Blockchains: from bitcoin to robotics

Blockchains: from bitcoin to robotics

Luca Giuzzi

University of Brescia

DMMM Winter School 2020

Luca Giuzzi Blockchains: from bitcoin to robotics

Blockchains: from bitcoin to robotics

Why cryptography ?

v’ Symantec.

Security Response

Contents

Infection Staistcs.
Stuxnet Architecture.
Installation

Point
Command and Control,
Windows Rootiit Functionaity
Stuxnet Propagation Methods.
Modiying PLCs
Payload Exports.
Payload Resources
Variants
Summary
Appendix A

Revision History

W32.Stuxnet Dossier

Version 1.3 (November 2010)

Nicolas Falliere, Liam O Murchu,
and Eric Chien

complex threat. The authors expect to make revisions (o this document
shorty aferleas s new infonato is ncovered s my bepublcly
disciosed, i paper s theworkofnumerous ndiduls n the Sy

{ac Securty Responsa eam over the a5t three monihe well eyend the
cited authors. Without thir assistance, this paper would not be possible.

Introduction

W32 Stuxnet has gained lot of attention from researchers and me.
dia recently. There is good reason for this. Stuxnet s one of the
most complex theeats we have analyzed. In his paper we take a d
{aied ook at Stuxnet and its various components and particularly
focus on the final goal of Stusnet, which s to reprogram industial
control systems. Susre is 2 large, complex piece of malware with

ic. While some of the information from those blogs is included here,
this paper is a more comprehensive and in-depth laok at the threat

ol sy o set of sy systems. Idustalcotrol sy are
used in gas pipelines and power plants. It final m
industia cotrl systems (CS) by modiying code on programmatle
logic contrallers (PLCS) to make them work in @ manner the atacker in-
tended and to hide those changes from th
I orer 1 acle ths goa the ratrsamassed 3 st sy fco
s o increase their chances of success. This includes zero-day
o, 3 Windows 01k he 15t ever PLC oot anthirs evasion

o iy part
mosty reling on the bass of “isobated” networks,

Stuxnet Worm Impact on Industrial
Cyber-Physical System Security

Stamatis Kamouskos

. Germany

il stumats Karnouskos @sap.com

Abstact—ndustia systems consider only

even possible (mainly due 1o the very niche technology and
cded). Additionaly it was considered that “safe’

Al e consestions hovgh e il changed
e last months due 1o the Stanet incident.
“This atack cor

st an extremely crical time, as modern

Sl moders s s
e e wpees
sen

DAIDCS systems from a securiy perspeciv.
1 INTRoDUCTION

Mach of our eritical infastucture s controlled by esber-
<ponsible for monioring and contoli

Tnternet based
technolo rehitecures. [3); lthough not necessarily
o o et el Gene e comt
inz systems. complex industial applications compossble of

™
analysis and security tools, howerer the same does not hold

5 ke mansgemen. o & o pie .
nd i o itors. space sadone. buigs e The

imporanc of mnioring nd conl, which be oy rin
wch cyber-physcal sysies, is paramount for European
I woldcconomis o sl et sl
{his ket s expcted & estimated 2
201310 500 B n 2020 21 Aswe move owars
fnteoduction of IT technologies inthese sectors. and automatic
threats that may arise il hav

management, any digital

cngile it n the e word (1 nd i proeses

e summer of 2010 was a landmark o the sccurity of

e ot o eqipmen: iy By ot e
Ll

e the v

s wakeap ol nd
i il son 2.0 afrthought nd i on v 0t 53
coninsos st shoud b g il el
aspe eh atacks n 1T sysems ar ot aomething

e, up 1o now it was considered highly unlkely that lage
scale attacks in the software side of highly specialized ap-
plicatons (such as tha of a SCADA) were worth wrying or

e or industral may notbe adequatly
assessd.
IL T STuxNET Worm
he St vorm a2 s i gt indsial ool
ol of modityin b code

systems with the in Pro-
rammable Lagi Contolles (LCs) i et fo meke them

ofscurity oles and fols s used such s ootk ncluding
vha

expl
s s
owerer the sophi

ysis 7] poins out that more than 805 of

the infected systems rey maialy i Iran but sl in Indonesia
nd i Altough e o mw eected n mid
5010,y et of he Stwsnr cole smming from 2009

v e o, T 1 belcved e e devclopnt of s
iy sopisiced wam was s ot o it s

from il specinlzions and estment in tn

m bitcoin to

Blockchains: from bitcoin to robotics
Why cryptography ?

Why ?

@ Integrity
@ Authentication
@ Secure Collaboration

@ eftc.

Luca Giuzzi Blockchains: from bitcoin to robotics

&

SANI]/}/K Q

EEEEEEEEEEEEEEEE

o2 L o E KREMLIN'S
; /fi m z / UUUUUUUUUUUUUUUUUUUU
N == X~ "
e

Sk Sy = e ANI]Y N\ \

Blockchains: from bitcoin to robotics

Blockchains

ries aims 10 provide detils of blockehain in

Rodrigo.da Rosa Righi
Antonio Marcos'Alberti
Madhusudan Singh_ Editors

Blockchain
Technology for
Industry 4.0

Secure, Decentralized, Distributed
and Trusted Industry Environment

@ Springer

Luca Giuzzi Blockchains: oin to robotics

Blockchains: from bitcoin to robotics
Blockchains

Blockchains

@ Immutable distributed database
© Byzantine agreement protocol

A blockchain might offer other facilities:
@ Virtual Machines
@ Smart contracts
@ Storage optimizations (Merkle trees)

@ etc.

Luca Giuzzi Blockchains: from bitcoin to robotics

Blockchains: from bitcoin to robotics
Blockchains

Immutable distributed database

A blockchain is

@ Distributed: data can be read and written by a set of
non-coordinated agents;

@ Immutable: once accepted the data cannot be altered in any
way.

Luca Giuzzi Blockchains: from bitcoin to robotics

Blockchains: from bitcoin to robotics

Blockchains

Blockchain

A verified transaction
can involve cryptocurrency,
contracts, records, or other

> ' = 1 s
QYYD g

SOmeans requests The requested transaction The P2P network of nodes
a trangaction, validates the transaction

and the user’s status using
known algorithms.

Crypocurmency |

Has na intrinsic

Once verfied,
the transaction

Is combined sical
| M th other exists
only in the
network

| tocreate a new
block of data
for the ledger.

The new biock is then added to
the existing blockchain in a way
that is permanent and unalterable

The transaction
s complote!
completely

decentralized.

i
I
]
i
1
i
wransactions |
]
i
1
i
L8

Blockgeelks

Blockchains: from bitcoin to robotics
Blockchains

Consensus

@ Different agents can have a different view of the database (fork).

@ We need an algorithm for deciding which is the version of the
database to be trusted in the case of conflicts (byzantine
agreement).

Luca Giuzzi Blockchains: from bitcoin to robotics

Blockchains: from bitcoin to robotics
Blockchains

Limitations

Brewer’s Conjecture and the Feasibility of
Consistent, Available, Partition-Tolerant Web

Services
Seth Gilbert* Nancy Lynch*
Abstract

When designing distributed web services, there are three
properties that are commonly desired: consistency, avail-
ability, and partition tolerance. It is impossible to achieve
all three. In this note, we prove this conjecture in the asyn-
chronous network model, and then discuss solutions to this
dilemma in the partially synchronous model,

1 Introduction
At PODC 2000, Brewer!, in an invited talk [2], made the following con-
jecture: it is impossible for a web service to provide the following three
guarantees:

 Consistency

o Availability

e Partition-tolerance

All three of these properties are desirable - and expected — from real-world
web services. In this note, we will first discuss what Brewer meant by the
conjecture; next we will formalize these concepts and prove the conjecture;

Blockchains: from bitcoin to robotics
Blockchains

Taxonomy of blockchains

Various kinds:
@ Public/Private
@ Permissioned/Permissionless

@ Decentralized/Centralized

Luca Giuzzi Blockchains: from bitcoin to robotics

Blockchains: from bitcoin to robotics

Blockchains

Taxonomy of blockchains/2

Are there
multiple
writers?

Do you nee:
to store state?

no I

Blockchain

Are all
writers
trusted?

e
Blockchain

Private
Permissioned
Blockchain

Don't use

Blockchain

Blockchains: from bitcoin to robotics
Blockchains

Applications

Electronic currencies (bitcoin, ethereum, libra, etc.)
Smart contracts (ethereum, libra, hyperledger)
Asset tracking (hyperledger)

Manufacturing quality control

E-voting (?)

etc.

Luca Giuzzi Blockchains: from bitcoin to robotics

Blockchains: from bitcoin to r
Blockchains

obotics

Uses of blockchains

1

ASKING AIRCRAFT DESIGNERS
ABOUT AIRPLANE SAFETY:

ASKING BUILDING ENGINEERS
ABOUT ELEVATOR SAFETY:

NOTHING 15 EVER FOOLPROOF,
BUT MODERN AIRLINERS ARE
INCREDIBLY RESILIENT. FLYING IS
THE SAFEST WAY T0 TRAVEL.

it

ELEVATORS ARE PROTECTED BY
MULTIPLE TRIED-AND-TESTED

FAILSAFE. MECHANISMS. THEY'RE
NEARLY INCAPABLE. OF FALLING.

\

PSKING SOFTWARE |
ENGINEERS ABOUT
COMPUTERIZED VDTING:

THATS TERRIFYING.

w7

VAT, REALLY?

) DON'T TRUST VOTING SOFTUARE. AND DONT
UISTEN o ANONE LIHO TELLS YOU 5 SAFE.

WHY?

I DON'T QUITE KNOW HOW To PUT THIS, BUT'
OUR ENTIRE FIELD IS BAD AT WHAT WE DO,
AND IF YU RELY ON US, EVERYONE WILLDIE.

02

THEY SAY THEY'VE FIXED IT WITH
SOMETHING CALLED “BLOCKCHAIN."

AARAA!L!
WHATEVER THEY S0LD
YOU, DON'T TOUCH rr

BURY ITIN THE DESERT

P

VEARR GLOVES

Luca Giuzzi

om bitcoin to robotics

Blockchains: from bitcoin to robotics

Basic algorithms

Byzantine agreement

Byzantine agreement

The Byzantine Generals Problem

LESLIE LAMPORT, ROBERT SHOSTAK, and MARSHALL PEASE
SRl International

Reliable computer systems must handle malfunctioning components that give conflicting information
to different parts of the system. This situation can be expressed abstractly in terms of a group of
generals of the Byzantine army camped with their troops around an enemy city. Communicating only
by messenger, the generals must agree upon a common battle plan. However, one or more of them
may be traitors who will try to confuse the others. The problem is to find an algorithm to ensure that
the loyal generals will reach agreement. It is shown that, using only oral messages, this problem is
solvable if and only if more than two-thirds of the generals are loyal; so a single traitor can confound
two loyal Is. With unf ble written the problem is solvable for any number of

Is and possible traitors. Applicati of the solutions to reliable computer systems are then
discussed.

Categories and Subject Descri : C.24. [C C ication Networks]: Distributed
Systems—network operating systems; D.4.4 [Operating Sy]: C ications M:
network communication; D.4.5 [Operating Systems]: Reliability—fault tolerance

General Terms: Algorithms, Reliability
Additional Key Words and Phrases: Interactive consistency

bitcoin to robotics

Blockchains: from bitcoin to robotics
Basic algorithms
Byzantine agreement

Byzantine agreement

A byzantine agreement protocol is a distributed protocol among
agents Ay, ..., Ag such that

@ all non-faulty/honest agents terminate the protocol in a finite
number of steps;

© all non-faulty/honest agents agree upon termination on the
same decision;

© different decisions are possible.

The decision taken is irrelevant as far as all non-faulty agents agree. \

Luca Giuzzi Blockchains: from bitcoin to robotics

Blockchains: from bitcoin to robotics

Basic algorithms

Byzantine agreement

Byzantine fault

COMMANDER

“attack”,

he said ‘retreat’”

Fig. 1. Lieutenant 2 a traitor.

“attack " “retreat’!

- o hesmdemear

Fig.2. The commander a traitor.

Luca Giuz Blockchain m bitcoin to robotics

Blockchains: from bitcoin to robotics
Basic algorithms

Byzantine agreement

Byzantine agreement

COMMANDER

Fig. 3. Algorithm OM(1); Lieutenant 3 a
traitor.

S e D D

% ‘ v z
Fig. 4. Algorithm OM(1); the comman-
der a traitor.

@ : @ :
R SE— -—
— —_—

v 2

Luca Giuzzi

Blockchains: from bitcoin to robotics
Basic algorithms
Byzantine agreement

Byzantine agreement/limits

Consensus in the Presence of Partial Synchrony

CYNTHIA DWORK AND NANCY LYNCH
Massachusetts Institute of Technology, Cambridge, Massachusetts
AND

LARRY STOCKMEYER

IBM Almaden Research Center, San Jose, California

Abstract. The concept of partial in a distril system is i Partial lies
between the cases of a system and an system. In a system,
there is a known fixed upper bound A on the time required for a message to be sent from one processor
to another and a known fixed upper bound & on the relative speeds of different processors. In an
asynchronous system no fixed upper bounds A and @ exist. In one version of partial synchrony, fixed
bounds A and & exist, but they are not known a priori. The problem is to design protocols that work
correctly in the partially synchronous system regardless of the actual values of the bounds A and . In
another version of partial synchrony, the bounds are known, but are only guaranteed to hold starting
at some unknown time 7, and protocols must be designed to work correctly regardless of when time 7'
occurs. Fault-tolerant consensus protocols are given for various cases of partial synchrony and various
fault models. Lower bounds that show in most cases that our protocols are optimal with respect to the
number of faults tolerated are also given. Our consensus protocols for partially synchronous processors
use new protocols for fault-tolerant “distributed clocks” that allow partially synchronous processors to
reach some approximately common notion of time.

Categones and Sllbjecl Descnpvms C. 2 4 [Computer-Communication Networks]: Distributed Systems—
nelwark operalmg systems; C.4 [Computer Systems
O izati of Syst i and serviceability; H.2.4 [Database
Management]: Sys!ems—dzsmbmed systems

to robotics

Blockchains:

from bitcoin to robotics
Basic algorithms

Byzantine agreement

Byzantine agreement/limits

Consensus in the Presence of Partial Synchrony

TABLE L Suair N

291 Consensus in the Presence of Partal Synchrony 201 Consensus in the Presence of Partial Synchrony 21
s o o8 W s TABLE L. SuALLT NOMBE 01 PROCISORS N 108 WHGCH 4 RISLIENT TABLE L Swatsast Nowsae or e er—
o Puorocos Exe B Irarn Proroo s oramaus Provoce: Exers
Fariay oo T Farialy o
Parially sy, Patly sy <hronous oo Py Py o chioons o Pty o iy o oo -
chvonouscom. Ohonowscewors and oot Chronoutcom.
mumconand communice: nchronmus iioassd commute yoceron
pom " Sovmd. amne Sy A e T
Fare ype P o ey o Faire e chronous_chronous chronons_chanoos oy on
Falaon . - o1 wer 1 Faies T - T - PRI
Omision i - el el ey inion ' - ' - a1
Aubenicaed Banine 1 - u ERSI Avtcnicuod Batine - ' -
e vl e uet 3l wal e e = ul el wii Nel =

.
e

Blockchains: from bitcoin to robotics
Basic algorithms
Digital signatures

Digital signatures

644 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. IT-22, NO. 6, NOVEMBER 1976

New Directions in Cryptography
Invited Paper
WHITFIELD DIFFIE AND MARTIN E. HELLMAN, MEMBER, IEEE

Abstract—Two kinds of contemporary developments in cryp-
tography are i Widening icati of i
have given rise to a need for new types of cryptographic systems,
‘which minimize the need for secure key distribution channels and
supply the equivalent of a written signature. This paper suggests
ways to solve these cur open Tt also di how
the theories of ication and t i

are begi to
provide the tools to solve cryptographic problems of long stand-
ing.

I INTRODUCTION

E STAND TODAY on the brink of a revolution in
cryptography. The development of cheap digital
hardware has freed it from the design limitations of me-
chanical computing and brought the cost of high grade
cryptographic devices down to where they can be used in
such commel applications as remote cash dispensers

Luca Giuzzi

The best known cryptographic problem is that of pri-
vacy: preventing the unauthorized extraction of informa-
tion from communications over an insecure channel. In
order to use cryptography to insure privacy, however, it is
currently necessary for the communicating parties to share
a key which is known to no one else. This is done by send-
ing the key in advance over some secure channel such as
private courier or registered mail. A private conversation
between two people with no prior acquaintance is a com-
mon occurrence in business, however, and it is unrealistic
to expect initial business contacts to be postponed long
enough for keys to be transmitted by some physical means.
The cost and delay imposed by this key distribution
problem is a major barrier to the transfer of business
communications to large teleprocessing networks.

Section 111 proposes two approaches to transmitting

Blockchains: from bitcoin to robotics
Basic algorithms
Digital signatures

Digital signatures

@ Informally: electronic equivalent of a signature; can be used to
authorize or authenticate operations.
@ Formally: three algorithms Gen, Sign, Verify such that
@ Gen: takes as input a security parameter k and returns a pair of
keys (sk, pk) < Gen(k).
© Sign: takes as input a security parameter k, the secret key sk and
a message m € My and outputs a signature o < Sign (m)
© Verify: takes as input a public key pk, a message m and a
purpoted signature o and returns a bit b = Verify, (m,o).
Q V(sk,pk) < Gen(k),Vm € My,Vo < Sign,(m),

Verify,(m,o) = 1.

Luca Giuzzi Blockchains: from bitcoin to robotics

Blockchains: from bitcoin to robotics
Basic algorithms
Digital signatures

Digital signatures/security

A signature is

@ Existentially unforgeable if for all probabilistic polynomial time
adversaries A the following is negligible

{mi}{_, < M; (pk,sk) < Gen(k) Verify,(m,o) =1
ealk) =Pr | Vie{l,...,0}:0; < Signy(m;) : and
(m’a) <_A(pk’ {m;,a;}le) m ¢ {mi}iezl

@ Strongly unforgeable if for all probabilistic polynomial time
adversaries A the following is negligible

{mi}_, < My; (pk, sk) < Gen(k) Verify,(m,o) =1
ealk) =Pr | Vie{l,....0}: 0« Signg(m;) : and
(maa> PA(pk7 {mi’ai}’iézl) (mva> ¢ {(mivai)}iezl

Luca Giuzzi Blockchains: from bitcoin to robotics

Blockchains: from bitcoin to robotics
Basic algorithms
Digital signatures

Digital signatures/security

@ sk is the secret key and it is private
@ pk is the public key and it is public

@ only the owner of sk can sign a message m; so a correct
signature on m attests that the owner of sk has
seen/read/endorsed m

@ everybody can verify the signature on a message
We get:
@ Authentication
© Non-repudiation

Luca Giuzzi Blockchains: from bitcoin to robotics

Blockchains: from bitcoin to robotics

Basic algorithms

Digital signatures

Byzantine agreement with signatures

OMMANDE

R
24
“attack’’:0 "retreat’’: 0

“‘attack’’:0:1

“retreat’’:0:2

Fig. 5. Algorithm SM(1); the commander a traitor.

Luca Giuzzi i m bitcoin to robotics

Blockchains: from bitcoin to robotics
Basic algorithms
Hash functions

Hash functions

TI. ONE WAY HASH FUNCTIONS

There are many instances in which a large date field (e.g.
. 10,000 bits) needs to be authenticated, but only a small data
field (e.g. 100 bits) con be stored or avthenticated. (See,
for example, chapter V). It is often required that it be in-
feasible to conpute other large data fields with the same inage
under the hash function, giving rise to the need for s one way
hash function.

Tntuitively, o one way hash function F is one which is
easy to compute but difficult to invert and can map arbitrarily
large data fields onto much smaller ones. If y = F(x), then
given x and F, 1t is easy to compute y, but given y and F it is
effectively impossible to copute x. More precisely:

1) F can be applied to any argument of any size. F ap-

plied to more than one argument (e.g. F(x,

equivalent to F applied to the concatenation of the

argunents, 1.e. F(<x;,xp>).

2
2) F always produces a fixed size output, which, for the

sske of concretencss, we toke to be 100 bits.
3) Given Fand x 1t 1s easy to compute Fx).
) Given Fand F(x), it is computationally infessible to
deternine x.

5) Given F and x, it is computationally infessible to

f1nd an x' # x such that F(x) = F(x'),

. The major use of one way functions is for outhentication.

67719 Chapter IT Page 11

Luca Giuzzi Blockchains: from bitcoin to robotics

Blockchains: from bitcoin to robotics
Basic algorithms
Hash functions

Hash functions (MDC)

h:{0,1}* — {0, 1}
such that it is computationally infeasible to:
@ given c € {0,1}* determine x € {0, 1}* such that h(x) = ¢;
@ givenx € {0, 1}* determiney € {0, 1}* withx # yand
h(x) = h(y);
© determinex,y € {0, 1}* such that h(x) = h(y).

Luca Giuzzi Blockchains: from bitcoin to robotics

Blockchains: from bitcoin to robotics
Basic algorithms
Hash functions

Hash functions (MDC)

@ Provide digests of messages to simplify signatures
@ Provide a way to construct robust pointers
@ Provide problems which are computationally expensive to solve

Luca Giuzzi Blockchains: from bitcoin to robotics

Blockchains: from bitcoin to robotics

coin

Bitcoin

Bitcoin

A Peer-to-Peer Electronic Cash System

Satoshi Nakamoto
satoshin@gmx.com
www.bitcoin.org

Abstract. A purely peer-to-peer version of electronic cash would allow online
payments to be sent directly from one party to another without going through a
financial institution. Digital signatures provide part of the solution, but the main
benefits are lost if a trusted third party is still required to prevent double-spending.
‘We propose a solution to the double-spending problem using a peer-to-peer network.
The network timestamps transactions by hashing them into an ongoing chain of
hash-based proof-of-work, forming a record that cannot be changed without redoing
the proof-of-work. The longest chain not only serves as proof of the sequence of
events witnessed, but proof that it came from the largest pool of CPU power. As
long as a majority of CPU power is controlled by nodes that are not cooperating to
attack the network, they'll generate the longest chain and outpace attackers. The
network itself requires minimal structure. Messages are broadcast on a best effort
basis, and nodes can leave and rejoin the network at will, accepting the longest
proof-of-work chain as proof of what happened while they were gone.

1. Introduction

Blockchains: from bitcoin to robotics
Bitcoin

Bitcoin

Bitcoin

@ Electronic cash not baked by external entities
@ Based on a blockchain which is

@ Public
© Permissionless
© Distributed

Luca Giuzzi Blockchains: from bitcoin to robotics

Blockchains: from bitcoin to robotics
Bitcoin

Bitcoin

Bitcoin/2

Fully decentralized and peer-to-peer;

Database: list of all transactions between pseudonimous
accounts;

Blocks are linked by means of hash functions acting as pointers;

Transactions are validated by means of digital signatures;

Consensus is reached by proof-of-work.

Luca Giuzzi Blockchains: from bitcoin to robotics

Blockchains: from bitcoin to robotics
Bitcoin
Bitcoin

Bitcoin/transactions

@ People in bitcoin are identified by their public keys.

@ Suppose Alice to have keys (pka, ska) and Bob to have keys
(pkB, SkB).

@ A payment form Alice to Bob is a message m containing as

payee pkg signed with sks and indicating a certain number of
bitcoins to be transferred.

@ The database is updated by subtracting the number of bitcoins
paid by Alice from the account pks and crediting the same
amount on the account pkg.

@ Digital signatures guarantee authentication.
@ Transactions are batched in blocks.

Luca Giuzzi Blockchains: from bitcoin to robotics

Blockchains: from bitcoin to robotics
Bitcoin

Bitcoin

Transactions

Transaction

Owner 1's
Public key

/

Y

Transaction

Owner 0's
Signature

..'Ver('fj/.

Owner 1's
Private Key

5\09' i

Luca Giuzzi

Transaction

Owner 2's Owner 3's
Public key Public key

Y Y

Hash Hash

"I
y S, y
“A{ owner 1's "N Owner 2's
Signature Signature
5"

Owner 2's Owner 3's
Private Key Private Key

Blockchains: from bitcoin to robotics

Blockchains: from bitcoin to robotics
Bitcoin
Bitcoin

Bitcoin/consensus: proof of work

How to guarantee consensus? (against malicious agents or errors)

@ All transaction blocks must be appended to a linear chain
(blockchain).

@ Appending blocks is expensive.

@ If thereis a fork (more than one potentially valid chain) all
honest agents must choose the longest chain.

@ Ultimately all honest agents will reach an agreement on
transactions deep enough.

@ We want consistency and do not care about truth.

We are not interested in whether Alice has really paid Bob or not but
we want that for all agents it is true that either Alice has been
debited and Bob credited or Alice has not been debited and Bob has
not been credited.

Luca Giuzzi Blockchains: from bitcoin to robotics

Blockchains: from bitcoin to robotics
Bitcoin

Bitcoin

Mining

Block 11 Block 12

Prev_Hash] [Timestamp] Prev_Hash] [Timestamp]
[Nonce] [Tx_Root] [Nonce]

[Hash01] [Hash23]

1T 1T N

HashO Hash1 Hash2 Hash3

i i i 1

TxO Tx1 Tx2 Tx3

Block 10
[Prev_Hash] [Timestamp]

(oo) (o)

Tx_Root

Luca Giuzzi Blockchains: from bitcoin to robotics

Blockchains: from bitcoin to robotics

Bitcoin

Bitcoin

Forks

Luca Giuzzi i bitcoin to robotics

Blockchains: from bitcoin to robotics
Bitcoin
Consensus

Proof of Work

Pricing via Processing
or
Combatting Junk Mail

Cynthia Dwork and Moni Naor

IBM Almaden Research Center
650 Harry Road
San Jose, CA 95120

Abstract. We present a computational technique for combatting junk
mail in particular and controlling access to a shared resource in general.
The main idea is to require a user to compute a moderately hard, but
not intractable, function in order to gain access to the resource, thus pre-
venting frivolous use. To this end we suggest several pricing functions,
based on, respectively, extracting square roots modulo a prime, the Fiat-
Shamir signature scheme, and the Ong-Schnorr-Shamir (cracked) signa-
ture scheme.

Luca Giuzzi i om bitcoin to robotics

Blockchains: from bitcoin to robotics
Bitcoin
Consensus

Proof of Work (PoW)

@ In order to append a block to the chain it is necessary to solve a
computationally hard problem.

@ The first to solve the problem has the right to append the block.
@ Each participant chooses as valid chain the longest available.

@ To alter the contents of a block it would be necessary to solve
several PoW problems faster than the growth of the chain.

Luca Giuzzi Blockchains: from bitcoin to robotics

Blockchains: from bitcoin to robotics
Bitcoin
Consensus

Bitcoin/PoW

Block Block
7+‘ Prev Hash ‘ ‘ Nonce‘ >} Prev Hash ‘ ‘ Nonce‘
RN R

Work to be done

@ Determine a Nonce such that the hash of the combined block is
less than N = 2" (for suitable h).

Luca Giuzzi Blockchains: from bitcoin to robotics

Blockchains: from bitcoin to robotics

Bitcoin

Consensus

Proof of Work/costs

natre . . ANALYSIS
sustain dbl l 1 ty https://doi.org/10.1038/541893-018-0152-7

Quantification of energy and carbon costs for
mining cryptocurrencies

Max J.Krause ®™ and Thabet Tolaymat?

There are now hundreds of cryptocurrencies in exi: and the technol 1] of many of these currencies is block-
chain—a digital ledger of transactions. The competitive process of adding blocks to the :ham is computatln intensive and
requires large energy input. Here we a hod: for of several
cryptocurrency networks and the energy consumed to produce one US dollar's (US$) worth of dlgltal assets From 1 January
2016 to 30 June 2018, we estimate that mining Bitcoin, Ethereum, Litecoin and Monero consumed an average of 17, 7, 7 and
14MJ to one US$, C mining of copper, gold, platinum and rare
earth oxides consumed 122, 4, 5, 7 and 9MJ to one US$, i indicating that (with the exception of alumin-
ium) cryptomining consumed more energy than mineral mining to produce an equivalent market value. While the market prices
of the coms are quite volatlle, the network hashrates for three of the four cryptocurrencies have trended consistently upward,

that energy req will continue to increase. During this period, we estimate mining for all 4 cryptocurrencies
was responsible for 3-15 million tonnes of CO, emissions.

tionary new technology for securely transferring money or (4-5TWhyr~'in 2017)". All of these estimates indicate that crypto-
information from one entity to another'~. Many cryptocur- currencies already consume a non-negligible fraction of the world’s
rencies utilize blockchain, a public ledger, to accurately and con- energy production.
tinuously record transactions among many decentralized nod ‘With Bitcoin energy demand now estimated to be equiva-
of conse: i i

D ecentralized cryptocurrencies represent a potentially revolu- (44 TWhyr' in 2017)", but significantly lower estimates also exist

Luca Giuz: Blockchains: from bitcoin to robotics

Blockchains: from bitcoin to robotics

coin

Consensus

Proof of Work/costs

Joule Cell

The Carbon Footprint of Bitcoin

Christian Stoll,’?>* Lena KlaaBen,* and Ulrich Gallersdérfer”

SUMMARY Context & Scale
Participation in the Bitcoin blockchain validation process requires specialized Blockchain technology has its
hardware and vast amounts of electricity, which translates into a significant car- roots in the cryptocurrency
bon footprint. Here, we d ate a methodology for estimating the power Bitcoin, which was the first
consumption associated with Bitcoin’s blockchain based on IPO filings of major successful attempt to validate
hardware manufacturers, insights on mining facility operations, and mining pool transactions via a decentralized
compositions. We then translate our power consumption estimate into carbon data protocol. This validation

i using the localization of IP addr . We determine the annual elec- process requires vast amounts of
tricity consumption of Bitcoin, as of November 2018, to be 45.8 TWh and esti- electricity, which translates into a
mate that annual carbon emissions range from 22.0 to 22.9 MtCO. This means significant level of carbon
that the emissions produced by Bitcoin sit between the levels produced by the emissions. Our approximation of
nations of Jordan and Sri Lanka, which is comparable to the level of Kansas City. Bitcoin’s carbon footprint
With this article, we aim to gauge the external costs of Bitcoin and inform the underlines the need to tackle the
broader debate on the costs and benefits of cryptocurrencies. environmental externalities that

result from cryptocurrencies.
INTRODUCTION

Blockchain solutions are

Blockchains: from bitcoin to robotics
Bitcoin
Consensus

Proof of Work/costs

Power Consumption

G e =

Mining-Pool Shares Mining Operations IPO Filings

Carbon Emissions @

IP-Address Emission
Localization Factor

Results @

45.8 TWh
Power Consumption

22.0 - 22.9 MtCO,
Carbon Footprint

rom bitcoin to robotics

Blockchains: from bitcoin to robotics
Bitcoin

Consensus

Proof of Work/considerations

A Byzantine attacker in bitcoin aims to keep a fork alive; ultimately
this costs more than the expected gain.

@ Mining works well for e-currencies
@ It does not work so well for:

@ Tracking external items
@ Validating code to be executed
© Enforcing fairness

Luca Giuzzi Blockchains: from bitcoin to robotics

Blockchains: from bitcoin to robotics
Bitcoin

Consensus

P2P consensus algorithms

@ Proof of Work

@ Proof of Burn

@ Proof of Stake

@ Proof of Authority (endorsement)

Luca Giuzzi Blockchains: from bitcoin to robotics

Blockchains: from bitcoin to robotics

Bitcoin

Byzantine Fault tolerance

Practical Byzantine Fault tolerance

Appearsin the Proceedings of the Third Symposium on Operating Systems Design and Implementation, New Orleans, USA, February 1999

Practical Byzantine Fault Tolerance

Miguel Castro and Barbara Liskov
Laboratory for Computer Science,
Massachusetts Institute of Technology,

545 Technology Square, Cambridge, MA 02139
{castro,liskov}@cs.nit.edu

Abstract

This paper describes a new replication algorithm that is able
to tolerate Byzantine faults. We believe that Byzantine-
fault-tolerant algorithms will be increasingly important in
the future because malicious attacks and software errors are
increasingly common and can cause faulty nodes to exhibit
arbitrary behavior. Whereas previous algorithms assumed a
synchronous system or were too slow to be used in practice,
the algorithm described in this paper is practical: it works in
asynchronous environments like the Internet and incorporates
several important optimizationsthat improve the responsetime
of previous algorithms by more than an order of magnitude. We
implemented a Byzantine-fault-tolerant NFS service using our
algorithm and measured its performance. The results show that
our serviceisonly 3% slower than astandard unreplicated NFS.

1 Introduction

and replication techniques that tolerate Byzantine faults
(starting with [19]). However, most earlier work (e.g.,
[3, 24, 10]) either concerns techniques designed to
demonstrate theoretical feasibility that are too inefficient
to be used in practice, or assumes synchrony, i.e.,
relies on known bounds on message delays and process
speeds. The systems closest to ours, Rampart [30] and
SecureRing [16], were designed to be practical, but they
rely on the synchrony assumption for correctness, which
is dangerous in the presence of malicious attacks. An
attacker may compromise the safety of a service by
delaying non-faulty nodesor the communication between
themuntil they aretagged asfaulty and excluded from the
replicagroup. Suchadenial-of-serviceattack isgenerally
easier than gaining control over a non-faulty node.

Blockchains: from bitcoin to robotics

Bitcoin

Byzantine Fault tolerance

Practical Byzantine Fault tolerance

Several phases:

Q
Q

o

Request: a client sends a request for an update to a primary;

Pre-Prepare: the primary notifies the backups that has received
a request for a given view v and assigns a request number;
Prepare: all backups which accepted pre-prepare enter the
prepare phase by multicasting a message with the sequence
number and the view number;

Commit: once a replica has received a sufficient number of
prepare messages sends a commit message to the others;

Reply: the primary and the backup reply to the request.

Luca Giuzzi Blockchains: from bitcoin to robotics

Blockchains: from bitcoin to robotics
Bitcoin

Byzantine Fault tolerance

Practical Byzantine Fault tolerance

request gpreprepare prepare i commit reply

Blockchains: from bitcoin to robotics

Bitcoin

Byzantine Fault tolerance

Redundant Byzantine Fault tolerance

> 33rd International Conference on Distributed Computing Systems

RBFT: Redundant Byzantine Fault Tolerance

Pierre-Louis Aublin
Grenoble University

Abstract—Byzantine Fault 'loleranl state machine repllcauon
(BET) protocols are replicat pmtncul: that tolerate arl
faults of & fraction of the replitas, Although signiicant elforis
have been recently made, existing BFT protocols do not provide
acceptable performance when faults occur. As we show in this
paper, this comes from the fact that all existing BFT protocols tar-
geting Ingh throughput use a special replica, called the primary,
which indicates to other replicas the order in which requests
Should be processed. This primary can be smartly malicious and
degrade the performance of the system without being detected
by correct replicas. In this paper, we propose a new approach,
called RBFT for Redundant-BFT: we execute multiple instances
of the same BET protocol, each with a primary replica executing
on a different machine. All the instances order the requests, but
only the requests ordered by one of the instances, called the
‘master instance, are actually executed. The performance of the
different instances is closely monitored, in order to check that
i i is not

ieves similas
the most robust protocols when there is no failure and that,
under faults, its maximum performance degradation is about
3%, whereas it is at least equal to 78% for existing protocols.

1. INTRODUCTION
ntine Fault Tolerant (BFT) state machine replication

Sonia Ben Mokhtar
CNRS - LIRIS

Vivien Quéma
Grenoble INP

to order requests. Even if there exists several mechanisms to
detect and recover from a malicious primary, the primary can
be smartly malicious. Despite efforts from other replicas to
control that it behaves correctly, it can slow the performance
down to the detection threshold, without being caught. To
design a really robust BFT protocol, a legitimate idea that
comes to mind is to avoid using a primary. One such protocol
has been proposed by Boran and Schiper [4]. This protocol
has a theoretical interest, but it has no practical interest.
Indeed, the price to pay to avoid using a primary is that,
before ordering every request, replicas need to be sure that
they received a message from all other correct replicas. As
replicas do not know which replicas are correct, they need to
wait for a timeout (that is increased if it is not long enough).
This yields very poor performance and this explains why this
protocol has never been implemented. A number of other
protocols have been devised to enforce intrusion tolerance
(e.g., [18]). These protocols rely on what is called proactive
recovery, in which nodes are periodically rejuvenated (c.g.,
their cryptographic keys are changed and/or a clean version
of their operating system is loaded). If performed sufficiently
often, node reju»sndllon makes it difficult for an attacker to
system. These soluti

hani

Blockchains: from bitcoin to robotics
Bitcoin

Byzantine Fault tolerance

Redundant Byzantine Fault tolerance

Luca Giuzzi Blockchains: from bitcoin to robotics

Blockchains: from bitcoin to robotics

coin

Byzantine Fault tolerance

HotStuff

1803.05069v6 [cs.DC] 23 Jul 2019

\/

HotStuff: BFT Consensus in the Lens of Blockchain

Maofan Yin'#, Dahlia Malkhi?, Michael K. Reiter**, Guy Golan Gueta?, and Ittai Abraham*

!Cornell University, ?VMware Research, *"UNC-Chapel Hill

Abstract

We present HotStuff, a leader-based Byzantine fault-tolerant replication protocol for the partially synchronous
model. Once network communication becomes synchronous, HotStuff enables a correct leader to drive the pro-
tocol to consensus at the pace of actual (vs. maximum) network delay—a property called responsiveness—and with
communication complexity that is linear in the number of replicas. To our knowledge, HotStuff is the first par-
tially synck BFT protocol exhibiting these combined ies. HotStuff is built around a novel
framework that forms a bridge between classical BFT dations and blockch Itallows the ion of other
known protocols (DLS, PBFT, Tendermint, Casper), and ours, in a common framework.

Our deployment of HotStuff over a network with over 100 replicas achieves throughput and latency comparable
to that of BFT-SMaRt, while enjoying linear communication footprint during leader failover (vs. cubic with BFT-
SMaR).

1 Introduction

Byzantine fault tolerance (BFT) refers to the ability of a computing system to endure arbitrary (i.e., Byzantine) failures
of its components while taking actions critical to the system’s operation. In the context of state machine replication
(SMR) [35, 47], the system as a whole provides a replicated service whose state is mirrored across n deterministic
replicas. A BFT SMR protocol is used to ensure that non-faulty replicas agree on an order of execution for client-
initiated service commands, despite the efforts of f Byzantine replicas. This, in turn, ensures that the n— f non-faulty
replicas will run commands identically and so produce the same response for each command. As is common, we are

concerned here with the partially synchronous communication model [25], whereby a known bound A on message
transmission holds after some unknown global stabilization time (GST). In this model, n > 3f + 1 is required
for non-faulty replicas to agree on the same commands in the same order (e.g., [12]) and progress can be ensured
deterministically only after GST [27].

When BFT SMR protocols were originally conceived, a typical target system size was n

4orn = 7, deployed

Blockchains: from bitcoin to robotics

Bitcoin

Byzantine Fault tolerance

HotStuff

Algorithm 2 Basic HotStuff protocol (for replica r).

1: for curView + 1,2,3,... do

2:

@

> PREPARE phase

as a leader //r — LEADER(curView)
we assume special NEW-VIEW mes
wait for (n — f) new-view messages: M < {m | matchingMsg(m, new-view, curView — 1)}

ges from view 0

highQC «+ (aré max{m.justify. vlewNumber}) Justify

curProposal < createLeaf(hlghQC node, client’s command)
broadcast Msg(prepare, curProposal, highQC)
as a replica
wait for message m : matchingMsg(m, prepare, curView) from leader(curView)
if m.node extends from m.justify.node A
safeNode(m.node, m.justify) then
send voteMsg(prepare, m.node, L) to leader(curView)

> PRE-coMMIT phase

as a leader
wait for (n — f) votes: V 4 {v | matchingMsg(v, prepare, curView)}
prepareQC +— QC(V)
broadcast Msg(pre-commit, L, prepareQC)
as a replica
wait for message m : matchingQC(m.justify, prepare, curView) from leader(curView)
prepareQC < m.justify
send voteMsg(pre-commit, m.justify.node, 1) to leader(curView)

m bitcoin to robotics

Blockchains: from bitcoin to robotics

Bitcoin

Byzantine Fault tolerance

27:
28:
29:
30:
31:
32:
33:
34:

36:

> commIT phase

as a leader
wait for (n — f) votes: V < {v | matchingMsg(v, pre-commit, curView)}
precommitQC + QC(V)
broadcast Msg(commit, L, precommitQC)
as a replica
wait for message m : matchingQC(m.justify, pre-commit, curView) from leader(curView)
lockedQC <— m.justify
send voteMsg(commit, m.justify.node, L) to leader(curView)

> DECIDE phase

as a leader
wait for (n — f) votes: V < {v | matchingMsg(v, commit, curView)}
commitQC «+ QC(V)
broadcast Msg(decide, L, commitQC)

as a replica
wait for message m from leader(curView)
wait for message m : matchingQC(m.justify, commit, curView) from leader(curView)
execute new commands through m.justify.node, respond to clients

©> Finally

nextView interrupt: goto this line if nextView(curView) is called during “wait for” in any phase
send Msg(new-view, L, prepareQC) to leader (curView + 1)

m bitcoin to robo

Blockchains: from bitcoin to robotics
Bitcoin
Hyperledger

Hyperledger

CONSENSUS

client CONSENSUS SMART CONTRACT (on other peers)

Transactions are delivered into the pending pool)

Transactions are selected from the pending pool :
Transactions sent for application ,

Speculatively apply the transactions :
‘ Return a proof of correctness and/or change set

alt [If transactions have been successfully applied]

Order transactions :
Broadcast ordered list of transactions, the proof of correciness, and the change sets,

Send requests -
Cal

Verify transactions (policy, conflict resolution) deterministically :

‘ return corrected block of transactions

commit block of transactions :
E Motify clients of events (if any

CONSENSUS

client CONSENSUS SMART CONTRACT (on other peers)

www.websequencediagrams.com

Blockchains: from bitcoin to robotics
Bitcoin

Hyperledger

Hyperledger
|

TABLE 2.

N

el “

Kafka in
Hyperledger Fabric
Ordering Service

Tin
Hyperledger Indy

Sumeragi in
Hyperledger Iroha

POET in
Hyperledger
Sawtooth

Permissioned voting-
based. Leader doe:
ordering. Only in-sync
licas can be voted as
leader. ¢xatka. 2017,

Pluggable election
strategy set
permissioned, vo
based strategy by
default (Pienum; 2076)

All instances do
ordering, but only the
equests ordered by

he master instance are
actually executed,

Publn, Mokhiar & Quéma, 2013

ng-

Permissioned server
reputation sys

Pluggable election
strategy setto a
permissioned, lottery-
based strategy by
default

Provides crash fault
tolerance. Finality
happens in a matter of
seconds.

Provides Byzantine
fault tolerance. Finality
happens in a matter of
seconds.

Provides Byzantine
fault tolerance. Finality
happens in a matter

of seconds. Scale to
petabytes of data,
distributed across many
clusters (stucknort 2016)

Provides scalabilty and
Byzantine fault tolerance.

Blockchains: from

While Kafka s crash
fault tolerant, it s not
Byzantine fault tolerant,
which prevents the
system from reaching
agreement in the case of
malicious or faulty nodes.

The more nodes that
exist on the network,
the more time it takes to
reach consensus.

The nodes in the
network are known

and must be totally
connected.

The more nodes that
exist on the network,

the more time it takes to
reach consensus.

“The nodes in the network
are known and must b
totally connected.

Finalty can be delayed
due to forks that must be
resolved,

coin to robotics

Blockchains: from bitcoin to robotics
Bitcoin

Hyperledger

Hyperledger

tx=<clientlD,
chaincodelD,
txPayload,
timestamp,
clientSig>

Collect
TRANSACTION-ENDORSED]
Msgs into a valid -
endorsement that o s = 2
satisfies
endorsementPolicy
(chaincodelD) 3)

broadcast(endorsement)

endorsing endorsing

client (C) peer (EP1) peer (EP2)

o

=

- 2.
- o
Simulate/Execute tx =

I~ Sign TRANSACTION-ENDORSED | =

oQ

= 7
(1]

=

3) s

— = |8

[¢7]

Verify endorsement, readset
| ifok
apply writeset to state

endorsing | ‘ [
peer (EP3)

orderers

(committing)
peer (CP1)

Blockchains: from bitcoin to robotics
Applications to industry and robotics
Smart contracts and VMs

Virtual Machines

@ Blockchains implement VMs for increased flexibility
@ These VMs can be either

@ non-Turing complete (bitcoin)
© Turing complete with bounds on resurce consumption
(ethereum, libra, etc.)

@ Blockchains as distributed computing frameworks;
@ Blockchains as hosts for smart contracts.

Luca Giuzzi Blockchains: from bitcoin to robotics

Blockchains: from bitcoin to robotics
Applications to industry and robotics
Smart contracts and VMs

Smart contracts

Procedures
@ safely stored on a platform (blockchain)
@ automatically triggered by events

@ audited and controlled only by the platform itself (not
server-side)

@ able to trigger new events.

In general a smart contract acts only on the state of the blockchain.
Smart contracts can be dangerous and hard to debug. \

Luca Giuzzi Blockchains: from bitcoin to robotics

Blockchains: from bitcoin to robotics
Applications to industry and robotics
Smart contracts and VMs

Smart contracts

Preprint self-archived version. Published version forthcoming in Bitcoin and Beyond (Routledge).

Chapter 8

Experiments in Algorithmic Governance: A history
and ethnography of “The DAO,” a failed

Decentralized Autonomous Organization

Quinn DuPont
University of Toronto

This chapter describes an emerging form of algorithmic governance, using
the case study of “The DAO,” a short-lived attempt to create a decentral-
ized autonomous organization on the Ethereum blockchain platform. In
June, 2016, The DAO launched and raised an unprecedented $250m
USD in investment. Within days of its launch, however, The DAO was
exploited and drained of nearly 3.7m Ethereum tokens.

This study traces the rise and fall of this emerging technology, and details

the governance structures that were promised and hoped for, and those

that were actually observed in its discourses. Through 2016-2017, these
Luca Giuzzi Blockchains: from bitcoin to robotics

Blockchains: from bitcoin to robotics
Applications to industry and robotics
Smart contracts and VMs

Applications to industry and robotics

Auditability and tracking of manufacturing steps
Robustness and replication of commands
Distributed computation and collaborative logic
Transparency and accountability

Bidding and decentralized business models
Economy of things (Machine to machine interaction)

Luca Giuzzi Blockchains: from bitcoin to robotics

Blockchains: from bitcoin to robotics
Applications to industry and robotics
Smart contracts and VMs

M2M interaction in Industry 4.0

On demand manufacturing
Auditing and diagnostics
Traceability

Authentication
Subscription production
Quiality and stock control

Luca Giuzzi Blockchains: from bitcoin to robotics

Blockchains: from bitcoin to robotics
Algebraic tools

Euclidean algorithm

Division algorithm

Division algorithm

Va € Z,8 € Z\ {0} : 3g € Z,r € N such that

a=pBq+r, r<|Blorr=0

v

Forany « € 7Z, we say that y € Z divides « (in symbols 7|« if

Jk € Z : a = k.

A\

Luca Giuzzi Blockchains: from bitcoin to robotics

Blockchains: from bitcoin to robotics
Algebraic tools

Euclidean algorithm

GCD

Definition

Forany («, 8) € Z? \ {(0,0)} we say that ~ is a greatest common
divisor between « and g if and only if

kla, k|B

and for any t with t|a and t| 3,

t|k.

Forany o, 5 € Z, (o, 8) # (0, 0) there are exactly 2 greatest common
divisors between them.

Luca Giuzzi Blockchains: from bitcoin to robotics

Blockchains: from bitcoin to robotics
Algebraic tools

Euclidean algorithm

Diophantine equations

Theorem
Forany «, 8, € 7Z, the equation

ax + By =7 (1)

admits solutions (X,y) € Z?* ifandonlyifac = 3 =~ = O or
(a, B) # (0,0) and ged(cv, B)|.

\

Theorem (Euclidean algorithm)

Itis easy to compute gcd(«,) and it is also easy to find the solutions
of (1).

A

Luca Giuzzi Blockchains: from bitcoin to robotics

Blockchains: from bitcoin to robotics
Algebraic tools
Euclidean algorithm

Properties of GCDs

Forall o, 5 € Z:

° ged(a, f) = ged (B, a);
@ gcd(,0) = oy
e if 5 = aqg+r, then gcd(w, B) = ged(a, r).

def Euclidean(u, v):

if v > u:

return Euclidean (v, u)
while v != 0:

q=u// v

r=u—v % (

u=yv

vV =r
return u

Luca Giuzzi Blockchains: from bitcoin to robotics

Blockchains: from bitcoin to robotics
Algebraic tools
Euclidean algorithm

Extended Euclidean Algorithm

def XEuclidean(u, v):
if v > u:
return XEuclidean (v, u)
U = numpy.array ([1, 0, int(u)])
V = numpy.array ([0, 1, int(v)])
while V[2] != 0:

q = Ul2] // VI[2]
R=U-V=xq
u=yV
V =R

return U

Luca Giuzzi Blockchains: from bitcoin to robotics

Blockchains: from bitcoin to robotics
Algebraic tools

Euclidean algorithm

Euclidean domains

Euclidean domain

@ (D, +,-): commutative ring with 1
@ 0:D\ {0} - NsuchthatVa e D, € D\ {0}:
dg,reD:a=pq+randr=0ord(r) < ().

Examples:
© Z,6(-):= |-
e Ffield, o(:) :=1;
@ F[x] polynomial ring, 6(-) := deg(-).

In Euclidean domains we can use the Euclidean algorithm.

Luca Giuzzi Blockchains: from bitcoin to robotics

Blockchains: from bitcoin to robotics

Algebraic tools

Fields

@ (R,+,-): commutative ring with 1;
@ |/ < R:ideal;
@ (R/l,+,-): quotient ring with

(a+h)+b+)=(@+b)+1, (a+1)(b+1)=(ab+]1);
Remark

@ (R/I,+,-): integral domain if and only if / prime;
@ (R/I,+,-): field if and only if | maximal.

A\

Proof. (maximal < field).

VaeR:a+Il#Il<acR\l<
{a}Ul=Rs le{alUleJacRhR pfel:aa+p=1
S @@+ H)a+l)=1+1

Ol

v

Luca Giuzzi Blockchains: from bitcoin to robotics

Blockchains: from bitcoin to robotics
Algebraic tools
Fields

Finite fields

Prime order fields

@ p: prime;

@ pZ :={pa:acl};
@ 7Zp := 7/(pZ): field with p elements.

Given a € Z, either a € pZ or gcd(a, p) = 1; by the extended
Euclidean algorithm there exist b, k € Z such that ab + pk = 1; thus

(a+pZ)(b+ pZ) = (ab+ pZ) = (1 — pk) + pZ = 1 + pZ.

N,

Luca Giuzzi Blockchains: from bitcoin to robotics

Blockchains: from bitcoin to robotics

Algebraic tools

Fields

Finite fields

Prime power order fields

@ p: prime;n > 0;q=p";

@ Zp: finite field with p elements;

@ f(x) € Zp|x] irreducible polynomial of degree n; | = (f(x));
o [y := Zyx]/I: field with g elements.

Given a(x) € Z|[x], either a(x) € I or ged(a(x), f(x)) = 1; by the
extended Euclidean algorithm there exist b(x), k(x) € Z such that
a(x)b(x) + f(x)k(x) = 1; thus

Luca Giuzzi Blockchains: from bitcoin to robotics

Blockchains: from bitcoin to robotics
Algebraic tools
Cyclic groups

Cyclic groups

@ (G, -): finite cyclic group of order n;
® (67) = (Zn>+);

@ G = (g); g generator of G;

e G={g*:a=0,...,n—1}

Forany g € G, define DLOGg : (9) — {0,...,n— 1} as
DLOGq(x) := /3 such that g’ =x,0<B8<n-1.

Remarks

@ InZ, solving DLOGg is trivial.
© It might be hard to compute an isomorphism & : G — Z,, (DLP)

v

Luca Giuzzi Blockchains: from bitcoin to robotics

Blockchains: from bitcoin to robotics

Algebraic tools

Cyclic groups

Finite fields: multiplicative group

The group (7, -) of all invertible elements of F is cyclic of order g — 1.

@ ¢(d) =12} =|{a:1<a<q—1:gcd(a,d)=1}|
® Pg(d) := [{x € Fg : [0)] = d}|.

Luca Giuzzi Blockchains: from bitcoin to robotics

Blockchains: from bitcoin to robotics

Algebraic tools

Cyclic groups

Finite fields: multiplicative group

¥ne N\ {0} : > ¢(d) =n.

dln

Proof.

|

Any element x € Z, generates a cyclic subgroup Cy of Z, of order d

for some d|n; each subgroup C; admits ¢(d) generators. Ol
Y tgd)=q-1= Y ¢(d) b)
dl(g—1) d|(q—1)

Proof.

|

Each element of F has some order d|(g — 1). O

\

Luca Giuzzi Blockchains: from bitcoin to robotics

Blockchains: from bitcoin to robotics
Algebraic tools
Cyclic groups

Finite fields: multiplicative group

@ Inafield x? — 1 has at most d roots;
Q G ={xe F; x4 = 1} has at most d elements; so |C4| < d;

© Letabe an element of order d with d|(g — 1); then a € Cy; and
|C4| > d; so |C4| = d, whence Cy = (a) is cyclic;

Q (, has ¢(d) distinct generators, all its elements of order d;
@ Soeithery(d) = 0 or4(d) = |C4| = ¢(d);

Q By (4),Vd|(g — 1): 1g(d) = ¢(d);

@ Inparticular, 4(g — 1) = ¢(qg — 1) > 0.

Luca Giuzzi Blockchains: from bitcoin to robotics

Blockchains: from bitcoin to robotics
Algebraic tools
DLP

Groups for cryptography

Algorithms based upon hardness of DLP

@ (EC)DSA signature
@ ElGamal encryption

o Diffie-Hellman key exchange

v

Good groups for DLP-based cryptography

@ Multiplicative group of a finite field

@ Group of the points of an elliptic curve

A\

Luca Giuzzi Blockchains: from bitcoin to robotics

Blockchains: from bitcoin to robotics

Algebraic tools
DLP

Recommended key sizes

ECRYPT csa

BEDeLA AL

H2020-ICT-2014 — Project 645421
ECRYPT - CSA

ECRYPT - Coordination & Support Action

D5.4
Algorithms, Key Size and Protocols Report (2018)

Luca Giuzzi Blockchains: from bitcoin to robotics

Blockchains: from bitcoin to robotics
Algebraic tools
DLP

Recommended key sizes (2018)

Legacy | NearTerm | LongTerm
Symmetric Key Size 80 128 256
RSA Problem 1024 3072 15360
Finite field DLP 1024 3072 15360
ECDLP 160 256 512

Luca Giuzzi

Blockchains: from bitcoin to robotics

Blockchains: from bitcoin to robotics
Algebraic tools
DLP

Elliptic curves

@ p>3,qg=p"abeFy4a’+27b% £ 0:
f(x,y) :==y* — (x> + ax + b) (3)
o p=2g=2",bcFgs,b#0:
f(x,y) =y*+xy — (x> + ax*> + b) (4)

0 £(Fq) :=={(x,y) € Fg: f(x,y) = 0} U {Ox = [(0,1,0)]};
o [E(Fq) — (g +1)[< 2/q (Hasse);

@ &(Fq) has 1, 3 or 9 inflection points;

@ O is an inflection.

Luca Giuzzi Blockchains: from bitcoin to robotics

Blockchains: from bitcoin to robotics

Algebraic tools
DLP

Elliptic curves/remarks

Aline ¢ intersecting £(F) in at least 2 points over F meets £(F) in
exactly 3 points over .

Proof (informal sketch).

Let £ : y = ax + b and consider g(x) := f(x,ax + b). Then,
deg(g(x)) = 3and (x — (1)|g(x), (x — (2)|g(x) for elements

C1,C € F;s09(x) = (x — C1)(x — C2)(x —) splits in 3 linear factors
and it has 3 roots. Ol

For P,Q € £(Fy), write £(P, Q) for the line through P and Q and
¢(P, P) for the tangent to £(F) in P. The intersection divisor of £(P, Q)
and E(Fq) is

v

((P,Q).£(Fy) =P+ Q+T.

Luca Giuzzi Blockchains: from bitcoin to robotics

Blockchains: from bitcoin to robotics
Algebraic tools
DLP

Elliptic curves/group operation

EP :=4(P, Ox).E(Fq) — P — O
(P®Q) :=65(¢(P,Q).E(Fq) — (P+Q))

(E(Fq), ®) is an Abelian group.

Luca Giuzzi Blockchains: from bitcoin to robotics

Blockchains: from bitcoin to robotics

Algebraic tools
DLP

Elliptic curves

Q = (IZ’ yl/),/ .

P=(z, y)

‘
‘
‘
|
|
|
‘
‘
‘
|
1 >
‘
‘
|
|
|
|
‘
‘
|
|
|

R= (3,)

Luca Giuzzi Blockchains: from bitcoin to robotics

Blockchains: from bitcoin to robotics
Algebraic tools
DLP

Group law: p > 3

P=(x1,y1), Q= (x2,¥2), R=P®Q=(x3,y3)

QPP0O=0,DP="F
Q SP=(x1,—y1);P® (6P) = Ou;
Q ifP£Q,P+#6eQ,

2
X3 = <H> — X1 — X2, Y3= (H) (X1 —x3) —y1;

Q ifP£A£oPandQ =P, thenR=P P = 2P,

Luca Giuzzi Blockchains: from bitcoin to robotics

Blockchains: from bitcoin to robotics
Algebraic tools
DLP

Group law/example

p=23, flxy)=y>—(x’+x+4)

(0,2) (0,21) (1,11) (1,12) (4,7) (4,16)
(7,3) (7,20) (8,8) (8,15) (9,11) (9,12)
(10,5) (10,18) (11,9) (11,14) (13,11) (13,12)
(14,5) (14,18) (15,6) (15,17) (17,9) (17,14)
(18,9) (18,14) (22,5) (22,19) Ouo

|E(Fa3)| = 29 < 24 4 21/23 = 32
€(F23) = <(072)>'

e P=(4,7), Q=(13,11)
o OP = (4,-7) = (4,16)

o P& Q= (15,6)

e 2P = (10,18)

Luca Giuzzi Blockchains: from bitcoin to robotics

Blockchains: from bitcoin to robotics
Algebraic tools
DLP

Group law: p = 2

P=(x1,y1), Q= (x2,¥2), R=P®Q=(x3,y3)

o @PE(Xlaxl +,V1)rp@(9p):0<>o,

Q ifP#Q,2Q
2
Y2t 01 yitys Yo +Wn
= * TXi+xz+a, = | T | (catxz)+xz+y1;
’ (X2+X1> Xi+xg P Vs <X2+X1)(1 3)+X3+y1

Q ifP£oPandQ=P,thenR=PHP = 2P,

b
X3:xf—|——2, }/3:X%+<X1+yl>X3+X3.
X X1

Luca Giuzzi Blockchains: from bitcoin to robotics

Blockchains: from bitcoin to robotics
Algebraic tools
DLP

Group structure

Theorem

Letn = |E(IFq)|; then, £(F,) with the operations introduced above is an
abelian group and either £(Fy) = Zy or

S(FQ) = Zm X an

with n = nins and ny|n;.

Luca Giuzzi Blockchains: from bitcoin to robotics

Blockchains: from bitcoin to robotics

Algebraic tools
DLOG and HSP

Hidden subgroup problem (HSP)

Let G be a group, H < G be a subgroup and X be a set.

@ Afunctionf : G — X such thatf(g;) = f(g2) if and only if
gy g2 € H hides H.

@ Given G, X the HSP consists in recovering a generating set of H
using O(log |G| + log |X|) evaluations of f.

| \

Applications
Z Z =
o £ {INXINDG=(0) et ((0,aDLOG,xX) : a € Zn)
(@, 8) = x*g°
@ fy: Z— Zn hidesH = {r: x" =1}
a — x* (mod N)

Luca Giuzzi Blockchains: from bitcoin to robotics

Blockchains: from bitcoin to robotics

Algebraic tools

DLOG and HSP

Hidden subgroup problem/QC

REVIEWS OF MODERN PHYSICS. VOLUME 82, JANUARY-MARCH 2010
Quantum algorithms for algebraic problems

Andrew M. Childs*

Depariment of Combinstorics and Optinizaton and isiut or Quantm Gomputg.
Unersy of Watoroo, Waterloo, Onar, Ganada N2L

Wim van Dam'®

Departments of Computer Science and Physics, University of Calfornia, Santa Barbara
California 93106, USA

(Published 15 January 2010)

Quantum computers can exceute algorithms that dramatially outperform classial computation. As
the best-known example, Shor discovered an clficient quantum algorithm for factoring intcgers,

task of building a lrge-scale qu

i at
algorithms, focusing on algorithms with superpolynomyial speedup over classical computation and, in
particular, on problems with an algebraic flavor,

DOL 10.1103/RevModPhys 52,1 PACS number(s): 03.67.x

CONTENTS E. The principal ideal problem and numbs
eryptography

field

i Complsty of Ountum Computaion S L Mo Qo Fouer T

€ Rovesble computaion N A i S i "
£ Fut eeranes : A The praln and s spplaons B
B. Efficient quantum circuit for the OFT over /2" 6 D. Strong Fouricr sampling 2

Ablian group i »
D. The OFT over a finite field B ety good measurement 2
8

G
IV, Abelian Hidden Subaroup Probiem . s o e

Period finding over Z/N A. Abelian Fourier samplin for the dihedrat HSP
B Computing dis o B

1. Discrete logarithms and cryprography . [T —

2. Shorsalgorithm for computing discrete probiem o

logarithns o D. Stifted Legendre symbol and Gauss sums n

€. Hidden subaroup problem for finite Abclian groups 10 1. Shifted Legendre symbol problem
b Period finding over 7 » Estimating Gaus sums
E. Factoring integers i E. Generalized hidden shift problem 0
F. Breaking eliptc curve cryptography " IX. Hidden Nonlinear Structures 0
G. Decomposing Abclian and solvable groups 16 A The hidden polynomial probie: “
H. Counting points on curves 6 B..Shifted subset problems and exponential sums 2
V. Quantum Algorithms for Number Fiekds W . Polynomial reconstrution by Legendre symbol

' . cvaluation 4

Luca Giuzzi Blockchains: from bitcoin to robotics

Blockchains: from bitcoin to robotics
Algebraic tools
DLOG and HSP

Groups for cryptography

@ Quantum Computers promise to break DLP.

@ As of today (2020), the groups (IE*‘;;, -) are considered the
benchmark for all algorithms based on DLP.

@ The groups &(IF) are comparatively much more secure than Fy.

@ Different approaches might be needed in the long term.

v

Luca Giuzzi Blockchains: from bitcoin to robotics

Blockchains: from bitcoin to robotics
Algebraic cryptography
DSA and ECDSA

DAY,

FIPS PUB 186-4

FEDERAL INFORMATION PROCESSING STANDARDS
PUBLICATION

Digital Signature Standard (DSS)

CATEGORY: COMPUTER SECURITY SUBCATEGORY: CRYPTOGRAPHY

Information Technology Laboratory
National Institute of Standards and Technology
Gaithersburg, MD 20899-8900

Issued July 2013

\T OF
WeNT OF Coy,

N

&

Ep,

*
a0 * D
»
&

U.S. Department of Commerce

Cameron F. Kerry, Acting Secretary
National Institute of Standards and Technology
Patrick D. Gallagher, Under Secretary of Commerce for Standards and Technology and Director

Blockchains: from bitcoin to robotics
Algebraic cryptography
DSA and ECDSA

DAY,

> Domain parameters generation
@ p: prime, g: prime, g|(p — 1).
@ g: generator of the unique cyclic subgroup of order g in F,
© returnp,gandg.
> Key Generation
@ x + Random(1;g — 1)
Q y < g* (mod p)
© y: public key; x: private key

Luca Giuzzi Blockchains: from bitcoin to robotics

Blockchains: from bitcoin to robotics
Algebraic cryptography
DSA and ECDSA

DAY,

> Sign a message m

@ k « Nonce(l;q—1)
Q X « g" (mod p);r < X (mod q)
© ifr=0,thenreturnto 1
@ use the euclidean algorithm to compute k=1 (mod q)
Q s« k{(m+xr) (mod q)
Q ifs=0,thenreturnto 1
@ return (r,s)
> Verify Signature given (m,r, s)
Q@ w<+s! (modq)
Q ui +— mw (mod q); us + rw (mod q)
Q X « g"'y" (mod p);v < X (mod q)
Q Verifyifv =r.

Luca Giuzzi Blockchains: from bitcoin to robotics

Blockchains: from bitcoin to robotics
Algebraic cryptography
DSA and ECDSA

DAY,

mw, rw s™im, s~ 1r

=X (mod q) =g"y® =g™y" =g "y "=
gk(m—i-xr)—lm k(m4xr)=tr _ gk(m-i-xr)—lmgk(m-i-xr)—lrx _

y
gk(m+xr)—1(m+rx) _ gk _

Luca Giuzzi Blockchains: from bitcoin to robotics

Blockchains: from bitcoin to robotics

Algebraic cryptography
DSA and ECDSA

ECDSA

1J1S (2001) 1: 36-63 / Digital Object Identifier (DOI) 10.1007/5102070100002

The Elliptic Curve Digital Signature Algorithm (ECDSA)

Don Johnson', Alfred Menezes'?, Scott Vanstone'

* Certicom Research, Canada

2Department of Combinatorics and Optimization, University of Waterloo, Canada

E-mails: (djohnson amenezes svanstone] Gcerticom.com

Published online: 27 July 2001 - © Springer-Verlag 2001

Abstract. The Elliptic Curve Digital Signature Algo-
rithm (ECDSA) is the elliptic curve analogue of the Dig-
ialSignatuce Algorthm (DSA) It was sccepted i 1099
as an ANSI standard and in 2000 as IEEE a
Sandands. 1t was ko accepted in 1995 a5 an 150 st
dard and is under consideration for inclusion in some
other IS0 standards. Unlike the ordinary discrete loga-
vithm problem and the integer factorization problem, no
subexponential-time algorithm is known for the elliptic
curve discrete logarithm problem. For this reason, the
strength-per-key-bit is substantially greater in an algo-
rithm that uses elliptic curves. This paper describes the

X9.62 ECDSA, and discusses related security, im-
plementation, and interoperability issues

Keywords: Signature schemes - Elliptic curve cryptog-
raphy - DSA - ECDSA

1 Introduction

The Digital Signature Algorithm (DSA) was specified
2 a US. Government Federal Information Processing
Standard (FIPS) called the Digital Signature Standard
(DSS [70]). Its security is based on the computational in-
tractability of the discrete logarithm problem (DLP) in

Since the ECDLP appears to be significantly harder
than the DLP, the strength-per-key-bit is substantially
areater in elliptic curve systems than in conventional
discrete logarithm systems. Thus, smaller parameters,
but with equival
ECC than with DL systems. The advantages i n
be gained from smaller parameters include speed (faster
computations) and smaller keys and certificates. These
advantages are especially important in_environments
where processing power, storage space, bandwidth, or
power consumption is constrained.

The Elliptic Curve Digital Signature Algorithm
(ECDSA) s the elliptic curve analogue of the DSA.
ECDSA was st proposed n 1902 by St Vanstone 108
in response to NIST’s (National Institute of Standards
and Technology) 1((ym\t for public comments on their
first proposal for DSS. It was accepted in 1998 as an ISO
(Inernation! Standards Organiztion) sanded (150

4888-3), accepted in as an ANSI (American Na-
il S Institute) standard (ANSI X9.62), and
accepted in 2000 as an IEEE (Institute of Elcctrical and
Blectronics Engineers) standard (IEEE 1363-2000) and

& FIPS standard (FIPS 186-2). It is also under consid-
eration h)r inclusion in some other 1O standards. In
this paper, we describe the ANSI X9.62 ECDSA, present
ationale for some.of the design decisions, s disess
related security, implementation, and interoperability

t levels of security, can be used wi

Blockchain

coin to robotics

Blockchains: from bitcoin to robotics
Algebraic cryptography
DSA and ECDSA

ECDSA

> Domain parameters generation
@ g: prime power;
© a,b + Random(Fy);
O N« |E(F,)l;
@ Check N divisible by a large prime n; else return to 2;
@ Check N does not divide gk — 1 for 1 < k < 20; else return to 2;
@ Checkn # g; else return to 2;
@ G’ « Random(E(Fy));
Q G+ (N/n)G;ifG= Oy returnto 7;
Q returng,a,b,n,G.
> Key Generation
@ d <+ Random(1;n—1)
Q@ Q«+dG
© Q: public key; d: private key

Luca Giuzzi Blockchains: from bitcoin to robotics

Blockchains: from bitcoin to robotics
Algebraic cryptography
DSA and ECDSA

ECDSA

> Sign a message m
@ k + Nonce(l;n—1)
© H = (x1,y1) < kG; represent x; as an integer Xi; r < X
(mod n);
© ifr =0, thenreturnto 1;
© use the euclidean algorithm to compute k=% (mod n)
©Q s+« k '(m+dr) (mod n)
Q@ ifs=0,thenreturnto 1
@ return (r,s)
> Verify Signature given (m,r,s)
Q@ w <+ s! (mod n);
Q u; + mw (mod n); us + rw (mod n);
Q X=(x,y1) « n1GD uxQ;
Q IfX = O, then reject;
Q v«Xxi;
Q Verifyifv =r.

Luca Giuzzi Blockchains: from bitcoin to robotics

Blockchains: from bitcoin to robotics
Algebraic cryptography
DSA and ECDSA

ECDSA

k=s"tm+dr) =w(m+rd) =u; +usd (mod n),

whence
u1G ® usQ = (U1 + uad)G = kG

Thusv =r.]

Luca Giuzzi Blockchains: from bitcoin to robotics

Blockchains: from bitcoin to robotics
Algebraic cryptography
Hash functions

Merkle-Damgard

m my ms3 me
iv iD—LD—LDf --- H(m)
{ { 4

Luca Giuzzi i m bitcoin to robotics

Blockchains: from bitcoin to robotics

Algebraic cryptography

Hash functions

Grostl

Grgstl - a SHA-3 candidate *

bttp://uw.groostl. info

Praveen Gauravaram!, Lars R, Kuudsen!, Krystian Matusicwicz?, Florian Mendel®,
“hristian Rechberger!, Martin Schlaffer?, and Soren S, Thomsen'

*Department of Mathematics, Technical University of Denmark, Matematiktorvet 3035,
DK-2500 Kgs. Lynghy, Denmark
Tutel Technology Poland, Juliusza Slowackiego 173, 80-208 Gdansk, Poland
*Institute for Applied Information Processing and Communications (IAIK), Graz
University of Technology, Inffeldgasse 16a, A-8010 Graz, Austria
"Department of Electrical Engincering ESAT/COSIC, Katholicke Universitcit Lenven,
Kastelpark Arcabers 10, B3001 Hoserle, Belgium

March 2, 2011

Summary

st s o SHA3 candidate proposal. Gegst) is an iterated hash function with a compression
function built rom two fixed, I

distinet permutations. The dosign of Grgstl i transparent
and based on principle very different from thoso used in the SHA-Tamily

The two permutations ate constructed nsing the wide trail design strategy, which makes
it posible to give strong statements about the tesistance of Grget] against large classes of
eryptanalytic attacks. Marcover, if these permutations are assumed to be ideal, there is a proof

e i byoorentad Ptk vich ot conpanents o the S, Th b
used i identical to the one used in the block cipher AES and the diffusion lavers are constructed
i il maer o ho o the ATS, A« comseauenct ther s ry stron confcion .
diffusion in Grest1

Grgst is & so-called wide-pipe construction where the size of the internal state is sgnif

cantly larger than the size of the output. This has the cffect that all known, generic attacks on
the hash function are made much more diffut

Grgstl has good performance on a wide range of platforms, and counter-meastres against
side-chanmel attacks are well-understood from similar work on the AES.

Ty 16 201 ol st b e e cotts

m bitcoin to robotics

Blockchains: from bitcoin to robotics
Algebraic cryptography

Hash functions

Grostl

Luca Giuzzi Blockchains: fi itcoin to robotics

Blockchains: from bitcoin to robotics
Algebraic cryptography
Hash functions

Grostl/AES S-Boxes

o mx) =x+xt+x3+x+1
© Fas6 = Za[x]/(m(x))

@ Each element b of Fas¢ reads as (by, . . ., br) € Z§
°

1 00 01 111 1
1 100 0111 1
1 110 0 011 0
1111000 1] 95, |0
SubBytes(b) := 11111000 b + 0
01 1 1 1100 1
00111110 1
0001 1 111 0

Luca Giuzzi Blockchains: from bitcoin to robotics

Blockchains: from bitcoin to robotics

Algebraic cryptography

Hash functions

Grostl

The round constants for Pz and Qorz ase

0051 1060 2051 NGi 05 0oi 0@ 70
® 0 o o0 o 0 w o

0 o o o w0 o

Paeci|® ® 0 0 0 0 @ o
® 0 0 0 0 w0 w o

® 0 o o0 o o w

© 0 0 o0 o o0 o 0

0 0 0 0

oo

_
WoRowowononon o
Wowonomomowowow

Quz i)

Siilarly, the round constants for Piogs and Qigas are

Figure 4 One round of the Grget] permutations P and Q is a composition of four basic
frausformuations, 0051 1050 00§ 0Gi Wi 0Gi 0 10 i
o 0 0 w o w o W 0
o 0 o o o W o 0
Similar way s in Rijodsel. Hence, the G1-byte sequence 00 0102 ... 3 is mapped fo an § x § X A S O S ©
e 0008 10 18 20 28 30 3 P Cl=lo w0 0 0 00 0w 0
0100 1110 21 20 3 3 o o o w ® w oo W 0
020212 132 2% 2 % 0 0 00 0 00 00 0 0 0
03 0b 13 1b 23 2b 33 3 0 0 00 00 0 0 00 00 0

06 0c 18 Lo 26 2 38 3

and
05 04 15 1 25 24 35 3

06 0e 16 le 26 2 36 3 L R R i
07 of 17 u 27 A 3 N L A . S S/ i

L Y i

For an 810 mati his et extendd i the et . Mapping o o mar oo PO A A "
bt sscnse e il the e pertion. o o on, e o ot sl mstion 1 wocl=| 0w "
ppi L I Y i
W fF w i

342 AddRoundConstant Wi efei diai o biei afei ofei 8ei - Of

“The AddRoundConstant transformation ads ounddependent constant {0 the state matrix A
By addition we mean exclisive-or (XOR). To be precie, the AddRoundConstant transformation here § s ogain the round wumber viewed as an 8-t value

in Tound i (starting from 2ero) updates the sate A a5
343 Subbytes
A Ae The Syt st sl sttt e v, e
where C1i] isthe round constant wed in round . and @ have diffrent ronne constans. from the s-bos S, This the sone a the one used in Rijudacl and ts specfcation can
s 0

Luca Giuzzi Blockchains: from bitcoin to robotics

Blockchains: from bitcoin to robotics

Algebraic cryptography

Hash functions

Grostl

o fouud in Appendix B, Hence, i g, is the clement in ow and column j of A, then SubBytes 0 o
petforms the fllowing transformation: fel 5
a e Slasy 0<i<8 0<i<u 2 B
. lel g
Sce Figure . 0 ey Ba
[o] shuft by 1L o
o it by 1 o
T n
0 5
Ty 5
2 oy n
2 o n
B [n
S [a
Figure 5 SubByes substtutes each byte of the sate by it image under the s-box 5. Figure 7: The ShiBytesWide transformation of permtation Pua (top) and Queas (bottom).
344 ShiftBytes and ShiftBytesWide 345 MisBytes
Syt Sy il it (e yes w1 e Wi by @ e I e Mt oo, o, h i s olomedfeden. o
of positions. Let = [,1....,o7] be a st of distnct ntegers i the range from 0 10.v — b i oo i e 0 e e e e . T itk
Then, ShiftBytes moves all ytes n ro £ of the state matrix 7 positons o the el wrapping defined in the same way as fn Rijndacl via the rreducible polynonial = e
around as necessary. The vectar o in ShiftBytes respectively ShiftBytesWide is diferent for - The byte of the iate matrlx A4 can be scen 28 clements of as polync

v ot mont 7 with coclicents i {01}, The loes sigficant i of e by doermines

P and Q. For ShiftBytes in P, we use @ = [0,1,2,3,4,5,6,7) and for ShiftBytes in Q, we use d "
7= [1,3.5.7,0,2,4,6]. Sinilarly, for ShiftBytesWide i P ond Q, we use r = [0,1.2,3,4,5,6,11] the coeficient of °, ctc
o' [1,3,5.1110,2,1.6 respoctiel. The tansformations ShitBytes and ShiBytesWide MixBytes muliplies each columun of A by a constant § x § matrix & in Fasa. Hence, the

for P and Q are illstrated in Figure 6 and Figure 7 transformation on the whole matrix A can be written as the matrix muliplication

S} it
it by

The matrix 2 s specified as

o 02 02 03 04 05 03 05 07
07 02 02 03 04 05 03 05
05 07 02 02 03 04 05 03
03 05 07 02 02 03 04 05
05 03 05 07 02 02 03 04
06 05 03 05 07 02 02 03
g 03 04 05 03 05 07 02 (2
02 03 04 05 03 05 07 (2

This matrix is circudant, which means that cach row is equal 10 the row above rotated right
by ane position. In short, we way write 5 = circ(02, 02,03,04,05,03,05,07) instead. Sce alsa
Figure 8.

Figure 6 The ShitBytes transformation of permutation Py (top) aud Qs (bottom

Luca Giuzzi Blockchains: from

Blockchains: from bitcoin to robotics

Algebraic cryptography

Hash functions

Grostl

o fouud in Appendix B, Hence, i g, is the clement in ow and column j of A, then SubBytes 0 o
petforms the fllowing transformation: fel 5
a e Slasy 0<i<8 0<i<u 2 B
. lel g
Sce Figure . 0 ey Ba
[o] shuft by 1L o
o it by 1 o
T n
0 5
Ty 5
2 oy n
2 o n
B [n
S [a
Figure 5 SubByes substtutes each byte of the sate by it image under the s-box 5. Figure 7: The ShiBytesWide transformation of permtation Pua (top) and Queas (bottom).
344 ShiftBytes and ShiftBytesWide 345 MisBytes
Syt Sy il it (e yes w1 e Wi by @ e I e Mt oo, o, h i s olomedfeden. o
of positions. Let = [,1....,o7] be a st of distnct ntegers i the range from 0 10.v — b i oo i e 0 e e e e . T itk
Then, ShiftBytes moves all ytes n ro £ of the state matrix 7 positons o the el wrapping defined in the same way as fn Rijndacl via the rreducible polynonial = e
around as necessary. The vectar o in ShiftBytes respectively ShiftBytesWide is diferent for - The byte of the iate matrlx A4 can be scen 28 clements of as polync

v ot mont 7 with coclicents i {01}, The loes sigficant i of e by doermines

P and Q. For ShiftBytes in P, we use @ = [0,1,2,3,4,5,6,7) and for ShiftBytes in Q, we use d "
7= [1,3.5.7,0,2,4,6]. Sinilarly, for ShiftBytesWide i P ond Q, we use r = [0,1.2,3,4,5,6,11] the coeficient of °, ctc
o' [1,3,5.1110,2,1.6 respoctiel. The tansformations ShitBytes and ShiBytesWide MixBytes muliplies each columun of A by a constant § x § matrix & in Fasa. Hence, the

for P and Q are illstrated in Figure 6 and Figure 7 transformation on the whole matrix A can be written as the matrix muliplication

S} it
it by

The matrix 2 s specified as

o 02 02 03 04 05 03 05 07
07 02 02 03 04 05 03 05
05 07 02 02 03 04 05 03
03 05 07 02 02 03 04 05
05 03 05 07 02 02 03 04
06 05 03 05 07 02 02 03
g 03 04 05 03 05 07 02 (2
02 03 04 05 03 05 07 (2

This matrix is circudant, which means that cach row is equal 10 the row above rotated right
by ane position. In short, we way write 5 = circ(02, 02,03,04,05,03,05,07) instead. Sce alsa
Figure 8.

Figure 6 The ShitBytes transformation of permutation Py (top) aud Qs (bottom

Luca Giuzzi Blockchains: from

Blockchains: from bitcoin to robotics
Algebraic cryptography
Hash functions

Grostl

5 = cic(02,02,03.04.05.03,05,07)

Figue . Tho Wiyt roformtion f s cach ol ofthe s i resed
cireulant matrix 5.

346 Number of rounds
The sumber - of sounds is a tunable sceurity parameter. We rocommend the ollowing valucs
of r for the four permatations.

Fermiation e Focommended
™

3.5 Initial values

The initial value iv, of Gegstl-n i the it representation of n. The table belaw shows the
256, 354, and 312 bits,

initial values of the required output sizes of

00000100
00000180
0. 000200

3.6 Padding

ks . o boable o pert o s of o

As mentioned, the length of each mess
d is defincd. This parkling function tales a string = of length ¥

-) of length which s o il of -
Fis i appends b i 1t . Then it appens

Jobit representation of (+ w + 65)

s and fnally, it appends
e to the choice of w, and it xepresents the mumber of mess

Sine it st be posie to ncode e minber of mesage ok i the pcied e
o

within 64 bits, the
short variants, the maximum m
and for the longer variants it is 10:

Blockchains: from bitcoin to robotics
Algebraic cryptography
Hash functions

Keccak/SHA-3

FIPS PUB 202

FEDERAL INFORMATION PROCESSING STANDARDS
PUBLICATION

SHA-3 Standard: Permutation-Based Hash and
Extendable-Output Functions

CATEGORY: COMPUTER SECURITY SUBCATEGORY: CRYPTOGRAPHY

Information Technology Laboratory
National Institute of Standards and Technology
Gaithersburg, MD 20899-8900

This publication is available free of charge from:
hitp:/idx.doi.org/10,6028/NIST FIPS.202

August 2015

Toreg,
& "t

%,
& %,
g
& %

. *
%, g
N &
% e

o
STares of

S. Department of Commerce
Penny Priter, Secrtary

National Institute of Standards and Technology
wilie May, Under and

Blockchains: from bitcoin to robotics
Algebraic cryptography
Hash functions

Sponge construction

N V4
pad | » Trunc,
M M " M | /))

Y) 4) 4 b 4 !
I ay a o) Pany | >
0 A% Az A% |
f 7 f Ay !
|
c 0 > :
_/ _/ _/ o U _/

|
absorbing : squeezing

Luca Giuzzi Blockchains: from bitcoin to robotics

Blockchains: from bitcoin to robotics

Algebraic cryptography

Hash functions

State array

vy Lz
[state
Pas
-
z y
o plane 4 slice
s .
. x
A
v :
row 4 column ~ lane
- & «
)
bit

Luca Giuzzi i m bitcoin to robotics

Blockchains: from bitcoin to robotics

Algebraic cryptography

Hash functions

Operation

314 Labeling Convention for the State Array

wnorN
o

34012
Figure 2: The x,y, and z coordinates for the diagrams of the step mappings
n the state that a f the step mappings, the lane that

corresponds to the coordinates (, y) = (0, 0) is depicted at the center of the slices. The complete
labeling o the x, y, and coordinates for those diagrams is shown in Figure 2 above.

3.2 Step Mappings

“The five step mappings that comprise & round of Keccak-p[b, n] are denoted by 0, p, 7, 7, &nd
Specifications for these functions are given in Secs. 3.2.1-3.25.

The algorithm for each step mapping takes a stat array, denoted by A, as an input and returns an
updated state array, denoted by A", a the output. The size of the state is a parameter that is
omitted from the notation, because b is always specified when the step mappings are invoked.
“The « mapping i has a second input: an integer called the round index, denoted by i, which is
defined within Algorith 7 for Keccak-p[b, n]. in Sec. 3:3. The other step mappings do not
depend on the round index.

321 Specification of 0

Algorithm 1: 6(A)
Input:
state armay A

Output:
state array A",

tef
% Foral paits (.2 suchtht 0<x<5 and O<z<ui, et
ClT=AK 02 © Al 12 @ Al 221 @ Al 3.2 @ A4)
2. For all pairs (x,2) such that 0=X<5 and 0=
D[x,2]=Cl(x-1)mod 5, z]®c[(x+1) deS (2-1)mod]
3. For alltriples (x, y, 2) such that 0<x<5, 0<y<5, and 0<z<w, let
x.y,2] @ Dlx.2].

“The effect of 0 is to XOR each bit in the state with the parities of two columns in the array. In
particular, for the bit A, Y, 2], the x-coordinate of one of the columns i (xo~1) mod 5, with

2-coordinate, 2o, while the x-coordinate of the other column is (xo+ 1) mod 5, with z-
coordinate (z-1) mod w.

I the illustration of the 0 step mapping in Figure 3 below, the summation symbol, ¥, indicates
the parity, .. the XOR sum of all the bits in the column.

Figure 3: Nlustration of 0 applied to a single bit [5]
322 Specification of p

Algorithm 2: p(A)
state array A,
Output:

state array A"

Steps
"% Forall 2 such that 02w, IeLAY 00,2 = AL0,0.7]
2. Let(x)=(1,0)

m bitcoin to robotics

Blockchains: from bitcoin to robotics

Algebraic cryptography

Hash functions

Operation

3. Fortfrom01023;
for all 2 such that 0<2<w, let A[x.y.2] = Alx,y. (z-(t+1)(t+2)/2) mod w];
b. let (x,Y) = (¥, (2x+ 3y) mod 5).
4. Retum A"

The effect of is to fotate the bils of each lane by a length, called the offset, which depends on
the fixed x and y coordinates of the lane. Equivalently, for each bit in the lane, the z coordinate is
modified by adding the offset, modulo the lane size.

X
53 231 3 10 171
26 36 30 6
91 0 1 1%
78 210 66 253
136 105 45 15

Table 2: Offsets of p [8]

The offsets for each lane that result from the computation in Step 3a in Algorithm 2 are listed in
Table 2 above.

Anillustration of p for the case w=8 is given in Figure 4 below. The labeling convention for the

and y coordinates in Figure 4 is given explicitly in Figure 2, corresponding to the rows and
columns in Table 2. For example, the lane A0, 0 is depicted in the middle of the middle sheet,
‘and the lane A[2, 3] is depicted at the bottom of the right-most sheet.

Figure 4: Nlustration of p for b=200 [8]

For each lane in Figure 4, the black dot indicates the bit whose z coordinate is 0, and the shaded
cube indicates the position of that bit after the execution of p. The other bt of the lane shift by
the same offset, and the shift is circular. For example, the offset for the lane A[L,0] i 1, 50 the
last bit, whose 2 coordinate is 7 for this example, shifts 1o the front position, whose coordinate

is 0. Consequently, the offsets may be reduced modulo the lane size; e.g.,the lane for A[3, 2], at
the top of the left-most sheet, has an offset of 153 mod 8 for this example, .2, the offset s 1 bit.

323 Specification of x
Algorithm 3: x(A)

Input:

state array A,

Output:
state array A",

teps:
1. For all trples (x,y, 2) such that 0<x<5, 0<y<5, and 0<z<w, let
/[, y, ZJ=A[(x + 3y) mod 5, , 2]

A
2. Retum A"

“The effect of is to rearrange the positions of the lanes, as illustrated for any slice in Figure 5
below. The convention for the labeling of the coordinates is depicted in Figure 2 above; for
example, the bit with coordinates x = y = 0 is depicted at the center of the slice.

0 .
of] b
NROMMAEGAODN
e “
& i
NN
] el
Te[f

Figure 5: lustration of x applied to a single slice [8]

coin to robotics

Blockchains: from bitcoin to robotics

Algebraic cryptography

Hash functions

Operation

3.2.4 Specification of 1

Algorithm 4: 1(A)
Input:
state array A
state array A
Steps:

. Forall e .y,) auh tht 025,02y <, Oz et

.2 =Al.y.2] @ (Allx+1) mod 5,y, 2] @ 1) - A[(x+2) mod 5, . 2]).
2 Reum

“The dot in the right side of the assignment for Step 1 indicates integer multiplication, which in
this case is equivalent to the intended Boolean “AND" operation

The effect of 7 is to XOR each bit with a non-linear function of two other bits in its row, as
illustrated in Figure 6 below.

]

Figure 6: lustration of 1 applied to a single row (8]
325 Specification of ¢

“The « mapping is parameterized by the round index, i, whose values are specified in Step 2 of
Algorithm 7 for computing Kecca-p[b, n. in Sec. 33. Within the specification of « in
Algorithm 6 below, this parameter determines ¢-+1 bits of a lane value called the round constant,
denoted by RC. Each of these ¢ + 1 bits is generated by a function that is based on a linear
feedback shift register. This function, denoted by rc, is specified in Algorithm 5

Algorithm 5: re(t)

Input:
integer t

Output:
bit re(t).

teps:
1. Iftmod 255 = 0, return 1.
LetR=10000000.
3 Formomllalmod 265, let:
O|IR
R[Dl = R[0] DRI

R =Truncs[R].
4. Retum R[0].

Algorithm 6: (A i;)
Input:

state array A;

found index .

Output

state array A,

Steps:

For all triples (x,y,2) such that 0<x<5, 0<y<5, and 0=z<w, let A’[x.y, 2] = Alx,. 2]
LetRC=0"

For j from 0 10, let RC[2-1]=rc(i+7i),
For all z such that 0=2<w, let A'[0,0,2] =A"[0,0,] @ RC[z]
m A"

“The effect of 1 is to modify some of the bits of Lane (0,0) in a manner that depends on the round
index ir. The other 24 lanes are not affected by .

33 Keccak-p[b, n]

Given a state array A and a round index iy, the round function Rnd is the transformation that
results from applying the step mappings 0, p, % 7, and 1, in that order, i.e.,

RAA(A, i) = 1((=(p(O(AN)). i),

coin to robotics

Blockchains: from bitcoin to robotics

Algebraic cryptography

Hash functions

Operation

‘The Keccak-plb, n] permutation consists of n, terations of Rnd, as specified in Algorithm 7.

Algorithm 7: Keccax-p[b, n(S)

Input
string S of length b;
number of rounds n,.

Output:
string §'of length b.

steps:
Convert Sinto a state array, A, as described in Sec. 3.1.2.
For i from 12-+2¢n, to 12+2¢~1, let A=Rnd(A, i)

Convert Ainto astring 5" of Ienglh b, asdstribed i 6,313
Return

3.4 Comparison with Keccak-f

The Keccax- family of permutations, onqmauy defined in [8], is the specialization of the
Keccax-p family to the case that n, =12+

Keccakf[o]

eccak-plb, 12+2]

Consequently, the KeccaK-p[1600, 24] permutation, which nderlies the six SHA-3 functions, is
equivalent to Keccax-f (1600,

“The rounds of Keccax-f [b] are indexed from 010 11.+2¢. A result of the indexing within Step 2
of Algorithm 7 is that the rounds of KEccAK-pb, n,] match the last rounds of KEccax-f [b], or

e versa. For example, KECCAK-p[1600, 19] is equivalent to the last nineteen rounds of
KeccaK-f [1600). Similarly, Kecca-f [1600] is equivalent to the last twenty-four rounds of
KECCAK-p[1600, 30]; in this case, the preceding rounds for Keccak-p[1600, 30] are indexed by
the integers from —6 to 1.

4 SPONGE CONSTRUCTION

Thesponge consnuction (4] i ivamewmk for specifying functions on binary deta with arbitrary
output length. loys the following

<+ Anundatyingfunctionon fedenghstings, denced by 1
A parameter called the rate, denoted by
« Apadding rule, denoted by pad,

“The function that the construction produces from these components i called a sponge function,
denoted by sPoNGEIT, pad,]. A sponge function takes two inputs: a bit string, denoted by N, and

coin to robotics

	Why cryptography ?
	Blockchains
	Basic algorithms
	Byzantine agreement
	Digital signatures
	Hash functions

	Bitcoin
	Bitcoin
	Consensus
	Byzantine Fault tolerance
	Hyperledger

	Applications to industry and robotics
	Smart contracts and VMs

	Algebraic tools
	Euclidean algorithm
	Fields
	Cyclic groups
	DLP
	DLOG and HSP

	Algebraic cryptography
	DSA and ECDSA
	Hash functions

