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NONBINARY BCH DECODING

Abstract and Table of Contents:

This paper shows that the decoding of BCH codes readily reduces to the
solution of a certain key equation. An iterative algorithm is presented
for solving this equation over any fleld. Following a heuristic deriva-
tion of the slgorithm, we give a complete statement of the algorithm and
proofs of its principal properties.

Additional sections of this paper then discuss the relationship of
this algorithm to the classical matrix methods, the simplification
which the algorithm takes in the speciai case of binary codes, the gene-
ralization of the algorithm to BCH codes with a slightly different
definition, the generalization of the algorithm to decode erasures as well
as errors, and the extension of the algorithm to decode more than t errors
in certain cases. Each of these final sections of the paper may be read

independently of the others,
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Introduction

If the encoder transmits the codeword whose successive digits are the

coefficients of the polynomial

= 2 .
e(z) = e, f 2 +cy7® 4 .. oy 2 5 ¢y € GF(aq)

and the channel noise adds to this an error word given by

N-1 .
= 2 .
e(z) = e, t &2 v ezt + ... by oz 3 ey € GF(q)

then the decoder receives the word
r(z) = c(z) + e(z)

Tet 0 be a primitive Nth root of unity over GF(q). If OF is a root

of c(z), then r(ak) = e(ak). If the error word consists of an error of
B e - . - o2 3 .
31 . J2
value Yi at location Xi =Q 7, an error of value !é at location XE= a-,
J kJ
i - i_ X
then e(z) = E Y, 2z and e(ak) = ? Y, o = ? Y, X? =8, + Here the X, are

called the error locations; the !i are called the error values; the Sk are

called the weiggted power=sum §ymmetric functions.

A t-error correcting BCH code is constructed in such a way that

‘ *
a, ®, o3 .., Pt are roots of its generating polynomial , and therefore,
they are also roots of every codeword. Thus, as the first step of our BCH
decoding procedure, we may calculate 8, = e(ak) for k=1, 2, ..., 2t.

In order to locate and evaluate the errors, it is helpful to consider

two polynomials. The first, called the error locator, o¢(z), is the polynomial

whose reciprocal roots are the error locations: G(E) = ¥(l-xiz)

* + -
The alternate, more general, definition (OFﬂ o l, ceny o?“et l)

for m# 1 is covered in a later section of this paper, "Alternate BCH Codes."



The second, called the error evaluator, (z), is defined by

w(z) = o(z) + :Ztl z X, Yi J;zi (l-xdz)

Since 0(0) = 1, the generating function for the quotient w(z)/o(z) is

well defined. Its coefficients are given by

W
== 1+ ? z X, Y, / (1 - X; z)

fad k
1+2 (= Y ¥y X =148
k=1 i 1 1) (=)

where we have defined the generating function S(z) by 5(z) = b 8, 2,
- k=1

€

According to the sbove calculations, 1+S, and

- =

(148)0 = w

For the t-error-correcting BCH code, the decoder is able to calculate only
Sl’ 82, coey S2t at step I. Thus, only the first 2t coefficients of the
generating function for S(z) are known, and the decoder must attempt to

find ¢ and w from the equation

(1+8)c = w mod 22t+l

The solution of these equations for ¢ and w , given S mod 22t+1’

is the second step of the decoding ?roeednre: We postpone the details
until the next section.

Once the error location, o (z), is known, the decoder may locate the
the errors by finding its reciprocﬁl rootss o (z) = 2(1-Xiz). The solution

- [
of this equation for the X's, given 0y, Oy, Oy, wovy Oy o (the
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coefficients of o (z) = = o z’j) is the third step of the decoding procedure .
After the errors have been located, the decoder may evaluate the polynomial

wz) at the point z = X;l , obtaining
w(X =¥, 1-X, X,
(x,7) =1, 3?1( R

Thus, as the fourth step of the decoding procedure, the decoder may evaluate

the errors according to the formula

Lo xC Y ol S )
PG RN VA % gk K

Thus, we may summarize our decoding procedure as follows:

Step I: Find the weighted power sum symmetric functions, Sl’ 82’ N ’Szt'

+
2% find the

polynomials o and w from the equation (1+8)0c = w mod 2L,

Step II: Knowing the generating function for S(z) mod

Step III: Find the reciprocal roots of o (z), the error locations.
Step IV: TFind the error values.
We now consider Step II in greater detail.

Heuristic derivation of the iterative algorithm

We wish to solve the equation

(148)c = w mod At

for the polynomials o(z) and w(z), given S(z) mod zétﬂ'. The problem

looks difficult, so we break it up into smaller pieces. We consider the

sequence of equations

#1 (1+8) O'(n) = w(n) mod 2zt

For each n=0, 1, 2, ..., 2t, we shall find polynomials O‘(n) =1§ c(ﬁ) zk



and w(n) = o&in) zk which solve this equation. In general, these

equations may have many solutions. Since the degree of ¢ is the number of

errors, a good decoder must attempt to find a solution in which degree o

and degree w are "small."

If we have a solution to %1 , then we might hope that this same pair

of polynomials, O'(n) and &n)" might also solve the equation

w(n) mod zma

i~

(148) o)

In general, we cannot expect to be so lucky. However we may write

*23 (1+s) o‘(n) = w(n) + A](_n) Iznﬂ md z**°

n+l in the product

where we define A in) as the coefficient of 2z
(148) O'(n). It Ain) = 0, then we may evidently proceed by taking

o,(n+1) = &n ) and w(n+l) = w(n). In order to define o,(n+l) in the
case when Ag-n) ,4 0, we introduce the auxiliary polynomials T(n) and

7(n), vwhich will be chosen so as to solve the auxiliary equations:

B (1+8) cr(n) = 7(n) + 2" moa &

Of course we would also like the degrees of T(n) and 7(n) to be “"small."
In terms of these auxiliary polynomials, we may define the successive ¢'s
and w's by

*y o S0) O.(n) _ %(-n)z T(n)

,(o+1) (@) _ ), ()

Al

It is readily seen that O‘(n+l) and ®

W

%53

(n+1) satisfy the equation

(145) O_(n+1) = w(n+l) nod z(n+1)+]_
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it ol ang ul®) satisfy *1 and ™) ang 7(n) satisfy *3.

There are two obvious ways to define 7(ntl) and 7(11"‘1) .
Either _
%6 T(n+l) = z‘t(n) and 7(n+l) =z 7(1’1)

- (n) (n)
"f‘7: 'r(n+l) = A:: and 7(n+1) = 3——2;-(5-5-

Either choice will satisfy the equation

; J
(n+1) - 7,(n+l) + ¥ L2

(1+8) T mod

it o™ ang o® satsity %1 and ) and 7(n) satsify ¥3.

=}
If A§_n) = 0, then %7 is meaningless, and we are forced to define ()

+
(n+1) by #%6. However, if (n) # O, then our choice between %6 and

(n+1) and '

and 7

*7 mast be based upon our desire to minimize the degrees of 7

7(n+l)‘ The degrees of cr(n"'l) s 'r(n+l) R w(n+l), and 7(n+l) are given by
r
deg cr(n) if (9) =0 or if deg c(n) > deg*r(n)
(n+1)
%8 =
8: deg @ < 1+ deg <) 4o A&n) # 0 and if deg 70 5 deg,o(n)-l
< either of above if A:(Ln);é 0 and if deg (™= 14deg 7
0
(n+1) 1 + deg T(n) if we use *
%*9: deg 7T = ’

deg o'(n) if we use ¥7



7’

deg o) jp AJ(_“) = 0 or if deg W s . deg 7(“)

%102 deg W) L g deg 7(“) if A{“) # 0 and if deg 78 5 deg )y

\

(n+1) 1 + deg 7(n) if we use #6
#11: deg 7 = S

deg w®) i¢ we use #7

The degree of U'(nﬂ) is seen to be subject to an "accidental" decrease
if deg o,(n) = 1 + deg T(n) and the ieading coefficients of cr(n) and A(;)

(n)

T happen to be equal. In order to circumcompute such accidents, we base

@ L)

2 )

our choice between %6 and *7 not on the actual degrees of o
and 7(n) , but on an upper bound, D(n), which is independent of such vagaries.
We shall define this integral function, D(n), in such a way that

*12: _ deg o{n) < Db(n)

*13¢ deg 'r.(n) < n = D(n)

- From 8, 12, and 13, we are led to the recursive definition of D(n):

D(n) if_»A(ln) =0 orit (w2
#14: D =
(n+1) n+1 D) if A](-n) # 0 and D(n) S%}'

It is readily seen that if deg O'(n) < deg 'r(n) <n =~ D(n), then deg O‘(n+l)

< D(n+l)., Similarly, if deg () < D(n) end deg 7(“) <n - D(n), then

deg o{0+1) < D(n+1).
In order to ensure that deg ,‘(n+l) < (n+1) - D(n+l) and that deg 7(n+l)
< (n+1) - D(n+1), we mst adopt the following rule for choosing between ¥6 and

*73

< either of the above if A:(Ln) # O and if degw (n)___ l+deg 7(n)

' I.
o

@
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e Use %6 if Ain) = 0 or if D(n) > (n+l)/2
= Use 4(7 if AE“) # 0 and D(n) < (n+l)/2
If Ain) # 0 and D(n) = (n+l)/2, then either %6 or *7 will give us poly-
nomials T(n+l)' and 7(n+l) , each having degree < n+l - f)(n+l). When in doubt,
procrastinate ! We postpone the close decision between *6 and %7 in this case
until we have looked at another consideration. o ‘

The initial equations are

(148) 0'(0) = w(o) mod z

(1+8) 'r(o) (9) + 1 mod z

1}
=

The equations may be solved by the obvious initialization:

0 _ 200 00 _ 1, 00 _ 6. neo) =0

¥16: ) 3
We notice that deg 0'(0) = deg T(O) = deg w(o) = 0 = D(0), but that
degy (0) = = <D(0). Thus, at least initially, we may do even better than

the restrictions
deg m(n) < D(n)
deg 7(n) _én - D(n)
We require that at least one of these expressions be satisfied with
strict inequality. To this end, we introduce the Boolean function B(n) s
with initial value B(0) = 0. (In general, either B(n) = 0 or B(n) = 1.) We

then require that
¥17s | deg w(n) < b(n) - B(n)
¥18: deg 7(n) <n = D(n) - (1-B(n))

If we take the proper choice between *6 and *7 in the case when A](_n) #0

and D(n) = (n+l)/2, and if we define B(n) carefully, then we may guarantee



that ¥17 and #18 hold for all n. By examining *10 and %11, the proper

choice is seen to be:

Use %6 if Af“) # 0, D(n) = (n+l)/2, and B(n) = 0

*19:
. ¥19 Use *7 if A](.n) # 0, D(n) = (n+l)/2, and B(n) = 1

B(n) when using 6
*202 B(n-i'l) =
1.- B(n) vwhen using 7

This completes the heuristic derivation of the recursive algorithm. To

sumarize, we start from the initial conditions %16, We then proceed recur-

L+1)

sively as follows: Define A§n) by *2, c'(n+l) by *, by ¥, and

D(n+l) by #1k. According to *15 and ¥19, we then define 7T

- (n+1) and 7(n+l)

by %6 or *7, and B(n+l) accoré.ing to %20, The polynomials defined in this

recursive manner are then seen to satisfy equations ¥1, ¥3, %12, %17, %18,

We restate the algorithm explicitly as follows:

o
-

@
oS M A e e W -




|

The ITterative Algorithm

Initially define 0'(0) =1, T(o) =1, w(o) =1, '7(0) = 0, p(o)= 0, B(0) = 0.

Proceed recursively as follows:

n+l

pefine A as the coefficient of 2%l in the product (146) cr(“),

1
Let
NCES N IR P

Sm) ) R )

+1 n+l

If A;(Ln) =0, or if D(n) > 5=, or if A:(Ln) # 0 and D(n) = == and B(n)=0,

set
D(n+l) = D(n)

B(n+l) = B(n)
L0t1) | (0)

Sm41) _ ()

n+l

But, if A(n) 0 and either D(n) <ZE or D(n) =L ang B(n) =1
2 )

set
D(n+l) = n+l - D(n)

B(n+l) = 1-B(n)
1) _ o(n), A(n)

7,(n+l) (n) / Al



Iterative Algorithm theorems (over any field)

(1)

(2)

(3)

For each n,

la: @0y = u®0) =1

1bs | s)ol® = o®) Ai“) P moa o B8

let (148) (®)e 7(n) N

1d: deg o) < D(n) with equality if B(n) = 1

le: deg <) < n-D(n) with e@uauty if B(n) = 0

1f: deg w(®) < D(n)-B(n) with equality if B(n) = O

1g: deg 7\®) < n-n(n);(l-n(n)) with equality 1£ B(n) = 1
For each n,

D R C N N S R

If o and ® are any pair of polynomials which satisfy

0(0) =1 and (148)0 = w mod znﬂf, D = max {deg 0, deg w}

then there exist polynomials U and V such that U(0) = 1, V(0) = 0,

deg U<D - D(n), deg V < D-(n-D(n)), and

(%)

w mod zn+l, then
bas Either deg ¢ > D(n) + 1-B(n) > D(n)or deg w > D(n) orboth.
bo: If deg ¢ < 2.2'1'.].: and deg w < %, then 0'=cr(n) and W =W () .
10

C = '00'('.1) 4V7(n)

0 = vl 4 V7(n)

If o and w are relatively prime, and o (0) = 1 and (148)o

@
- - .
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Proof of Theorem 1, excepting the equality clauses of 1ld, le, 1f, and lg.

These claims were proved in the heuristic derivation of the algorithm.
Readers who prefer a direct proof may verify these claims by a straight for-

ward but tedious induction on n.

Proof of Theorem 2:

According to Theoren 1,

(o) o) = ) gy

(n) n n+l

(148) 'r(n) = 7 + 7z 1mod 2

Taking the product of these two congruences giveg
s8) 7@ W@ = (g of8) (H00) 4 omy

Dividing by (1+S) gives

n) ) o (&) (), (=) =n

Since O'(n) 7" = o'(n) (0) 2" = 2" mod zn+1’ this becomes
'r(n) w(n) - 7(n) G(n)Ezn mod zn+l

(n) (n

According to Theorems 1le and 1f, deg w + degT ) <n.

According to Theorems 1d and lg, deg O'(n) + degr(n) < n.

S = ap 4 s S A S W

Therefore, deg{'r(n) w(n) - cr(n) 7(n)} < n

from which we conclude that

(n)

(n)

W -0

(n)

T

v = z

11



Proof of Equality clauses of 14, le, 1f, and 1g:

If B(n) = 0, then

deg 7(n) < n-D(n)-1,

deg cr(n) < D(n),

and kdeg {O'(n) 7(n)} < n-l;

Since
deg {w(n) T(n) - O‘(n) 7(n} =n, it follows that

deg {w(n) 'r(n)}= n and deg w(n) = D(n), deg ,r(n) = n-D(n)'.
Sinﬁ.la.:c"ly, if B(n)=1, then deg'w(n) < D(n)-1, deg 'r(n) < n-D(n),.

and deg {w(“) r(n)} < n-l. Tt follows that deg {a(n) 7(“)} = n,

deg O'(n) = D(n), and deg 7(n) = n-D(n).

Remarks on Theorem 3:

This theorem gives us the form of the general solution (of any degree)
of the equations o¢(0) = 1, (148)0 = w mod 2?2, In view of theorem 2
and theorem la, it is evident that © (n) and T (n) are relatively prime.

Hence any polynomial, f, may be expressed in the form

feve Ly

Theorem 5 asserts that if ¢ and w are a solution to the equations
o(0) =1, (146)c = w mod 2z, then the same U and V hold for both
expressions 0 = UG(n) + V'f(n) and W = U“‘n) + V?‘n-) . Furthermore,

theorem 35 asserts that the degrees of U and V are small.

] ¢
- e® o . W
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Proof of Theorem 3: By hypothesis

(1+48) ¢ = w mod L

Multiplying by theorem 1b gives

(4s) o = (148)0 R
O'(n)w = o m(n)
¥21: o-(n)w-c w(n) = -znv, where V(0)=0 and deg V < D(n)+D-n

Multiplying the hypothesis by theorem lc gives

(1+8) 8y

(148)e (%) + 27

0, = &(7(n) + M=o 7,(n) . B
*22 'r(n)w-cr 7(") = U zn, where U(0)=1 and deg U < D-D(n)
éubtra.cting T(n) times *21 from o'(n) times %22 gives

() ) | o) )y L gy o), g o),y

Using Theorem 2, this becomes

o =U cr(n) +V 'r(n)

Similarly, subtracting 7(n) times %21 from w(n). fimes *22 gives

RGO O R CY I P CY BN CY I

Using Theorem 2, this becomes

o =1 o Ly ,(®)




Proof of Theorem 4:

Theorem 4a is an immediate consequence of #22, le, and 1g.
Consequently, if deg ¢ < (n+l)/2 and degw < n/2, then D(n) < (n+l)/2,
with strict inequality if B(n) = 0. According to Theorems 1d and 1f, we
may deduce that
deg o{) < (n41)/2, deg @(n) <n/2, deg (o{™)u) <n +k<n4l;
deg (o'w(n)) < n+d < n+l, deg (-2V) = deg( _cr(n)w - o'@(n)) < n+l,

deg V < 1. Since V(0) = 0, this implies V =0, Theorem 3 becomes

= o'(n) , W =UC (n). By hypdthasis, c and w are relatively prime,

so | U=1.
gee.d.,
Exanples:
Take a code of block length N = 15 over GF(22), whose syndrome gives
12 Sa, 83, and Sh = Slh. We havev |

8
q =4 symbols/alphabet letter
N=15=42-1 block length
t =2 guaranteed error correction

k =9 information digits
r =6  check digits

Iet ¢ be a primitive element in GF(22), which satisfies (2+{+1=0.

Let @ be & primitive element of GF(2%), which satisfies

% +0+1=0 over GF(2) or a2 +a+t =0 over GF(). t=0°,

All the elements of GF(24) are represented as powers of @, as follows:

1k

- St o oy S Pn sa WS 6B

4

@



a
0
1
1
2
1
0
g
4
1
4
0
¢
¢
.
¢
0

15
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Example I:
(148) = 1 + o0z + B2 s o' + 2 ...

A9 2 q 20 oy WOy Oy pe) =0, BO)=1

Ail) )

o) o1 edds W oo, W) Ly M) 2o by =1, B =2
-

o® 1 hoP, @ a3, W2 21, ,@) L o3, D(2)1, B(2) =1

A§-2)= 1 ah..'. ; . a6 = dlh'= O!-l

o) 2 nln + MR ) - g th, w2 - 1o, Y(ELO‘:’ D(3)=2, B(3)=0

A](_3)= a]2+ oci'ah+ ozll-oz6=o

@
-

P o P etk W™ 12 b)) =2, B = o0 '
The factorization of 0'(4) is given by "
c(h) = (1+ a"z)(1+ a7z), so X, = ozl‘, X, = ol : .
| 52 o1 7

S o (Pedh. Y = Ao) + «a = 2 =1 l
o h( oz"L + a7) cxh.oc3 '

: !

Y = (oz7) sa = ..S‘ﬁj.-.?__ =1

2 ql* +ah a’ () l
16 '
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Example II:

(148) = 1 + allz + ozloz2 + aﬁz3 + otl)"zh + 0o

1, 9 o1, W0 21, 50 _o, p0) =0, B(O) = 0.

1 = O [0

LED I L ¢ s o) o g, (1) ='oel’, p(1)=1, B(1)=1
Ail)_l.alo+all.all=a6

) .1 (ot al‘.as)z =1+ o:lhz, 2 L o6, oz, W3 1 ozloz,

7@ = o, p(2)=1,Bte)=0.
A:(Lz) . + . .alo=a6
0'(3) = l-l-(alh'i'l)z + ozllza =1 + a32 + allze, 7(3) = Ot'6 7+ 0.'82,

u(5) = 1+(oz1°+:|_)z = 1+oz5z, 7(2) -2, oz'lz, D(3)=2, B(3)=1

A](_5)=1-ozlh+alh+ o? e+ ot . ot =0

0.(“") = l“'CXSZ 4-allz2 = (1+Ochz)(1+057z), 80 x]_:ah) x2 = a7

o) 10,

5

Y :—.x]_':'—f— = ah'...aS‘ = a8 _a5=§

1 Xl+x2 ozi+ ol o

5

__'xa + O als @ o _ 10 2

T2 —T:_—-=a1'+a7=a3-a=g
1Y%

17



Example III:

(148) =1+t 4 P+ a823 + alhzu+

0'(0) =1

I

£ W@ 1 9 oo po) =0, Blo) =0

A](_O) - il

o) o1 allz, 1) _ ot 'w(l) =1, 7(1) = Ozh, D(1) =1, B(1) =1

A:El) =052 '+a22 = 0512

@ o1 (o:ll«xlé)z ='1+oz6z, %(2)___ @ 4 oz'lz, o{2). l+az,7(2) - 0,3,

D(2) =1, B(2) =o0.

Aga) -0, A§3)

=0

0"(}4') =1 + aéz, w(h) =1 4+ Qg

Xl =

. oz6+oz an - aS

L = —% = % = £
o o4

Problem:

If (l+S) =1+ Oz +Ot1hz2 -i-Olz3 + Ozu + e

show that ¢ = 1 + otez + Otuze, and that

Xl=O¢7, X2=Ot]2, !1=§: 1231'

18
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Beloved Historical Dregs

Previous methods for calculating the o's from the S's have relied on

the direct solution of similtaneous linear equations. Instead of the key

+
equation, (14S)c = w mod 2oL

B -
1 o o o o 1 1

, one has the equivalent matrix equation

S 1 0 0 . 0 Gi gl

o

Given Sl’ Sa, ceey Szt’ one might attempt to solve the above equations

for o, Tps eees O and W, Wy eee, 0, . First, one determines ci,

Oy sees O from the equations

7]

[42]
2]

9
Q

q
(o]

Qe eva

5oy, ‘e Sie1 S bl

@
)

r

Y

19
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or equivalently,

. [ ] -
_
Sy S, 8 % Sge1
Sga1 Sp %2 Sta2
: : = -
SQt-l : : St LA s2t
- p — -— e —

These equations are typically solved by means of a tedious Guass-Jordan
reduction of the sbove matrix, This method requires many-more computations
than the generating function approach. The matrix method also requires more
storage space. Furthermore, it is less elegant and harder to remember. In
view of the iterative algorithm theorems, there is no longer any need to
introduce these matrices at all. In short, the matrix method is ndwrdbsolete,
and not used by those who think young.

Nevertheless, a considerable amount of work has been done with these
matrices. Therefore, for historical reasons, we will show how the iterative
algorithm relates to the matrix methods. If one attempts to solve the above
equations for the n unknowns

Ui, Ué, cevy Uh, then the n x n coefficient

matrix is given by

— , B
Sﬁ\ 82 Sl
~
~
~ Sp
M = ~ \
n . ~
~
~
~
S2n-l Sn
20
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If the determinant of Mn is nonzero, then these equations have a unique
solution for 0y 0'2, sery Ope The traditional method for finding the o's,
given the S's, has been to select the largest n for which Mn is nonsingular,
and then solve the corresponding equations.

The iterative algorithm may be used to determine which Mn's are singular

and which are not, according to the following theorem:

Nullity M = [D(2n+1) - n|

Renk M_= n - | p(2n+1) -n|

Proof's For k =n, n+l, n+¥2, ..., 2n-1l, we may define the polynomial

(
25 ier ok - D(k) <n-1

(x)

AL oK) e x D) > n

\

Since k - D(k) >n iff 2n - k - 1 + D(k) < n-1, we conclude that

d.eg p(k) -<- n=-1 for k = n, n+l, n+2, eee 2n-1.

With each polynomial p (k) , we associate an n-dinemsional column vector

o]

t
0 L [0, 0, @]

' k
We then introduce the n x n matrix p by taking these p( ) for the successive

columns?
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I p(()n) p(()n-l-l) p(()2n-1)
p:(Ln) p:E.n+l) p'](-2n-1)
p -
pém) pén+1) péan-l)
et e e

We claim that the p matrix is nonsingular, For, if some linear combi-

nation of its columns were zero, then

22

2n-1
k
Z ¢ p =0 ;
k=n k '
and
2n-1 2n-1 '
= 2okl (k) | %p b, k) 2o L ]
k=n : k=n
where '
¢, if k-D(k) >n e, if k-D(k) < n-1
ak = bk = ]. .
O otherwise 0 othervise
If & # 0 then (1+S)p(k)z gon-k-1 w(k) mod 222 and deg (zz)r""'k"l w(k)) '
< 2n-k-1 + D(k) < n-1. If b, # 0, then (1+8) 'r(k) = 7(k) + 25 mod £V '
and deg 7(k)<n-1 Hence, if b_ =D = ... =D =0, but b #0 |
- : ’ n  n+l n+j-1 ? n+J ’
then _ '
2n-1
~(1+8) = Ch E(k) =€ + bn-l-J zm-‘j mod I+
k=n '
2n-1 (k)
vhere deg § < n-1. We deduce that if = ] = 0, then bk = 0 for
k=n '
2n-1 '
Xk =n,n+l, ...2n-1 and Z ak22n-k-l O'(k) = O, But if an+.j # 0 and .
k=n '




o0 a0 =R o8 san M an

an+j+l = an+3+2 = oo =8By 0= 0, then

2n-1 2n-1

b gon-k-1 cr(k) = a 27971 10a 2279, We conmclude that T p(k) =
8y n+J k= k =

k=n

0 iff every Cy = 0, and that the p matrix is nonéingular.
Since the matrix p is nonsingular, the rank of l& is the same as the

rank of the product matrix P = an. The columns of P are M ng(k),

k =n, n+l, ..., 2n-1. Due to the structure of the matrix M , the column

(k) _ [P(k), p(k) p{¥) 1% here
n

(k)
Mn [ is given by B NEERITR PeY

pX P(k)z:L = (1+8) p(k). If p(k) = c(k), then k - D(k) >n, deg(zan'k'la(k)).
< n-1 and (l+S)p(k) = ,Po-k-1 w(k) mod z°° so that g(k) =M p(k) =0. On

the other bend, 1f p&) = T®) tnen aee 7(¥) < x - p(k) < n-1 end (148) p{®)

= 7 4 % noa &7 g0 that p(¥) 4 Mng(k) =[00,0,.0.,0,1,... 1%, (The firet

nonzero entry in g(k) is a one in the k - (n-1)th coordinate.) From these
arguments it follows that the P matrix is triangular, with zerces above the
main diagonal. Each entry on the main diagonal is either zero or one. If
it is zero, the entire column containing it is zero. The null space of Mn
is spanned by the columns p(k) = g20°k-1 a(k); ‘.the range of M, is spanned by
the columns of P for which P(k) = (1+8) 'r(k). The nullity of M is the same
as the nullity of P, which is equal to the number ofAk's (n <k< 25-1) for
vhich k - D(k) > n, or equivalently, D(k) < k -n.
From the iterative algorithm,

D(k) if D(k) > (k+1)/2 or if Aj(_k) =0

D(k+1l) = .
k + 1 - D(x) otherwise

It is evident that D(k) is a monotonic nondecreasing function of k, and that

D(k) < k/2 only if D(k) = D(k-1).
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We next claim that the set of k's for which D(k) < k - n must occur
consecutively. For if D(k) < k - n <k +1-n<D(k+l), then D(k+l) =
k+1 - D(k) >n + 1 and D(1) =D(k+1) >n +1 >4 + 1 - n for 1 = (k+l), k+2,
eesy 2n=1. |

If D(2n-1) = n-3, J > 0, then

‘ n-j < i-n fér i=2n-j, ..., 2n-1

D(i)= -
something > i-n for i = n,n+l,...,2n-j-1.
In this case, Nullity M = J =n - D(2n-1). |

On the other hand, if D(2n-1) =n + J, J > O, then there exists a k
such that

If p(2n-1) =n -3, J > O, then

n + J > i - n fOI‘ i = k, k+l,-'o,2n-1
D(i) =
k-,j-n _<. i - n for i= k-J’oo u,k-l

In this case, Nullity M o= j = D(2n-1) - n. We conclude that

Nullity M = |D(2n-1) - n|; Renk M_ = n- | D(2n-1) - n|

g.e.d.

Simplifications in the Binary Case

For binary BCH codes, the decoding procedure can be somewhat simplified.

Since the only nonzero element in GF(2) is 1, every error value is 1. Thus,

once the errors are located, they may be corrected immediately. Step IV of
the general decoding procedure may be omitted. Additional simplifications
result within the iterative algorithm as we shall now show.

Since every Yi =1, we may simplify the expression for w:
W=0+2 Xz = (1-X,2)
1 1 g 9

o A
=0 +0' =0c+0o =0

®
S5 By G5 Gu U0 U0 GF G SB S S0 CO OO S B U5 U8 N
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A
W =0

(Here we again use the superscripts "A' and "~" to denote the even and
0dd parts respectively. "“~" should not be confused with "~', which
we have used to indicate the reciprocal function.)

If the S's are power-sum symmetric functions of any number of error
locations, then S, = ? xﬁ, Sy = ? xfk = (f xf)a, from which

8= &°

This equation leads to & considereble simplificetion of the iterative

algorithm. We begin with a lemma:

let (1+S) and (1+R) be reciprocal generating functions in a field of

A
characteristic two: (1+S)(1+R) = 1. Then f= 0 iff S= &°.

A
1+S8S=1+S ors8==5

A A
Proof: Separating (1+S)(1+4R) = 1 into even and odd parts gives (1+8)(1+R)

| . ~ A A AV
+ SR =1 and S(1+R) + (1+S)R = 0. Subtracting S times the latter from

A Ap wp.,. A A
(1+8) times the former gives ((1+8)° - §)(1+R) = (1+8), from which

A .
A 1+8
R= ?—-——— -1. In a field of characteristic two,

l+/é)2-vs‘2
A - Ao ~n A A
(1+S)2-82=1+32+32=1+(S+S)2=1+Sga.ndR=Oiff

A 2 2
q.e.d.

We next use this lemma to prove the following:

oln) _ Aln)

Y(n) Z ‘;‘(n) if n even

A
AB) i noodd

A§n) = 0 if n odd

25




Proof: The proof is by induction on n. The theorem is true for n = Q.

We asgert that if
A v
o(2K) _ C,_(21:) end 7,(21:) - (2k)

then

A A
w(2k+l) - o_(2k+l), 7(2k+l)= T(2k+1), A§2k+1) -0,

and therefore,

F(242) _ G(2k+l), o(2kH2) _ u)(21:+1), H(22) _ o (2k41),

7(2k+2) -z 7(2k+1)’ o(2k+2) g(2k+2) 2k+2) _ \(2k+2)

and 7&

The only nonobvious cleim of the previous sentence is that A§2k+l> =0

To prove this, we write
(1+5) 0_(2k+l)5 A(2k+l) A§2~1«;+1) 2Kt . 2k+3
W
In view of the previous lemma, multiplying this by (14R) gives

A A
G(2k+1)E 9(2k+1) +R C,,(21<+1) N A£2k+1) 2Kt o 2k+3

od

z2k+§

- A
~(2k+1) P A(2kH) A§:21:+1) S

Since the expression on the left is odd, A§2k+l) = 0.

q.e.do

We further assert that

deg a(n) = D(n), deg +(n) =n - D(n)

Proof: Suppose deg a(n) = D(n) and deg T(n) =n - D(n). Then
deg c(n) =1 + deg T(n) only if n is odd, and in this case Agn) = 0. It

follows that deg c(n) # deg Ain) z T(n). According to the recursive

elgorithm, U(n+l) = G(n) - Ain) z'T(n). Since the two terms on the right

have different degrees, deg o(n+l)

It is easy to verify that deg T(n+l) = n+tl - D(n+l). Since deg c(o) = deg

T(o) = 0 = D(0), the theorem is true by induction on n. a
q.el L)

26

= max {deg a(n), deg Ain) z T(n)}= D(n+1).



(0) (o)

In view of these results, we may compute the functions o'/, 7' 7/,
(2) L(2) (B) ) () (2t)

[¢2 s’ ) eeey

o by an ebbreviated iterative
algorithm, in which the w and vV polynomiels and the odd-indexed o and T

polynomials never appear explicitly:

Abbreviated Iterative Algorithm for use in fields of characteristic two
A

vhen S = Se.

Initially define 0@ =1, (0 o3

Proceed recursively as follows:

Define A§n) as the coefficient of zn+l,in the product (1+S) a(n)

Let
S2x+) _ (2k) A§2k) 5 7(2k)

z2 T(2k) if A§2k) = 0 or if deg U(Qk) >k
T(2k,+2) -

(2k) '
Z20 (2k) (2k)
A
RCIEE if 1 # 0 and deg o <k

1

From this algorithm, it is immediately evident that

Téek> =01if k>0

Finelly, we may also simplify the expression for the general solution

2t+1

A
of the equations ¢(0) =1, (1+8) 0= o mod z . According to the general

iterative algorithm theorem 3,

(2t) (2t)

oc=Ugo + VT

7




Multiplying by (1+S) gives

(148) o = U(1+8) o(®) 4 v(1+8) 7(2%)

U Q(Qt) T(2t)

(l+S)0'= + VT

vhich is an even function only if

A IRV
U=Uand V=YV

Previous simplifications of the binary case have been based on the matrix

l O O s o0

82 Sl 1 oo

Son- Sp-1
i Sen-e e i

It is a relatively tedious; but straightforward problem to show that

[n-deg c(2n)

5 ]

Nullity Mn =

Here the brackets denote the greatest integer less than or equal to the
([5/2] = 2; [-1/2] = -1).

directly parallel to the proof of the theorem in the section on "Beloved

quantity inside. The proof of this theorem is

Historical Dregs", if one begins by defining

(zx) 2%) 1o geg () < ny
° ,2n-2k-1 G(2k) (2x)

iff Geg o < 2k-n

for k = 0,1,2,...,n-1. We leave the remainder of the proof as an exercise

for the reader.

28
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This concludes the simplifications of the iterative algorithm and its
properties that result in the binary case. Unfortunately, no comparsble
simplifications are known for BCH codes over GF(q) for any q # 2. Although‘
it is true thet qu = S%, this apparently does not result in any A's being

automaticelly zero.
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BorHoUINOHMNONOE-0D M-S OO =MW I\ OO 1+ -+ 10
= AAMNACPERICYRTIRETIRLA LG da 9

A OO0 rAO0OHOHOHOMOA0OHOHOHOHOAOHOHOAHOH

OCOMrOO0OmMHMOO0OA A0 OHHOOAAOO0OAHOOAM OO

QA
— 000 O0HHHAHOOOOAHAHHMOO0OO0OAAAHOOOO A

ZMIV COO0OO0O0O0OO0OO0OMAAHAMHMAANAOOO0OOCO0OO0O0O0O ™M Hr-lrrtdrd

=
Gr) OOO0OO000000000C0O0O00HAMHMAMMAAAAAAAAA
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Example : Consider the 3-error correcting binary BCH code of block length

31, with the field represented as polynomials of degree < 5 in «, where
05 + oz2 + 1 = 0. Log and antilog tables for this field are given on the
previous page. Suppose Sl = 11101 = alh s S3 = 10000 = ah B S5 = 00010 = dl .

(148) = 1 + alhz + a28z2 g N a25zh + a2’ + a8z6+...

(o) _, 0) 1

(1+8) 0'(0) =1+ alhz mod 2%

)=1+a}hz : 7(2)=dl7z

(l+S)cr(2)a=; 1+ (ah + czll)z5 mod zh

(1h = 10000

o 00111 06
10111 = &°° = o

G(M' = l+alh + 011222 T(h) = ajz+Otl9z2

(1 + S)c(h) = l-foz]'Ez2 + (o + a8 + ot]'6)z5 mod 26

a = 00010
a8 = 01101

A 11011
106100 =

0'(6) =1 + al)'l'z + Oz2 + 02623, 7(6) a z+a 22+a52

Problems: (Binary Case)

1). Show that o) £(Z) _ 04a + 22X, where 0ad is an odd function of z.

2). Comsider the triple error correcting binary BCH code of block length 31.

Suppose §, = 01010 = a§, S5 = 01111 = oA, S5 = 0001 = o®. Show that
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0(6) =1 +a6z + a2lz2 + dll 5.

Alternate BCH Codes

In the previous sections, we have assumed that the roots of the gene-
rating polynomial of a t-error correcting BCH code must include
a, a?, o?, ey o?t. Although convenient, this definition is overly restrict-
ive., More generally, for any m, one may define a t-error correcting BCH
code as the cyclic code whose generator is the product of the distinct
minimum functions of o, QP+1,...,QP+2t-l. If m £ 1, this definition
gives an alternate t-error correcting BCH code. There is no loss of gene-
rality in the assumption that m > O, since the case m = O is identical to
the case m = N.

The decoding procedure for alternate t-error correcting BCH codes may

be derived as follows: In general, one has the identity

(148) o = w, or equivalently,

m-1 X (s o) X
1+ = Skz + Skz Yo =uw-g¢
k=1 k=m
and
0 m-1
( = Skzk) g=w- (1L + = Skzk) o
k=m k=1 —

Since the left side is divisible by zm, so is the right side, and e may

define the polynomial m-1 Kk
. w- (1 + 21 Sic? )

5= m-1 te
z

@ 1ikem
Clearly deg §< deg o and ( £ S, 2 ) o =&~ o or
k=m
m+2t-1
(1L+ & Skzl+k-m) o = § mod 22t
k=m

32
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Step II of the decoding procedure for an alternate t-error correcting BCH
code consists of the solution of this equation for the polynomials ¢ and

€, using the iterative algorithm. The error evaluator is given by the

formula
m-1
w= 2%t g4 (142 525 - zm'l) o
k=1 k

The usual formula for the error values, namely,

w(x;")
Y o= -1
£ (1-xjxi )
JH ,
novw becomes
- -1 -m g
Y = _x_i.—n‘g—(ﬁ'-—)- = w
i -1 T
n (1-X.X.7) (x,-X,)
YR JALLTTY

Thus, the decoding procedure for an alternate BCH code differs from
the decoding procedure for the BCH code with m = 1 only in these minor

modifications in the equations to be solved at steps II and IV.

Decoding Erasures as well as Errors

For many channels, it turns out to be wiser not to force the demodu-
lator to make a choice between sufficiently close alternatives. The best
strategy is to demodulate sufficlently weak or sufficiently ambiguous_ |
received signals not es any of the q letters in the input alphabet, but
as an additional letter, "?", called an erﬁsure. In addition to locating
and correcting any errors which may be present, the decoder must then also
attempt to determine the values of the symbols in the erased locations.
Thus, the goal of the decoder is to correct all of the "errata", which

consist of two types: erasures, whose locations are known but whose
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values are unknown, eand errors, whose locations and values are both un-

known. It is helpful for the decoder to consider three different locator

polynomials:
The erasure locator: A= =« (l-Xiz)
X = erasures
The error locator: N= =x (1-Xiz)
X = errors
The errata locator: o= 7 (l-Xiz)
X = errata
0'=A>\.

The key equation, (1+S)c = w, may be written as (1+S) A A = w, More
generally, for the alternate BCH codes discussed in the previous section,

the key equation may be written as

m+d-2

L+ = 8,

k=m

d

zk+l-m) AN= §mod z

Here the cocde distance, d, is 2t+l for the t-error-correcting code. The

S's are the known weighted power-sum symmetric functions of the errata

locations; A is the known erasure locator; A is the unknown error locator;

€ is the unknown errata evaluator for the alternate BCH code, as discussed

in the previous section.
To simplify the key equation, we combine the known S's with the
known erasure locator polynomial to obtain Forney's (1964) T's. The T's

are defined by the equatioh

3L




d-1 x m+d-2
(L+ = Tkz)==(1+ z 8y
k=1 k=m

The decoder must somehow find A and § from the equation

d-1
L+ =T
k=1 k

zk) A= § mod 24

If there are s erasures and t errors, then deg A = t and deg § = s+t.

We have
s d-1
1+ = ']3kzk + Tkzk) A= € mod 22
k=1 k=s8+1
d-1 - N s
(= Tkzk) N=E-(1+ = Tkzk) A mod 2%
k=g+1 k=1

1

Since the left side 1s divisible by Az8+ , 80 1s the right side. We define

the polynomial 7 by the equation
s

X
T]==<§- (l+k§1Tkz))».>+h

S
4

Substituting this into the previous equation gives

d-1
(= Tkzk) AS 25(N-)) mod 22
k=s+1 .
d-1
(= Tkzk's) A= T-A mod 2%
k=s+1
da-1
(L+ = Ty zk‘s) A = 1 mod 2378
k=s8+1

If there are t errors, deg A =t and deg M < t. If t < (d-s)/2, these ...

equations mey be solved by the iterative algorithm.

%



The overall decoding procedure for correcting erasures as well as

errors may be summarized as follows:

Step I: Compute the weighted power-sum symmetric functions of the

errata locations, Sm+1’ Sm+2’ ooy Sm+d

polynomial, A = =« (1-Xiz). Define s = deg A.
X=erasures

_l,-and the erasure locator

Step II:
da-1 k m+d-2
Compute (1 + £ T, 2 Yy = (1+ = 8y
k=1 k=m

zk+1-m) A

Step III: Use the iterative algorithm to find the polynomials A end

T} such that
d-1
1+ = T,
k=s+1

zk's) A= T mod 208

A is the error polynomial.

Step IV: Compute the errate locator,

5 k s 8
E=(1+ STz -2 )N+217

k=1 k

Step V: Evaluate all errate values from the equation

-m
X 8(x)
Yi = X (X,-X)
i’ 0
JAL
This procedure will correct any combination of s erasures and t errors
if 4 is largér than s + 2t. In this sense, an error may be considered to
be twice as harmful as an erasure. Heuristically, one can attribute this
to the fact that there are two unknowns (a location and a value) associated
with each error, but only one unknown (a value) associated with each erasure.

One can not rely on this heuristic interpretation too much, however, because

the criterion s + 2t < d remeins valid even in the binary case, where every
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error has the known value 1l.

DECODING MORE THAN t ERRORS

If there are no more than t errors, then the iterative algorithm will

(Et) and the correct error

(2t)

terminate with the correct error locetor, ¢ =a¢

2t)

evaluator, w = w /. In this case, the polynomial o (2t)

has D(2t) = deg o
distinct reciprocal roots among the Nth roots of unity, corresponding to the
error locations. The decoder will find these reciprocal roots at Step III
of the decoding procedure. At step IV, the decoder will compute Yi =

\G(Xi)
X, n (X,-X,) °
T I

some nonzero element in GF(q), equal to the value of the error at location

If there are no more than t errors, then each Yi will be

Xi' |

If there are more than t errors, then almost anything can happen. It
is possible (though very unlikely) that the iterative algorithm terminates
with the correct error locator and the correct error evaluator, even though
D(2t) = deg c(et) >t. It is also possible that the recursive slgorithm
terminates with a legitimate error locator and a legitimate error evaluator
corresponding to some error pattern of weight < t. 1In that case the decoder
completes steps III and IV of the decoding procedure without difficulty, and
incorrectly "corrects" what it incorrectly believes to be the error pattern.
Although wrong, the decoder cennot be blamed for such a mistake, since, on
the basis of the received codeword, the error pattern which it incorrectly
corrected is more probable than the actual error pattern, which has greater
weight.

Far more likely than either of these events, however, are two other

possibilities: failure at step III or failure at step IV. The recursive
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(2t

algorithm may terminate with an illegitimate polynomisal, o ), which does

not have deg U(Qt) distihct roots among the Nth roots of unity. In this

(2t)

case, step III ends in failure. Even if all roots of o ere distinct

Nth roots of unity, the polynomial {2%) may be 11legitimate. Although

the Y's which the decoder computes at step IV must lie in the field which

contains the Nth roots of unity over GF(q), they may not lie in the subfield

consisting of GF(q) itself. 1In the event of such a failure at step III
or IV, the decoder has detected that more than t errors have occurred.

Ag a prelude to formulating certein procedures which can be used to
correct many patterns of t+1, t+2, ...,)erro;s in certain codes, we insert

an alternaete step into the decoding algorithm:

Step IT 1/2: Compute the generating function S'Z%), defined by

(2%

UZEtS

(1+s(2t)) =

J

For the moment, we avoid specifying the number of coefficients of

5(2t) (28) 4 o(28)

which are to be computed. Since w are given, it is

clear that for i > D(2t), the decoder may compute

(2t)_ _ 2{2%) (2t) (ot)
S == X Si p aj
J+l B
If the polynomial U(Qt) 1s legitimate, then a(et) = ﬂ(l-Xiz), where
i
the Xi are distinct Nth roots of unity, and U(Qt) divides 1 - zN. In this
(2t) (2t)
case we may write c(at) = (1-zN)/§(2t) and (1+S(2t)) - § o S
1-z
oo N
_eet)(ee) 2N
J=0

38
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If deg w(Et) < deg U(Qt) = D(2t), then deg (§(2t)w(2t)) < N and we have

g(2t) _ o(2t) ~ ' (2t) _ «(2t)
N+k k for k = 1,2,35..s Conversely, if x = Sk

for k + 1,2,..., D(2t), then s(28) _ sizt) for all k, because

N-+k
D(2t) (2t) (2t) _ D(2t) (2t) (2t)
SNEEZEt)+i ='321 Span(2t)+1-3 73 Eil ®p(2t)+i- J
(2t)
= “p(et)+

(by induction on i). Since sﬁii) s(Qt) for all k>0, 1 + s(2t)

(2t) (2t) (2t)
: , where deg Q(et) < N. We then have - = : , or
1-2 - cfat] 1-2"

S(2t) g(26) _ ((86) (3 Ny ' mig ghows that o(2t) divides o(28) (1),

+(2t) (2t)

According to theorems 2 énd la of the iterative algorithm, and w

are reletively prime. Therefore, G(2t) divides (1-zN). We have proved that

The reciprocal roots of U(Et) are distinct Nth roots of unity iff

(iz) = S](set) for k = 1,2,000, D(2t)'

Thus, the success or failure of Step IIT may be anticipated by an

(2t)

inspection of certain coefficients of ] at Step II 1/2. By further

investigation of these coefficients, we may enticipate the success or fgilure

of Step IV:
(2t) D(2t)
If X)5 XpseeesXppy) 8F€ AiStinct and o = x (1-X;z), then the
i=1
w(X,)
. i (2t) (2t
quantities Xi : (x x ) €GF(q) 1iff sqk = 8, ) for k = 1,2,..., D(2t).
JAL
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(2t) D ' o(2t)
Proof: If o = x (l-X z), then a partiel fraction expansion of —(_T
i=l

»(2t) Yixiz ) e w(et)(x)
gives —rxpy = I s5g == (= ¥, i)z , where Y, = i— - (X

- : )
o i 1% kel 1 Y X

kq = E. Y% -
LA I |

and S(2t) =

D
M z

Y Xk for all k. In particular, S In a

)
1=l ii

(26)ya _ (3 y 254
field including GF(q), we may also write (s r=(2 Y, 4) =
i=1

D D kq
({2 | 5 3 x3k g Y, = Y2, then ve have (s(%))q TYX =
k i %4 i i
i=1 , i=1
D
quk a4 _ (Sl({et))‘1 for all k. Conversely, if (slgit)) = (Sl(:Et))q’ then we
—1
Dk .(2t)q D L ek _ (2t)\a
have both Z Y X -(s )* for k = 1,2,..., Dand T Y X+ = (8:°77)
i o 174 k

for k = 1,2,..., D. The unique solution of the first set of equations is

o=l
Qx; ) .
given by Y, = 1 s where ( is determined by deg Q < D, Q(0) = 1,
i Xi n IXi-XJS -
JAL
and (1 + 2 (s(%))q zk)( x (1-x22)) = 0 mod L+l
k=1 i=l

This same expression furnishes the unique solution to the (identical) second

set of equations, whence Yg = Yi and Yi € GF(q), for 1 = 1,2,...,D.

g.e.d.
These results provide a method of anticipating the success or failure
(2t) at step II 1/2. Since the success

(2t) (2t)
of step III cannot be assured until one computes Set+l’ oy SN+D(2t)’

of steps III and IV by computing S

Lo




this computation may appear prohibitively time-consuming. It is true

that the computation of N + D(2t) - 2t successive coefficients of S(Et) is

approximately as much work as & Chien search over N + D(2t) - 2t successive
Nth roots of unity, end that with only 2t - D(2t) more steps, step III might

be completed via a Chien search. Nevertheless, there are two major advan-

tages to Step II 1/2:

(2t) (2t)

and @ may be

1) The vast majority of illegitimate polynomial o
detected by computing only e few coefficients of S(et).
2) Sometimes corrective steps may be taken.

For exsmple, although the decoder does not know S2t+l’ he often knows

for various (small) values of K, due to conjugate constraints

(2t)

SQt+K

=gad =
S. = Sk and cyclic constraints Sk+N = Sk' After computing S

qk ,» the

(2t)_ (2t)
decoder then knows AK = SEt+K - 82t+K for various values of XK. If

Aé?t) # O, then G(2t) and w(Et) are not legitimate. However, these known

A§2t) may enable the decoder to compute the polynomials U and V, and there-
by determine the true error polynomial from theorem 3 of the recursive

algorithm:

¢ =0 o) g o(20)

In general, we define

a(2t) _ (g.g(2%)y /.28

(Notice that the first coefficient, A§2t), coincides with the A§2t) defined

in the iterative algorithm.)

(2t) (2t)
Setting (1+8) = = = ?? (zwc.)*.v‘Y (2t)
02

+ VT

L1



—
n
ct

~

w28 _y((@t) L(28) _ (28) yl2e),
22 Y ¢-2) R €1 ()

afet) _ -V
| U(2t)(U 2t Ly T(21:))

a28) |y § (1o o2y o(8) 4 ¢ o(20))E
k=0 /
Aiet) - v,

Aéat) = - V o+ v (U) + c§2t) A Téat) + c§2t))

Aéet) = -Vy + v'2(Ul + ciat) + v, Téat) + c§2t))

.-vliajl + c§2t) A Té?t) + c§2t))2

(2%)

- [Uéet) + c§2t)(vl+ a&at),+vl T )

+I12 +Ul o§2t) + aéet) + V, Téat) + V1 T§2t)]]

In a field of characteristic p,

¢ o) Qo m
¥ (x(1-€P) )P
k=0 m-0

Using this identity gives

- P-l
(20) | @ BNEN T (e, 2 (20"
m=0 m=0

L2



In the special cese when U =1 and V = Viz end p = 2, this becomes

a2t) _ g ;“’ ( (BE2 4 y ,(2t) T(et))am
- m=0
and
(212 4 y o(28) (2t)
=1 +(a§2t))2 22 + (GéQt))Q zu + o
+Vz {T:(LEt) z + ('réEt) + 'r](_zt) cr§2t)) £+ )
So

A(Qt) = Vlz.+ {Vi T§2t) + Vl(a](_Et))e}z3 + ouas

Example: We continue the example of the previous section, using the 3-error
correcting binary BCH code of block length 31, with the field represented

as polynomials of degree < 5 in Q, where o? + o? + 1 =0, The power-sum

symnetric functions of the error locations were Sl = 11101 = a}h, S3 = 10000

= ay, and S. = 00010 = al. Using the recursive algorithm as in the previous

) . .
section, we find 0(6) - a?6 25 + 0 22 + o}h z + 1 and 7(6) = o?h~z +

07 22 + o? 5. We have (1+8) = 1 + o}h z + 0?8 z2 + QF z3 + (),’r=‘5z)+ + alz5 +
8 6

o Z +* oaee

Using the formuls Si for>1 < 6
5(6) _
1 5 (6) (6) _ au (6) , 26 .(6)
jil Si-j GJ = o Si-l + o? Si_3 fori>6

(l+s(6)) = 1+alhz r P82 . o:hz3 + a?szh + otz + a§z6 r P21 4+ o958

+ Q?029 + Cl?210 + ..

However, in view of the cyclic and conjugate comstraints, it is known that

b3



.-.38:&8# 20:5(6)

9 = S§l+9 = suO 5 We conclude that the polynomial

S

0(6) is illegitimate; it dpes not have three distinct reciprocal roots

in GF(25), because A§6) = 89 - Sés) = Ot'8 ) # 0. Corrective measures
are in order, If we assume that no more than four errors occurred, then
genersl solution o =U 0(6) + V 7(6) becomes o = 6(6) + Viz 7(6). (Recall
that, for binary codes, U must be even and V odd, and if either U or V had
degree > 2, then o would have degree > k.) According to the calculations

on the previous page,

A;21-,) -+ Vi T:(Let) . V1(°§2t))2

In the present example this becomes
1=V At 4 v, 28

-2 -l -1
or (V1 a )< o+ (Vla ) =a

The solutions of this quadratic equation are given by
vy ofh =t orat 41 =ot
Vl = 0}5 or 0?3

IfVl=dl5, theno'=1+alhz+0822+023‘+(1202)+

If V) = 0?3, then o0 =1 + alhz + al6z2 + P2 + Q> zlL

It happens that both of these polynomials are legitimate, and each has four

distinet reciprocal roots in GF(2§).

In general, if one assumes that‘there are t+u errors, then one can
use the expressions for the generating function A(et) to obtain simultaneous
equations for u unknown coefficients of the polynomials U and V. These
equations may have no solutions, as may haﬁpen if the received word lies

in a coset all of whose words have weight > t+u. Or, there may be several

Ly
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legitimate solutions, as in the above example. Or, there may be a unique
solution.

Unfortunately, the simultaneous nonlinear equations appesar to be quite
complicated, and little is known about the conditions for any solutions,
for a unique solution, or how to go about finding the solution(s) if it
(they) exist. If one assumes that there are only t+l errors, then this
extra error can be located by solving & single algebraic equation in the
single unknown, Vl. However, if there are more than t+1 errors, then

the situation gets very complicated very quickly.
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