Ds2 for a given D. Then there 
exists an elliptic curve E defined over Fp such that 4.#E(Fp) = (t – 2)2 + Ds2. 
 We call D a Complex Multiplication discriminant for p, or the elliptic curve E has 
CM property by D, or in fact, by (–D)1/2. If we know D for a given curve E, we then can 
solve for t (and s) in the equation: 4p = t2 + Ds2, and know the order #E(Fp). 
Atkin-Morain algorithm: 
 Compute t = p + 1 – #E(Fp) = p + 1 – N. Find an integer s and a square-free 
positive integer D such that Ds2 = t2 – 4p. 
 This step can be done since if N is an order of an elliptic curve #E(Fp), we must 
have t2 ≤ 4p. Hence A = 4p – t2 ≥ 0, and it can be written uniquely as A = Ds2, where D is 
a square-free positive integer. Then we write: 4p = t2 + Ds2. 
 Construct the Hilbert polynomial HD(X) of  j(D1/2), using the above formula. 
 Find a root r of the equation HD(X) ≡ 0 (mod p). 
 Create a non-supersingular elliptic curve whose j-invariant is r. 
 This algorithm can be generalized over finite field Fq, where q = pm. 
 Although it is possible to choose the order of an elliptic curve before choosing the 
underlying finite field, in usual cryptographic practice, one prefers to choose the finite 
field in advance so one can exploit some efficient implementations. 
 This method usually generates small d. The subset of elliptic curves generated by 
this method is considerably smaller than the number of elliptic curves available. 
 Those elliptic curves are thought to be insecure, but no weakness is known so far. 
 Refer to Miyaji ([Mi91], [Mi93]) for construction examples. 
Lay-Zimmer method [LZ94] 
 This method works on finite fields of characteristic 2 and also over prime finite 
fields. It solves the following problems: 
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 Given an integer N > 3, find a prime p and an elliptic curve E(Fp) such that its 
order #E(Fp) = N. 
 Given an integer k > 1, decide the existence of a prime p > 3 and an elliptic curve 
E(Fp) such that E(Fp) ≅ Zk

 × Zk. 
 Given two integers m and C, find an elliptic curve E over a finite field GF(2m), 
such that its order #E = cn, where n is a prime number and c ≤ C. 
 Given a prime p > 3 and an integer m with |p + 1 – m| < 2p1/2, build an elliptic 
curve E(Fp) such that #E(Fp) = m.  
 The algorithm is based on constructing an elliptic curve E(GF(2m)) that has a 
given j-invariant. However, the rest of the algorithm is based heavily on the algebraic 
number theory whose context is too complicated to be described in this document. 
 Refer to Müller & Paulus [MP97] and Baier & Buchmann [BB01] for more 
discussions on the CM methods. For CM methods and other works on Koblitz cureves, 
readers may refer to Koblitz ([K90],[K92]), Solinas ([S97],[S00]) and Meier & 
Staffelbach [MS93].  
c. Comparisons 
 There is no mathematical theory, comparison or fact yet about which elliptic 
curves, randomly chosen or specially chosen, are more difficult for the ECDLP. There is 
current research mentioning general doubts about constructing elliptic curves extra 
internal structure, such as with special coefficients (i.e., Koblitz curves), with special 
Complex Multiplication property and/or over composite extension finite fields. There is a 
tradeoff between performance and security in implementing elliptic curve cryptosystems 
using such special curves and/or finite fields. 
4.B.3. Finding a point of given prime order on an elliptic curve 
 The order n of a point P ≠ O on an elliptic curve is a positive integer such that  

nP = O and mP ≠ O for any integer m such that 1≤ m < n. 
 The order n of a point must divide the order N of the elliptic curve. In fact, it is 
true for any group. If the elliptic curve order N = #E is a prime number, then the group is 
cyclic, and obviously all points except the point at infinity O are of order N. 
 Choosing a point P of prime order n: A simple method is usually applied in 
cryptographic practices when n is a large prime. Then the factor l = #E/n will not be 
divisible by n. Choose a random point Q ≠ O on the elliptic curve E, then verify whether 
the point P = l·Q has order n. This can be done simply by checking that n·P = O. (Since n 
is prime, there is no other positive integer m < n such that m·P = O.)  If it is true, then P = 
l·Q is the point we need; otherwise, choose another point Q and repeat.  
4.B.4. Methods/formulae to compute the order of an elliptic curve 
 It should be noted that it is easy to check whether the number of points on an 
elliptic curve is correct when it is known, while an efficient algorithm to find out that 
number is still a difficult task. 
 In chapter 1, we already presented formulae and algorithms for counting the order 
of an elliptic curve group, such as Hasse-Weil theorem, direct formulae using Legendre 
symbol and trace function, Shanks’ Baby-step-Giant-step algorithm and Schoof’s 
algorithm.  
a. The order of an elliptic curve of the following special forms 

 Ep(a, 0): y2 = x3 + ax, for a ≢ 0 (mod p) and p ≡ 1 (mod 4)  
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or    Ep(0, b): y2 = x3 + b, for b ≢ 0 (mod p) and p ≡ 1 (mod 3), 
over a prime finite field Fp are discussed thoroughly in Bressoud [B87] and Ireland & 
Rosen [IR90]. 
Case 1. For prime p ≡ 1 (mod 4) and Ep(a,0): y2 = x3 + ax,  for a ≢ 0 (mod p). 
 Let r = s + it be a complex prime (where s and t are integers,) and let r = s – it be 
the complex conjugate of r, which satisfy the conditions r ≡ 1 (mod 2 + 2i)  and p = r r = 
s2 + t2.  Let ℜ(r) = ℜ(s + it) = s be the real part of number r. Then #Ep(a, 0) = p + 1 – 
2ℜ[R4(–a) r ], where the symbol R4 is defined by R4(x) = x(p –1)/4 (mod r).  
 The orders in this case are always even. Explicitly, the elliptic curve orders will 
fall into one of only four cases listed in this table. 

If R4(– a) = (–a)(p –1)/4 (mod r) ≡ The order #Ep(a, 0) is  
1 p + 1 – 2ℜ( r ) = p + 1 – 2s 
–1 p + 1 – 2ℜ(– r ) = p + 1 + 2s 
i p + 1 – 2ℜ(i r ) = p + 1 – 2t 
–i p + 1 – 2ℜ(–i r ) = p + 1 + 2t 

Table 4.4.  Orders of elliptic curves Ep(a,0): y2 = x3 + ax, a ≢ 0 (mod p), 
 over a prime finite field Fp, p ≡ 1 (mod 4) 

 Observe that r ≡ 1 (mod 2 + 2i) or (2 + 2i) | (r – 1) = [(s – 1) + it]. Hence we 
derive a relation on their squares of absolute values. It is: 8 | [(s – 1)2 + t2] = p + 1 – 2s. 
 So we can solve the system of equations s ≡ (p + 1)/2 (mod 4) and p = s2 + t2 for 
values s and t, such that 1 ≤ s, t < p1/2. Then choose and check an appropriate value of r = 
± s ± it ≡ 1 mod (2 + 2i). 
Case 2. For prime p ≡ 1 (mod 3) and Ep(0, b): y2 = x3 + b for b ≢ 0 (mod p). 
 Let w be a non-trivial cubic root of 1, (i.e., w2 + w + 1 = 0,) and w = e2πi/3 = (–1 + 
i31/2)/2. Let r = s + wt be a complex prime, where s and t are integers, satisfying the 
conditions r ≡ 2 (mod 3) and p = r r  = s2 – st + t2. In this case, we note that w2 = (–1– 
i31/2)/2 = w  and r  = (s – t) – wt, for simpler calculations. Then #Ep(0, b) = p + 1 + 
2ℜ[R6(4b) r ], where the symbol R6 is defined by R6(x) = x(p –1)/6 (mod r).  
 Explicitly, the elliptic curve orders will fall into one of only six cases described in 
table 4.5. 

If R6(b) 
 = b(p –1)/6 (mod r) ≡ 

Equivalently, if R6(4b) = 
 (4b)(p –1)/6 (mod r) ≡ 

 
The order #Ep(0,b) is  

u = 4(p–1)/3 (mod r) 1 p + 1 + 2ℜ( r ) = p + 1 + 2s – t  
–u –1 p + 1 + 2ℜ(– r ) = p + 1 – 2s + t 
w.u w p + 1 + 2ℜ(w r ) = p + 1 – s + 2t 
–w.u –w p + 1 + 2ℜ(–w r ) = p + 1 + s – 2t 
w2.u w2 p + 1 + 2ℜ(w2 r ) = p + 1 – s – t 
–w2u –w2 p + 1 + 2ℜ(–w2 r ) = p + 1 + s + t 
Table 4.5.  Orders of elliptic curves Ep(0, b): y2 = x3 + b, b≢ 0 (mod p) 

over a finite field Fp, p ≡ 1 (mod 3) 
4.B.5. Schoof’s and Satoh’s algorithm for point-counting  
 Refer to chapter 1 for a short summary of development of the algorithms by many 
researchers such as Schoof, Atkin, Elkies, Couveignes and Lercier. We choose not to go 
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deeply into the theory behind these developments of the algorithms at the present time, 
because of the heavy burden of introducing a lot of difficult materials of the mathematics 
underlying.  
 We have discussed how to represent elements of finite fields and how to build an 
elliptic curve over the underlying finite fields for an elliptic curve cryptosystem. In the 
next section of this chapter, more features or issues on the implementations of operations 
of such cryptosystems will be discussed. They are scalar point multiplication formulae 
and algorithms, representations of points on an elliptic curve and special algorithms on 
Koblitz curves and composite extension finite fields and other topics. 
 
4.C.  Implementations of elliptic curve arithmetic operations 
 Many topics in implementations of arithmetic operations over elliptic curves will 
be discussed in this section: scalar point multiplications, methods representing points of 
an elliptic curve and Complex Multiplication methods…  
 The most basic operation is adding two points or doubling a point on an elliptic 
curve. It is more expensive computationally than a basic operation in a symmetric key 
cryptosystem (a block encryption/decryption). But it is still much faster than a basic 
modular multiplication over a cyclic group whose order is of the same security level. 
 We now discuss efficient algorithms to expedite implementation procedures in 
elliptic curve cryptosystems. 
4.C.1. Scalar point multiplication: basic methods 
 One crucial operation is scalar point multiplication since it determines the speed 
of an elliptic curve cryptosystem. We will multiply a point P on an elliptic curve E by a 
positive integer k. By definition, kP = 44 344 21 L

  termsk

PPP +++ . This problem is analogous to 

raising an element to the k-th power in the multiplicative subgroup GF(q)*. 
a.  Double-and-add method 
 This most basic method uses the binary expansion of the number k. 
 Let write k = (kr–1,…, k0) in base 2, where kr –1 = 1 and r = ⎣log2 k⎦ + 1. Let Pr –2 = 
P. Then compute Pi –1 = 2Pi + kiP, for all i, r – 2 ≥ i ≥ 0. 
Then kP = P–1 = 2P0 + k0P. 
 This method requires (r – 1) doublings and probabilistically about (r – 1)/2 
additions or at most (r – 1). Observe that we can reduce the number of arithmetic 
operations when the number of bits 0 is increased. This is the basic idea for methods, 
which try to improve the implementation of scalar point multiplication. 
b.  Addition-subtraction method 
 For elliptic curve implementation, the methods, which included subtractions, are 
more attractive than the corresponding methods, which included divisions in calculating 
power in finite fields. The reason is division or inversion in finite fields is a more costly 
operation than multiplication, while subtraction is just as costly as addition in elliptic 
curve operations. 
 The basic method uses the binary expansion of k and 3k. Let l = 3k = (lr–1,…, l0) 
and k = (kr–1,…, k0)  such that the leftmost bit lr–1 must be 1. That is, a few leftmost bits 
of k are added bits 0 from the canonical binary form of k. 
 Let Pr –1 = P. Then compute Pi –1 = 2Pi + (li –1 – ki –1)P, for all i such that r – 1 ≥ i 
≥ 2. Then kP = P1 = 2P2 + (l1 – k1)P. 
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 This method requires (r – 2) doublings and probabilistically about (r – 2)/2 
additions/subtractions or at most (r – 2). This method in fact is an easily described 
version of the following method.  
c.  Addition-subtraction method using NAF 
 We now use the canonical encoding called the non-adjacent form (NAF) of scalar 
k. This coding employs a signed binary expansion (using 0 and ±1) that has the property 
that no two consecutive coefficients are nonzero.  
 The NAF of an integer is unique and has the fewest nonzero coefficients of any 
signed binary expansions. There are many ways to construct the NAF. One way is just 
described previously, using bits in k and 3k. 
 The NAF can be computed similarly by the same method for the binary form. 
That is, repeating dividing by 2 to collect the remainders, except an important rule: for 
the nonzero remainder, the corresponding quotient must be even. This exception helps to 
make the next remainder be zero.  
 Let k be in NAF, k = (kr–1,…, k0). Let Pr–1 = P. Then compute P i–1 = 2Pi + ki–1P, 
for all i, r – 1 ≥ i ≥ 1. Then kP = P0 = 2P1 + k0P. 
 This method requires (r –1) doublings and probabilistically about (r –1)/3 
additions or at most ⎡(r – 1)/2⎤.  
 Eventually, we can combine this method with the sliding window method for a 
more efficient implementation - the signed binary window method that will be discussed 
later. 
d. m-ary method (or 2d-ary method) 
 This method is generalized from the double-and-add method, where the m-ary 
expansion is used instead of binary form, where m is a power of 2. Let m = 2d, where d > 
1. We start with the binary expansion of the number k = (ks–1,…, k0), where we may pad 
an extra number of bit 0’s to the left side of the bit string to make s = d.r for some integer 
r. Then we have the m-ary expansion of k of the form k = (Kr–1,…, K0)  where each Ki is a 
d-bit string and Kr–1 ≠ (0…0). 
 First we pre-compute all points 2P, 3P,…, (2d –1)P. They will cover all possible 
points of the form KiP. We look up for the point Pr–2 = Kr–1P, and compute Pi–1 = 2dPi + 
KiP, for all i such that r – 2 ≥ i ≥ 0. Then kP = P–1 = 2dP0

 + K0P. 
 This method requires (2d – 2) pre-computations (and memory storage), (r – 1)d = 
s – d doublings and probabilistically about (r – 1)(1 – 2–d) additions. We can observe that 
the larger d is, the more pre-computations are needed. With a little calculus, we can find 
the optimal d to minimize the total of additions: A(s, d) = 2d – 2 + s – d + [(s/d) – 1] (1 – 
2–d) . 
 Bit recoding techniques, such as signed binary expansions, are also used to 
improve the binary or m-ary methods. Refer to Koç [Kc91] and Eğecioğlu & Koç [EK94] 
for detailed analyses in this approach. 
e. The 2d-ary NAF form 
 It is possible that one can combine the addition-subtraction method with the 2d-
ary method. Particularly, the addition-subtraction method using the 2d-ary NAF form that 
is a binary form with the property that there is at most one non-zero term in d consecutive 
coefficients. This form always uniquely exists and is easy to compute. The computing 
method is similar to that for the NAF form, except that the corresponding quotient to the 
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non-zero remainder must be divisible by 2d–1. The pre-computation must store all points: 
±P, ±3P,…, ±(2d –1 – 1)P. 
 The addition-subtraction method is a special case for d = 2. 
4.C.2. Scalar point multiplication: advanced methods 
a.  Sliding window method ([Kc95]) 
 This method aims to separate zero words so we can skip an addition in the m-ary 
method discussed above. Instead of decomposing k = (ks–1,…, k0) into words of d-bit 
length, we now decompose k into zero and nonzero words, or windows Wi of varying 
lengths li. Let d be the maximum length of all nonzero windows. Then we need to pre-
compute only “odd scalar multiplying” points 3P, 5P,…, (2d –1)P We write k = (Wr –1,…, 
W0) where Wr –1 is a non-zero window (or window number). 
 Look up for Pr –2 = Wr –1P. Then compute Pi–1 = Pil2 i + WiP, for all i such that r – 
2 ≥ i ≥ 0. Then kP = P–1 = P02l

0 + W0P. 
 There are two strategies to partition a binary expansion into windows: constant 
length and variable length nonzero windows.  
Constant length nonzero windows 
 This strategy tries to produce zero windows of arbitrary length and nonzero 
windows of a fixed length d. A nonzero window will start when a bit 1 is encountered as 
we scan the bits from rightmost bit to leftmost. 
 This method requires (2d – 2)/2 = 2d–1 – 1 pre-computations (and memory 
storage), (s – d) doublings and probabilistically about A additions, where A is the number 
of non-zero windows, A ≤ ⎡s/d⎤. Refer to Koç [Kc95] for more analytic results on the 
value of A. In summary, this method reduces the number of additions by 3 to 7%, for 128 
≤ s ≤ 2048, less than the m-ary method. 
Variable length nonzero windows 
 This strategy tries to produce nonzero windows whose right-end and left-end bits 
are both 1. Two parameters are to be decided: the maximum length d of nonzero windows 
and the maximum number r of adjacent 0’s allowed inside any nonzero window. 
 This method generally tries to decrease further the average number of nonzero 
windows when d and r are chosen optimally. We should choose 4 ≤ d ≤ 8. 
 This method requires (2d – 2)/2 = 2d–1 – 1 pre-computations (and memory 
storage), probabilistically about A additions, where A is the number of non-zero 
windows, A ≤ ⎡s/d⎤ and D doublings. Refer to Koç [Kc95] for more analytic results on 
the values of A and D. In summary, this method reduces the number of additions by 5-
8%, for 128 ≤ s ≤ 2048, less than the m-ary method. 
b.  Signed binary window methods 
 These methods transform an ordinary binary expansion B into a signed binary 
expansion S. (The transformations are also called “bit recoding” techniques.) Again, the 
methods or algorithms using “signed” expansion are much more efficient in 
implementing elliptic curve operations than in finite field operations since the subtraction 
is just as costly as addition.  
 The purpose is to skip a bit string of 1’s (in addition to bit strings of 0’s, as usual) 
to reduce the number of additions. 
Morain-Olivos’ algorithm 
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 This algorithm reduces the weight of the signed binary form S, i.e., the number of 
non-zero digits, denoted by #1(S). The idea is that a block of n bits 1 can be replaced by a 
bit string that is a block consisting of a bit 1 followed by n bits 0 and then minus 1. That 
is: . This observation is extracted from the equality:  10001111

bits bits 

−= 321L321L
nn

2n+1 – 1 = (2n + 2n –1 + …+21 + 20).  
 As a result, (n – 1) doublings and (n – 1) additions (i.e., 2(n – 1) total additions) 
can be replaced by n doublings and 1 subtraction (i.e., (n +1) total additions).  In other 
words, this method tries to construct two positive integers k+ and k– such that k+ – k– = k.  
The total computation for (k+ – k–).P is less than that for kP. Note that there are not two 
separate computations of k+P and k–P, but actually the computations merge together: k–P 
only shows up in a few subtractions corresponding to the positions of its bits 1 in the 
scalar k. 
 The same idea is to deal with a special string that has isolated 0’s. We observe 
that: k ={ { { { { 1001000001100100111011

bits 1)-(bits bits 1bits )1(bits bits bits 
43421 LLLL43421 LLLLL

mnmnmnmn
−==

++−

, where bit 1  denotes 

(–1), and we assume m ≥ 2. This observation is extracted from the same equality above, 
applied twice. Then we have the formula: kP = 2m.(2n+1.P – P) – P. That is, an isolated 0 
inside a block of bit 1’s will contribute only two subtractions/additions and one extra 
doubling, instead of (n + m – 1) additions.  
 Morain-Olivos [MO90] provides detailed estimations of implementation cost. In 
summary, the method reduces about 3% for 100-digit number and 2.7% for 300-digit 
number.  
 Jedwab & Mitchell [JM89] also proposed similar approaches using a modified 
signed-digit representation. The original idea was proposed by Mitchell & Selby [MS89].  
Müller [Mu98] discussed improved versions over Morain-Olivos’ method. 
A generalization of the Morain-Olivos’ algorithm 
 We can generalize this result for k being a string of (b –1) isolated bits 0 
sandwiched among b blocks of bits 1, where b is larger than 2, the following can be 
written: { ,100100100000111011011

bits 1)-(bits bits bits )1(bits bits bits 11111

43421 LL43421 LLLL44 344 21 LLLLL321LL321LLL321LL
L bbbbb NNNbNNNNN

k
−−

−==
−+++

 

assuming Nb ≥ 2. This observation is also derived from the above equality:  
2n+1 – 1 = (2n + 2n–1 + …+ 21 + 20). 

Then we can obtain the following formula: kP =  .)])·2([·2(·2 11 11 PPPPNNN bb −−−++− LL

  This formula dramatically generalized the application of Morain-Olivos’ 
algorithm such that b can be any positive number greater than 2, rather than being 
restricted to b = 2 only.  
 By applying this algorithm, (N1 + … + Nb – 1) additions were replaced by only b 
subtractions/additions and one extra doubling. The savings in the number of arithmetic 
operations are significant when the sum (N1 + … + Nb) is much larger than b, which 
should be obtainable for those cases of k. 
Koyama-Tsuruoka’s algorithm ([KT92]) 
 This algorithm improved the above methods by increasing the average length of 
zeros in the signed binary expansion using {1 , 0, 1}, where bit 1  denotes (–1). 

________________________________________________________________________________________ 
A Survey of Elliptic Curve Cryptosystems – Part I: Introductory – 10/27/2003 

Page 68 of 105 



NAS Technical Report - NAS-03-012 August 2003 
--------------------------------------------------------------------------------------------------------------------------------  

 A binary string of a non-zero window B = (1, bn,…, bi,…, b1, 1) in k will be 
transformed to a signed binary string of the form T = (1, 0, tn,…, ti,…, t1,1), where ti = bi 
–1, for all 1 ≤ i ≤ n. This transformation is effective (i.e. actually decreases the weight of 
the bit string) only when the difference between the numbers of bits 1 and bits 0 is: 
Diff(B) = #1(B) – #0(B) > 2. However, we should keep in mind that the transformation 
also costs us one extra doubling because of the extra bit. 
 Both methods (by Koyama-Tsuruoka and Morain-Olivos) generate a signed bit 
string with the same weight, but the average length of zero runs by the Koyama-Tsuruoka 
method is greater than that of the Morain-Olivos method.  
 By this method, one needs to pre-compute only the odd scalar points ±3P, 
±5P,…, upto ±(2d – 3)P, since this algorithm never allows the points  ±(2d – 1)P to 
appear. 
 In fact, this transformation is extracted from the equality:  

2n+2 – 2n+1 = 2n+1 = (2n + 2n –1 + …+21 + 1 + 1). 
Using the relationship 1 = bi – ti, for all 1 ≤ i ≤ n, we then have: 

2n+2 + (tn2n + tn–12n–1 + … + t121 + 1) = 2n+1 + (bn2n + bn–12n–1 + … + b121 + 1). 
 Refer to Koyama & Tsuruoka [KT92] for detailed performance evaluation and 
comparison. Note that, the similar idea in the Koyama-Tsuruoka’s algorithm was also 
discussed in Koç [Kc91]. 
A generalization of Koyama-Tsuruoka’s algorithm 
 Instead of applying this algorithm for a non-zero window only, we try to apply for 
an arbitrary bit string k = (bn,…, b1, b0), where without loss of generality, we may assume 
bn = 1. For all 0 ≤ i ≤ n, let ti = bi – 1, then again insert it into the arithmetic identity: 2n+1 
= (2n + 2n–1 + … + 21 + 20) + 1, we can obtain the following identity: 

2n+1 + (tn2n + tn–12n–1 + … + t121) + t020 –1) = (bn2n + bn–12n–1 + … + b121 + b020). 
 When b0 = 1, then t0 = 0, this approach will transform k to the string of digits T = 
(1, tn,…, t1, 1 ), where the last digit 1  = –1. This is Koyama-Tsuruoka’s algorithm for 
non-zero window B = (bn,…, b1,1). 
 When b0 = 0, then t0 = –1, this approach will transform k = (bn,…, b1,0), to the 
string of digits T = (1, tn,…, t1, 2 ), where the last digit 2  = – 2. This last digit does not 
affect the scalar point multiplication (k·P) at all. In the very last step of a given scalar 
point multiplication algorithm, we then subtract a double of a point, 2P, instead of the 
point P itself. The point 2P is available for free since it is always computed during the 
process. If we use other m-ary methods or window methods, the digit 2  obviously is not 
a concern anyway. We need only minor changes in pre-computations.  
 The number of non-zero digits in T is  

#non-0(T) = 2 + ∑
=

n

i
it

1
 = 2 + ∑

=

−
n

i
ib

1
1  = 2 + ∑

=≤≤ 0,1

)1(
ibni

 = 2 + #0(k’), where k’ = (bn,…, b1).  

Hence this transformation is effective if the condition 2 + #0(k’) < #1(k) is satisfied. Since 
#0(k’) = #0(k) – 1, we can rewrite the condition as:  

Diff(k) = #1(k) – #0(k) > 1. 
Hence Koyama-Tsuruoka’s algorithm can extend for any bit strings, which satisfy this 
condition. Again, the transformation also costs us one extra doubling because of the extra 
bit. 
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c. Other algorithms/discussions 
 Jedwab & Mitchell [JM89] proposed an equivalent algorithm to Morain-Olivos’ 
method. The original idea was proposed by Mitchell & Selby [MS89]. Müller [Mu98] 
discussed improved versions over Morain-Olivos’ method. 
 All algorithms described above are based on sliding window and bit 
manipulations. They gave almost the same level of performance. They are all doing better 
than a typical m-ary method. However, no method actually dominates over the other 
methods yet. There is no significant difference or breakthrough in the algorithms showed 
above.  
 The attractive point again is using “negative” digits (e.g., 1  = –1 and/or 2  = – 2) 
to have the subtractions involved since the cost of subtraction is the same as that of 
addition in elliptic curve implementation. 
 Refer to Gollmann, Han & Mitchell [GHM96], Brickell, Gordon, McCurley & 
Wilson [BGMW93]  and Gordon [G98] for more discussions. 
d. Methods using addition chains/sequences 
 The problem of optimal addition chains is to find the fewest additions needed to 
compute a positive integer k starting from 1. It is used to compute kP from P with the 
fewest elliptic curve additions (originally, to compute the power xk from x with fewest 
multiplications). 
 An addition chain [Ai] of k of length L is of the form: 1 = A0 < A1 < … < AL = k, 
where every number is the sum of two earlier numbers: For 1 ≤ i ≤ L, Ai = Aj + Am, where 
i > j ≥ m. 
 An addition sequence of k is of the form: 1 = A0 < A1 < … < AL = k < AL+1 <…, 
where every number is the sum of two earlier numbers as in an addition chain. Note that 
in an addition chain, k occurs at the very end of the chain, while in an addition sequence, 
k just needs to occur someplace in the sequence. For our practical purpose, now we 
mention only addition chains.  
 Obviously, there can be many different addition chains for a given positive 
integer k. Naturally, we are most interested in finding the addition chain of minimum 
length since it will help to minimize the number of arithmetic operations. 
 In another version, we call an addition/subtraction chain, when [Ai] satisfies 
weaker conditions: for 1≤ i ≤ L, Ai = Aj + Am or Ai = Aj – Am, where i > j ≥ m. 
 In elliptic curve implementation, the subtraction operation is just as costly as 
addition; the addition/subtraction chains would be more attractive here than they are in an 
exponentiation problem. 
 A star chain is an addition chain [Ai] satisfying: for 1≤ i ≤ L, Ai = 2.Ai –1 (a 
doubling) or Ai = Ai–1 + Al, (“star step”) where i – 1 > l. That is, one summand must be the 
very previous element. A star step is called a “simple step” when l = 1.  
 Refer to Downey, Leong & Ravi Sethi [DLS81], Volger [V85] and Schönhage 
[S75], van Leeuwen [L77], McCarthy [Mc86], Dietel & Sauerbrey [DS92] and de Rooij’s 
[R98] for more discussions. 
 Generally, computing the addition chain of minimum length is a very difficult 
problem, but there are simple algorithms to produce good addition chains, even near 
minimum length. The most common algorithm is using the binary form as in double-and-
add (or addition-subtraction) method, even though it usually produces addition chain 
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larger than minimum length. Finding the addition chain with the minimum length will 
benefit the algorithms to compute the scalar point multiplication kP, since it will 
minimize the number of required additions.  
 Bos & Coster [BC90] discussed a heuristic routine to create an addition sequence 
of a set of numbers. This method will be significant when sliding window methods of 
large width are used. In those cases, the pre-computed table will require a large number 
of computations and also storage. We do not even need the addition chain for k. Instead, 
we need to create only an addition sequence that consists of the needed window numbers 
only. These window numbers are of course less than 2w, where w is the window width. 
Hence they are much smaller than k itself. Then using one of the methods discussed 
previously, we can create the addition chain for k. 
 Yacobi [Y91] proposed a similar method, systematically developing into a 
heuristic algorithm (that is claimed to be a modification of the Lempel-Ziv data 
compression algorithm.) We will apply a 2d-ary method (or sliding window method) 
where we will pre-compute only those intermediate scalar point multiplications that will 
be needed. However, this algorithm is not better than a 2d-ary method for small scalar k, 
less than 512 bits, but it is more efficient for larger k.  
 Most recently, Aigner & Oswald [AO01] discussed using randomized addition-
subtraction chains in counter-attacks against differential power attacks.  
4.C.3. Scalar point multiplication: other methods 
a.  Using projective coordinates  
 Menezes & Vanstone ([MV90],[MV93]) proposed ideas of using projective 
coordinates in implementing scalar point multiplication. It is to remove the inversion 
operations in point addition or doubling operations in the intermediate steps in any scalar 
point multiplication algorithm implemented. At the final step, we can use a single 
inversion to convert it to affine coordinates as usual.  
 Menezes & Vanstone ([MV90],[MV93]) worked on the binary finite field 
GF(2m).  Koyama & Tsuruoka [KT92] worked over prime finite field Fp They were all 
dealing with the usual projective coordinates (xz, yz, z). 
 Let P = (x1, y1, 1) and Q = (x2, y2, z2). We can rewrite Q =  and 
apply the regular point addition formulae (for affine coordinates) to find R = P + Q = (x’

)1,,( 1
22

1
22

−− zyzx
3, 

y’3, 1). Then let z3 be the common denominators of x’3 and y’3, we can write R = (x3, y3, 
z3). The completed results for all three usual cases of elliptic curves over finite fields are 
summarized in the table 4.6. For convenient reference, we also include the formulae of 
the additive inverse of a point in the first column. 

Equation of elliptic 
curve E over Fq in 
affine coordinates 

R = (x3, y3, z3) = (x1, y1,1) + (x2, y2, z2) = P + Q  
------------------------------------------------------------------------- 

Let A = x1z2
 + x2, B = y1z2

 + y2, X = x2 – x1z2, Y = y2 – y1z2

Over Fp, p ≠ 2, 3  
y2 = x3 + ax + b 
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–Q = (x2, –y2, z2) 
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(A slightly revised version of Koyama & Tsuruoka) 

Non-supersingular 
elliptic curve over 
GF(2m) 
y2 + xy = x3 + ax2 + b  
b ≠ 0 
P = (x1, y1, 1) 
Q = (x2, y2, z2) 
Then 
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(A slightly revised version of Menezes & Vanstone) 
Supersingular elliptic 
curve over GF(2m) 
y2 + cy = x3 + ax + b 
 c ≠ 0 
P = (x1, y1, 1) 
Q = (x2, y2, z2) 
Then 
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where W = B2z2 + A3 and Z =  + a  (Menezes & Vanstone) 2
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Table 4.6.  Point addition formulae in the projective coordinates (xz, yz, z) 
 With the above formulae, we can compute the scalar point multiplication, kP = 
k.(x1, y1, 1) = (x, y, z), by repeated additions, as usual. Then by a single inversion at the 
very end step to get z–1, we can write kP = (xz–1, yz–1). The disadvantage of this method is 
that it requires larger memory to store points of three coordinates on an elliptic curve.  
 We can develop other scalar point multiplication formulae by using  the Jacobian 
projective coordinates, (z2x, z3y, z) , z ≠ 0.  Again, let P = (x1, y1, 1) and Q = (x2, y2, z2). 
We rewrite Q = )  and apply the regular addition formulae (for affine 
coordinates) to find R = P + Q = (x’

1,,( 3
22

2
22

−− zyzx
3, y’3, 1). Then we convert it back to the original 

Jacobian projective coordinates. The completed results for all three usual cases of elliptic 
curves over finite fields are summarized in the table 4.7. 

Equation of elliptic 
curve E over Fq in 
affine coordinates 

R = (x3, y3, z3) = (x1, y1,1) + (x2, y2, z2) = P + Q 
------------------------------------------------------------------------ 

Let  3
212

2
2122

3
212

2
21 ,,, zyyDzxxCyzyYxzxX −=−=+=+=

Over Fp, p ≠ 2, 3 
y2 = x3 + ax + b  
∆ = –16(4a3 + 27b2) ≠ 0 
P = (x1, y1, 1) 
Q = (x2, y2, z2) 
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Then 
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(A slightly revised version of Cohen, Miyaji & Ono [CMO97])
Non-supersingular 
elliptic curve over 
GF(2m) 
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Supersingular elliptic 
curve over GF(2m) 
y2 + cy = x3 + ax + b 
c ≠ 0 
P = (x1, y1, 1) 
Q = (x2, y2, z2) 
Then 
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Table 4.7. Point addition formulae in the Jacobian projective coordinates (z2x, z3y, z) 
 Refer to Agnew, Mullin & Vanstone [AMV93] and Cohen, Miyaji & Ono 
([CMO97], [CMO98]) for more discussions. 
b.  Montgomery’s method 
 This method is extracted from a work of Montgomery [M87]. In the table 4.8., we 
show the relations of the x-coordinates of 2 points (P + Q) and (P – Q). 
Equation of elliptic curve E over finite field P + Q = (x3, y3) & P – Q = (x4, y4), where 

P = (x1, y1), Q = (x2, y2) and P ≠ ± Q 
Over Fp, P ≠ 2, 3, E: y2 = x3 + Ax + B    
∆ = –16(4a3 + 27b2) ≠ 0) 

  x3 =  x4  – 4y1y2(x2 – x1)–2 

Non-supersingular elliptic curve over GF(2m) 
y2 + xy = x3 + ax2 + b (and b ≠ 0) 

x3 =  x4 + x1 x2(x1 + x2)–2 

Supersingular elliptic curve over GF(2m) 
y2 + cy = x3 + ax + b (and c ≠ 0) 

x3 =  x4 + c2 (x1 + x2)–2

 Table 4.8.  Addition formulae using the Montgomery’s method 
 Hence, for both supersingular and non-supersingular elliptic curves over binary 
finite field GF(2m), we can compute the x-coordinate x3 of (P + Q) with only one 
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inversion and a few finite field additions from the x-coordinates of P, Q and (P – Q). The 
y-coordinates are not involved in the computations. 
 However, if over prime finite field Fp, the computation must involve also the y-
coordinates y1 and y2. Hence the Montgomery’s method performs better over binary finite 
fields than over prime finite fields. 
 To compute point kP, where k = (kr–1,…, k0) in base 2, we first compute the point 
2P. Thereafter, given a pair of points (mP, (m + 1)·P), we then compute in step i either 
     (2m·P, (2m + 1)·P)    if ki = 0, or 
       ((2m + 1)·P, (2m + 2)·P)  if ki = 1. 
 The Montgomery’s method has a considerably slower speed since in each step 
(for each bit) we must compute  
  A doubling in order to get the point 2m·P or (2m + 2)·P = 2(m + 1)·P) and  
  A point addition with point (±P) to get (2m + 1)·P. 
 On the other hand, these computations also provide one advantage of this method: 
the ability of resistance against the power differential analyses attacks since there is no 
distinction on operating over bit 0 or bit 1. 
 One may even use projective coordinates in the Montgomery’s method to reduce 
the inversion (or division). We summarize the formulae in the table 4.9. 
Equation of elliptic curve E over finite 

field Fq

P + Q = (x3, y3, z3) & P – Q = (x4, y4, z4), where 
P = (x1, y1,1), Q = (x2, y2, z2) and P ≠ ± Q 

Over Fp, p ≠ 2, 3 
y2 = x3 + ax + b  
(and ∆ = –16(4a3 + 27b2) ≠ 0) 

x3 =  x4 – 4 y2
2z 1y2(x2 – x1z2) 

z3 = z4
 

Non-supersingular elliptic curve over 
GF(2m) 
y2 + xy = x3 + ax2 + b (and b ≠ 0) 

x3 =  x4 + x2
2z 1x2(x1z2 + x2) 

z3 = z4
(Agnew, Mullin & Vanstone) 

Supersingular elliptic curve over 
GF(2m) 
y2 + cy = x3 + ax + b (and c ≠ 0) 

x3 =  x4 + c3
2z 2(x1z2 + x2) 

z3 = z4 

Table 4.9.  Addition formulae using the Montgomery’s method in the projective 
coordinates (xz, yz, z) 

 Hence, over binary finite fields GF(2m), for both supersingular and non-
supersingular elliptic curves, we can compute the x-coordinate x3 of (P + Q) with a few 
field operations from z2 and x-coordinates of three points P, Q and (P – Q). Over prime 
finite fields Fp, the computation must involve also the y-coordinates y1 and y2. Moreover, 
no inversion or division is required. 
 We can do similar computations over the Jacobian projective coordinates of the 
form (z2x, z3y, z) , z ≠ 0. 

Equation of elliptic curve E over 
finite field Fq

P + Q = (x3, y3, z3) and P – Q = (x4, y4, z4), where 
P = (x1, y1,1), Q = (x2, y2, z2) and P ≠ ± Q  

Over Fp, p ≠ 2, 3 
y2 = x3 + ax + b  
(and ∆ = –16(4a3 + 27b2) ≠ 0) 

x3 =  x4 – 4y1y2
3
2z  

z3 = z4
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Non-supersingular elliptic curve over 
GF(2m) 
y2 + xy = x3 + ax2 + b (and b ≠ 0) 

x3 =  x4 + x4
2z 1x2

z3 = z4

Supersingular elliptic curve over 
GF(2m) 
y2 + cy = x3 + ax + b (and c ≠ 0) 

x3 =  x4 + c6
2z 2 

z3 = z4

Table 4.10.  Addition formulae using the Montgomery’s method in the Jacobian 
projective coordinates (z2x, z3y, z) 

 Again, over binary finite fields GF(2m), for both supersingular and non-
supersingular elliptic curves, we can compute the x-coordinate x3 of (P + Q) with a few 
field operations from z2 and x-coordinates of three points P, Q and (P – Q). Over prime 
finite fields Fp, the computation must involve also y-coordinates y1 and y2. Moreover, no 
inversion or division is required. 
 In summary, the Montgomery’s method always works better over binary finite 
fields than over prime finite fields for either affine coordinates or projective coordinates. 
c.  Demytko’s work ([D94]) 
 Let P = (x, y) be a point on an elliptic curve E: y2 = x3 + ax + b over finite field Fp 
with its discriminant ∆ = –16(4a3 + 27b2) ≠ 0. Let Pk = k.P = (xk, yk). 

 If yk ≢ 0  (mod p), then x2k = 
)(4
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 If xk ≢ xk+1 and x ≡ 0 (mod p), then x2k+1 = 2
1
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xxxxab  + x. 

 We can observe that xk ≡ xk+1 (mod p) only when Pk
 = –Pk+1 or (2k + 1)·P = O. 

 Recall from the Montgomery’s method, we have a more general formula  

If xi ≢ xj then xi+j = 2)(
))((24

ji

jiji

xx
xxxxab

−

+−+
+ xi–j. 

This yields a chosen message attack proposed by Kaliski [K97]. 
 We can also use the projective coordinates in the above formulae. For example, 
we denote P = (X, Y, Z) and Pk = k.P = (Xk, Yk, Zk). Then we have: 
     X2k = ; Z3222 8)( kkkk ZbXaZX −− 2k = 4Zk )( 323

kkkk bZZaXX ++  and 
     X2k+1

 = Z.[(XkXk+1 – aZkZk+1)2 – 4bZkZk+1(XkZk+1 + Xk+1Zk)]; Z2k+1 = X(XkZk+1
 – Xk+1Zk)2. 

d.  Direct multiplication formulae and others 
 For practical implementation, the inversion of finite field elements is the most 
expensive operation to perform in finite fields. Guajardo & Paar proposed an idea to 
reduce the number of inversions at the cost of extra multiplications for calculating the 
point (2d.P). Instead of repeating doubling P many times to compute the intermediate 
points 2P, 22P,…,2d–1P, which may be of no use at all, we should derive a general direct 
formulae to compute point (2d.P) for any positive integer d, as large as one can. In each 
formula, we try to reduce the number of inversions to a possible minimum. Those 
formulae can be applied in the pre-computations of 2d-ary methods or window methods 
to improve the efficiency. 

________________________________________________________________________________________ 
A Survey of Elliptic Curve Cryptosystems – Part I: Introductory – 10/27/2003 

Page 75 of 105 



NAS Technical Report - NAS-03-012 August 2003 
--------------------------------------------------------------------------------------------------------------------------------  

 Shamir’s speed-up algorithm to compute point (aP + bQ) is to go through the 
non-adjacent signed binary expansions of the scalars a and b at the same time, doubling 
and adding/subtracting P, Q, and P ± Q. This algorithm is claimed to have fast speed but 
it also requires more memory.  
 Others, such as Lee & Lim [LL94], and Brickell, Gordon, McCurley & Wilson 
[BGMW93] worked on pre-computations to improve scalar multiplication efficiency. 
Gallant, Lambert & Vanstone [GLV01] and Müller ([Mu98,[Mu98a]) discussed using 
efficient endomorphisms of elliptic curves. 
4.C.4.  Algorithms on composite extension finite fields 
 For a composite extension finite field, we mean a finite field of the form GF(2r), 
where r is a composite number r = nm. Then the finite field GF(2mn) is considered an 
etension field of order m of the subfield GF(2n), (or an extension field of order n of the 
subfield GF(2m)). Refer to Green & Taylor [GT74]. 
a.  Multiplicative inversion over composite extension finite fields  
 Guajardo [G97], Paar [P95], Guajardo & Paar ([GP97],[GP98], [GP01]) aimed to 
generalize the generalized the Itoh-Tsujii algorithm (which was proposed for mornal 
bases) to polynomial bases and for composite extension fields. 
 It takes advantage of calculations in the subfield GF(2n) of small degree n. The 
reduction polynomial of GF(2nm) over GF(2n) is P(x). The inverse of a non-zero element 
A ∈ GF(2nm) is defined by: A–1 = (Ar)–1Ar–1, where r = (2nm – 1)/(2n – 1) and Ar ∈ GF(2n). 
First, the term Ar–1 will be computed using addition chains since r – 1 = 2n + 22n + … + 
2(m–1)n. Second, we observe that the product Ar of two elements A and Ar–1 in GF(2nm) is, 
in fact, in the subfield GF(2n). This helps to reduce the cost in comparison with general 
multiplication in the composite extension finite field GF(2mn) if we choose the reduction 
polynomial P(x) carefully. Third, the inversion (Ar)–1 is easily performed in the subfield 
GF(2n). The final product between an element (Ar)–1∈ GF(2n) and an element Ar–1 ∈ 
GF(2nm) also requires only m multiplications in GF(2n) and no reduction modulo 
polynomial P(x).  
 Fan & Paar [FaP97] worked on binary finite fields of the “tower” form GF(2nm) 
where m = 2k.  The simplest case for the extension field of degree m = 2 was discussed in 
Kasahara & Morii [KM89] and Afanasyev [A91]. 
b.  Using look-up tables of pre-computations  
 Guajardo [G97] and Guajardo & Paar [GP97] proposed a method that analyzes 
the complexity of the application of the Karatsuba-Ofman Algorithm (KOA) (discussed 
in [KO63]) and introduces a fast multiplication method in composite extension Galois 
fields of the form GF(2nm) by using look-up logarithm and anti-logarithm tables in the 
subfield GF(2n). 
c. Implementations over composite extension finite fields 
 Implemantions of elliptic curves over composite finite fields are presented in 
many works by: Paar ([P93],[P96],[P99]), Bosselaers, de Gersem, Vandenberghe, 
Vandewalle & de Win [BGVVW96], Paar & Soria-Rodriguez [PS97], Guajardo [G97],  
Guajardo & Paar [GP97], Fleischmann, Paar & Roelse [FPR98], Fleischmann, Paar & 
Soria-Rodriguez [FPS99] and Bailey, Paar & Woodbury [BPW00]. 
 Many research articles have already focused on VLSI architectures for fast 
implementations of arithmetic operations: multiplication, inversion and exponentiation. 
Current approaches are combinations of structure of composite extension finite fields and 
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hardware architectures: bit parallel arithmetic in subfield and serial processing for 
extension field arithmetic. This is called the parallel-serial (hybrid) approach. This could 
have very fast implementations. Refer to Paar & Soria-Rodriguez [PS97] and its 
references.  
e.  Current issues on elliptic curves over composite extension finite fields 
 Consider a non-supersingular elliptic curve over a composite extension finite field 
GF(2nm) of the equation: E: y2 + xy = x3 + ax2 + b, where coefficients a and b are in the 
subfield GF(2n). Then E is referred to as a “subfield elliptic curve”. Particularly, when n 
= 1, it is just a Koblitz curve or a binary anomalous curve (ABC). 
 In practice, we prefer the order #E to be prime or divisible by a small number. 
Hence we should use GF(2nm) where n is equal to 1 or is small and m is a large prime. 
Otherwise, the order #E(GF(2nm)) will have a considerably large factor #E(GF(2n)). 
 However, there are always concerns about using the elliptic curves over 
composite extension Galois fields in cryptography by world mathematicians. Refer to 
Müller & Paulus [MP97]. 
 There is also current research mentioning general doubts about constructing 
elliptic curves with special coefficients (such as Koblitz curves and subfield elliptic 
curves) and/or over finite fields with special internal structure (such as composite 
extension finite fields).  
 Gallant, Lambert & Vanstone [GLV00] showed that the parallelized Pollard 
lambda method can be improved by a factor of (2m)1/2 for binary anomalous curves over 
finite fields GF(2m). The idea is to partition the group 〈P〉 into equivalence classes using 
the Frobenius endomorphisms Φ: E(GF(2m)) → E(GF(2m)), by: Φ(x, y) = (x2, y2). We 
define the equivalence relation ~ by: P1 ~ P2 if and only if P1

 = ± Φl(P2), for some l such 
that 0 ≤ l ≤ m – 1. Assuming that Φ(P) = Φ(x, y) = λ·(x, y), then the equivalent class of 
point P includes [P] = {P, λP, λ2P,…, λm–1P, –P, –λP, –λ2P,…, –λm–1P} and [O] = {O}. 
Therefore, the number of elements to be searched is reduced by a factor of 2m; hence the 
running time that is proportional to the square root of the size of the group, will be 
reduced by a factor of (2m)1/2. 
 Wiener & Zuccherato [WZ98] also showed the same improvement, not only for 
binary anomalous curves, but also for more generalized cases, subfield elliptic curves 
(defined over composite extension finite field GF(2m) with coefficients in the subfield 
GF(2n)). The running time is also reduced by a factor of (2m)1/2.  
4.C.5.  Representing points on an elliptic curve 
 The coordinates x and y of any point (x, y) on an elliptic curve must satisfy the 
cubic relation. Hence to represent an elliptic curve point, both coordinates are not 
required. Therefore, we can save space in storage of such points. There are a few 
methods developed to represent elliptic curve points. The terminology of such methods is 
not agreed upon globally yet. 
a.  Compressing and recovering points on an elliptic curve 
 When p > 3, E: y2 = x3 + ax + b over a prime finite field Fp. The compressing and 
recovering employs the propert that: the coordinates of two points P and its (additive) 
inverse point (–P) are: P = (x, y) and (–P) = (x, –y) = (x, p – y). 
  Compressing: Consider a point P = (xP, yP) on E. Then the compressed form of P 
consists of xP and the rightmost bit of yP, denoted by ỹP, when yP is written in the binary 
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expansion form. In other words, we have ỹP ≡ yP (mod 2). Two values y and (p – y) 
always have the opposite rightmost bits. 
 Recovering: Given xP and ỹP, we can recover point P or, in fact, yP. First, we 
compute the square root r of value ( + ax3

Px P + b) (mod p). If the rightmost bit of r is 
equal to ỹP, then yP = r. Otherwise, let yP = p – r. 
 When p = 2, E: y2 + xy = x3 + ax2 + b, a non-supersingular elliptic curve over a 
finite finite field GF(2m). For any two points P = (x, y) and – P = (x, y + x), the difference 
between two ratios of point coordinates (yx–1) and (y + x) x–1 = yx–1 + 1 are only 1, i.e., 
the rightmost bit in binary expansion form. Observe also that if x ≠ 0, we can write the 
elliptic curve equation in terms of (yx–1): (yx–1)2 + yx–1

 = x + a + bx–2. 
 Compressing: The compressed form of a point P = (xP, yP) on E consists of xP and 
a bit ỹP. If xP = 0, let ỹP = 0. (Actually, we do not care nor use this bit). If xP ≠ 0, let ỹP be 
the rightmost bit of . )( 1−

PP xy
 Recovering: Given xP and ỹP, we can recover yP as follows. If xP = 0, let yP be the 
square root of b. Particularly, using the identity = b, we have y

m
b2

P  = . (We ignore 
the bit ỹ

12 −m
b

P, or just consider it a check bit). If xP ≠ 0, we need to solve the equation r2 + r = 
xP + a + (mod p) for a root r2−

Pbx o. Observe that the other root is (ro + 1). We choose r = 
ro or r = ro + 1, such that the rightmost bit of r is equal to ỹP. Then compute yP = xPr. 
b. Compact form for cyclic subgroup of an elliptic curve 
 This form, originally proposed by Seroussi [S98] is applied only for non-
supersingular elliptic curves E: y2 + xy = x3 + ax2 + b, with b ≠ 0, over a binary finite 
field GF(2m). In fact, it is applied only for a cyclic subgroup of the elliptic curve. We can 
rewrite the equation as: 

z2 + z = x + a + bx – 2 where z = y/x, assuming that x ≠ 0. 
We have some observations. Given x ≠ 0, the above equation of z has a solution if and 
only if we have Tr (x + a + bx – 2) = 0. Therefore, for any point P = (x, y) ∈ E, where its x-
coordinate ≠ 0, we must have the identity: Tr(x + a + bx–2) = 0. Using the equality: Tr(a + 
b) = Tr(a) + Tr(b), it can be rewritten as: Tr(x + bx–2) + Tr(a) = 0 or Tr(x + bx–2) = Tr(a), 
since values of the trace function Tr(·) is in F2. The point P = (0, y) in fact has order 2.  
 If Q = (xQ, yQ) = 2P ∈E, then xQ = x2 + bx–2. If P ≠ (0, y), then Q is not the point at 
infinity. Using the equality on trace function: Tr(x) = Tr(x2) over finite field GF(2m), we 
can derive the following relations: Tr(xQ) = Tr(x2 + bx–2) = Tr(x + bx–2) = Tr(a),  for any 
point P whose order is other than 2. 
 Seroussi used this fact to represent a point on an elliptic curve by “compact form” 
that needed only m bits, instead of (m + 1) bits as they did in the compressed form, 
discussed above. In an elliptic curve cryptosystem, we should always consider points in a 
cyclic subgroup of large prime order n (hence n is odd). Any point P = (x, y) in such 
subgroup cannot have order 2, and there always exists a point R such that P = 2R. Indeed, 
we can write explicitly: P = (n + 1)·P = 2R, where R = [(n +1)/2]·P.  
 In other words, we always have Tr(xP) = Tr (a), for any point P = (x, y) ≠ (0, y) 
that is used in an elliptic curve cryptosystem. That is, we can eliminate one bit from the 
x-coordinate of point P = (x, y) without ambiguity. The position of this bit can be chosen 
depending on the basis of the finite fields. 
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 Combined with the compressed form, we can fill up the removed bit from x by the 
single bit representing y-coordinate. Hence this form has exactly m bits to represent a 
point P = (x, y) in the cyclic subgroup mentioned. 
 Particularly, we will utilize the matrix implementation of trace function Tr(x) = 
T.xt, where xt is the transpose matrix of x = (x0, x1,…, xm–1) ∈ GF(2m) and T is an m × m 
matrix that depends on the basis used to represent the finite field GF(2m) and is calculated 
in advance. Then we will eliminate any i-th position bit of x where the corresponding bit 
T(i) = 1 in the matrix T. For recovering, that bit will be determined uniquely to get the 
relation between x and a: Tr(x) = Tr(a). 
 This representation is proved to be optimal for points on non-supersingular 
elliptic curves over finite field GF(2m). Recall that a non-supersingular elliptic curve has 
even order and more particularly, #E(GF(2m)) ≡ 2Tr(a) (mod 4). That is, one can write 
#E(GF(2m)) = 2s, for some value s (or even #E(GF(2m)) = 4s, for the case Tr(a) = 0). 
Therefore, the prime order n of the interested cyclic subgroup of the elliptic curve is at 
most ½ (or ¼ when Tr(a) = 0) of the curve order #E(GF(2m)) that is at most (2m + 1 + 
2.2m/2). We can even drop the term 1 since the order must be even.  Hence 
 If Tr(a) = 1, then n ≤ 2m–1 + 2m/2 < 2m, for m ≥ 3. Hence, an m-bit form can be 
sufficient to represent all points in the cyclic subgroup of the elliptic curve.  
 If Tr(a) = 0, then n ≤ 2m–2 + 2(m/2)–1 < 2m–1, for m ≥ 3. Hence, an (m – 1)-bit form is 
sufficient.  
c. Other discussions 
 The compressing techniques just solve the simple problem of only 1-bit ambiguity 
of the y-coordinate. When we use only the x-coordinate, it does not matter how one can 
determine its corresponding y-coordinate of point P or its inverse point (–P). If we need 
the y-coordinate, we still can use other conventions without having explicitly the extra 
bit, from the known facts on the coordinates of point P and point (–P) as follows: 
  y(–P) = p – yP for prime finite fields Fp, p > 3, and  
  y(–P) = xP + yP for binary finite fields GF(2m).  
 One can define y to be the smaller/larger, odd/even or “positive/negative” (in 
sense of modulo p) of two values upon mutual agreement. 
 Another approach is to try to use values independent of points (or y-coordinates) 
such as y2 or y·(x + y) in our algorithms. But this approach could cost us more than 1 bit. 
For discussions and algorithms in this approach, refer to Montgomery [M97],  Demytko 
[D94] and Schroeppel [Sc00]. 
 Another option that could be employed is to use the full y-coordinate of a point 
and two bits to represent x-coordinate, since for a given y, there are possibly three values 
of x from the elliptic curve equation. 
 However, the security of an elliptic curve cryptosystem does not depend on the 
representation of a point in either a compressed, non-compressed or compact form. 
4.C.6.  Half-point algorithms 
 It is reasonable and practically necessary to find algorithms to compute the half of 
a point, i.e., (½·P) of a given point P on an elliptic curve. In other words, we need to 
solve the following problem: 
          Given a point P, find another point Q on the same elliptic curve such that 2Q = P. 
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We will discuss the solutions of this problem for finite fields.  
 For prime finite field Fp, p > 3, E: y2 = x3 + ax + b. Let Q = (xQ,yQ) and 2Q = P = 
(xP,yP). From the point doubling formula, we have xP = [(3  + a)/2y2

Qx Q]2 – 2xQ. 
Then xQ is a root of the equation 0 = f(X) = X4 – 4X3xP – 2X2a – X(4axP

 + 8b) + a2 – 4bxP. 
For each xQ, we find the corresponding values of yQ if they exist. We can verify directly 
that 2·Q = P. In fact, the algorithm for solving the half-point problem is expected to have 
polynomial running time. One may need to apply some algorithm to compute the square 
root modulo prime p of that running time.  
 Over binary finite field GF(2m), we consider a non-supersingular elliptic curve E: 
y2 + xy = x3 + ax2 + b. We have xP = . Similarly, we solve the following 
equation for x

22 −+ QQ bxx

Q:  0 = f(X) = X4 + X2
 xP + b = Y2 + YxP + b = 0. This equation of variable Y 

has a root if and only if  Tr( b) = 0. If so, then we have x2−
Px Q = Y1/2 =

12 −m
Y . 

 Recall that if P is in a cyclic subgroup of prime order n of the elliptic curve, the 
half-point always exists. Since order n of P is odd, one can write: P = (n + 1)·P = 2·Q, 
where Q = [(n +1)/2]·P. 
 For completeness, we may consider the case of a supersingular elliptic curve over 
binary finite field GF(2m), E: y2 + cy = x3 + ax + b. We can write xP = ( + a4

Qx 2)c–2 .  
Hence xQ = (xPc2 + a2)1/4, that always exists in the finite field GF(2m). 
 This existence of the half-point is used in Seroussi [S98] to represent a point on a 
non-supersingular elliptic curve over a finite field GF(2m) by a compact form of only m 
bits. 
 Meyer & Müller [MM96] also discussed the half-point problem on an elliptic 
curve over a ring ZN for composite number N = pq. The authors referred to the problem 
by a different name, square root of a point. More references on this problem are in 
[KMOV92], Demytko [D94], Boyd & Smith [BS95] and [Kn99]. They showed that 
solving the half-point algorithm enables solving the integer-factoring problem (IFP). 
 4.C.7. Modular multiplication algorithm 
 Modular multiplication techniques are also helpful to increase the speed of 
general computation process. Montgomery’s modular multiplication algorithm is the 
most popular algorithm and were discussed widely in crypto literature: Montgomery 
[M85], Acar, Kaliski & Koç [AKK96] and Acar & Koç [AK98].  
 There are still many works on implementation and performance of elliptic curve 
cryptosystems. Readers may refer to: Agnew, Mullin, Onyszchuk & Vanstone 
[AMOV91], Mister, Preneel, Wiener & de Win [MPWW98], Hankerson, Hernandez & 
Menezes [HHM00] and Brown, Hankerson, Hernandez & Menezes [BHHM01] and 
others. 
 

Appendices 
 
Appendix A.  Trace functions 
1. Trace of a finite field element 
 Trace of an element a is a linear mapping Tr: GF(pm) → Fp defined by   
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Tr(a) =  
11

0

21 −−

=

++++=∑
mppp

m

i

p aaaaa
i

L

Basic properties ℵ
 Tr(ap) = Tr(a). 
 Tr(a + b) = Tr(a) + Tr(b), and generally,  

Tr(v·a) = v.Tr(a), for a, b ∈ GF(pm), v ∈ Fp. 
   When p = 2, Tr(0) = 0, and Tr(1) = 1 if m is odd and Tr(1) = 0 if m is even. 
 These above properties can be checked easily from the definition and the equality 
formula for finite fields of characteristic p: (a + b)p = ap + bp, for all a, b in Fp. 
Property:  For an element a ∈ GF(2m), Tr(a) equals 0 for one half of the elements in 
GF(2m) and equals 1 for the other half. 
PROOF: When m is odd, we have Tr(a + 1) = Tr(a) + Tr(1) = Tr(a) + 1. Hence the 
mapping z a (z + 1) is a bijection between the subset of elements of trace 0 and that of 
elements of trace 1. When m is even, the result still holds. However, the bijection in this 
case is z a (z + b), where b is some element with Tr(b) = 1. (Such element b always 
exists.)            q.e.d. 
 When p > 2, there are pm–1 elements of trace 0 in GF(pm). In fact, there is also 
equal distribution of values of trace function Tr(·) in the finite field GF(pm).   
Property:  For an element a ∈ GF(2m), its trace Tr(a) = 0 if the polynomial (X2 + X + a) 
is reducible over GF(2m) or, in other words, has two roots over GF(2m). Conversely, 
Tr(a) = 1 if the polynomial (X2 + X + a) is irreducible over GF(2m) or it has no root over 
GF(2m). 
PROOF: Consider the homomorphism f: GF(2m) → GF(2m), defined by f(X) = X2 + X. Its 
kernel is F2, (since f(0) = f(1) = 0) and its image Im(f) is a subgroup of index 2 in GF(2m).  
Therefore, the polynomial (X2 + X + a) has a root (or it is reducible) over finite field 
GF(2m) if and only if we have a = –a ∈ Im(f). For such element a, we write: a = b + b2, 
for some element b ∈ GF(2m). Hence Tr(a) = Tr(b + b2) = 0.ℵ   q.e.d. 
2.  Trace of an elliptic curve 
 Recall that order of the group E(Fq) is #E(Fq) = q + 1 – t. We call t the trace of the 
elliptic curve E. Recall the definition of Frobenius endomorphism Ψ ∈ End(E) of an 

                                                           
ℵ  Number theory tip –  The nth  roots of 1 
 The multiplicative subgroup GF(pm)* is a cyclic group of order (pm –1), generated 
by a primitive element g. Let n be a divisor of (pm –1). There are n roots of the 
polynomial (xn –1).  That are also called the nth roots of 1, are n elements of the form 

,)1(. nmpjg −  for 0 ≤ j ≤ n – 1. Particularly, for n = p – 1, we have:  
ga ∈ GF(p)* if and only if a is a multiple of (pm –1)/(p –1). 

ℵ  Number theory tip – Using the trace of a finite field element 
 The equation X2 + aX + b = 0, where a, b ∈ GF(2m), a ≠ 0, has a root in GF(2m) if 
and only if Tr(a–2b) = 0. Moreover, if x is one root of the equation, then (x + a) is the 
other root.  In other words, the number of solutions of the equation X2 + aX + b = 0 
equals [2 – 2.Tr(a–2b)]  or [1 + ]. When a = 0, there is one root x = (–b))( 2

)1( baTr −

− 1/2 = 
12 −m

b . 
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elliptic curve E by: ∀(x, y) ∈ E, Ψ(x, y) = (xq, yq) and Ψ(O) = O. Then the trace t of the 
elliptic curve E also satisfies the relation Ψ2 – tΨ + q = 0 that is called the characteristic 
equation.  
 When t = 0, #E(Fq) = q + 1, the elliptic curve is called supersingular. 
 When t = 1, #E(Fq) = q, the elliptic curve is called Fp-anomalous. We will discuss 
later that these two types of elliptic curves are cryptographically insecure. 
 The elliptic curve with t = 2, or its order #E(Fq) = q – 1, should also deserve some 
attention.  
3.  Properties on order of an elliptic curves 
Property 1 (Lay & Zimmer [LZ94]): Let E be a non-supersingular elliptic curve E: y2 + 
xy = x3 + ax2 + b, over the finite field GF(2m). Then the order of the elliptic curve E is #E 
≡ 2Tr(a) (mod 4). 
PROOF: (Koblitz, using division polynomials). Let Y = y/x. We re-write the elliptic curve 
equation as: Y2 + Y = x + a + bx–2. Consider the division polynomial (that will be 
described later): f4(x) = x6 + bx2 = x2(x4 + b). The non-trivial points Q = (x, y) ∈ E of 
order 4 will have x = b1/4 = .  The equation will have solution in GF(2

22 −m
b m) (i.e., 

corresponding to the y-coordinates of Q) if and only if 0 = Tr(x + a + bx–2) = Tr( + a 
+ ) = Tr(a), 

22 −m
b

12 −m
b

since we have Tr(B + B2) = 0 for any B. (Here B = and B
22 −m

b 2 = .)  Thus the 
elliptic curve has a non-trivial point of order 4 if and only if Tr(a) = 0. 

12 −m
b

 Since the order of a non-supersingular elliptic curve is even, or #E ≡ 0 or 2 (mod 
4), we can obtain the modular identity: #E ≡ 2.Tr(a) mod 4.          q.e.d. 
 This result shows that the maximum prime order of a cyclic subgroup of any non-
supersingular elliptic curve is equal to ½ or ¼ the order of the curve itself.  It is this 
cyclic subgroup that has interesting cryptographic uses in elliptic curve cryptosystems.  
Property 2 (Seroussi [S98]): Let E be a non-supersingular elliptic curve E: y2 + xy = x3 
+ ax2 + b over the finite field GF(2m). Then for any point P of order other than 2 on E, 
the point Q = 2.P = (xQ, yQ) will satisfy the condition:Tr(xQ) = Tr(a). 
 This property later gives a way to represent a point of an elliptic curve over a 
finite field GF(2m) using only m bits.  
Property 3 (J. Silverman): The elliptic curve E: y2 = x3 + x over a prime finite field Fp 
has its order satisfying the modular condition: #E(Fp) ≡ 0 (mod 4). 
PROOF: When p ≡ 1 (mod 4), element (–1) is a quadratic residue in Fp. Hence, for each 
value of x such that the equation y2 = x3 + x has two non-zero solutions of y, then the 
equation y2 = (–x)3 + (–x) = –(x3 + x) also has two non-zero solutions. Thus, we counted 
already a multiple of four points together. The rest in the set of points are the point at 
infinity O and 3 points whose y-coordinate is 0: (0, 0), (t, 0), and (–t, 0), where t2 = –
1(mod p). This modular equation always has two solutions, since the Legendre symbol 
modulo p of (–1), where p ≡ 1 (mod 4) is 1. In summary, the number of elliptic curve 
points is a multiple of 4. 
 When p ≡ 3 (mod 4), we have #E(Fp) = p + 1 ≡ 0 (mod 4).    q.e.d. 
 
Appendix B.  Twisted curves 
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 When char(K) = p > 3, two elliptic curves E: y2 = x3 + ax + b and E’: y2 = x3 + 
ac2x + c3b where c is a quadratic non-residue (mod p), are twisted curves over the prime 
finite field Fp. 
 When char(K) = 2, two non-supersingular elliptic curves over the binary finite 
field GF(2m): E: y2 + xy = x3 + (a + d) x2 + b and E’: y2 + xy = x3 + ax2 + b, where d is any 
element of trace 1, are twisted curves. 
 When the finite field GF(2m) has the odd degree m over finite field F2, we can 
choose d = 1.  More generally, we will observe that: 
 For an element d ∈ GF(2m), its trace Tr(d) = 1 if and only if the polynomial (X2 + 
X + d) is irreducible over the finite field GF(2m). 
 Twisted curves have the same j-invariant.  Their orders are related by: #E(Fq) = q 
+ 1 – t and #E’(Fq) = q + 1 + t. Twisted curves will be used in many applications, such as 
Demytko’s elliptic curve cryptosystem and one-way permutations… 
Theorem: Let E be an ordinary elliptic curve over the finite field Fp and E’ its twisted 
curve.  Then we have: 
 (i) #E(Fq) + #E’(Fq) = 2q + 2, 
 (ii) E(GF(q2)) ≈ E’(GF(q2)). That is, two elliptic curves are isomorphic over the 
quadratic extension field GF(p2) but not over the finite field Fq. 
 We show the proof of statement (i) here since it is elementary, interesting and 
helpful. The proof for statement (ii) can be found in other elliptic curve literature, since it 
involves more difficult details. 
PROOF: Over prime finite field Fp, (Kaliski [K91]): 
 Since the element c is a quadratic non-residue (mod p), then either (x3 + ax + b) or 
c3(x3 + ax + b) is a quadratic residue modulo q, not both. Hence each pair of elements x 
and cx ∈Fp describes exactly a pair of points on elliptic curves E(Fp) and E’(Fp). We 
summarize the results in the table A. 

Status of (x3 + ax + b) A pair of points on elliptic curves E and E’ 
(x3 + ax + b) is a quadratic residue (x, ±(x3 + ax + b)1/2) on E 
(x3 + ax + b) is a quadratic non-residue (cx, ±[c3(x3 + ax + b)]1/2) on E’ 
(x3 + ax + b) = 0 (mod p) (x, 0) on E and (cx, 0) on E’ 

 Table A.   The points on twisted curves E(Fp) and  E’(Fp) 
These 2q points above, together with the two points at infinity O of two curves give us a 
total of 2(q +1) points. 
 Over binary finite field GF(2m), (Meier & Staffelbach [MS93]): 
 We have Tr(d) = 1. For every fixed value x ≠ 0, we will count the numbers of 
solutions for two equations in variable Y = y/x corresponding to two curves: Y2 + Y + ex = 
0 and Y2 + Y + (ex + d) = 0,  for a constant ex = (x3 + ax2 + b)/x2. Because of Tr(d) = 1, 
there is only one elliptic curve equation that has two solutions and the other equation 
must have no solution. They accounted for 2×(2m – 1) points for both elliptic curves. 
 When x = 0, both elliptic curve equations are of the form y2 = b. They always 
have one solution, y = b1/2 = . These two points, together with two points at infinity 
O on two elliptic curves, complete our counting.      
 q.e.d. 

12 −m
b

Lemma: Over prime finite field Fp two elliptic curves: y2 = x3 + ax + b and y2 = x3 + ac2x 

+ c3b, where c is a quadratic residue modulo p, have the same order. 
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 Over binary finite field GF(2m), two elliptic curves: y2 + xy = x3 + ax2 + b and y2 + 
xy = x3 + (a + e) x2 + b, where Tr(e) = 0, have the same order. (Moreover, they are 
isomorphic elliptic curves.) 
 Over GF(2m), two elliptic curves:y2 + xy = x3 + ax2 + b and y2 + xy = x3 + a2x2 + b, 
 have the same order. (Moreover, they are isomorphic elliptic curves.) 
PROOF: The first two statements are straightforward from the above theorem. The third 
statement is a simple result of the second one where e = a2 + a. Then we have: Tr(e) = 
Tr(a2) + Tr(a) = 0.          q.e.d. 
 
Appendix C. Examples of elliptic curves over small binary finite fields GF(2m) 
Example 1 
 We consider the finite field GF(22). There is only one irreducible polynomial f(x) 
= x2 + x + 1 over F2. Let α = x (mod f(x)) be a root of f(x). The four elements of GF(22)  
are 0, 1, α and α2 = α + 1. Obviously, α3 = 1, or we say the element α is the third root of 
unity in the field. In fact, α and α2 are two primitive elements of the multiplicative 
subgroup GF(22)* and are the only roots of f(x). Hence f(x) is the only primitive 
polynomial of GF(22). 
 The trinomial basis is {1, α} and {α, α2} is an ONB (of both Type I and II.) For 
example, we can write: 1 = α2 + α . Hence, in trinomial basis, we have: GF(22) = {(00) = 
0, (01) = 1, (10) = α, (11) = α2}. And in ONB, we write: GF(22) = {(00) = 0, (11) = 1, 
(10) = α, (01) = α2}. Observe that Tr(0) = Tr(1) = 0 and Tr(α) = Tr(α2) = α + α2 = 1. 
Hence the trinomial basis is not self-dual. The ONB is self-dual and is also a primitive 
normal basis. Now we define g(z) = Tr(α2z), ∀z ∈ GF(22). Then {1, α} is its dual basis 
with respect to the linear function g(·). 
 Consider the elliptic curve of the equation E: y2 + xy = x3 + x2 + α. Its order is #E 
= 4 and its elements are {O, (0,α2), (α,0), (α,α)}. We can compute simple point 
multiplications: 2(α,0) = (0,α2). Hence 4(α,0) = O. Then point (α, 0) is a generator of E. 
The other generator is, obviously, the point (α,α). We can check that: 2(α,α) = (0,α2). 
 Let E: y2 + xy = x3 + x2 + 1 be a Koblitz curve. The group E has order 8 and its 
structure is ⊕ , where n

1nZ
2nZ 2 = gcd(n1, q – 1). Since n1 is a divisor of 8 and q – 1 = 7; 

hence n2 = 1 and E = Z8, a cyclic group. We have  
E = 〈(α, 1)〉 = {(0,1), (1,α), (1,α2), (α, 1), (α,α2), (α2,1), (α2,α),O}. 

 The other generators are points (α, α2), (α2,1) and (α2, α). 
Example 2 (Koblitz, Menezes & Vanstone [KMV96]) 
 The finite field GF(23) is a vector space of dimension 3 over F2. Its irreducible 
polynomial is chosen to be f(x) = x3 + x + 1 whose root is denoted by α = x (mod f(x)). 
We list all elements of the multiplicative subgroup GF(23)* as powers of α. Obviously, 
we have α7 = 1. In fact, all six non-trivial powers of α are primitive elements of the 
multiplicative subgroup GF(23)*. 
α0 = (001) 
   = 1 

α1 = (010) α2 = (100) α3 = (011) 
  = α + 1 

α4 = (110) 
 = α 2 + α 

α5 = (111) 
= α 2 +α +1 

α6 =(101) 
 = α 2 + 1 

Table C.1.  Elements in the finite field GF(23) using trinomial basis {1, α, α2} 
 The polynomial f(x) = x3 + x + 1 is primitive and its roots are: α, α2 and α4.  The 
only other primitive polynomial for GF(23) is g(x) = (x + α3)(x + α5)(x + α6) = x3 + x2 + 
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1. Their roots included all six primitive elements in GF(23)*. Note that we still have the 
same results if we do computations over other bases, e.g., ONB. These two polynomials 
are also the only irreducible polynomials of GF(23). 
 We can compute Tr(1) = 1, Tr(α3) = Tr(α + 1) = 1 and Tr(α) = α + α2 + α4 = 0 = 
Tr(α2) = Tr(α4). Hence the trinomial basis {1, α, α2} is not self-dual with respect to Tr(·). 
But the permutation {1, α2, α} is its dual basis. 
 Consider the elliptic curve E: y2 + xy = x3 + x2 + 1 over the finite field GF(23).  
Refer to Figure 1.3. We will check that #E = 14. In fact, E is a Koblitz curve over F2, and 
has only two points, (0,1) and O. Using Hasse’s theorem, we can write #E(F2) = 2 + 1 – t 
= 2, since t = 1. The equality: 2T2 – T + 1 = (1 – aT)(1 – bT) gives us two relations: a + b 
= 1 and ab = 2. Then we have: a2+ b2 = (a + b)2 – 2ab = –3 and a3+ b3 = (a + b)[(a + b)2 – 
3ab)] = – 5. Hence #E = 23 + 1 – (a3 + b3) = 14. The order is square-free; hence E is a 
cyclic group. It is generated by point P = (α, α5). Note that, in this example as well as 
other examples in this document, we always use the explicit point addition rules given in 
the table 1.2. Check that  
 7P = 2(2P + P) + P = 2[(α3, 0) + (α, α5)] + (α, α5) 
  = 2(α2, α5) + (α, α5) = (α6, α6) + (α, α5) = (0,1). 
Hence 14P = O. More explicitly, we have 
E = 〈(α, α5)〉 = {P = (α, α5), 2P = (α3, 0), 3P = (α2, α5), 4P = (α4, 0), 5P = (α4, α3),  
    6P = (α6, α6), 7P = (0,1), 8P = (α6, 0), 9P = (α4, α6), 10P = (α5, α5),  
           11P = (α2, α3), 12P = (α3, α3), 13P = (α, α6), O}. 
In fact, the other five generators for E are points 3P, 5P, 9P, 11P and 13P. 
Example 3  
 The finite field GF(23) can be represented in the optimal normal basis of type II. 
It is the only normal basis of GF(23). Its irreducible polynomial is f(x) = x3 + x2 + 1 
whose root is denoted by α = x (mod f(x)). This polynomial is a primitive polynomial as 
we discussed in the previous example 2. In fact, all six non-trivial powers of α are 
primitive elements of the multiplicative subgroup GF(23)*. They are six non-trivial 7th 
roots of unity. We can list all elements of the cyclic group GF(23)* using Type II ONB 
{α, α2, α4} in the table C.2. 
α0 = (111) = 
α +α2 +α4 

 

α1 =(100) α2
 = (010) α3

 = (101) 
= α + α4 
= α2 + 1 

α4
 = (001) 

=α2 +α + 
1 
 

α5 = (011) 
= α2 + α4

= α + 1 

α6
 = (110) 

= α +α2 

 

Table C.2.  Elements in the finite field GF(23) using Type II ONB {α, α2, α4} 
Recall the trace formula Tr(a) = Tr(a0, a1,…, am–1) = a0 ⊕ a1 ⊕ … ⊕ am–1, we get:  
 Tr(1) = Tr(α) = Tr(α2) = Tr(α4) = 1 and Tr(0) = Tr(α3) = Tr(α5) = Tr(α6) = 0. 
Hence the above ONB is also self-dual. In fact, it is the only self-dual normal basis here. 
Furthermore, it is a primitive normal basis since α is primitive in the subgroup GF(23)*. 
 The elliptic curve E: y2 + xy = x3 + x2 + 1 over the finite field GF(23) has order 14 
and its elements are generated by R = (α3, α). Check that 
 7R = 2(2R + R) + R = 2[(α2, 0) + (α3, α)] + (α3, α) 
       = 2(α6, α) + (α3, α) = (α4, α4) + (α3, α) = (0,1).   
Hence 14R = O. More explicitly, we have 
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E = 〈(α3, α)〉 = {R = (α3, α), 2R = (α2, 0), 3R = (α6, α), 4R = (α, 0), R = (α5, α2), 
     6R = (α4, α4), 7R = (0, 1), 8R = (α4, 0), 9R = (α5, α4), 10R = (α, α), 
    11R = (α6, α2), 12R = (α2, α2), 13R = (α3, α4), O}. 
 Any of the six points, R, 3R, 5R, 9R, 11R and 13R, can be a generator for E. 
 The twisted curve of E is  Ẽ: y2 + xy = x3 + 1. It has order # Ẽ(GF(23)) = 2(23 + 1) 
– 14 = 4. We also have # Ẽ(F2) = 2(2 + 1) – 2 = 4. Hence: Ẽ(F2) = Ẽ(GF(23)) = {O, (0,1), 
(1,0), (1,1)}, and is generated by either point (1, 0) or (1, 1). 
Example 4 
 We consider the finite field GF(24). The trinomial f(x) = x4 + x + 1 is irreducible 
over F2. Then the non-zero elements of the cyclic subgroup GF(24)* can be generated by 
an element, α = x(mod f(x)), a root of function f(x) in GF(24). Obviously, α15 = 1. 
α0 = (0001) α1 = (0010)  α2 = (0100)  α3 = (1000)  α4 = (0011)  

   = α + 1 
α5 = (0110)  
   = α2 + α 

α6 = (1100) 
   = α3 + α2 

α7 = (1011)  
   = α3 + α + 1 

α8 = (0101)  
   = α2 + 1 

α9 = (1010)  
   = α3 + α  

α10 = (0111) 
   = α2 + α + 1 

α11 = (1110) 
  = α3 + α2 + α 

α12 = (1111) 
= α3 + α2 + α + 1 

α13 = (1101) 
  = α3 + α2 + 1 

α14 = (1001) 
   = α3 + 1 

Table C.3.  Elements in the finite field GF(24) using trinomial basis {1, α, α2, α3}  
 In fact, there are seven other elements, which can serve as a generator for the 
multiplicative subgroup GF(24)*.  They are α2, α4, α7, α8, α11, α13 and α14. The 
polynomial f(x) = x4 + x + 1 is primitive and its roots are: α, α2, α4 and α8.  The 
only other primitive polynomial for the finite field GF(24) is  
     g(x) = (x + α7) [(x + α7)2][x + ][x + ]. 

227 )(α
327 )(α

       = (x + α7) (x + α14) (x + α13) (x + α11) = x4 + x3 + 1. 
Their roots included all eight primitive elements in the multiplicative subgroup GF(24)*

 Examples of finite field arithmetic:  
 (1101) + (1001) = (0100), i.e., (x3 + x2 + 1) + (x3 + 1) = x2 mod f(x), and 
 (1101)·(1001) = (1111), since (x3 + x2 + 1) · (x3 + 1) = x3 + x2 + x + 1 mod f(x). 
 We still can do multiplications by representing finite field elements as powers of 
element α.   (1101)·(1001) = α13. α14 = α27 = α12 = (1111).  
 We can compute the trace of elements. For example, Tr(α3) = α3 + α3×2 + 

 = α
323223 ×× +αα 3 + α6 + α12 + α9 = 1. Then we have Tr(αi) = 1, when i = 3, 6, 7, 9, 11, 

12, 13 and 14, and Tr(αi) = 0, if otherwise.  
 We can verify that two self-dual bases for the finite field GF(24) are {α3, α7, α12, 
α13} and {α6, α9, α11, α14}. For example, Tr(α7×2) = 1, Tr(α7α3) = Tr(α10) = 0… They are 
not normal bases. The above trinomial basis is not a dual basis since we have Tr(1) = 0.  
Now we define g(z) = Tr(α–1z), ∀z ∈ GF(24). Then the permutation {1, α3, α2, α} is its 
dual basis with respect to the linear function g(·). 
Example 5 
 Let E: y2 + xy = x3 + x2 + 1 be a Koblitz curve. The group E(GF(24)) has order 16, 
by using Hasse’s theorem. The Frobenius equation  2T2 – T + 1 = (1 – aT)(1 – bT) gives 
us two relations: a + b = 1 and ab = 2. We can compute two power sums of a and b: 
 a2 + b2 = (a + b)2 – 2ab = – 3 and a4 + b4 = (a2 + b2)2 – 2(ab)2 = 9 – 8 = 1.  
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Then #E = 24 + 1 – (a4 + b4) = 16. Hence E is an anomalous binary curve over both finite 
fields F2 and GF(24). Recall that the structure of the group is ⊕ , where n

1nZ
2nZ 2 | gcd 

(n1, q –1). Since n1 is some divisor of 16 and (q – 1) = 15; hence n2 = 1 and E = Z16, a 
cyclic subgroup.  Therefore, we can observe that for any point P = (x, y) ∈ E, then point 
(x2, y2) ∈ E, and of course,  = (x, y) ∈ E.  This helps to reduce the task of 
listing all points on the elliptic curve (using ONB Type I in the previous example). 

),(
4242 yx

E = 〈(α3, α)〉 = {(0,1), (1, α5), (1, α10), (α3, α), (α3, α9), (α5, 1), (α5, α10), (α9, α8), 
                (α9, α12), (α10,1), (α10, α5), (α12, α4), (α12, α6), (α6, α2), (α6, α3), O}. 

Again, the other seven generators for E are scalar point multiplications of the form 
a·(α3,α), where a runs through all odd numbers between 3 and 15. 
Example 6 
 We consider the finite field GF(25) using a polynomial basis. The trinomial f(x) = 
x5 + x2 + 1 is irreducible over F2. The middle term of interested trinomials here can be 
either x or x2 only. The other trinomial (x5 + x + 1) is reducible. Indeed, x5 + x + 1 = (x2 
+ x + 1)( x3 + x2 + 1). Then the non-zero elements of the cyclic (multiplicative) 
subgroup GF(25)* can be generated by the single element, α = x (mod f(x)), a root of f(x) 
in GF(25). 
0 = (00000) α = (00010) α2 = (00100) α3 = (01000) α4 = (10000) 
α5 = (00101) 
   = α2 + 1 

α6 = (01010) 
   = α3 + α 

α7 = (10100) 
   = α4 + α 2

α8 = (01101)  
  = α3 + α 2

 + 1 
α9 = (11010)  
 = α4 + α 3

 + α 

α10 = (10001) 
   = α4 + 1 

α11 = (00111)  
   = α2 + α + 1 

α12 = (01110)  
  = α3 + α2

 + α 
α13 = (11100)  
= α4 + α 3

 + α2 
α14 = (11101) = 
α4 + α 3

 + α2 +1 

α15 = (11111) 
= α4 + α 3 + α2   

   +α + 1 

α15 = (11011)  
=α4 +α 3 +α + 1 
 

α17 = (10011) 
= α4 + α + 1 

α18 = (00011) 
   = α + 1 

α19 = (00110) 
= α 2 + α 

α20 = (01100)  
  = α3 + α2 

α21 = (11000)  
  = α4 + α3

 

α22 = (10101)  
  = α4 + α2

 + 1 
α23 = (01111) = 
α3 +α2

 +α + 1 
α24 = (11110) = 
α4 + α3 + α2

 +α 

α25 = (11001)  
  = α4 + α3

 + 1 
α26 = (10111) = 
α4 +α2

 +α + 1 
α27 = (01011)  
  = α3 + α + 1 

α28 = (10110)  
  = α4 + α2

 + α 
α29 = (01001) 
   = α3 + 1 

α30 = (10010) = α4 + α 1 = (00001) = α31  
Table C.4.  Elements in the finite field GF(25) using trinomial basis {1, α, α2, α3, α4}   

 In fact, all 30 non-trivial powers of α are primitive elements of the multiplicative 
subgroup GF(25)*.  There are 6 primitive polynomials for the finite field GF(25). They 
are also all the irreducible polynomials for GF(25), since 25 – 1 = 31 is Mersenne prime 
number. 
 (x + α) (x + α2) (x + α4) (x + α8) (x + α16) = x5 + x2 + 1,  
 (x + α3) (x + (α3)2) (x + (α3)4) (x + (α3)8) (x + (α3)16) = x5 + x4 + x3 + x2 + 1, 
 (x + α5) (x + (α5)2) (x + (α5)4) (x + (α5)8) (x + (α5)16) = x5 + x4 + x2 + x + 1, 
 (x + α7) (x + (α7)2) (x + (α7)4) (x + (α7)8) (x + (α7)16) = x5 + x3 + x2 + x + 1, 
 (x + α11) (x + (α11)2) (x + (α11)4) (x + (α11)8) (x + (α11)16) = x5 + x4 + x3 + x + 1, 
 (x + α15) (x + (α15)2) (x + (α15)4) (x + (α15)8) (x + (α15)16) = x5 + x3 + 1. 
Their roots included all 30 primitive elements of the multiplicative subgroup GF(25)*. 
 We can compute the trace of elements. For example, 
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  Tr(1) = 1, Tr(α3) = α3 + α3.2 +  = 1 and 
42.332.322.3 ααα ++

  Tr(α) = α + α2 +  = 0 = Tr( ) , for positive integers n. 
423222 ααα ++

n2α
Then  Tr(αi) = 1, when i = 0, 3, 5, 6, 9, 10, 11, 12, 13, 17, 18, 20, 21, 22, 24 and 26,  
          Tr(αi) = 0, if otherwise. 
 The trinomial basis {1, α, α2, α3, α4} is not self-dual, since, e.g., Tr(α2) = 0. If we 
define g(z) = Tr(α25z), ∀z ∈ GF(25). Then its permutation {α, 1, α4, α3, α2} is its dual 
basis with respect to the linear function g(·). 
 Consider another non-supersingular elliptic curve of the form: E: y2 + xy = x3 + α: 
E = {O, (0,α16), (α,α13), (α,α24), (α2,α13), (α2,α21), (α3,α24), (α3,α28), (α5,α17), (α5,α28), 
        (α6,α7), (α6,α24), (α8,α16), (α8,α28), (α10,1), (α10,α4), (α11,1), (α11,α19), (α13,α2), 
       (α13,α21), (α14,α7), (α14,α29), (α15,α), (α15,α14), (α19,α9), (α19,α13), (α21,0), (α21,α21), 
       (α26,α7), (α26,α18), (α28,1), (α28,α26)}.      
Then #E(GF(25)) = 32 = #GF(25). The structure of the group is ⊕ , where n

1nZ
2nZ 2 

|gcd(n1, 31). Since n1 is a divisor of 32, and 31 is prime; hence n2 = 1 and E = Z32, a 
cyclic group.  Observe that the elliptic curve order #E = 32 ≡ 0 (mod 4), since Tr(0) = 0.  
 Two Koblitz curves Ea: y2 + xy = x3 + ax2 + 1, where a = 0 or 1, over finite field 
GF(25) have the orders #E1 = 22 and #E0 = 44. They are just twisted elliptic curves. 
 Consider a non-supersingular elliptic curve E2: y2 + xy = x3 + α2x2 + 1 over the 
finite field GF(25) with the trinomial basis above.  
    E2 = {O, (0,1), (1,α6), (1,α27), (α,α27), (α,α29), (α2,α15), (α2,α16), (α4,α3), (α4,α21), 
 (α5,α14), (α5,α21), (α8,α16), (α8,α28), (α9,α7), (α9,α12), (α10,α21), (α10,α29), 
      (α11,α20), (α11,α27), (α13,α17), (α13,α23), (α15,1), (α15,α24), (α16,1), (α16,α9),  
      (α18,α10), (α18,α30), (α20,α24), (α20,α30), (α21,α2), (α21,α13), (α22,α2), (α22,α10),  
      (α23,α4), (α23,α15), (α26,α24), (α26,α29), (α27,α25), (α27,α30), (α29,α2), (α29,α8), 
      (α30,α10), (α30,α18)}. 
Its order is 44. The structure of the group is ⊕ , where n

1nZ
2nZ 2|gcd(n1, 31). Since n1 is a 

divisor of 44, and 31 is prime; hence n2 = 1 and E2 = Z44, a cyclic group.  
Example 7 
 We consider the finite field GF(25) using a normal basis. The reduction 
polynomial is f(x) = x5 + x4+ x2 + x + 1. By the way, it is a primitive polynomial. The 
optimal normal basis of Type II consists of five polynomials: x, x2, x4, x8 and x16 (mod 
f(x)). A generator for non-zero elements of multiplicative subgroup GF(25)* is chosen to 
be β = x (mod f(x)). Indeed, since GF(25)* is a cyclic group of prime order (31), any 
element other than 1 can be a generator for the whole group. We can write them 
explicitly in the table C.5., where  

(a0, a1, a2, a3, a4) = a0x + a1x2 + a2x4 + a3x8 + a4x16 (mod f(x)). 
For instance, 1 = (11111) = x + x2 + x4 + x8 + x16. (All polynomials are of modulo f(x).) 
We can compute the following intermediate terms and the next four repeated squares of 
each term (by simple right 1-cylic shifts). They are: 
 x5 ≡ x4 + x2 + x + 1 = x8 + x16 = (00011), and x10 = (10001), x20 = (11000) 
 x7 ≡ x2 + 1 = x + x4 + x8 + x16 = (10111),  
 x3 ≡ x + x8 = (10010), since x8 ≡ x3 + x, 
 x11 ≡ x6 + x4 = (x + x8)2 + x4 = x2 + x4 + x16 = (01101) and  
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 x15 ≡ (x + x8)4 x3 = (x + x4) x3 = x + x8 + x16 = (10011). 
0 = (00000) β = (10000) β2 = (01000) β3 = (10010) β4 = (00100) 
β5 = (00011) β6 = (01001) β7 = (10111) β8 = (00010) β9 = (01100) 
β10 = (10001) β11 = (01101) β12 = (10100) β13 = (01011) β14 = (11011) 
β15 = (10011) β16 = (00001) β17 = (00101) β18 = (00110) β19 = (01111) 
β20 = (11000) β21 = (11010) β22 = (10110) β23 = (00111) β24 = (01010) 
β25 = (11110) β26 = (10101) β27 = (01110) β28 = (11101) β29 = (11100) 
β30 = (11001) β31= 1= (11111)  
Table C.5.  Elements in the finite field GF(25) using Type II ONB, {β, β2, β4, β8, β16}  

 Then the field multiplications will be very simple on powers of β. Recall also 
that, in normal basis representation, the trace of an element can be computed easily by 
the formula: Tr(a) = Tr(a0, a1,…, am–1) = a0 ⊕ a1 ⊕ … ⊕ am–1. Then we have: Tr(βi) = 1, 
when i = 0, 1, 2, 4, 8, 11, 13, 15, 16, 21, 22, 23, 26, 27, 29 and 30, while Tr(βi) = 0, if 
otherwise.  The ONB, therefore, is a self-dual basis, since the trace of all elements of the 
basis is 1. It is also a primitive normal basis. 
 We can use the algorithm described in chapter 4 to compute the product terms λi,j. 
First, we create 4 matrices:               

A = , S = ,     A

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

10111
01010
00001
00100
01000

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

10110
00101
11101
00010
00100 –1 = , and matrix T = S.A

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

11111
00001
00010
01001
00100 –1 = . 

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

10100
00110
11000
01001
00010

 There are nine terms λi,j which are all 1: (By λi,j = Tj–i,–i, where indices are of 
modulo m = 5) λ0,1 = T1,0, λ1,0 = T4,4, λ1,3 = T2,4, λ2,3 = T1,3, λ2,4 = T2,3, λ3,1 = T3,2, λ3,2 = 
T4,2, λ4,2 = T3,1 and λ4,4 = T0,1. Then (a0, a1, a2, a3, a4)·(b0, b1, b2, b3, b4) = (c0, c1, c2, c3, c4) 
where  c0 = a0b1 ⊕ a1(b0 ⊕ b3) ⊕ a2 (b3 ⊕ b4) ⊕ a3 (b1 ⊕ b2) ⊕ a4 (b2 ⊕ b4) 
  c1 = a1b2 ⊕ a2 (b1 ⊕ b4) ⊕ a3 (b4 ⊕ b0) ⊕ a4 (b2 ⊕ b3) ⊕ a0 (b3 ⊕ b0) 
  c2 = a2b3 ⊕ a3 (b2 ⊕ b0) ⊕ a4 (b0 ⊕ b1) ⊕ a0 (b3 ⊕ b4) ⊕ a1 (b4 ⊕ b1) 
  c3 = a3b4 ⊕ a4 (b3 ⊕ b1) ⊕ a0 (b1 ⊕ b2) ⊕ a1 (b4 ⊕ b0) ⊕ a2 (b0 ⊕ b2) 
  c4 = a4b0 ⊕ a0 (b4 ⊕ b2) ⊕ a1 (b2 ⊕ b3) ⊕ a2 (b0 ⊕ b1) ⊕ a3 (b1 ⊕ b3) 
or, generally, for 0 ≤ k ≤ 4, 

ck = akb1+k ⊕ a1+k(bk ⊕ b3+k) ⊕ a2+k (b3+k ⊕ b4+k) ⊕ a3+k (b1+k ⊕ b2+k) ⊕ a4+k (b2+k ⊕ b4+k), 
where indices are of modulo m = 5. 
Example: (10011)·(10101) = α15α26 = α41 = α10 = (10001) or by another way 
 (10011)· (10101) = (c0, c1, c2, c3, c4) = (10001) because:  
  c0 = (1)(0) ⊕ (0)(1⊕0) ⊕ (0)(0⊕1) ⊕ (1)(0⊕1) ⊕ (1)(1⊕1) = 1 
  c1 = (0)(1) ⊕ (0)(0⊕1) ⊕ (1)(1⊕1) ⊕ (1)(1⊕0) ⊕ (1)(0⊕1) = 0 
  c2 = (0)(0) ⊕ (1)(1⊕1) ⊕ (1)(1⊕0) ⊕ (1)(0⊕1) ⊕ (0)(1⊕0) = 0 
  c3 = (1)(1) ⊕ (1)(0⊕0) ⊕ (1)(0⊕1) ⊕ (0)(1⊕1) ⊕ (0)(1⊕1) = 0 
  c4 = (1)(1) ⊕ (1)(1⊕1) ⊕ (0)(1⊕0) ⊕ (0)(1⊕0) ⊕ (1)(0⊕0) = 1. 
 Consider a non-supersingular elliptic curve E: y2 + xy = x3 + βx2 + β over the 
finite field GF(25) with ONB Type II above. 
    E2

 = {O, (0, β16), (β2, β), (β2, β20), (β3, β20), (β3, β24), (β4, β16), (β4, β17), (β5, β4), 
 (β5, β23), (β11, β13), (β11, β18), (β12, β16), (β12, β26), (β13, β11), (β13, β18), (β14, β 7), 
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     (β14, β9), (β17, β13), (β17, β27), (β18, β6), (β18, β19), (β20, β13), (β20, β15), (β22, β), 
     (β22, β18), (β23, β21), (β23, β28), (β24, β3), (β24, β20), (β25, β12), (β25, β24), (β27, β), 
     (β27, β25), (β29, β22), (β29, β24), (β30, β2), (β30, β10)}.                
Its order is 38. The structure of the group is ⊕ , where n

1nZ
2nZ 2 | gcd(n1, 31). Since n1 is 

a divisor of 38, and 31 is prime; hence n2 = 1 and E = Z38, a cyclic group.  
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