
Blockchains: from bitcoin to robotics

Blockchains: from bitcoin to robotics

Luca Giuzzi

University of Brescia

DMMMWinter School 2020

Luca Giuzzi Blockchains: from bitcoin to robotics

Blockchains: from bitcoin to robotics

Why cryptography ?

Security Response

Contents
Introduction ... 1
Executive Summary ... 2
Attack Scenario .. 3
Timeline .. 4
Infection Statistics ... 5
Stuxnet Architecture.. 8
Installation ... 12
Load Point .. 16
Command and Control17
Windows Rootkit Functionality 20
Stuxnet Propagation Methods......................... 21
Modifying PLCs .. 32
Payload Exports ... 44
Payload Resources ... 45
Variants .. 47
Summary .. 50
Appendix A ... 51
Appendix B .. 53
Appendix C ... 54
Revision History ... 63

While the bulk of the analysis is complete, Stuxnet is an incredibly large and
complex threat. The authors expect to make revisions to this document
shortly after release as new information is uncovered or may be publicly
disclosed. This paper is the work of numerous individuals on the Syman-
tec Security Response team over the last three months well beyond the
cited authors. Without their assistance, this paper would not be possible.

Introduction
W32.Stuxnet has gained a lot of attention from researchers and me-
dia recently. There is good reason for this. Stuxnet is one of the
most complex threats we have analyzed. In this paper we take a de-
tailed look at Stuxnet and its various components and particularly
focus on the final goal of Stuxnet, which is to reprogram industrial
control systems. Stuxnet is a large, complex piece of malware with
many different components and functionalities. We have already
covered some of these components in our blog series on the top-
ic. While some of the information from those blogs is included here,
this paper is a more comprehensive and in-depth look at the threat.

Stuxnet is a threat that was primarily written to target an industrial con-
trol system or set of similar systems. Industrial control systems are
used in gas pipelines and power plants. Its final goal is to reprogram
industrial control systems (ICS) by modifying code on programmable
logic controllers (PLCs) to make them work in a manner the attacker in-
tended and to hide those changes from the operator of the equipment.
In order to achieve this goal the creators amassed a vast array of com-
ponents to increase their chances of success. This includes zero-day
exploits, a Windows rootkit, the first ever PLC rootkit, antivirus evasion

Nicolas Falliere, Liam O Murchu,
and Eric Chien

W32.Stuxnet Dossier
Version 1.3 (November 2010)

Stuxnet Worm Impact on Industrial
Cyber-Physical System Security

Stamatis Karnouskos
SAP Research, Germany

Email: stamatis.karnouskos@sap.com

Abstract—Industrial systems consider only partially security,
mostly relying on the basis of “isolated” networks, and con-
trolled access environments. Monitoring and control systems
such as SCADA/DCS are responsible for managing critical
infrastructures operate in these environments, where a false
sense of security assumptions is usually made. The Stuxnet
worm attack demonstrated widely in mid 2010 that many of
the security assumptions made about the operating environment,
technological capabilities and potential threat risk analysis are far
away from the reality and challenges modern industrial systems
face. We investigate in this work the highly sophisticated aspects
of Stuxnet, the impact that it may have on existing security
considerations and pose some thoughts on the next generation
SCADA/DCS systems from a security perspective.

I. INTRODUCTION

Much of our critical infrastructure is controlled by cyber-
physical systems responsible for monitoring and controlling
various processes [1]. The Supervisory Control And Data
Acquisition (SCADA) system are industrial control systems
responsible for a wide range of industrial processes e.g. man-
ufacturing, power generation, refining, as well as infrastructure
e.g. water management, oil & gas pipelines, wind farms,
and facilities e.g. airports, space stations, buildings etc. The
importance of monitoring and control, which heavily relies
on such cyber-physical systems, is paramount for European
and world economies in various industrial sectors; indicatively
this market is expected to grow from an estimated 275e Bn in
2012 to 500e Bn in 2020 [2]. As we move towards large-scale
introduction of IT technologies in these sectors, and automatic
management, any digital threats that may arise will have a
tangible impact on the real world [3] and its processes.

The summer of 2010 was a landmark to the security of
the industrial software and equipment industry. By that time
it was obvious that a new computer worm called Stuxnet [4]
(its name is derived from keywords in its code) was targeting
highly specialized industrial systems in critical high-security
infrastructures. In the months followed it was becoming clear
that this was an unprecedented sophisticated attack that would
have wide implications for future industrial systems. For many
it was a wakeup call and increased the awareness on security
which is still seen as an afterthought and add-on, and not as a
continuous process that should be integrated in all operational
aspects. Although attacks in IT systems are not something
new, up to now it was considered highly unlikely that large
scale attacks in the software side of highly specialized ap-
plications (such as that of a SCADA) were worth trying or

even possible (mainly due to the very niche technology and
expertise needed). Additionally it was considered that a “safe”
environment (implying disconnected from the Internet and
with limited personnel access) was good enough protection.
All of these considerations though have been radically changed
the last months due to the Stuxnet incident.

This attack comes at an extremely critical time, as modern
industrial systems move towards the adoption of Internet based
technologies and architectures [5]; although not necessarily
connected to the Internet itself. General purpose comput-
ing systems, complex industrial applications composable of
heterogeneous software and hardware components, wireless
access points, abstraction of hardware and uniform access via
web services etc. are on the rise. Additionally the enterprise
IT systems are getting more interconnected with the industrial
ones in order to make sure that events occurring on the
shop-floor can be immediately communicated to the respective
business processes. The IT industry is well equipped with risk
analysis and security tools, however the same does not hold
true for industrial systems and the risks may not be adequately
assessed.

II. THE STUXNET WORM

The Stuxnet worm had as its main target industrial control
systems with the goal of modifying the code running in Pro-
grammable Logic Controllers (PLCs) in order to make them
deviate from their expected behavior [6], [7]. This deviation
would be small and only noticeable over a longer period of
time. In parallel great effort was put by the Stuxnet creators
in hiding those changes from the operators, even imitating
“legitimate” data. To increase the success rate a vast majority
of security holes and tools was used such as rootkits (including
what is now known as the first PLC rootkit), antivirus tricking,
zero-day exploits, network discovery and P2P updates, process
injection etc. Many of these are common on modern PCs
however the sophistication of the attach was unprecedentedly
well-planned and highly customized for specific industrial
systems. Recent analysis [7] points out that more than 80% of
the infected systems rely mainly in Iran but also in Indonesia
and India. Although the main attacks were detected in mid-
2010, early variants of the Stuxnet code stemming from 2009
have been found. It is believed that the development of such
a highly sophisticated worm was a joint-effort with experts
from different specializations and a huge investment in time
and cost.

Luca Giuzzi Blockchains: from bitcoin to robotics

Blockchains: from bitcoin to robotics

Why cryptography ?

Why ?

Integrity

Authentication

Secure Collaboration

etc.

Luca Giuzzi Blockchains: from bitcoin to robotics

Blockchains: from bitcoin to robotics

Why cryptography ?

Luca Giuzzi Blockchains: from bitcoin to robotics

Blockchains: from bitcoin to robotics

Blockchains

Blockchain Technologies

Blockchain
Technology for
Industry 4.0

Rodrigo da Rosa Righi
Antonio Marcos Alberti
Madhusudan Singh Editors

Secure, Decentralized, Distributed
and Trusted Industry Environment

This book series aims to provide details of blockchain implementation in technology and
interdisciplinary fields such asMedical Science,AppliedMathematics, Environmental Science,
Business Management, and Computer Science. It covers an in-depth knowledge of blockchain
technology for advance and emerging future technologies. It focuses on the Magnitude: scope,
scale & frequency, Risk: security, reliability trust, and accuracy, Time: latency & timelines,
utilization and implementation details of blockchain technologies. While Bitcoin and
cryptocurrency might have been the first widely known uses of blockchain technology, but
today, it has far many applications. In fact, blockchain is revolutionizing almost every industry.
Blockchain has emerged as a disruptive technology, which has not only laid the foundation for
all crypto-currencies, but also provides beneficial solutions in other fields of technologies. The
features of blockchain technology include decentralized and distributed secure ledgers,
recording transactions across a peer-to-peer network, creating the potential to remove
unintended errors by providing transparency aswell as accountability. This could affect not only
the finance technology (crypto-currencies) sector, but also other fields such as:

Crypto-economics Blockchain
Enterprise Blockchain
Blockchain Travel Industry
Embedded Privacy Blockchain
Blockchain Industry 4.0
Blockchain Smart Cities,
Blockchain Future technologies,
Blockchain Fake news Detection,
Blockchain Technology and It’s Future Applications
Implications of Blockchain technology
Blockchain Privacy
Blockchain Mining and Use cases
Blockchain Network Applications
Blockchain Smart Contract
Blockchain Architecture
Blockchain Business Models
Blockchain Consensus
Bitcoin and Crypto currencies, and related fields

The initiatives in which the technology is used to distribute and trace the communication start
point, provide and manage privacy, and create trustworthy environment, are just a few
examples of the utility of blockchain technology, which also highlight the risks, such as
privacy protection. Opinion on the utility of blockchain technology has a mixed conception.
Some are enthusiastic; others believe that it is merely hyped. Blockchain has also entered the
sphere of humanitarian and development aids e.g. supply chain management, digital identity,
smart contracts and many more. This book series provides clear concepts and applications of
Blockchain technology and invites experts from research centers, academia, industry and
government to contribute to it.
If you are interested in contributing to this series, please contact msingh@endicott.ac.kr OR

loyola.dsilva@springer.com

More information about this series at http://www.springer.com/series/16276

Luca Giuzzi Blockchains: from bitcoin to robotics

Blockchains: from bitcoin to robotics

Blockchains

Blockchains

1 Immutable distributed database
2 Byzantine agreement protocol

Remark
A blockchain might offer other facilities:

Virtual Machines

Smart contracts

Storage optimizations (Merkle trees)

etc.

Luca Giuzzi Blockchains: from bitcoin to robotics

Blockchains: from bitcoin to robotics

Blockchains

Immutable distributed database

A blockchain is

Distributed: data can be read and written by a set of
non-coordinated agents;

Immutable: once accepted the data cannot be altered in any
way.

Luca Giuzzi Blockchains: from bitcoin to robotics

Blockchains: from bitcoin to robotics

Blockchains

Blockchain

Luca Giuzzi Blockchains: from bitcoin to robotics

Blockchains: from bitcoin to robotics

Blockchains

Consensus

Different agents can have a different view of the database (fork).

We need an algorithm for deciding which is the version of the
database to be trusted in the case of conflicts (byzantine
agreement).

Luca Giuzzi Blockchains: from bitcoin to robotics

Blockchains: from bitcoin to robotics

Blockchains

Limitations

�����������
	������������������������� �!��" �$#%�&�'��(*)+(*,*(-�/.0��1
��2�+��(*���3���4�6587:9;�'(*,<�') ,=�>5@?A���B�3(-��(=���DCFEA��,=���3�'�4��G �H)

I ���B9%(=�����

JLKNMPORQTSVUVWHKYXZM\[]+^B_a`cbed
b�_3`\Of[

gih�jlkcmNnLopk
q�r�sltvu�slw=xzyFtLx{t�y|u�x{w*}*~Zx{�L��}*slu���s\�:w*s\~Z�Bx{�Pslwl�4}=r�s\~Zse��~=sA}=r�~=s\s
� ~=� � s\~=}=xzslw�}=r���}���~=sA�P�F�@�@�Ft��z��u�slwZxz~=sluf���P�FtLw=x{w*}*slt��P�p�;�l���px{������Lx{�{x{}��p�H�pt�u � ��~=}=xz}=xz�Ft�}*�F�{s\~Z�pt��Psp���-}Dx{wDx�� � �Fw=w=xz�L�{s%}*���p��r�xzs\�ps�p�{�3}=r�~=s\sp�&��ti}=r�x{w�t��p}*sp����s � ~=�c�ps8}=r�x�w'�P�FtY�*sl�P}=��~=sDx�t�}=r�s8�pw*��t���Zr�~Z�Ft��F��w;t�s\}����p~=���T��u�sl�����pt�u�}=r�slt�u�x{wZ�\��w=w2w*�F����}=xz�Ft�w�}*�i}=r�x{w
u�x{�zsl���@��x{t }=r�s � ��~Z}=x{�p�{�z��w=�Bt���r�~=�Ft��F�Lw��T�Bu�sl���

¡ ¢�£;¤a¥f¦D§@¨�©�¤aªZ¦4£
« }�¬�8®8¯±°�²p²p²���³�~=s\��s\~\´l��x{tµ�pt�x�t¶��xz}*slu|}=�p�z�¸·¹°Yº»���@�pu�s¼}=r�s�½V�F�{�z�N�>x{t�y��P�Ft��
��sl�P}=��~Zsp�exz}�x{w�x{� � �Fw=w=x{�L�zs ½¾�p~ �¿�'s\��w*s\~=��x{�Ps�}*� � ~=�N�Bx�u�s�}=r�sÀ½¾�F���z�c�>x�t�ye}=r�~=s\syF����~Z�pt/}*s\slw\�
Á ¯��FtLw=x{w*}*slt��P�
Á « �Y�px��{���Lx{�{x{}��
Á ¬
��~=}=xz}=x{�Ft��»}*�F�zs\~Z�pt��Ps

« �{�a}=r�~=s\s8�p½�}=r�slw*s � ~=� � s\~=}=xzslw���~=sDu�slw=xz~Z���L�{s2Â��pt�u sPÃ � sl�P}*slu Â�½V~=�F��~=sl�p���»���p~Z�{u�'s\�ew*s\~Z�Bx{�Pslwl�%��tÀ}=rLx{wÄt��p}*sp����sT�>x{�{�HÅ�~Zw*}Äu�x{w=�\�Lw=w>�4r���}8³'~Zs\�'s\~%�@sl�pt¶}8�B��}=r�s
�P�FtY��sl�P}=��~=spÆ3t�sPÃB}4�'s+�>x{�{�a½V�p~Z�@�p�{x{Ç\sD}=r�slw*s �P�Ft��Ps � }=w;�pt�u � ~Z�c�ps%}=r�s+�P�FtY�*sl�P}=��~=spÆ
È�ÉBÊ�ËpÌZÍ�ÊZÎ»ÌZÍ�Ï�Ð�ÌZÍfÑ3Ì�Ò�ÓYÔcÎ»Õ-Í3Öc×�ØÙÕ�ÚN×�Õ<ÛcÜÄÊZÝ�Ý»Ê�×�ÞcÔNÝ�Õ-Î�Î»Ý3ß¾ÚYÝàÎ»Ø¹Î»ÔNÎ»ÕfÌZÐ¶áBÕ�×�ÞYÚNÌ<âÙÌ<ãZÏ\ÛcÑaÊ�Ò'ËNÍ»ØåäNã�Õ<ÛÜÄæ�çPèlé�ê<ëlìí�î Í»ØÙ×�ï�Í»Õ-ð3Õ-Í�ØåÝLÊ�ÓcÍ»Ì�ÐñÕ�Ý�Ý�Ì�ÍaÊZÎ�Î»ÞYÕaò�ÚYØÙóPÕ-Í»Ý�Ø¹Î¾Ï'ÌZÐ¶ÑaÊ�âÙØ¹Ð�ÌZÍ»ÚYØåÊcÛNï3ÕôÍ»õPÕ�âÙÕ-Ï\Û\ÊZÚ�ä'Î»ÞNÕa×�ÌZö�ÐñÌ<ÔNÚ�äNÕôÍÊZÚ�ä8Ñ3ÞNØÙÕ-ÐLÖc×-ØåÕ-ÚlÎ»ØÙÝàÎHÌ�Ð�ß¾ÚYõ\Î»Ì<Ò�Øzì

Luca Giuzzi Blockchains: from bitcoin to robotics

Blockchains: from bitcoin to robotics

Blockchains

Taxonomy of blockchains

Various kinds:

Public/Private

Permissioned/Permissionless

Decentralized/Centralized

Luca Giuzzi Blockchains: from bitcoin to robotics

Blockchains: from bitcoin to robotics

Blockchains

Taxonomy of blockchains/2

Do you need
to store state?

Are there
multiple
writers?

Can you use
an always

online TTP?

Are all
writers
known?

Are all
writers
trusted?

Is public
verifiability
required?

Public
Permissioned
Blockchain

Private
Permissioned
Blockchain

Permissionless
Blockchain

Don’t use
Blockchain

no no yes yes

yes no

yes yes no no

no yes

Luca Giuzzi Blockchains: from bitcoin to robotics

Blockchains: from bitcoin to robotics

Blockchains

Applications

Electronic currencies (bitcoin, ethereum, libra, etc.)

Smart contracts (ethereum, libra, hyperledger)

Asset tracking (hyperledger)

Manufacturing quality control

E-voting (?)

etc.

Luca Giuzzi Blockchains: from bitcoin to robotics

Blockchains: from bitcoin to robotics

Blockchains

Uses of blockchains

Luca Giuzzi Blockchains: from bitcoin to robotics

Blockchains: from bitcoin to robotics

Basic algorithms

Byzantine agreement

Byzantine agreement

The Byzantine Generals Problem

LESLIE LAMPORT, ROBERT SHOSTAK, and MARSHALL PEASE

SRI International

Reliable computer systems must handle malfunctioning components that give conflicting information
to different parts of the system. This situation can be expressed abstractly in terms of a group of
generals of the Byzantine army camped with their troops around an enemy city. Communicating only
by messenger, the generals must agree upon a common battle plan. However, one or more of them
may be traitors who will try to confuse the others. The problem is to find an algorithm to ensure that
the loyal generals will reach agreement. It is shown that, using only oral messages, this problem is
solvable if and only if more than two-thirds of the generals are loyal; so a single traitor can confound
two loyal generals. With unforgeable written messages, the problem is solvable for any number of
generals and possible traitors. Applications of the solutions to reliable computer systems are then
discussed.

Categories and Subject Descriptors: C.2.4. [Computer-Communication Networks]: Distributed
Systems--network operating systems; D.4.4 [Operating Systems]: Communications Management--
network communication; D.4.5 [Operating Systems]: Reliability--fault tolerance

General Terms: Algorithms, Reliability

Additional Key Words and Phrases: Interactive consistency

/

1. INTRODUCTION

A re l iab le c o m p u t e r s y s t e m m u s t be able to cope wi th the fa i lure of one or more
of i ts c o m p o n e n t s . A fai led c o m p o n e n t m a y exhib i t a type of b e h a v i o r t h a t is
o f t en o v e r l o o k e d - - n a m e l y , s end ing conf l ic t ing i n f o r m a t i o n to d i f fe rent pa r t s of
t he sys tem. T h e p r o b l e m of coping wi th th i s type of fa i lure is expressed abs t r ac t l y
as the B y z a n t i n e G e n e r a l s P rob l em. W e devote the m a j o r p a r t of the pape r to a
d i scuss ion of th i s a b s t r a c t p r o b l e m a n d conc lude by ind i ca t ing how our so lu t ions

ca n be used in i m p l e m e n t i n g a re l iab le c o m p u t e r sys tem.
W e imag ine t h a t severa l d iv is ions of the B y z a n t i n e a r m y are c a m p e d outs ide

a n e n e m y city, each d iv is ion c o m m a n d e d by i ts ow n general . T h e genera l s can
c o m m u n i c a t e wi th one a n o t h e r on ly by messenger . Af te r obse rv ing the enemy ,
t h e y m u s t decide u p o n a c o m m o n p l a n of ac t ion. However , some of the genera l s

This research was supported in part by the National Aeronautics and Space Administration under
contract NAS1-15428 Mod. 3, the Ballistic Missile Defense Systems Command under contract
DASG60-78-C-0046, and the Army Research Office under contract DAAG29-79-C-0102.
Authors' address: Computer Science Laboratory, SRI International, 333 Ravenswood Avenue, Menlo
Park, CA 94025.
Permission to copy without fee all or part of this material is granted provided that the copies are not
made or distributed for direct commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by permission of the Association
for Computing Machinery. To copy otherwise, or to republish, requires a fee and/or specific
permission.
© 1982 ACM 0164-0925/82/0700-0382 $00.75

ACM Transactions on Programming Languages and Systems, Vol. 4, No. 3, July 1982, Pages 382-401.

Luca Giuzzi Blockchains: from bitcoin to robotics

Blockchains: from bitcoin to robotics

Basic algorithms

Byzantine agreement

Byzantine agreement

A byzantine agreement protocol is a distributed protocol among
agents A1, . . . ,Ak such that

1 all non-faulty/honest agents terminate the protocol in a finite
number of steps;

2 all non-faulty/honest agents agree upon termination on the
same decision;

3 different decisions are possible.

Note
The decision taken is irrelevant as far as all non-faulty agents agree.

Luca Giuzzi Blockchains: from bitcoin to robotics

Blockchains: from bitcoin to robotics

Basic algorithms

Byzantine agreement

Byzantine fault

Luca Giuzzi Blockchains: from bitcoin to robotics

Blockchains: from bitcoin to robotics

Basic algorithms

Byzantine agreement

Byzantine agreement

Luca Giuzzi Blockchains: from bitcoin to robotics

Blockchains: from bitcoin to robotics

Basic algorithms

Byzantine agreement

Byzantine agreement/limits

Consensus in the Presence of Partial Synchrony

CYNTHIA DWORK AND NANCY LYNCH

.Massachusetts Institute of Technology, Cambridge, Massachusetts

AND

LARRY STOCKMEYER

IBM Almaden Research Center, San Jose, California

Abstract. The concept of partial synchrony in a distributed system is introduced. Partial synchrony lies
between the cases of a synchronous system and an asynchronous system. In a synchronous system,
there is a known fixed upper bound A on the time required for a message to be sent from one processor
to another and a known fixed upper bound % on the relative speeds of different processors. In an
asynchronous system no fixed upper bounds A and @ exist. In one version of partial synchrony, fixed
bounds A and Cp exist, but they are not known a priori. The problem is to design protocols that work
correctly in the partially synchronous system regardless of the actual values of the bounds A and Cp. In
another version of partial synchrony, the bounds are known, but are only guaranteed to hold starting
at some unknown time T, and protocols must be designed to work correctly regardless of when time T
occurs. Fault-tolerant consensus protocols are given for various cases of partial synchrony and various
fault models. Lower bounds that show in most cases that our protocols are optimal with respect to the
number of faults tolerated are also given. Our consensus protocols for partially synchronous processors
use new protocols for fault-tolerant “distributed clocks” that allow partially synchronous processors to
reach some approximately common notion of time.

Categories and Subject Descriptors: C.2.4 [Computer-Communication Networks]: Distributed Systems-
distributed applications; distributed databases; network operating systems; C.4 [Computer Systems
Organization]: Performance of Systems-reliability, availability, and serviceability; H.2.4 [Database
Management]: Systems-distributed systems

General Terms: Algorithms, Performance, Reliability, Theory, Verification

Additional Key Words and Phrases: Agreement problem, Byzantine Generals problem, commit problem,
consensus problem, distributed clock, distributed computing, fault tolerance, partially synchronous
system

A preliminary version of this paper appears in Proceedings of the 3rd ACM Symposium on Principles
of Distributed Computing (Vancouver, B.C., Canada, Aug. 27-29). ACM, New York, 1984, pp. 103-
118.
The work of C. Dwork was supported by a Bantrell postdoctoral Fellowship. The work of N. Lynch was
supported in part by the Defense Advance Research Projects Agency under contract N00014-83-K-
0125, the National Science Foundation under grants DCR 83-02391 and MCS 83-06854, the Office of
Army Research under Contract DAAG29-84-K-0058, and the Office of Naval Research under contract
NOOO14-85-K-0168.
Authors’ addresses: C. Dwork and L. Stockmeyer, Department K53/802, IBM Almaden Research
Center, 650 Harry Road, San Jose, CA 95 120; N. Lynch, Laboratory for Computer Science, Massachu-
setts Institute of Technology, 545 Technology Square, Cambridge, MA 02 139.
Permission to copy without fee all or part of this material is granted provided that the copies are not
made or distributed for direct commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by permission of the Association for
Computing Machinery. To copy otherwise, or to republish, requires a fee and/or specific permission.
0 1988 ACM 0004-541 l/88/0400-0288 $01.50

Journal of the Association for Computing Machinery, Vol. 35, No. 2, April 1988, pp. 288-323.

Luca Giuzzi Blockchains: from bitcoin to robotics

Blockchains: from bitcoin to robotics

Basic algorithms

Byzantine agreement

Byzantine agreement/limits

Luca Giuzzi Blockchains: from bitcoin to robotics

Blockchains: from bitcoin to robotics

Basic algorithms

Digital signatures

Digital signatures

644 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. IT-22, NO. 6, NOVEMBER 1976

New Directions in Cryptography
Invited Paper

WHITFIELD DIFFIE AND MARTIN E. HELLMAN, MEMBER, IEEE

Abstract-Two kinds of contemporary developments in cryp-
tography are examined. Widening applications of teleprocessing
have given rise to a need for new types of cryptographic systems,
which minimize the need for secure key distribution channels and
supply the equivalent of a written signature. This paper suggests
ways to solve these currently open problems. It also discusses how
the theories of communication and computation are beginning to
provide the tools to solve cryptographic problems of long stand-
ing.

I. INTRODUCTION

W E STAND TODAY on the brink of a revolution in
cryptography. The development of cheap digital

hardware has freed it from the design limitations of me-
chanical computing and brought the cost of high grade
cryptographic devices down to where they can be used in
such commercial applications as remote cash dispensers
and computer terminals. In turn, such applications create
a need for new types of cryptographic systems which
minimize the necessity of secure key distribution channels
and supply the equivalent of a written signature. At the
same time, theoretical developments in information theory
and computer science show promise of providing provably
secure cryptosystems, changing this ancient art into a
science.

The development of computer controlled communica-
tion networks pron$ses effortless and inexpensive contact
between people or computers on opposite sides of the
world, replacing most mail and many excursions with
telecommunications. For many applications these contacts
must be made secure against both eavesdropping.and the
injection of illegitimate messages. At present, however, the
solution of security problems lags well behind other areas
of communications technology. Contemporary cryp-
tography is unable to meet the requirements, in that its use
would impose such severe inconveniences on the system
users, as to eliminate many of the benefits of teleprocess-
ing.

Manuscript received June 3,1976. This work was partially supported
by the National Science Foundation under NSF Grant ENG 10173.
Portions of this work were presented at the IEEE Information Theory
Workshop;Lenox , MA, June 23-25, 1975 and the IEEE International
Symposium on Information Theory in Ronneby, Sweden, June 21-24,
1976.

W. Diffie is with the Department of Electrical Engineering, Stanford
Universitv. Stanford. CA. and the St,anford Artificial IntelliPence Lab-
oratory, g&ford, CIk 94.505.

Y

M. E. Hellman is with the Department of Electrical Engineering,
Stanford University, Stanford, CA 94305.

The best known cryptographic problem is that of pri-
vacy: preventing the unauthorized extraction of informa-
tion from communications over an insecure channel. In
order to use cryptography to insure privacy, however, it is
currently necessary for the communicating parties to share
a key which is known to no one else. This is done by send-
ing the key in advance over some secure channel such as
private courier or registered mail. A private conversation
between two people with no prior acquaintance-is a com-
mon occurrence in business, however, and it is unrealistic
to expect initial business contacts to be postponed long
enough for keys to be transmitted by some physical means.
The cost and delay imposed by this key distribution
problem is a major barrier to the transfer of business
communications to large teleprocessing networks.

Section III proposes two approaches to transmitting
keying information over public (i.e., insecure) channels
without compromising the security of the system. In a
public key cryptosystem enciphering and deciphering are
governed by distinct keys, E and D, such that computing
D from E is computationally infeasible (e.g., requiring
lOloo instructions). The enciphering key E can thus be
publicly disclosed without compromising the deciphering
key D. Each user of the network can, therefore, place his
enciphering key in a public directory. This enables any user
of the system to send a message to any other user enci-
phered in such a way that only the intended receiver is able
to decipher it. As such, a public key cryptosystem is a
multiple access cipher. A private conversation can there-
fore be held between any two individuals regardless of
whether they have ever communicated before. Each one
sends messages to the other enciphered in the receiver’s
public enciphering key and deciphers the messages he re-
ceives using his own secret deciphering key.

We propose some techniques for developing public key
cryptosystems, but the problem is still largely open.

Public key distribution systems offer a different ap-
proach to eliminating the need for a secure key distribution
channel. In such a system, two users who wish to exchange
a key communicate back and forth until they arrive at a
key in common. A third party eavesdropping on this ex-
change must find it computationally infeasible to compute
the key from the information overheard, A possible solu-
tion to the public key distribution problem is given in
Section III, and Merkle [l] has a partial solution of a dif-
ferent form.

A second problem, amenable to cryptographic solution,
which stands in the way of replacing contemporary busi-

.

Luca Giuzzi Blockchains: from bitcoin to robotics

Blockchains: from bitcoin to robotics

Basic algorithms

Digital signatures

Digital signatures

Informally: electronic equivalent of a signature; can be used to
authorize or authenticate operations.
Formally: three algorithms Gen, Sign, Verify such that

1 Gen: takes as input a security parameter k and returns a pair of
keys (sk, pk)← Gen(k).

2 Sign: takes as input a security parameter k, the secret key sk and
a messagem ∈ Mk and outputs a signature σ ← Signsk(m)

3 Verify: takes as input a public key pk, a messagem and a
purpoted signature σ and returns a bit b = Verifypk(m, σ).

4 ∀(sk, pk)← Gen(k),∀m ∈ Mk,∀σ ← Signsk(m),

Verifypk(m, σ) = 1.

Luca Giuzzi Blockchains: from bitcoin to robotics

Blockchains: from bitcoin to robotics

Basic algorithms

Digital signatures

Digital signatures/security

A signature is

Existentially unforgeable if for all probabilistic polynomial time
adversaries A the following is negligible

εA(k) = Pr

 {mi}`i=1 ← Mk; (pk, sk)← Gen(k)
∀i ∈ {1, . . . , `} : σi ← Signsk(mi)
(m, σ)← A(pk, {mi, σi}`i=1)

:
Verifypk(m, σ) = 1

and
m 6∈ {mi}`i=1

Strongly unforgeable if for all probabilistic polynomial time
adversaries A the following is negligible

εA(k) = Pr

 {mi}`i=1 ← Mk; (pk, sk)← Gen(k)
∀i ∈ {1, . . . , `} : σi ← Signsk(mi)
(m, σ)← A(pk, {mi, σi}`i=1)

:
Verifypk(m, σ) = 1

and
(m, σ) 6∈ {(mi, σi)}`i=1

Luca Giuzzi Blockchains: from bitcoin to robotics

Blockchains: from bitcoin to robotics

Basic algorithms

Digital signatures

Digital signatures/security

sk is the secret key and it is private

pk is the public key and it is public

only the owner of sk can sign a messagem; so a correct
signature onm attests that the owner of sk has
seen/read/endorsedm

everybody can verify the signature on a message

We get:
1 Authentication
2 Non-repudiation

Luca Giuzzi Blockchains: from bitcoin to robotics

Blockchains: from bitcoin to robotics

Basic algorithms

Digital signatures

Byzantine agreement with signatures

Luca Giuzzi Blockchains: from bitcoin to robotics

Blockchains: from bitcoin to robotics

Basic algorithms

Hash functions

Hash functions

I NFORMAT I ON SYSTEMS LABORATORY

STANFORD ElECTRONICS LABORATORIES
DEPARTMENT OF ElECTRICAL ENGINEERING

STANFORD UNIVERSITY' STANFORD, CA 94305

SECRECY, AUTHENTICATION, AND

PUBLIC KEY SYSTEMS

By

Ralph Charles Merkle

June 1979

Technical Report No. 1979-1

This work was supported by the National Science Foundation
under grant ENG-IOI73; the U.S. Air Force Office of
Scientific Research under contract F49620-78-C-0086; and the
U.S. Army Research Office under contract DAAG29-78-C-0036.

II. ONE WAY HASH FUNCTIONS

There are many instances in which a large data field (e.g.

10, 000 bits) needs to be authenticated, but only a small data

field (e.g. 100 bits) can be stored or authenticated. (See,

for example, chapter V). It is often required that it be in

feasible to compute other large data fields with the same image

under the hash function, giving rise to the need for a ~ way

hash function.

Intuitively, a one way hash function F is one which is

easy to compute but difficult to invert and can m?p arbitrarily

large data fields onto much smaller ones. If y = F(x), then

given x and F, it is easy to compute y, but given y and F it is

effectively impossible to compute x. More precisely:

1) F can be applied to any argument of any size. F ap

plied to more than one argument (e.g. F(x1 ,x2)) is

equi val ent to F appl ied to the concatenation of the

arguments, i.e. F«x1 ,x2».

2) F always produces a fixed size output, which, for the

sake of concreteness, we take to be 100 bits.

3) Given F and x it is easy to compute F(x).

4) Given F and F(x), it is computationally infeasible to·

determine x.

5) Given F and x, it is computationally infeasible to

find an x' i x such that F(x) = F(x').

The major use of one way functions is for authentication.

6/4179 Chapter II Page 11

Luca Giuzzi Blockchains: from bitcoin to robotics

Blockchains: from bitcoin to robotics

Basic algorithms

Hash functions

Hash functions (MDC)

h : {0, 1}∗ → {0, 1}k

such that it is computationally infeasible to:
1 given c ∈ {0, 1}k determine x ∈ {0, 1}∗ such that h(x) = c;
2 given x ∈ {0, 1}∗ determine y ∈ {0, 1}∗ with x 6= y and

h(x) = h(y);
3 determine x, y ∈ {0, 1}∗ such that h(x) = h(y).

Luca Giuzzi Blockchains: from bitcoin to robotics

Blockchains: from bitcoin to robotics

Basic algorithms

Hash functions

Hash functions (MDC)

Provide digests of messages to simplify signatures

Provide a way to construct robust pointers

Provide problems which are computationally expensive to solve

Luca Giuzzi Blockchains: from bitcoin to robotics

Blockchains: from bitcoin to robotics

Bitcoin

Bitcoin

Bitcoin

Bitcoin: A Peer-to-Peer Electronic Cash System

Satoshi Nakamoto
satoshin@gmx.com

www.bitcoin.org

Abstract. A purely peer-to-peer version of electronic cash would allow online
payments to be sent directly from one party to another without going through a
financial institution. Digital signatures provide part of the solution, but the main
benefits are lost if a trusted third party is still required to prevent double-spending.
We propose a solution to the double-spending problem using a peer-to-peer network.
The network timestamps transactions by hashing them into an ongoing chain of
hash-based proof-of-work, forming a record that cannot be changed without redoing
the proof-of-work. The longest chain not only serves as proof of the sequence of
events witnessed, but proof that it came from the largest pool of CPU power. As
long as a majority of CPU power is controlled by nodes that are not cooperating to
attack the network, they'll generate the longest chain and outpace attackers. The
network itself requires minimal structure. Messages are broadcast on a best effort
basis, and nodes can leave and rejoin the network at will, accepting the longest
proof-of-work chain as proof of what happened while they were gone.

1. Introduction
Commerce on the Internet has come to rely almost exclusively on financial institutions serving as
trusted third parties to process electronic payments. While the system works well enough for
most transactions, it still suffers from the inherent weaknesses of the trust based model.
Completely non-reversible transactions are not really possible, since financial institutions cannot
avoid mediating disputes. The cost of mediation increases transaction costs, limiting the
minimum practical transaction size and cutting off the possibility for small casual transactions,
and there is a broader cost in the loss of ability to make non-reversible payments for non-
reversible services. With the possibility of reversal, the need for trust spreads. Merchants must
be wary of their customers, hassling them for more information than they would otherwise need.
A certain percentage of fraud is accepted as unavoidable. These costs and payment uncertainties
can be avoided in person by using physical currency, but no mechanism exists to make payments
over a communications channel without a trusted party.

What is needed is an electronic payment system based on cryptographic proof instead of trust,
allowing any two willing parties to transact directly with each other without the need for a trusted
third party. Transactions that are computationally impractical to reverse would protect sellers
from fraud, and routine escrow mechanisms could easily be implemented to protect buyers. In
this paper, we propose a solution to the double-spending problem using a peer-to-peer distributed
timestamp server to generate computational proof of the chronological order of transactions. The
system is secure as long as honest nodes collectively control more CPU power than any
cooperating group of attacker nodes.

1

Luca Giuzzi Blockchains: from bitcoin to robotics

Blockchains: from bitcoin to robotics

Bitcoin

Bitcoin

Bitcoin

Electronic cash not baked by external entities
Based on a blockchain which is

1 Public
2 Permissionless
3 Distributed

Luca Giuzzi Blockchains: from bitcoin to robotics

Blockchains: from bitcoin to robotics

Bitcoin

Bitcoin

Bitcoin/2

Fully decentralized and peer-to-peer;

Database: list of all transactions between pseudonimous
accounts;

Blocks are linked by means of hash functions acting as pointers;

Transactions are validated by means of digital signatures;

Consensus is reached by proof-of-work.

Luca Giuzzi Blockchains: from bitcoin to robotics

Blockchains: from bitcoin to robotics

Bitcoin

Bitcoin

Bitcoin/transactions

People in bitcoin are identified by their public keys.

Suppose Alice to have keys (pkA, skA) and Bob to have keys
(pkB, skB).

A payment form Alice to Bob is a messagem containing as
payee pkB signed with skA and indicating a certain number of
bitcoins to be transferred.

The database is updated by subtracting the number of bitcoins
paid by Alice from the account pkA and crediting the same
amount on the account pkB.

Digital signatures guarantee authentication.

Transactions are batched in blocks.

Luca Giuzzi Blockchains: from bitcoin to robotics

Blockchains: from bitcoin to robotics

Bitcoin

Bitcoin

Transactions

Transaction

Verify

Sign

Owner 1's
Public key

Hash

Owner 0's
Signature

Owner 1's
Private Key

Transaction

Verify

Sign

Owner 2's
Public key

Hash

Owner 1's
Signature

Owner 2's
Private Key

Transaction

Owner 3's
Public key

Hash

Owner 2's
Signature

Owner 3's
Private Key

Luca Giuzzi Blockchains: from bitcoin to robotics

Blockchains: from bitcoin to robotics

Bitcoin

Bitcoin

Bitcoin/consensus: proof of work

How to guarantee consensus? (against malicious agents or errors)
All transaction blocks must be appended to a linear chain
(blockchain).
Appending blocks is expensive.
If there is a fork (more than one potentially valid chain) all
honest agents must choose the longest chain.
Ultimately all honest agents will reach an agreement on
transactions deep enough.
We want consistency and do not care about truth.

Note
We are not interested in whether Alice has really paid Bob or not but
we want that for all agents it is true that either Alice has been
debited and Bob credited or Alice has not been debited and Bob has
not been credited.

Luca Giuzzi Blockchains: from bitcoin to robotics

Blockchains: from bitcoin to robotics

Bitcoin

Bitcoin

Mining

Block 11

Prev_Hash

Tx_Root

Timestamp

Nonce

Block 10

Prev_Hash

Tx_Root

Timestamp

Nonce

Block 12

Prev_Hash

Tx_Root

Timestamp

Nonce

Hash01 Hash23

Hash0 Hash1 Hash2 Hash3

Tx0 Tx1 Tx2 Tx3

Luca Giuzzi Blockchains: from bitcoin to robotics

Blockchains: from bitcoin to robotics

Bitcoin

Bitcoin

Forks

Luca Giuzzi Blockchains: from bitcoin to robotics

Blockchains: from bitcoin to robotics

Bitcoin

Consensus

Proof ofWork

Pricing via Processing
or

Combatting Junk Mail

Cynthia Dwork and Moni Naor

IBM Almaden Research Center
650 Harry Road

San Jose, CA 95120

Abstract. We present a computational technique for combatting junk
mail in particular and controlling access to a shared resource in general.
The main idea is to require a user t o compute a moderately hard, but
not intractable, function in order to gain access to the resource, thus pre-
venting frivolous use. To this end we suggest several pricing functions,
based on, respectively, extracting square roots modulo a prime, the Fiat-
Shamir signature scheme, and the Ong-Schnorr-Shamir (cracked) signa-
ture scheme.

1 Introduction

Recently, one of us returned from a brief vacation, only to find 241 messages in
our reader. While junk mail has long been a nuisance in hard (snail) mail, we
believe t h a t electronic junk mail presents a much greater problem. In particular,
the ease and low cost of sending electronic mail, and in particular the simplicity of
sending the same message to many parties, all b u t invite abuse. In this paper we
suggest a computational approach to combatting the proliferation of electronic
mail.' More generally, we have designed an access control mechanism that ran be
used whenever it is desirable to restrain, but not prohibit, access to a resource.

Two general approaches have been used for limiting access to a resource:
legislation and usage fees. For example, it has been suggested that sending an
unsolicited F.4X message should be a misdemeanor. This approach encounters
obvious definitional problems. Usage fees may be a deterrent; however, we do
not want a system in which to send a letter or note between friends should have
a cost similar to t h a t of a postage stamp; similarly we do not wish to charge
a high fee to transmit long files between collaborators. Such an approach could
lead to underutilization of the electronic medium.

Since we believe the real cost of using the medium will not serve as a de-
terrent to junk mail, we propose a system t h a t imposes another t ype of cost
on transmissions. These costs will deter junk mail but will not interfere with
other uses of the system. The main idea is for the mail system to require the

A simple solution, due to Btum and M i d i [I], is simply not to read one's mail. We
have another solution.

E.F. Bnckell (Ed.): Advances in Cryptology - CRYPT0 '92, LNCS 740, pp. 139-147,1993.
0 Spnnger-Verlag Berlln Heldelberg 1993

Luca Giuzzi Blockchains: from bitcoin to robotics

Blockchains: from bitcoin to robotics

Bitcoin

Consensus

Proof ofWork (PoW)

In order to append a block to the chain it is necessary to solve a
computationally hard problem.

The first to solve the problem has the right to append the block.

Each participant chooses as valid chain the longest available.

To alter the contents of a block it would be necessary to solve
several PoW problems faster than the growth of the chain.

Luca Giuzzi Blockchains: from bitcoin to robotics

Blockchains: from bitcoin to robotics

Bitcoin

Consensus

Bitcoin/PoW

Block

Prev Hash Nonce

Tx Tx ...

Block

Prev Hash Nonce

Tx Tx ...

Work to be done
Determine a Nonce such that the hash of the combined block is
less than N = 2h (for suitable h).

Luca Giuzzi Blockchains: from bitcoin to robotics

Blockchains: from bitcoin to robotics

Bitcoin

Consensus

Proof ofWork/costs

AnAlysis
https://doi.org/10.1038/s41893-018-0152-7

1Oak Ridge Institute for Science and Education, Cincinnati, OH, USA. 2, Cincinnati, OH, USA. *e-mail: maxjkrause@gmail.com

Decentralized cryptocurrencies represent a potentially revolu-
tionary new technology for securely transferring money or
information from one entity to another1–4. Many cryptocur-

rencies utilize blockchain, a public ledger, to accurately and con-
tinuously record transactions among many decentralized nodes5.
A process of consensus, or agreement, is performed by ‘miners’
through repetitive calculations using specialized computer hard-
ware. The first miner to determine the correct ‘answer’ adds a new
block to the chain and is rewarded for this energy-intense calcula-
tion with several newly generated coins6. The primary purpose of
this competitive mining is to maintain the integrity of the decen-
tralized blockchain by facilitating the many millions of transactions
occurring across the cryptonetwork7.

Although cryptocurrencies, by their name, are developed and
represented as currencies equivalent in purpose to the US$, euro
or yen, they are generally treated as assets or stores of wealth, simi-
lar to gold8. Many individuals or entities simply purchase the coins
on exchanges and store them in the hopes of higher future prices.
Thus, there is high demand and limited supply, creating a strong
incentive to participate either actively (that is, mining) or pas-
sively (that is, holding). As the nascent industry matures, volatility
is expected to decline and their widespread use as a substitute for
centralized, fiat currency is more promising1,2. However, this is not
currently the case.

As shown in Table 1, the blockchain networks of Bitcoin,
Ethereum, Monero and Litecoin all utilize a proof-of-work time-
stamping scheme (that is, tracking changes to the blockchain in
time); so-called because the correct answer is proof of work done by
the miner9,10. This means two or more miners (that is, thousands)
will compete to arrive at the correct answer the fastest, and thereby
be rewarded with coins. Thus, the cryptonetworks require competi-
tion by multiple parties to function7. This competition contributes
to the total energy required to produce a new block, which in turn
produces new coins (via the reward system)11. The Bitcoin network
has been estimated to consume as much energy per year as Ireland
(26 TWh yr−1 in 201412 and 22 TWh yr−1 in 201811) or Hong Kong

(44 TWh yr−1 in 2017)13, but significantly lower estimates also exist
(4–5 TWh yr−1 in 2017)14. All of these estimates indicate that crypto-
currencies already consume a non-negligible fraction of the world’s
energy production.

With Bitcoin energy demand now estimated to be equiva-
lent to some countries, new questions arise. Do all cryptocurren-
cies require a similar energy supply to function? In the context of
energy invested and value extracted, what conventional processes
or services would cryptomining compare to (for example, min-
ing a physical material such as gold15–17)? And what environmental
impact might this energy consumption cause? Here we use the pub-
licly available data and mining hardware characteristics to deter-
mine the power requirements for four cryptocurrency networks:
Bitcoin, Ethereum, Litecoin and Monero. We then use market prices
to calculate the energy consumed for each asset per US$ created
and examine the environmental costs by applying country-specific
CO2 emission factors to the energy demands of the networks. The
four cryptocurrencies analysed here were selected from the top 20
by market capitalization18 on the basis of the availability and com-
pleteness of data and the applicability to our methodology. Some
cryptocurrencies, such as IOTA, do not employ blockchain technol-
ogy, and cannot be assessed in the methodology provided here19.
Alternately, Ripple is a centralized blockchain platform and their
currency is not mineable, again meaning we could not make an
equivalent assessment20.

Energy requirements of mining cryptocurrencies
Bitcoin, like a mineral in the Earth’s crust, is finite and extract-
able and, like conventional mining, cryptomining can be energy-
intensive11. The energy required to mine cryptocurrencies in a
proof-of-work scheme is measurable in the hashrates of the net-
work. Hashrates are the number of calculations (hash functions)
performed on the network in seconds. As of August 2018, there are
approximately 50 quintillion hashes performed on the Bitcoin net-
work every second of every day21. The amount of energy required and
the rate at which these calculations can be executed are dependent

Quantification of energy and carbon costs for
mining cryptocurrencies
Max J. Krause   1* and Thabet Tolaymat2

There are now hundreds of cryptocurrencies in existence and the technological backbone of many of these currencies is block-
chain—a digital ledger of transactions. The competitive process of adding blocks to the chain is computation-intensive and
requires large energy input. Here we demonstrate a methodology for calculating the minimum power requirements of several
cryptocurrency networks and the energy consumed to produce one US dollar’s (US$) worth of digital assets. From 1 January
2016 to 30 June 2018, we estimate that mining Bitcoin, Ethereum, Litecoin and Monero consumed an average of 17, 7, 7 and
14 MJ to generate one US$, respectively. Comparatively, conventional mining of aluminium, copper, gold, platinum and rare
earth oxides consumed 122, 4, 5, 7 and 9 MJ to generate one US$, respectively, indicating that (with the exception of alumin-
ium) cryptomining consumed more energy than mineral mining to produce an equivalent market value. While the market prices
of the coins are quite volatile, the network hashrates for three of the four cryptocurrencies have trended consistently upward,
suggesting that energy requirements will continue to increase. During this period, we estimate mining for all 4 cryptocurrencies
was responsible for 3–15 million tonnes of CO2 emissions.

NaTurE SuSTaiNabiliTy | www.nature.com/natsustain

Luca Giuzzi Blockchains: from bitcoin to robotics

Blockchains: from bitcoin to robotics

Bitcoin

Consensus

Proof ofWork/costs

Article

The Carbon Footprint of Bitcoin
Christian Stoll,1,2,5,* Lena Klaaßen,3 and Ulrich Gallersdörfer4

SUMMARY

Participation in the Bitcoin blockchain validation process requires specialized

hardware and vast amounts of electricity, which translates into a significant car-

bon footprint. Here, we demonstrate a methodology for estimating the power

consumption associated with Bitcoin’s blockchain based on IPO filings of major

hardware manufacturers, insights onmining facility operations, andmining pool

compositions. We then translate our power consumption estimate into carbon

emissions, using the localization of IP addresses. We determine the annual elec-

tricity consumption of Bitcoin, as of November 2018, to be 45.8 TWh and esti-

mate that annual carbon emissions range from 22.0 to 22.9 MtCO2. This means

that the emissions produced by Bitcoin sit between the levels produced by the

nations of Jordan and Sri Lanka, which is comparable to the level of Kansas City.

With this article, we aim to gauge the external costs of Bitcoin and inform the

broader debate on the costs and benefits of cryptocurrencies.

INTRODUCTION

In 2008, Satoshi, the pseudonymous founder of Bitcoin, published a vision of a dig-

ital currency which, only a decade later, reached a peak market capitalization of over

$800 billion.1,2 The revolutionary element of Bitcoin was not the idea of a digital cur-

rency in itself but the underlying blockchain technology. Instead of a trusted third

party, incentivized network participants validate transactions and ensure the integ-

rity of the network via the decentralized administration of a data protocol. The

distributed ledger protocol created by Satoshi has since been referred to as the ‘‘first

blockchain.’’3

Bitcoin’s blockchain uses a Proof of Work consensus mechanism to avoid double

spending and manipulation. The validation of ownership and transactions is based

on search puzzles of hash functions. These search puzzles have to be solved by

network participants in order to add valid blocks to the chain. The difficulty of these

puzzles adjusts regularly in order to account for changes in connected computing

power and to maintain approximately 10 min between the addition of each block.4

During 2018, the computing power required to solve a Bitcoin puzzle increased

more than 4-fold until October and heightened electricity consumption accord-

ingly.5,6 Speculations about the Bitcoin network’s source of fuel have suggested,

among other things, Chinese coal, Icelandic geothermal power, and Venezuelan

subsidies.7 In order to keep global warming below 2�C—as internationally agreed

in Paris COP21—net-zero carbon emissions during the second half of the century

are crucial.8 To take the right measures, policy-makers need to understand the car-

bon footprint of cryptocurrencies.

We present a techno-economic model for determining the electricity consumption

of the Bitcoin network in order to provide an accurate estimate of its carbon foot-

print. Firstly, we narrow down the power consumption, based on mining hardware,

Context & Scale

Blockchain technology has its

roots in the cryptocurrency

Bitcoin, which was the first

successful attempt to validate

transactions via a decentralized

data protocol. This validation

process requires vast amounts of

electricity, which translates into a

significant level of carbon

emissions. Our approximation of

Bitcoin’s carbon footprint

underlines the need to tackle the

environmental externalities that

result from cryptocurrencies.

Blockchain solutions are

increasingly discussed for a broad

variety of use cases beyond

cryptocurrencies. Although not all

blockchain protocols are as

energy intensive as Bitcoin’s

protocol, environmental aspects,

the risk of collusion, and concerns

about control must not be ignored

in the debate on anticipated

benefits. Our findings for the first

stage of blockchain diffusion and

the externalities we discuss may

help policy-makers in setting the

right rules as the adoption journey

of blockchain technology has just

started.

Joule 3, 1647–1661, July 17, 2019 ª 2019 Elsevier Inc. 1647

Luca Giuzzi Blockchains: from bitcoin to robotics

Blockchains: from bitcoin to robotics

Bitcoin

Consensus

Proof ofWork/costs

Luca Giuzzi Blockchains: from bitcoin to robotics

Blockchains: from bitcoin to robotics

Bitcoin

Consensus

Proof ofWork/considerations

Remark
A Byzantine attacker in bitcoin aims to keep a fork alive; ultimately
this costs more than the expected gain.

Mining works well for e-currencies
It does not work so well for:

1 Tracking external items
2 Validating code to be executed
3 Enforcing fairness

Luca Giuzzi Blockchains: from bitcoin to robotics

Blockchains: from bitcoin to robotics

Bitcoin

Consensus

P2P consensus algorithms

Proof ofWork

Proof of Burn

Proof of Stake

Proof of Authority (endorsement)

Luca Giuzzi Blockchains: from bitcoin to robotics

Blockchains: from bitcoin to robotics

Bitcoin

Byzantine Fault tolerance

Practical Byzantine Fault tolerance

Appears in the Proceedings of the Third Symposium on Operating Systems Design and Implementation, New Orleans, USA, February 1999

Practical Byzantine Fault Tolerance

Miguel Castro and Barbara Liskov
Laboratory for Computer Science,

Massachusetts Institute of Technology,
545 Technology Square, Cambridge, MA 02139

castro,liskov @lcs.mit.edu

Abstract
This paper describes a new replication algorithm that is able
to tolerate Byzantine faults. We believe that Byzantine-
fault-tolerant algorithms will be increasingly important in
the future because malicious attacks and software errors are
increasingly common and can cause faulty nodes to exhibit
arbitrary behavior. Whereas previous algorithms assumed a
synchronous system or were too slow to be used in practice,
the algorithm described in this paper is practical: it works in
asynchronous environments like the Internet and incorporates
several important optimizations that improve the response time
of previous algorithms by more than an order of magnitude. We
implemented a Byzantine-fault-tolerant NFS service using our
algorithm and measured its performance. The results show that
our service is only 3% slower than a standard unreplicated NFS.

1 Introduction
Malicious attacks and software errors are increasingly
common. The growing reliance of industry and gov-
ernment on online information services makes malicious
attacks more attractive and makes the consequences of
successful attacks more serious. In addition, the number
of software errors is increasing due to the growth in size
and complexity of software. Since malicious attacks and
software errors can cause faulty nodes to exhibit Byzan-
tine (i.e., arbitrary) behavior, Byzantine-fault-tolerant al-
gorithms are increasingly important.

This paper presents a new, practical algorithm for
state machine replication [17, 34] that tolerates Byzantine
faults. The algorithm offers both liveness and safety
provided at most 1

3 out of a total of replicas are
simultaneously faulty. This means that clients eventually
receive replies to their requests and those replies are
correct according to linearizability [14, 4]. The algorithm
works in asynchronous systems like the Internet and it
incorporates important optimizations that enable it to
perform efficiently.

There is a significant body of work on agreement

This researchwas supportedin part by DARPA under contract DABT63-
95-C-005, monitored by Army Fort Huachuca, and under contract
F30602-98-1-0237, monitored by the Air Force Research Laboratory,
and in part by NEC. Miguel Castro was partially supported by a PRAXIS
XXI fellowship.

and replication techniques that tolerate Byzantine faults
(starting with [19]). However, most earlier work (e.g.,
[3, 24, 10]) either concerns techniques designed to
demonstrate theoretical feasibility that are too inefficient
to be used in practice, or assumes synchrony, i.e.,
relies on known bounds on message delays and process
speeds. The systems closest to ours, Rampart [30] and
SecureRing [16], were designed to be practical, but they
rely on the synchrony assumption for correctness, which
is dangerous in the presence of malicious attacks. An
attacker may compromise the safety of a service by
delaying non-faulty nodes or the communication between
them until they are tagged as faulty and excluded from the
replica group. Such a denial-of-service attack is generally
easier than gaining control over a non-faulty node.

Our algorithm is not vulnerable to this type of
attack because it does not rely on synchrony for
safety. In addition, it improves the performance of
Rampart and SecureRing by more than an order of
magnitude as explained in Section 7. It uses only one
message round trip to execute read-only operations and
two to execute read-write operations. Also, it uses
an efficient authentication scheme based on message
authentication codes during normal operation; public-key
cryptography, which was cited as the major latency [29]
and throughput [22] bottleneck in Rampart, is used only
when there are faults.

To evaluate our approach, we implemented a replica-
tion library and used it to implement a real service: a
Byzantine-fault-tolerant distributed file system that sup-
ports the NFS protocol. We used the Andrew bench-
mark [15] to evaluate the performance of our system. The
results show that our system is only 3% slower than the
standard NFS daemon in the Digital Unix kernel during
normal-case operation.

Thus, the paper makes the following contributions:

It describes the first state-machine replication proto-
col that correctly survives Byzantine faults in asyn-
chronous networks.

It describes a number of important optimizations that
allow the algorithm to perform well so that it can be
used in real systems.

1

Luca Giuzzi Blockchains: from bitcoin to robotics

Blockchains: from bitcoin to robotics

Bitcoin

Byzantine Fault tolerance

Practical Byzantine Fault tolerance

Several phases:
1 Request: a client sends a request for an update to a primary;
2 Pre-Prepare: the primary notifies the backups that has received

a request for a given view v and assigns a request number;
3 Prepare: all backups which accepted pre-prepare enter the

prepare phase by multicasting a message with the sequence
number and the view number;

4 Commit: once a replica has received a sufficient number of
prepare messages sends a commit message to the others;

5 Reply: the primary and the backup reply to the request.

Luca Giuzzi Blockchains: from bitcoin to robotics

Blockchains: from bitcoin to robotics

Bitcoin

Byzantine Fault tolerance

Practical Byzantine Fault tolerance

X

request pre-prepare prepare commit reply

C

0

1

2

3

Figure 1: Normal Case Operation

Luca Giuzzi Blockchains: from bitcoin to robotics

Blockchains: from bitcoin to robotics

Bitcoin

Byzantine Fault tolerance

Redundant Byzantine Fault tolerance

RBFT: Redundant Byzantine Fault Tolerance

Pierre-Louis Aublin
Grenoble University

Sonia Ben Mokhtar
CNRS - LIRIS

Vivien Quéma
Grenoble INP

Abstract—Byzantine Fault Tolerant state machine replication
(BFT) protocols are replication protocols that tolerate arbitrary
faults of a fraction of the replicas. Although significant efforts
have been recently made, existing BFT protocols do not provide
acceptable performance when faults occur. As we show in this
paper, this comes from the fact that all existing BFT protocols tar-
geting high throughput use a special replica, called the primary,
which indicates to other replicas the order in which requests
should be processed. This primary can be smartly malicious and
degrade the performance of the system without being detected
by correct replicas. In this paper, we propose a new approach,
called RBFT for Redundant-BFT: we execute multiple instances
of the same BFT protocol, each with a primary replica executing
on a different machine. All the instances order the requests, but
only the requests ordered by one of the instances, called the
master instance, are actually executed. The performance of the
different instances is closely monitored, in order to check that
the master instance provides adequate performance. If that is not
the case, the primary replica of the master instance is considered
malicious and replaced. We implemented RBFT and compared
its performance to that of other existing robust protocols. Our
evaluation shows that RBFT achieves similar performance as
the most robust protocols when there is no failure and that,
under faults, its maximum performance degradation is about
3%, whereas it is at least equal to 78% for existing protocols.

I. INTRODUCTION

Byzantine Fault Tolerant (BFT) state machine replication

is an efficient and effective approach to deal with arbitrary

software and hardware faults [1], [6], [8], [10], [20]. The

wide range of research carried out in the field of BFT

in the last decade primarily focused on building fast BFT

protocols, i.e., protocols that are designed to provide the best

possible performance in the common case (i.e. in the absence

of faults) [5], [11], [13], [14]. More recently, interest has

been given to robustness, i.e., building BFT protocols that

achieve good performance when faults occur. Three protocols

have been proposed to address this issue that are, Prime [2],

Aardvark [7], and Spinning [19]. Unfortunately, as shown in

Table I (details are provided in Section III), these protocols are

not effectively robust: the maximum performance degradation

they can suffer when some faults occur is at least 78%, which

is not acceptable.

Prime Aardvark Spinning
Maximum throughput degradation 78% 87% 99%

TABLE I: Performance degradation of “robust” BFT protocols

under attack.

The reason why the above mentioned BFT protocols are not

robust is that they rely on a dedicated replica, called primary,

to order requests. Even if there exists several mechanisms to

detect and recover from a malicious primary, the primary can

be smartly malicious. Despite efforts from other replicas to

control that it behaves correctly, it can slow the performance

down to the detection threshold, without being caught. To

design a really robust BFT protocol, a legitimate idea that

comes to mind is to avoid using a primary. One such protocol

has been proposed by Boran and Schiper [4]. This protocol

has a theoretical interest, but it has no practical interest.

Indeed, the price to pay to avoid using a primary is that,

before ordering every request, replicas need to be sure that

they received a message from all other correct replicas. As

replicas do not know which replicas are correct, they need to

wait for a timeout (that is increased if it is not long enough).

This yields very poor performance and this explains why this

protocol has never been implemented. A number of other

protocols have been devised to enforce intrusion tolerance

(e.g., [18]). These protocols rely on what is called proactive
recovery, in which nodes are periodically rejuvenated (e.g.,

their cryptographic keys are changed and/or a clean version

of their operating system is loaded). If performed sufficiently

often, node rejuvenation makes it difficult for an attacker to

corrupt enough nodes to harm the system. These solutions are

complementary to the robustness mechanisms studied in this

paper.

In this paper, we propose RBFT (Redundant Byzantine
Fault Tolerance), a new approach to designing robust BFT

protocols. In RBFT, multiple instances of a BFT protocol

are executed in parallel. Each instance has a primary replica.

The various primary replicas are all executed on different

machines. While all protocol instances order requests, only one

instance (called the master instance) effectively executes them.

Other instances (called backup instances) order requests in

order to compare the throughput they achieve to that achieved

by the master instance. If the master instance is slower, the

primary of the master instance is considered malicious and

the replicas elect a new primary, at each protocol instance.

Note that RBFT is intended for open loop systems (such as

e.g., Zookeeper [12] or Boxwood [16] asynchronous API), i.e.,

systems where a client may send multiple requests in parallel

without waiting the reception of replies of anterior requests.

Indeed, in a closed loop system, the rate of incoming requests

would be conditioned by the rate of the master instance. Said

differently, backup instances would never be faster than the

master instance. RBFT further implements a fairness mecha-

nism between clients by monitoring the latency of requests,

which assures that client requests are fairly processed.

2013 IEEE 33rd International Conference on Distributed Computing Systems

1063-6927/13 $26.00 © 2013 IEEE

DOI 10.1109/ICDCS.2013.53

479

2013 IEEE 33rd International Conference on Distributed Computing Systems

1063-6927/13 $26.00 © 2013 IEEE

DOI 10.1109/ICDCS.2013.53

297

2013 IEEE 33rd International Conference on Distributed Computing Systems

1063-6927/13 $26.00 © 2013 IEEE

DOI 10.1109/ICDCS.2013.53

297

Luca Giuzzi Blockchains: from bitcoin to robotics

Blockchains: from bitcoin to robotics

Bitcoin

Byzantine Fault tolerance

Redundant Byzantine Fault tolerance

Luca Giuzzi Blockchains: from bitcoin to robotics

Blockchains: from bitcoin to robotics

Bitcoin

Byzantine Fault tolerance

HotStuff
HotStu�: BFT Consensus in the Lens of Blockchain

Maofan Yin
1,2

, Dahlia Malkhi
2
, Michael K. Reiter

2,3
, Guy Golan Gueta

2
, and Ittai Abraham

2

1
Cornell University,

2
VMware Research,

3
UNC-Chapel Hill

Abstract

We present HotStu�, a leader-based Byzantine fault-tolerant replication protocol for the partially synchronous

model. Once network communication becomes synchronous, HotStu� enables a correct leader to drive the pro-

tocol to consensus at the pace of actual (vs. maximum) network delay—a property called responsiveness—and with

communication complexity that is linear in the number of replicas. To our knowledge, HotStu� is the �rst par-

tially synchronous BFT replication protocol exhibiting these combined properties. HotStu� is built around a novel

framework that forms a bridge between classical BFT foundations and blockchains. It allows the expression of other

known protocols (DLS, PBFT, Tendermint, Casper), and ours, in a common framework.

Our deployment of HotStu� over a network with over 100 replicas achieves throughput and latency comparable

to that of BFT-SMaRt, while enjoying linear communication footprint during leader failover (vs. cubic with BFT-

SMaRt).

1 Introduction

Byzantine fault tolerance (BFT) refers to the ability of a computing system to endure arbitrary (i.e., Byzantine) failures

of its components while taking actions critical to the system’s operation. In the context of state machine replication

(SMR) [35, 47], the system as a whole provides a replicated service whose state is mirrored across n deterministic

replicas. A BFT SMR protocol is used to ensure that non-faulty replicas agree on an order of execution for client-

initiated service commands, despite the e�orts of f Byzantine replicas. This, in turn, ensures that then−f non-faulty

replicas will run commands identically and so produce the same response for each command. As is common, we are

concerned here with the partially synchronous communication model [25], whereby a known bound ∆ on message

transmission holds after some unknown global stabilization time (GST). In this model, n ≥ 3f + 1 is required

for non-faulty replicas to agree on the same commands in the same order (e.g., [12]) and progress can be ensured

deterministically only after GST [27].

When BFT SMR protocols were originally conceived, a typical target system size was n = 4 or n = 7, deployed

on a local-area network. However, the renewed interest in Byzantine fault-tolerance brought about by its application

to blockchains now demands solutions that can scale to much larger n. In contrast to permissionless blockchains such

as the one that supports Bitcoin, for example, so-called permissioned blockchains involve a �xed set of replicas that

collectively maintain an ordered ledger of commands or, in other words, that support SMR. Despite their permis-

sioned nature, numbers of replicas in the hundreds or even thousands are envisioned (e.g., [42, 30]). Additionally,

their deployment to wide-area networks requires setting ∆ to accommodate higher variability in communication

delays.

The scaling challenge. Since the introduction of PBFT [20], the �rst practical BFT replication solution in the

partial synchrony model, numerous BFT solutions were built around its core two-phase paradigm. The practical

aspect is that a stable leader can drive a consensus decision in just two rounds of message exchanges. The �rst phase

guarantees proposal uniqueness through the formation of a quorum certi�cate (QC) consisting of (n−f) votes. The

second phase guarantees that the next leader can convince replicas to vote for a safe proposal.

The algorithm for a new leader to collect information and propose it to replicas—called a view-change—is the

epicenter of replication. Unfortunately, view-change based on the two-phase paradigm is far from simple [38], is

bug-prone [4], and incurs a signi�cant communication penalty for even moderate system sizes. It requires the new

leader to relay information from (n − f) replicas, each reporting its own highest known QC. Even counting just

1

ar
X

iv
:1

80
3.

05
06

9v
6

 [
cs

.D
C

]
 2

3
Ju

l 2
01

9

Luca Giuzzi Blockchains: from bitcoin to robotics

Blockchains: from bitcoin to robotics

Bitcoin

Byzantine Fault tolerance

HotStuff

Algorithm 2 Basic HotStuff protocol (for replica r).

1: for curView ← 1, 2, 3, . . . do
� prepare phase

2: as a leader // r = leader(curView)
// we assume special new-view messages from view 0

3: wait for (n− f) new-view messages: M ← {m | matchingMsg(m, new-view, curView − 1)}
4: highQC ←

�
arg max
m∈M

{m.justify.viewNumber}
�
.justify

5: curProposal ← createLeaf(highQC.node, client’s command)
6: broadcast Msg(prepare, curProposal, highQC)
7: as a replica
8: wait for message m : matchingMsg(m, prepare, curView) from leader(curView)
9: if m.node extends from m.justify.node ∧

safeNode(m.node,m.justify) then
10: send voteMsg(prepare,m.node,⊥) to leader(curView)

� pre-commit phase
11: as a leader
12: wait for (n− f) votes: V ← {v | matchingMsg(v, prepare, curView)}
13: prepareQC ← QC(V)
14: broadcast Msg(pre-commit,⊥, prepareQC)
15: as a replica
16: wait for message m : matchingQC(m.justify,prepare, curView) from leader(curView)
17: prepareQC ← m.justify
18: send voteMsg(pre-commit,m.justify.node,⊥) to leader(curView)

8

Luca Giuzzi Blockchains: from bitcoin to robotics

Blockchains: from bitcoin to robotics

Bitcoin

Byzantine Fault tolerance

� commit phase
19: as a leader
20: wait for (n− f) votes: V ← {v | matchingMsg(v, pre-commit, curView)}
21: precommitQC ← QC(V)
22: broadcast Msg(commit,⊥, precommitQC)
23: as a replica
24: wait for message m : matchingQC(m.justify,pre-commit, curView) from leader(curView)
25: lockedQC ← m.justify
26: send voteMsg(commit,m.justify.node,⊥) to leader(curView)

� decide phase
27: as a leader
28: wait for (n− f) votes: V ← {v | matchingMsg(v, commit, curView)}
29: commitQC ← QC(V)
30: broadcast Msg(decide,⊥, commitQC)
31: as a replica
32: wait for message m from leader(curView)
33: wait for message m : matchingQC(m.justify, commit, curView) from leader(curView)
34: execute new commands through m.justify.node, respond to clients

� Finally
35: nextView interrupt: goto this line if nextView(curView) is called during “wait for” in any phase
36: send Msg(new-view,⊥, prepareQC) to leader(curView + 1)

9

Luca Giuzzi Blockchains: from bitcoin to robotics

Blockchains: from bitcoin to robotics

Bitcoin

Hyperledger

Hyperledger

Luca Giuzzi Blockchains: from bitcoin to robotics

Blockchains: from bitcoin to robotics

Bitcoin

Hyperledger

Hyperledger

 7

Consensus Algorithm Consensus Approach Pros Cons

Kafka in
Hyperledger Fabric

Ordering Service

Permissioned voting-
based. Leader does
ordering. Only in-sync
replicas can be voted as
leader. (“Kafka,” 2017).

Provides crash fault
tolerance. Finality
happens in a matter of
seconds.

While Kafka is crash
fault tolerant, it is not
Byzantine fault tolerant,
which prevents the
system from reaching
agreement in the case of
malicious or faulty nodes.

RBFT in
Hyperledger Indy

Pluggable election
strategy set to a
permissioned, voting-
based strategy by
default (“Plenum,” 2016).
All instances do
ordering, but only the
requests ordered by
the master instance are
actually executed.
(Aublin, Mokhtar & Quéma, 2013)

Provides Byzantine
fault tolerance. Finality
happens in a matter of
seconds.

The more nodes that
exist on the network,
the more time it takes to
reach consensus.
The nodes in the
network are known
and must be totally
connected.

Sumeragi in
Hyperledger Iroha

Permissioned server
reputation system.

Provides Byzantine
fault tolerance. Finality
happens in a matter
of seconds. Scale to
petabytes of data,
distributed across many
clusters (Struckhoff, 2016).

The more nodes that
exist on the network,
the more time it takes to
reach consensus.
The nodes in the network
are known and must be
totally connected.

PoET in
Hyperledger

Sawtooth

Pluggable election
strategy set to a
permissioned, lottery-
based strategy by
default.

Provides scalability and
Byzantine fault tolerance.

Finality can be delayed
due to forks that must be
resolved.

TABLE 2. COMPARISON OF CONSENSUS ALGORITHMS USED IN HYPERLEDGER FRAMEWORKS

Luca Giuzzi Blockchains: from bitcoin to robotics

Blockchains: from bitcoin to robotics

Bitcoin

Hyperledger

Hyperledger

Luca Giuzzi Blockchains: from bitcoin to robotics

Blockchains: from bitcoin to robotics

Applications to industry and robotics

Smart contracts andVMs

Virtual Machines

Blockchains implement VMs for increased flexibility
These VMs can be either

1 non-Turing complete (bitcoin)
2 Turing complete with bounds on resurce consumption

(ethereum, libra, etc.)

Blockchains as distributed computing frameworks;

Blockchains as hosts for smart contracts.

Luca Giuzzi Blockchains: from bitcoin to robotics

Blockchains: from bitcoin to robotics

Applications to industry and robotics

Smart contracts andVMs

Smart contracts

Procedures

safely stored on a platform (blockchain)

automatically triggered by events

audited and controlled only by the platform itself (not
server-side)

able to trigger new events.

Remark
In general a smart contract acts only on the state of the blockchain.

Warning

Smart contracts can be dangerous and hard to debug.

Luca Giuzzi Blockchains: from bitcoin to robotics

Blockchains: from bitcoin to robotics

Applications to industry and robotics

Smart contracts andVMs

Smart contracts

Preprint self-archived version. Published version forthcoming in Bitcoin and Beyond (Routledge).

DuPont, Quinn. Experiments in Algorithmic Governance: A history and ethnography of ‘The DAO,’ a failed Decentralized Autonomous Organization.”
(ed. Malcolm Campbell-Verduyn) Bitcoin and Beyond: Cryptocurrencies, Blockchains and Global Governance (forthcoming).

1

Chapter 8

Experiments in Algorithmic Governance: A history
and ethnography of “The DAO,” a failed
Decentralized Autonomous Organization

Quinn DuPont
University of Toronto

This chapter describes an emerging form of algorithmic governance, using
the case study of “The DAO,” a short-lived attempt to create a decentral-
ized autonomous organization on the Ethereum blockchain platform. In
June, 2016, The DAO launched and raised an unprecedented $250m
USD in investment. Within days of its launch, however, The DAO was
exploited and drained of nearly 3.7m Ethereum tokens.

This study traces the rise and fall of this emerging technology, and details
the governance structures that were promised and hoped for, and those
that were actually observed in its discourses. Through 2016-2017, these
discourses were collected from online discussions and subsequently ana-
lysed. Using computer-assisted, qualitative analysis and coding, I traced the
discursive strategies of the developers and the community of investors,
identifying: 1) questions of legal authority, 2) tensions in practical govern-
ance, and 3) admissions of the inherent complexity of bringing to life an
algorithmic and experimental organizational model.

This chapter describes a short-lived experiment in
organizational governance that attempted to utilize
algorithmic authority through cryptocurrency and
blockchain technologies to create a social and politi-
cal world quite unlike anything we have seen before.
According to the visionaries behind the project, by
encoding the rules of governance for organizations
and governments in a set of “smart contracts” run-
ning on an immutable, decentralized, and poten-
tially unstoppable and public blockchain, new forms
of social interactions and order would emerge. This
experiment was an example of a new form of organi-
zation, called a “Decentralized Autonomous Organi-
zation,” or DAO. The forms of sociality that would

emerge—they promised—would be transparent, ef-
ficient, fair, and democratic.

While the idea of decentralized autonomous or-
ganizations had been mooted since the early days of
cryptocurrencies, the launch of sophisticated block-
chain platforms with built-in programming inter-
faces gave enthusiasts a practical, technical apparatus
to realize their vision. Foremost among these emerg-
ing blockchain platforms was Ethereum, a so-called
distributed “Turing-complete” computer. The
Ethereum platform is new and expanded version of
the Bitcoin system in that it adds a layer of software
on top of a blockchain. Like Bitcoin, Ethereum is

Luca Giuzzi Blockchains: from bitcoin to robotics

Blockchains: from bitcoin to robotics

Applications to industry and robotics

Smart contracts andVMs

Applications to industry and robotics

Auditability and tracking of manufacturing steps

Robustness and replication of commands

Distributed computation and collaborative logic

Transparency and accountability

Bidding and decentralized business models

Economy of things (Machine to machine interaction)

Luca Giuzzi Blockchains: from bitcoin to robotics

Blockchains: from bitcoin to robotics

Applications to industry and robotics

Smart contracts andVMs

M2M interaction in Industry 4.0

On demand manufacturing

Auditing and diagnostics

Traceability

Authentication

Subscription production

Quality and stock control

Luca Giuzzi Blockchains: from bitcoin to robotics

Blockchains: from bitcoin to robotics

Algebraic tools

Euclidean algorithm

Division algorithm

Division algorithm

∀α ∈ Z, β ∈ Z \ {0} : ∃q ∈ Z, r ∈ N such that

α = βq+ r, r < |β| or r = 0

Definition
For any α ∈ Z, we say that γ ∈ Z divides α (in symbols γ|α) if

∃k ∈ Z : α = γk.

Luca Giuzzi Blockchains: from bitcoin to robotics

Blockchains: from bitcoin to robotics

Algebraic tools

Euclidean algorithm

GCD

Definition

For any (α, β) ∈ Z2 \ {(0, 0)}we say that γ is a greatest common
divisor between α and β if and only if

k|α, k|β

and for any t with t|α and t|β,

t|k.

Theorem
For anyα, β ∈ Z, (α, β) 6= (0, 0) there are exactly 2 greatest common
divisors between them.

Luca Giuzzi Blockchains: from bitcoin to robotics

Blockchains: from bitcoin to robotics

Algebraic tools

Euclidean algorithm

Diophantine equations

Theorem
For anyα, β, γ ∈ Z, the equation

αx + βy = γ (1)

admits solutions (x̄, ȳ) ∈ Z2 if and only ifα = β = γ = 0 or
(α, β) 6= (0, 0) and gcd(α, β)|γ.

Theorem (Euclidean algorithm)

It is easy to compute gcd(α, β) and it is also easy to find the solutions
of (1).

Luca Giuzzi Blockchains: from bitcoin to robotics

Blockchains: from bitcoin to robotics

Algebraic tools

Euclidean algorithm

Properties of GCDs

For all α, β ∈ Z:
gcd(α, β) = gcd(β, α);
gcd(α, 0) = α;
if β = αq+ r, then gcd(α, β) = gcd(α, r).

def Euc l i dean (u , v) :
i f v > u :

return Euc l i dean (v , u)
while v != 0 :

q = u / / v
r = u − v * q
u = v
v = r

return u

Luca Giuzzi Blockchains: from bitcoin to robotics

Blockchains: from bitcoin to robotics

Algebraic tools

Euclidean algorithm

Extended Euclidean Algorithm

def XEuc l idean (u , v) :
i f v > u :

return XEuc l idean (v , u)
U = numpy . a r r a y ([1 , 0 , i n t (u)])
V = numpy . a r r a y ([0 , 1 , i n t (v)])
while V [2] != 0 :

q = U [2] / / V [2]
R = U − V * q
U = V
V = R

return U

Luca Giuzzi Blockchains: from bitcoin to robotics

Blockchains: from bitcoin to robotics

Algebraic tools

Euclidean algorithm

Euclidean domains

Euclidean domain
(D,+, ·): commutative ring with 1

δ : D \ {0} → N such that ∀α ∈ D, β ∈ D \ {0}:
∃q, r ∈ D : α = βq+ r and r = 0 or δ(r) < δ(β).

Examples:

Z, δ(·) := | · |;
F field, δ(·) := 1;

F[x] polynomial ring, δ(·) := deg(·).

Remark
In Euclidean domains we can use the Euclidean algorithm.

Luca Giuzzi Blockchains: from bitcoin to robotics

Blockchains: from bitcoin to robotics

Algebraic tools

Fields

(R,+, ·): commutative ring with 1;

I E R: ideal;

(R/I,+, ·): quotient ring with

(a+ I) + (b+ I) = (a+ b) + I, (a+ I)(b+ I) = (ab+ I);
Remark

(R/I,+, ·): integral domain if and only if I prime;

(R/I,+, ·): field if and only if I maximal.

Proof. (maximal⇔ field).

∀a ∈ R : a+ I 6= I ⇔ a ∈ R \ I ⇔
{a} ∪ I = R⇔ 1 ∈ {a} ∪ I ⇔ ∃α ∈ R, β ∈ I : aα+ β = 1

⇔ (a+ I)(α+ I) = 1 + I

Luca Giuzzi Blockchains: from bitcoin to robotics

Blockchains: from bitcoin to robotics

Algebraic tools

Fields

Finite fields

Prime order fields
p: prime;

pZ := {pα : α ∈ Z};
Zp := Z/(pZ): field with p elements.

Proof.
Given a ∈ Z, either a ∈ pZ or gcd(a, p) = 1; by the extended
Euclidean algorithm there exist b, k ∈ Z such that ab+ pk = 1; thus

(a+ pZ)(b+ pZ) = (ab+ pZ) = (1− pk) + pZ = 1 + pZ.

Luca Giuzzi Blockchains: from bitcoin to robotics

Blockchains: from bitcoin to robotics

Algebraic tools

Fields

Finite fields

Prime power order fields

p: prime; n > 0; q = pn;

Zp: finite field with p elements;

f (x) ∈ Zp[x] irreducible polynomial of degree n; I = (f (x));

Fq := Zp[x]/I: field with q elements.

Proof.
Given a(x) ∈ Z[x], either a(x) ∈ I or gcd(a(x), f (x)) = 1; by the
extended Euclidean algorithm there exist b(x), k(x) ∈ Z such that
a(x)b(x) + f (x)k(x) = 1; thus

(a(x) + I)(b(x) + I) = (a(x)b(x) + I) = (1− f (x)k(x)) + I = 1 + I.

Luca Giuzzi Blockchains: from bitcoin to robotics

Blockchains: from bitcoin to robotics

Algebraic tools

Cyclic groups

Cyclic groups

(G, ·): finite cyclic group of order n;

(G, ·) ∼= (Zn,+);

G = 〈g〉; g generator of G;

G = {gα : α = 0, . . . , n− 1}

Definition
For any g ∈ G, defineDLOGg : 〈g〉 → {0, . . . , n− 1} as

DLOGg(x) := β such that gβ = x, 0 ≤ β ≤ n− 1.

Remarks
1 In Zn solvingDLOGg is trivial.
2 It might be hard to compute an isomorphism ξ : G→ Zn (DLP).

Luca Giuzzi Blockchains: from bitcoin to robotics

Blockchains: from bitcoin to robotics

Algebraic tools

Cyclic groups

Finite fields: multiplicative group

Theorem
The group (F∗

q, ·) of all invertible elements ofFq is cyclic of order q− 1.

Definition
φ(d) := |Z∗

d| = |{a : 1 ≤ a ≤ q− 1 : gcd(a, d) = 1}|.
ψq(d) := |{x ∈ F∗

q : |〈x〉| = d}|.

Luca Giuzzi Blockchains: from bitcoin to robotics

Blockchains: from bitcoin to robotics

Algebraic tools

Cyclic groups

Finite fields: multiplicative group

Lemma
∀n ∈ N \ {0} :

∑
d|n

φ(d) = n.

Proof.
Any element x ∈ Zn generates a cyclic subgroup Cd of Zn of order d
for some d|n; each subgroup Cd admits φ(d) generators.

Lemma ∑
d|(q−1)

ψq(d) = q− 1 =
∑

d|(q−1)

φ(d) (2)

Proof.
Each element of F∗

q has some order d|(q− 1).

Luca Giuzzi Blockchains: from bitcoin to robotics

Blockchains: from bitcoin to robotics

Algebraic tools

Cyclic groups

Finite fields: multiplicative group

Theorem.
1 In a field xd − 1 has at most d roots;
2 Cd := {x ∈ F∗

q : x
d = 1} has at most d elements; so |Cd| ≤ d;

3 Let a be an element of order d with d|(q− 1); then a ∈ Cd ; and
|Cd| ≥ d; so |Cd| = d, whence Cd = 〈a〉 is cyclic;

4 Cd has φ(d) distinct generators, all its elements of order d;
5 So either ψq(d) = 0 or ψq(d) = |Cd| = φ(d);
6 By (4), ∀d|(q− 1) : ψq(d) = φ(d);
7 In particular, ψq(q− 1) = φ(q− 1) > 0.

Luca Giuzzi Blockchains: from bitcoin to robotics

Blockchains: from bitcoin to robotics

Algebraic tools

DLP

Groups for cryptography

Algorithms based upon hardness of DLP
(EC)DSA signature

ElGamal encryption

Diffie-Hellman key exchange

Good groups for DLP-based cryptography

Multiplicative group of a finite field

Group of the points of an elliptic curve

Luca Giuzzi Blockchains: from bitcoin to robotics

Blockchains: from bitcoin to robotics

Algebraic tools

DLP

Recommended key sizes

H2020-ICT-2014 – Project 645421

ECRYPT – CSA

ECRYPT – Coordination & Support Action

D5.4

Algorithms, Key Size and Protocols Report (2018)

Due date of deliverable: 28 February 2018
Actual submission date: 28 February 2018

Start date of project: 1 March 2015 Duration: 3 years

Lead contractor: University of Bristol (UNIVBRIS) Revision 1.0

Change log

Version Contents

1.0 Comments given by several people on D5.2 have been integrated.

Project co-funded by the European Commission within the H2020 Programme

Dissemination Level

PU Public X

PP Restricted to other programme participants (including the Commission services)

RE Restricted to a group specified by the consortium (including the Commission services)

CO Confidential, only for members of the consortium (including the Commission services)

Luca Giuzzi Blockchains: from bitcoin to robotics

Blockchains: from bitcoin to robotics

Algebraic tools

DLP

Recommended key sizes (2018)

Legacy Near Term Long Term
Symmetric Key Size 80 128 256

RSA Problem 1024 3072 15360
Finite field DLP 1024 3072 15360

ECDLP 160 256 512

Luca Giuzzi Blockchains: from bitcoin to robotics

Blockchains: from bitcoin to robotics

Algebraic tools

DLP

Elliptic curves

p > 3, q = pn, a, b ∈ Fq, 4a3 + 27b2 6= 0:

f (x, y) := y2 − (x3 + ax + b) (3)

p = 2, q = 2n, b ∈ Fq, b 6= 0:

f (x, y) := y2 + xy − (x3 + ax2 + b) (4)

E(Fq) := {(x, y) ∈ F2
q : f (x, y) = 0} ∪ {O∞ := [(0, 1, 0)]};

|E(Fq)− (q+ 1)| ≤ 2
√
q (Hasse);

E(Fq) has 1, 3 or 9 inflection points;

O∞ is an inflection.

Luca Giuzzi Blockchains: from bitcoin to robotics

Blockchains: from bitcoin to robotics

Algebraic tools

DLP

Elliptic curves/remarks

Remark
A line ` intersecting E(F) in at least 2 points over Fmeets E(F) in
exactly 3 points over Fq.

Proof (informal sketch).
Let ` : y = ax + b and consider g(x) := f (x, ax + b). Then,
deg(g(x)) = 3 and (x − ζ1)|g(x), (x − ζ2)|g(x) for elements
ζ1, ζ2 ∈ F; so g(x) = (x − ζ1)(x − ζ2)(x − γ) splits in 3 linear factors
and it has 3 roots.

For P,Q ∈ E(Fq), write `(P,Q) for the line through P and Q and
`(P, P) for the tangent to E(Fq) in P. The intersection divisor of `(P,Q)
and E(Fq) is

`(P,Q).E(Fq) = P + Q+ T .

Luca Giuzzi Blockchains: from bitcoin to robotics

Blockchains: from bitcoin to robotics

Algebraic tools

DLP

Elliptic curves/group operation

Definition

	P := `(P,O∞).E(Fq)− P −O∞;

(P ⊕ Q) := 	(`(P,Q).E(Fq)− (P + Q))

Theorem
(E(Fq),⊕) is an Abelian group.

Luca Giuzzi Blockchains: from bitcoin to robotics

Blockchains: from bitcoin to robotics

Algebraic tools

DLP

Elliptic curves

Luca Giuzzi Blockchains: from bitcoin to robotics

Blockchains: from bitcoin to robotics

Algebraic tools

DLP

Group law: p > 3

P ≡ (x1, y1), Q ≡ (x2, y2), R = P ⊕ Q ≡ (x3, y3)

1 P ⊕O∞ = O∞ ⊕ P = P;
2 	P ≡ (x1,−y1); P ⊕ (P) = O∞;
3 if P 6= Q, P 6= 	Q,

x3 =
(
y2 − y1
x2 − x1

)2

− x1 − x2, y3 =
(
y2 − y1
x2 − x1

)
(x1 − x3)− y1;

4 if P 6= 	P and Q = P, then R = P ⊕ P = 2P,

x3 =
(
3x21 + a
2y1

)2

− 2x1, y3 =
(
3x21 + a
2y1

)
(x1 − x3)− y1.

Luca Giuzzi Blockchains: from bitcoin to robotics

Blockchains: from bitcoin to robotics

Algebraic tools

DLP

Group law/example

p = 23, f (x, y) = y2 − (x3 + x + 4)

(0, 2) (0, 21) (1, 11) (1, 12) (4, 7) (4, 16)
(7, 3) (7, 20) (8, 8) (8, 15) (9, 11) (9, 12)
(10, 5) (10, 18) (11, 9) (11, 14) (13, 11) (13, 12)
(14, 5) (14, 18) (15, 6) (15, 17) (17, 9) (17, 14)
(18, 9) (18, 14) (22, 5) (22, 19) O∞

|E(F23)| = 29 < 24 + 2
√
23 = 32

E(F23) = 〈(0, 2)〉.

P ≡ (4, 7), Q ≡ (13, 11)

	P ≡ (4,−7) = (4, 16)

P ⊕ Q ≡ (15, 6)

2P = (10, 18)

Luca Giuzzi Blockchains: from bitcoin to robotics

Blockchains: from bitcoin to robotics

Algebraic tools

DLP

Group law: p = 2

P ≡ (x1, y1), Q ≡ (x2, y2), R = P ⊕ Q ≡ (x3, y3)

1 P ⊕O∞ = O∞ ⊕ P = P;
2 	P ≡ (x1, x1 + y1); P ⊕ (P) = O∞;
3 if P 6= Q,	Q

x3 =

(
y2 + y1
x2 + x1

)2

+
y1 + y2
x1 + x2

+x1+x2+a, y3 =

(
y2 + y1
x2 + x1

)
(x1+x3)+x3+y1;

4 if P 6= 	P and Q = P, then R = P ⊕ P = 2P,

x3 = x21 +
b
x21
, y3 = x21 +

(
x1 +

y1
x1

)
x3 + x3.

Luca Giuzzi Blockchains: from bitcoin to robotics

Blockchains: from bitcoin to robotics

Algebraic tools

DLP

Group structure

Theorem
Let n = |E(Fq)|; then, E(Fq)with the operations introduced above is an
abelian group and either E(Fq) ∼= Zn or

E(Fq) ∼= Zn1 × Zn2

with n = n1n2 and n2|n1.

Luca Giuzzi Blockchains: from bitcoin to robotics

Blockchains: from bitcoin to robotics

Algebraic tools

DLOG and HSP

Hidden subgroup problem (HSP)

Let G be a group, H ≤ G be a subgroup and X be a set.

Definition
A function f : G→ X such that f (g1) = f (g2) if and only if
g−1
1 g2 ∈ H hides H.

Given G, X the HSP consists in recovering a generating set of H
using O(log |G|+ log |X |) evaluations of f .

Applications

fx :

{
ZN × ZN → G = 〈g〉
(α, β)→ xαgβ

hides H = {(α, αDLOGg x) : α ∈ ZN}

fx :

{
Z→ ZN

α→ xα (mod N)
hides H = {r : xr = 1}

Luca Giuzzi Blockchains: from bitcoin to robotics

Blockchains: from bitcoin to robotics

Algebraic tools

DLOG and HSP

Hidden subgroup problem/QC

Quantum algorithms for algebraic problems

Andrew M. Childs*

Department of Combinatorics and Optimization and Institute for Quantum Computing,
University of Waterloo, Waterloo, Ontario, Canada N2L 3G1

Wim van Dam†

Departments of Computer Science and Physics, University of California, Santa Barbara,
California 93106, USA

�Published 15 January 2010�

Quantum computers can execute algorithms that dramatically outperform classical computation. As
the best-known example, Shor discovered an efficient quantum algorithm for factoring integers,
whereas factoring appears to be difficult for classical computers. Understanding what other
computational problems can be solved significantly faster using quantum algorithms is one of the
major challenges in the theory of quantum computation, and such algorithms motivate the formidable
task of building a large-scale quantum computer. This article reviews the current state of quantum
algorithms, focusing on algorithms with superpolynomial speedup over classical computation and, in
particular, on problems with an algebraic flavor.

DOI: 10.1103/RevModPhys.82.1 PACS number�s�: 03.67.Lx

CONTENTS

I. Introduction 2
II. Complexity of Quantum Computation 3

A. Quantum data 3
B. Quantum circuits 3
C. Reversible computation 4
D. Quantum complexity theory 5
E. Fault tolerance 6

III. Abelian Quantum Fourier Transform 6
A. Fourier transforms over finite Abelian groups 6
B. Efficient quantum circuit for the QFT over Z /2nZ 6
C. Phase estimation and the QFT over any finite

Abelian group 7
D. The QFT over a finite field 8

IV. Abelian Hidden Subgroup Problem 8
A. Period finding over Z /NZ 8
B. Computing discrete logarithms 9

1. Discrete logarithms and cryptography 9
2. Shor’s algorithm for computing discrete

logarithms 10
C. Hidden subgroup problem for finite Abelian groups 10
D. Period finding over Z 12
E. Factoring integers 13
F. Breaking elliptic curve cryptography 14
G. Decomposing Abelian and solvable groups 16
H. Counting points on curves 16

V. Quantum Algorithms for Number Fields 19
A. Pell’s equation 19
B. From Pell’s equation to the unit group 20
C. Periodic function for Pell’s equation 20
D. Period finding over R 21

E. The principal ideal problem and number field
cryptography 22

F. Computing the unit group of a general number field 22
G. The principal ideal problem and the class group 23

VI. Non-Abelian Quantum Fourier Transform 23
A. The Fourier transform over a non-Abelian group 23
B. Efficient quantum circuits 24

VII. Non-Abelian Hidden Subgroup Problem 24
A. The problem and its applications 24
B. The standard method 26
C. Weak Fourier sampling 26
D. Strong Fourier sampling 27
E. Multiregister measurements and query complexity 28
F. The Kuperberg sieve 29
G. Pretty good measurement 32

VIII. Hidden Shift Problem 34
A. Abelian Fourier sampling for the dihedral HSP 35
B. Finding hidden shifts in �Z /pZ�n 35
C. Self-reducibility, quantum hiding, and the orbit coset

problem 36
D. Shifted Legendre symbol and Gauss sums 37

1. Shifted Legendre symbol problem 37
2. Estimating Gauss sums 38

E. Generalized hidden shift problem 39
IX. Hidden Nonlinear Structures 40

A. The hidden polynomial problem 40
B. Shifted subset problems and exponential sums 41
C. Polynomial reconstruction by Legendre symbol

evaluation 41
X. Approximating #P-Complete Problems 42

Acknowledgments 43
Appendix A: Number Theory 44

1. Arithmetic mod N 44
2. Finite fields and their extensions 44
3. Structure of finite fields 45

Appendix B: Representation Theory of Finite Groups 45
1. General theory 45

*amchilds@uwaterloo.ca
†vandam@cs.ucsb.edu

REVIEWS OF MODERN PHYSICS, VOLUME 82, JANUARY–MARCH 2010

0034-6861/2010/82�1�/1�52� ©2010 The American Physical Society1

Luca Giuzzi Blockchains: from bitcoin to robotics

Blockchains: from bitcoin to robotics

Algebraic tools

DLOG and HSP

Groups for cryptography

Remarks
Quantum Computers promise to break DLP.

As of today (2020), the groups (F∗
q, ·) are considered the

benchmark for all algorithms based on DLP.

The groups E(Fq) are comparatively much more secure than F∗
q.

Different approaches might be needed in the long term.

Luca Giuzzi Blockchains: from bitcoin to robotics

Blockchains: from bitcoin to robotics

Algebraic cryptography

DSA and ECDSA

DSA
FIPS PUB 186-4

FEDERAL INFORMATION PROCESSING STANDARDS
PUBLICATION

Digital Signature Standard (DSS)

CATEGORY: COMPUTER SECURITY SUBCATEGORY: CRYPTOGRAPHY

Information Technology Laboratory
National Institute of Standards and Technology
Gaithersburg, MD 20899-8900

Issued July 2013

U.S. Department of Commerce
Cameron F. Kerry, Acting Secretary

National Institute of Standards and Technology
Patrick D. Gallagher, Under Secretary of Commerce for Standards and Technology and Director

Luca Giuzzi Blockchains: from bitcoin to robotics

Blockchains: from bitcoin to robotics

Algebraic cryptography

DSA and ECDSA

DSA

. Domain parameters generation
1 p: prime, q: prime, q|(p− 1).
2 g: generator of the unique cyclic subgroup of order q in F∗

p
3 return p,q and g.

. Key Generation
1 x ← Random(1; q− 1)
2 y ← gx (mod p)
3 y: public key; x: private key

Luca Giuzzi Blockchains: from bitcoin to robotics

Blockchains: from bitcoin to robotics

Algebraic cryptography

DSA and ECDSA

DSA

. Sign amessagem
1 k ← Nonce(1; q− 1)
2 X ← gk (mod p); r ← X (mod q)
3 if r = 0, then return to 1
4 use the euclidean algorithm to compute k−1 (mod q)
5 s← k−1(m+ xr) (mod q)
6 if s = 0, then return to 1
7 return (r, s)

. Verify Signature given (m, r, s)
1 w ← s−1 (mod q)
2 u1 ← mw (mod q); u2 ← rw (mod q)
3 X ← gu1yu2 (mod p); v ← X (mod q)
4 Verify if v = r.

Luca Giuzzi Blockchains: from bitcoin to robotics

Blockchains: from bitcoin to robotics

Algebraic cryptography

DSA and ECDSA

DSA

Proof.

v = X (mod q) = gu1yu2 = gmwyrw = gs
−1mys

−1r =

gk(m+xr)−1myk(m+xr)−1r = gk(m+xr)−1mgk(m+xr)−1rx =

gk(m+xr)−1(m+rx) = gk = r

Luca Giuzzi Blockchains: from bitcoin to robotics

Blockchains: from bitcoin to robotics

Algebraic cryptography

DSA and ECDSA

ECDSA

IJIS (2001) 1: 36–63 / Digital Object Identifier (DOI) 10.1007/s102070100002

TheEllipticCurveDigital SignatureAlgorithm(ECDSA)

Don Johnson1, Alfred Menezes1,2, Scott Vanstone1,2

1Certicom Research, Canada
2Department of Combinatorics and Optimization, University of Waterloo, Canada
E-mails: {djohnson,amenezes,svanstone}@certicom.com
Published online: 27 July 2001 – Springer-Verlag 2001

Abstract. The Elliptic Curve Digital Signature Algo-
rithm (ECDSA) is the elliptic curve analogue of the Dig-
ital Signature Algorithm (DSA). It was accepted in 1999
as an ANSI standard and in 2000 as IEEE and NIST
standards. It was also accepted in 1998 as an ISO stan-
dard and is under consideration for inclusion in some
other ISO standards. Unlike the ordinary discrete loga-
rithm problem and the integer factorization problem, no
subexponential-time algorithm is known for the elliptic
curve discrete logarithm problem. For this reason, the
strength-per-key-bit is substantially greater in an algo-
rithm that uses elliptic curves. This paper describes the
ANSI X9.62 ECDSA, and discusses related security, im-
plementation, and interoperability issues.

Keywords: Signature schemes – Elliptic curve cryptog-
raphy – DSA – ECDSA

1 Introduction

The Digital Signature Algorithm (DSA) was specified
in a U.S. Government Federal Information Processing
Standard (FIPS) called the Digital Signature Standard
(DSS [70]). Its security is based on the computational in-
tractability of the discrete logarithm problem (DLP) in
prime-order subgroups of Z∗p .

Elliptic curve cryptosystems (ECC) were invented by
Neal Koblitz [49] and Victor Miller [67] in 1985. They can
be viewed as elliptic curve analogues of the older discrete
logarithm (DL) cryptosystems in which the subgroup of
Z
∗
p is replaced by the group of points on an elliptic curve

over a finite field. The mathematical basis for the security
of elliptic curve cryptosystems is the computational in-
tractability of the elliptic curve discrete logarithm prob-
lem (ECDLP).

Since the ECDLP appears to be significantly harder
than the DLP, the strength-per-key-bit is substantially
greater in elliptic curve systems than in conventional
discrete logarithm systems. Thus, smaller parameters,
but with equivalent levels of security, can be used with
ECC than with DL systems. The advantages that can
be gained from smaller parameters include speed (faster
computations) and smaller keys and certificates. These
advantages are especially important in environments
where processing power, storage space, bandwidth, or
power consumption is constrained.

The Elliptic Curve Digital Signature Algorithm
(ECDSA) is the elliptic curve analogue of the DSA.
ECDSAwasfirstproposed in 1992 by Scott Vanstone [108]
in response to NIST’s (National Institute of Standards
and Technology) request for public comments on their
first proposal for DSS. It was accepted in 1998 as an ISO
(International Standards Organization) standard (ISO
14888-3), accepted in 1999 as an ANSI (American Na-
tional Standards Institute) standard (ANSI X9.62), and
accepted in 2000 as an IEEE (Institute of Electrical and
Electronics Engineers) standard (IEEE 1363-2000) and
a FIPS standard (FIPS 186-2). It is also under consid-
eration for inclusion in some other ISO standards. In
this paper, we describe the ANSI X9.62 ECDSA, present
rationale for some of the design decisions, and discuss
related security, implementation, and interoperability
issues.

The remainder of this paper is organized as follows. In
Sect. 2, we review digital signature schemes and the DSA.
A brief tutorial on finite fields and elliptic curves is pro-
vided in Sects. 3 and 4, respectively. In Sect. 5, methods
for domain parameter generation and validation are con-
sidered, while Sect. 6 discusses methods for key pair gen-
eration and public key validation. The ECDSA signature
and verification algorithms are presented in Sect. 7. The
security of ECDSA is studied in Sect. 8. Finally, some im-

Luca Giuzzi Blockchains: from bitcoin to robotics

Blockchains: from bitcoin to robotics

Algebraic cryptography

DSA and ECDSA

ECDSA

. Domain parameters generation
1 q: prime power;
2 a, b← Random(Fq);
3 N ← |E(Fq)|;
4 Check N divisible by a large prime n; else return to 2;
5 Check N does not divide qk − 1 for 1 ≤ k ≤ 20; else return to 2;
6 Check n 6= q; else return to 2;
7 G′ ← Random(E(Fq));
8 G← (N/n)G′; if G = O∞ return to 7;
9 return q, a, b, n,G.

. Key Generation
1 d ← Random(1; n− 1)
2 Q← dG
3 Q: public key; d: private key

Luca Giuzzi Blockchains: from bitcoin to robotics

Blockchains: from bitcoin to robotics

Algebraic cryptography

DSA and ECDSA

ECDSA

. Sign amessagem
1 k ← Nonce(1; n− 1)
2 H ≡ (x1, y1)← kG; represent x1 as an integer x1; r ← x1

(mod n);
3 if r = 0, then return to 1;
4 use the euclidean algorithm to compute k−1 (mod n)
5 s← k−1(m+ dr) (mod n)
6 if s = 0, then return to 1
7 return (r, s)

. Verify Signature given (m, r, s)
1 w ← s−1 (mod n);
2 u1 ← mw (mod n); u2 ← rw (mod n);
3 X ≡ (x1, y1)← u1G ⊕ u2Q;
4 If X = O∞, then reject;
5 v ← x1;
6 Verify if v = r.

Luca Giuzzi Blockchains: from bitcoin to robotics

Blockchains: from bitcoin to robotics

Algebraic cryptography

DSA and ECDSA

ECDSA

Proof.

k = s−1(m+ dr) = w(m+ rd) = u1 + u2d (mod n),

whence
u1G ⊕ u2Q = (u1 + u2d)G = kG

Thus v = r.

Luca Giuzzi Blockchains: from bitcoin to robotics

Blockchains: from bitcoin to robotics

Algebraic cryptography

Hash functions

Merkle–Damgård

f

m1

f

m2

f

m3

f

mt

iv
` ` n

Ω H(m)

Luca Giuzzi Blockchains: from bitcoin to robotics

Blockchains: from bitcoin to robotics

Algebraic cryptography

Hash functions

Grøstl

Grøstl – a SHA-3 candidate ∗

http://www.groestl.info

Praveen Gauravaram1, Lars R. Knudsen1, Krystian Matusiewicz2, Florian Mendel3,
Christian Rechberger4, Martin Schläffer3, and Søren S. Thomsen1

1Department of Mathematics, Technical University of Denmark, Matematiktorvet 303S,
DK-2800 Kgs. Lyngby, Denmark

2Intel Technology Poland, Juliusza S lowackiego 173, 80-298 Gdansk, Poland
3Institute for Applied Information Processing and Communications (IAIK), Graz

University of Technology, Inffeldgasse 16a, A-8010 Graz, Austria
4Department of Electrical Engineering ESAT/COSIC, Katholieke Universiteit Leuven,

Kasteelpark Arenberg 10, B-3001 Heverlee, Belgium

March 2, 2011

Summary

Grøstl is a SHA-3 candidate proposal. Grøstl is an iterated hash function with a compression
function built from two fixed, large, distinct permutations. The design of Grøstl is transparent
and based on principles very different from those used in the SHA-family.

The two permutations are constructed using the wide trail design strategy, which makes
it possible to give strong statements about the resistance of Grøstl against large classes of
cryptanalytic attacks. Moreover, if these permutations are assumed to be ideal, there is a proof
for the security of the hash function.

Grøstl is a byte-oriented SP-network which borrows components from the AES. The S-box
used is identical to the one used in the block cipher AES and the diffusion layers are constructed
in a similar manner to those of the AES. As a consequence there is a very strong confusion and
diffusion in Grøstl.

Grøstl is a so-called wide-pipe construction where the size of the internal state is signifi-
cantly larger than the size of the output. This has the effect that all known, generic attacks on
the hash function are made much more difficult.

Grøstl has good performance on a wide range of platforms, and counter-measures against
side-channel attacks are well-understood from similar work on the AES.

∗Document version no. 2.0 (updated January 16, 2011). A few simple changes have been made to the constants
in Grøstl in order to increase its security margin without penalizing its speed. This document describes the
changed algorithm. We refer to the previous version as Grøstl-0.

Document version no. 2.0.1 (updated March 2, 2011). Corrected n ≤ 2 · ` to ` ≥ 2n in Section 3.

1

Luca Giuzzi Blockchains: from bitcoin to robotics

Blockchains: from bitcoin to robotics

Algebraic cryptography

Hash functions

Grøstl

P Q

hi−1

hi

mi

f

x P

Luca Giuzzi Blockchains: from bitcoin to robotics

Blockchains: from bitcoin to robotics

Algebraic cryptography

Hash functions

Grøstl/AES S-Boxes

m(x) = x8 + x4 + x3 + x + 1

F256 = Z2[x]/(m(x))

Each element b of F256 reads as (b0, . . . , b7) ∈ Z8
2

SubBytes(b) :=

1 0 0 0 1 1 1 1
1 1 0 0 0 1 1 1
1 1 1 0 0 0 1 1
1 1 1 1 0 0 0 1
1 1 1 1 1 0 0 0
0 1 1 1 1 1 0 0
0 0 1 1 1 1 1 0
0 0 0 1 1 1 1 1

b254 +

1
1
0
0
0
1
1
0

Luca Giuzzi Blockchains: from bitcoin to robotics

Blockchains: from bitcoin to robotics

Algebraic cryptography

Hash functions

Grøstl

AddRoundConstant
SubBytes
ShiftBytes
MixBytes

Figure 4: One round of the Grøstl permutations P and Q is a composition of four basic
transformations.

similar way as in Rijndael. Hence, the 64-byte sequence 00 01 02 ... 3f is mapped to an 8 × 8
matrix as

00 08 10 18 20 28 30 38
01 09 11 19 21 29 31 39
02 0a 12 1a 22 2a 32 3a
03 0b 13 1b 23 2b 33 3b
04 0c 14 1c 24 2c 34 3c
05 0d 15 1d 25 2d 35 3d
06 0e 16 1e 26 2e 36 3e
07 0f 17 1f 27 2f 37 3f

.

For an 8× 16 matrix, this method is extended in the natural way. Mapping from a matrix to a
byte sequence is simply the reverse operation. From now on, we do not explicitly mention this
mapping.

3.4.2 AddRoundConstant

The AddRoundConstant transformation adds a round-dependent constant to the state matrix A.
By addition we mean exclusive-or (XOR). To be precise, the AddRoundConstant transformation
in round i (starting from zero) updates the state A as

A← A⊕ C[i],

where C[i] is the round constant used in round i. P and Q have different round constants.

8

The round constants for P512 and Q512 are

P512 : C[i] =

00⊕ i 10⊕ i 20⊕ i 30⊕ i 40⊕ i 50⊕ i 60⊕ i 70⊕ i
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00

and

Q512 : C[i] =

ff ff ff ff ff ff ff ff
ff ff ff ff ff ff ff ff
ff ff ff ff ff ff ff ff
ff ff ff ff ff ff ff ff
ff ff ff ff ff ff ff ff
ff ff ff ff ff ff ff ff
ff ff ff ff ff ff ff ff
ff ⊕ i ef ⊕ i df ⊕ i cf ⊕ i bf ⊕ i af ⊕ i 9f ⊕ i 8f ⊕ i

where i is the round number viewed as an 8-bit value, and all other values are written in
hexadecimal notation.

Similarly, the round constants for P1024 and Q1024 are

P1024 : C[i] =

00⊕ i 10⊕ i 20⊕ i 30⊕ i 40⊕ i 50⊕ i 60⊕ i 70⊕ i · · · f0⊕ i
00 00 00 00 00 00 00 00 · · · 00
00 00 00 00 00 00 00 00 · · · 00
00 00 00 00 00 00 00 00 · · · 00
00 00 00 00 00 00 00 00 · · · 00
00 00 00 00 00 00 00 00 · · · 00
00 00 00 00 00 00 00 00 · · · 00
00 00 00 00 00 00 00 00 · · · 00

and

Q1024 : C[i] =

ff ff ff ff ff ff ff ff · · · ff
ff ff ff ff ff ff ff ff · · · ff
ff ff ff ff ff ff ff ff · · · ff
ff ff ff ff ff ff ff ff · · · ff
ff ff ff ff ff ff ff ff · · · ff
ff ff ff ff ff ff ff ff · · · ff
ff ff ff ff ff ff ff ff · · · ff
ff ⊕ i ef ⊕ i df ⊕ i cf ⊕ i bf ⊕ i af ⊕ i 9f ⊕ i 8f ⊕ i · · · 0f ⊕ i

where i is again the round number viewed as an 8-bit value.

3.4.3 SubBytes

The SubBytes transformation substitutes each byte in the state matrix by another value, taken
from the s-box S. This s-box is the same as the one used in Rijndael and its specification can

9

Luca Giuzzi Blockchains: from bitcoin to robotics

Blockchains: from bitcoin to robotics

Algebraic cryptography

Hash functions

Grøstl

be found in Appendix B. Hence, if ai,j is the element in row i and column j of A, then SubBytes
performs the following transformation:

ai,j ← S(ai,j), 0 ≤ i < 8, 0 ≤ j < v.

See Figure 5.

S(·)

Figure 5: SubBytes substitutes each byte of the state by its image under the s-box S.

3.4.4 ShiftBytes and ShiftBytesWide

ShiftBytes and ShiftBytesWide cyclically shift the bytes within a row to the left by a number
of positions. Let σ = [σ0, σ1, . . . , σ7] be a list of distinct integers in the range from 0 to v − 1.
Then, ShiftBytes moves all bytes in row i of the state matrix σi positions to the left, wrapping
around as necessary. The vector σ in ShiftBytes respectively ShiftBytesWide is different for
P and Q. For ShiftBytes in P , we use σ = [0, 1, 2, 3, 4, 5, 6, 7] and for ShiftBytes in Q, we use
σ = [1, 3, 5, 7, 0, 2, 4, 6]. Similarly, for ShiftBytesWide in P and Q, we use σ = [0, 1, 2, 3, 4, 5, 6, 11]
and σ = [1, 3, 5, 11, 0, 2, 4, 6] respectively. The transformations ShiftBytes and ShiftBytesWide
for P and Q are illustrated in Figure 6 and Figure 7.

shift by 0
shift by 1
shift by 2
shift by 3
shift by 4
shift by 5
shift by 6
shift by 7

shift by 1
shift by 3
shift by 5
shift by 7
shift by 0
shift by 2
shift by 4
shift by 6

Figure 6: The ShiftBytes transformation of permutation P512 (top) and Q512 (bottom).

10

shift by 0
shift by 1
shift by 2
shift by 3
shift by 4
shift by 5
shift by 6
shift by 11

shift by 1
shift by 3
shift by 5
shift by 11
shift by 0
shift by 2
shift by 4
shift by 6

Figure 7: The ShiftBytesWide transformation of permutation P1024 (top) and Q1024 (bottom).

3.4.5 MixBytes

In the MixBytes transformation, each column in the matrix is transformed independently. To
describe this transformation we first need to introduce the finite field F256. This finite field is
defined in the same way as in Rijndael via the irreducible polynomial x8 ⊕ x4 ⊕ x3 ⊕ x⊕ 1 over
F2. The bytes of the state matrix A can be seen as elements of F256, i.e., as polynomials of
degree at most 7 with coefficients in {0, 1}. The least significant bit of each byte determines
the coefficient of x0, etc.

MixBytes multiplies each column of A by a constant 8 × 8 matrix B in F256. Hence, the
transformation on the whole matrix A can be written as the matrix multiplication

A← B ×A.

The matrix B is specified as

B =

02 02 03 04 05 03 05 07
07 02 02 03 04 05 03 05
05 07 02 02 03 04 05 03
03 05 07 02 02 03 04 05
05 03 05 07 02 02 03 04
04 05 03 05 07 02 02 03
03 04 05 03 05 07 02 02
02 03 04 05 03 05 07 02

.

This matrix is circulant, which means that each row is equal to the row above rotated right
by one position. In short, we may write B = circ(02, 02, 03, 04, 05, 03, 05, 07) instead. See also
Figure 8.

11

Luca Giuzzi Blockchains: from bitcoin to robotics

Blockchains: from bitcoin to robotics

Algebraic cryptography

Hash functions

Grøstl

be found in Appendix B. Hence, if ai,j is the element in row i and column j of A, then SubBytes
performs the following transformation:

ai,j ← S(ai,j), 0 ≤ i < 8, 0 ≤ j < v.

See Figure 5.

S(·)

Figure 5: SubBytes substitutes each byte of the state by its image under the s-box S.

3.4.4 ShiftBytes and ShiftBytesWide

ShiftBytes and ShiftBytesWide cyclically shift the bytes within a row to the left by a number
of positions. Let σ = [σ0, σ1, . . . , σ7] be a list of distinct integers in the range from 0 to v − 1.
Then, ShiftBytes moves all bytes in row i of the state matrix σi positions to the left, wrapping
around as necessary. The vector σ in ShiftBytes respectively ShiftBytesWide is different for
P and Q. For ShiftBytes in P , we use σ = [0, 1, 2, 3, 4, 5, 6, 7] and for ShiftBytes in Q, we use
σ = [1, 3, 5, 7, 0, 2, 4, 6]. Similarly, for ShiftBytesWide in P and Q, we use σ = [0, 1, 2, 3, 4, 5, 6, 11]
and σ = [1, 3, 5, 11, 0, 2, 4, 6] respectively. The transformations ShiftBytes and ShiftBytesWide
for P and Q are illustrated in Figure 6 and Figure 7.

shift by 0
shift by 1
shift by 2
shift by 3
shift by 4
shift by 5
shift by 6
shift by 7

shift by 1
shift by 3
shift by 5
shift by 7
shift by 0
shift by 2
shift by 4
shift by 6

Figure 6: The ShiftBytes transformation of permutation P512 (top) and Q512 (bottom).

10

shift by 0
shift by 1
shift by 2
shift by 3
shift by 4
shift by 5
shift by 6
shift by 11

shift by 1
shift by 3
shift by 5
shift by 11
shift by 0
shift by 2
shift by 4
shift by 6

Figure 7: The ShiftBytesWide transformation of permutation P1024 (top) and Q1024 (bottom).

3.4.5 MixBytes

In the MixBytes transformation, each column in the matrix is transformed independently. To
describe this transformation we first need to introduce the finite field F256. This finite field is
defined in the same way as in Rijndael via the irreducible polynomial x8 ⊕ x4 ⊕ x3 ⊕ x⊕ 1 over
F2. The bytes of the state matrix A can be seen as elements of F256, i.e., as polynomials of
degree at most 7 with coefficients in {0, 1}. The least significant bit of each byte determines
the coefficient of x0, etc.

MixBytes multiplies each column of A by a constant 8 × 8 matrix B in F256. Hence, the
transformation on the whole matrix A can be written as the matrix multiplication

A← B ×A.

The matrix B is specified as

B =

02 02 03 04 05 03 05 07
07 02 02 03 04 05 03 05
05 07 02 02 03 04 05 03
03 05 07 02 02 03 04 05
05 03 05 07 02 02 03 04
04 05 03 05 07 02 02 03
03 04 05 03 05 07 02 02
02 03 04 05 03 05 07 02

.

This matrix is circulant, which means that each row is equal to the row above rotated right
by one position. In short, we may write B = circ(02, 02, 03, 04, 05, 03, 05, 07) instead. See also
Figure 8.

11

Luca Giuzzi Blockchains: from bitcoin to robotics

Blockchains: from bitcoin to robotics

Algebraic cryptography

Hash functions

Grøstl

B = circ(02, 02, 03, 04, 05, 03, 05, 07)

Figure 8: The MixBytes transformation left-multiplies each column of the state matrix treated
as a column vector over F256 by a circulant matrix B.

3.4.6 Number of rounds

The number r of rounds is a tunable security parameter. We recommend the following values
of r for the four permutations.

Permutations Digest sizes Recommended value of r

P512 and Q512 8–256 10
P1024 and Q1024 264–512 14

3.5 Initial values

The initial value ivn of Grøstl-n is the `-bit representation of n. The table below shows the
initial values of the required output sizes of 224, 256, 384, and 512 bits.

n ivn

224 00 ... 00 00 e0
256 00 ... 00 01 00
384 00 ... 00 01 80
512 00 ... 00 02 00

3.6 Padding

As mentioned, the length of each message block is `. To be able to operate on inputs of varying
length, a padding function pad is defined. This padding function takes a string x of length N
bits and returns a padded string x∗ = pad(x) of a length which is a multiple of `.

The padding function does the following. First, it appends the bit ‘1’ to x. Then, it appends
w = −N − 65 mod ` ‘0’ bits, and finally, it appends a 64-bit representation of (N + w + 65)/`.
This number is an integer due to the choice of w, and it represents the number of message
blocks in the final, padded message.

Since it must be possible to encode the number of message blocks in the padded message
within 64 bits, the maximum message length is 65 bits short of 264− 1 message blocks. For the
short variants, the maximum message length in bits is therefore 512 · (264− 1)− 65 = 273− 577,
and for the longer variants it is 1024 · (264 − 1)− 65 = 274 − 1089.

12

Luca Giuzzi Blockchains: from bitcoin to robotics

Blockchains: from bitcoin to robotics

Algebraic cryptography

Hash functions

Keccak/SHA-3

FIPS PUB 202

FEDERAL INFORMATION PROCESSING STANDARDS
PUBLICATION

SHA-3 Standard: Permutation-Based Hash and
Extendable-Output Functions

CATEGORY: COMPUTER SECURITY SUBCATEGORY: CRYPTOGRAPHY

Information Technology Laboratory
National Institute of Standards and Technology
Gaithersburg, MD 20899-8900

This publication is available free of charge from:
http://dx.doi.org/10.6028/NIST.FIPS.202

August 2015

U.S. Department of Commerce
Penny Pritzker, Secretary

National Institute of Standards and Technology
Willie May, Under Secretary of Commerce for Standards and Technology and Director

Luca Giuzzi Blockchains: from bitcoin to robotics

Blockchains: from bitcoin to robotics

Algebraic cryptography

Hash functions

Sponge construction

Luca Giuzzi Blockchains: from bitcoin to robotics

Blockchains: from bitcoin to robotics

Algebraic cryptography

Hash functions

State array

Luca Giuzzi Blockchains: from bitcoin to robotics

Blockchains: from bitcoin to robotics

Algebraic cryptography

Hash functions

Operation

 11

3.1.4 Labeling Convention for the State Array

Figure 2: The x, y, and z coordinates for the diagrams of the step mappings

In the diagrams of the state that accompany the specifications of the step mappings, the lane that

corresponds to the coordinates (x, y) = (0, 0) is depicted at the center of the slices. The complete

labeling of the x, y, and z coordinates for those diagrams is shown in Figure 2 above.

3.2 Step Mappings

The five step mappings that comprise a round of KECCAK-p[b, nr] are denoted by θ, ρ, π, χ, and ι.

Specifications for these functions are given in Secs. 3.2.1-3.2.5.

The algorithm for each step mapping takes a state array, denoted by A, as an input and returns an

updated state array, denoted by A′, as the output. The size of the state is a parameter that is

omitted from the notation, because b is always specified when the step mappings are invoked.

The ι mapping ir has a second input: an integer called the round index, denoted by ir, which is

defined within Algorithm 7 for KECCAK-p[b, nr], in Sec. 3.3. The other step mappings do not

depend on the round index.

3.2.1 Specification of θ

Algorithm 1: θ(A)

Input:

state array A.

Output:

state array A′.

y

3 4 0 1 2

2

1

0

4

3

x

z

0
1

2
3
…

 w
−1

 12

Steps:

1. For all pairs (x, z) such that 0 ≤ x < 5 and 0 ≤ z < w, let

C[x, z] = A[x, 0, z] ⊕ A[x, 1, z] ⊕ A[x, 2, z] ⊕ A[x, 3, z] ⊕ A[x, 4, z].

2. For all pairs (x, z) such that 0 ≤ x < 5 and 0 ≤ z < w let

D[x, z] = C[(x1) mod 5, z] ⊕ C[(x+1) mod 5, (z – 1) mod w].

3. For all triples (x, y, z) such that 0 ≤ x < 5, 0 ≤ y < 5, and 0 ≤ z < w, let

A′[x, y, z] = A[x, y, z] ⊕ D[x, z].

The effect of θ is to XOR each bit in the state with the parities of two columns in the array. In

particular, for the bit A[x0, y0, z0], the x-coordinate of one of the columns is (x0 1) mod 5, with

the same z-coordinate, z0, while the x-coordinate of the other column is (x0 + 1) mod 5, with z-

coordinate (z0 1) mod w.

In the illustration of the θ step mapping in Figure 3 below, the summation symbol, ∑, indicates

the parity, i.e., the XOR sum of all the bits in the column.

Figure 3: Illustration of θ applied to a single bit [8]

3.2.2 Specification of ρ

Algorithm 2: ρ(A)

Input:

state array A.

Output:

state array A′.

Steps:

1. For all z such that 0 ≤ z < w, let A′ [0, 0, z] = A[0, 0, z].

2. Let (x, y) = (1, 0).

Luca Giuzzi Blockchains: from bitcoin to robotics

Blockchains: from bitcoin to robotics

Algebraic cryptography

Hash functions

Operation

 13

3. For t from 0 to 23:

a. for all z such that 0 ≤ z < w, let A′[x, y, z] = A[x, y, (z – (t + 1)(t + 2)/2) mod w];

b. let (x, y) = (y, (2x + 3y) mod 5).

4. Return A′.

The effect of ρ is to rotate the bits of each lane by a length, called the offset, which depends on

the fixed x and y coordinates of the lane. Equivalently, for each bit in the lane, the z coordinate is

modified by adding the offset, modulo the lane size.

 x = 3 x = 4 x = 0 x = 1 x = 2

y = 2 153 231 3 10 171

y = 1 55 276 36 300 6

y = 0 28 91 0 1 190

y = 4 120 78 210 66 253

y = 3 21 136 105 45 15

Table 2: Offsets of ρ [8]

The offsets for each lane that result from the computation in Step 3a in Algorithm 2 are listed in

Table 2 above.

An illustration of ρ for the case w = 8 is given in Figure 4 below. The labeling convention for the

x and y coordinates in Figure 4 is given explicitly in Figure 2, corresponding to the rows and

columns in Table 2. For example, the lane A[0, 0] is depicted in the middle of the middle sheet,

and the lane A[2, 3] is depicted at the bottom of the right-most sheet.

Figure 4: Illustration of ρ for b = 200 [8]

For each lane in Figure 4, the black dot indicates the bit whose z coordinate is 0, and the shaded

cube indicates the position of that bit after the execution of ρ. The other bits of the lane shift by

the same offset, and the shift is circular. For example, the offset for the lane A[1, 0] is 1, so the

last bit, whose z coordinate is 7 for this example, shifts to the front position, whose z coordinate

 14

is 0. Consequently, the offsets may be reduced modulo the lane size; e.g., the lane for A[3, 2], at

the top of the left-most sheet, has an offset of 153 mod 8 for this example, i.e., the offset is 1 bit.

3.2.3 Specification of π

Algorithm 3: π(A)

Input:

state array A.

Output:

state array A′.

Steps:

1. For all triples (x, y, z) such that 0 ≤ x < 5, 0 ≤ y < 5, and 0 ≤ z < w, let

 A′[x, y, z]= A[(x + 3y) mod 5, x, z].

2. Return A′.

The effect of π is to rearrange the positions of the lanes, as illustrated for any slice in Figure 5

below. The convention for the labeling of the coordinates is depicted in Figure 2 above; for

example, the bit with coordinates x = y = 0 is depicted at the center of the slice.

Figure 5: Illustration of π applied to a single slice [8]

Luca Giuzzi Blockchains: from bitcoin to robotics

Blockchains: from bitcoin to robotics

Algebraic cryptography

Hash functions

Operation

 15

3.2.4 Specification of χ

Algorithm 4: χ(A)

Input:

state array A.

Output:

state array A′.

Steps:

1. For all triples (x, y, z) such that 0 ≤ x < 5, 0 ≤ y < 5, and 0 ≤ z < w, let

A′ [x, y, z] = A[x, y, z] ⊕ ((A[(x+1) mod 5, y, z] ⊕ 1) ⋅ A[(x+2) mod 5, y, z]).

2. Return A′.

The dot in the right side of the assignment for Step 1 indicates integer multiplication, which in

this case is equivalent to the intended Boolean “AND” operation.

The effect of χ is to XOR each bit with a non-linear function of two other bits in its row, as

illustrated in Figure 6 below.

Figure 6: Illustration of χ applied to a single row [8]

3.2.5 Specification of ι

The ι mapping is parameterized by the round index, ir, whose values are specified in Step 2 of

Algorithm 7 for computing KECCAK-p[b, nr], in Sec. 3.3. Within the specification of ι in

Algorithm 6 below, this parameter determines l + 1 bits of a lane value called the round constant,

denoted by RC. Each of these l + 1 bits is generated by a function that is based on a linear

feedback shift register. This function, denoted by rc, is specified in Algorithm 5.

 16

Algorithm 5: rc(t)

Input:

integer t.

Output:

bit rc(t).

Steps:

1. If t mod 255 = 0, return 1.

2. Let R = 10000000.

3. For i from 1 to t mod 255, let:

a. R = 0 || R;

b. R[0] = R[0] ⊕ R[8];

c. R[4] = R[4] ⊕ R[8];

d. R[5] = R[5] ⊕ R[8];

e. R[6] = R[6] ⊕ R[8];

f. R =Trunc8[R].

4. Return R[0].

Algorithm 6: ι(A, ir)

Input:

state array A;

round index ir.

Output:

state array A′.

Steps:

1. For all triples (x, y, z) such that 0 ≤ x < 5, 0 ≤ y < 5, and 0 ≤ z < w, let A′[x, y, z] = A[x, y, z].

2. Let RC = 0
w
.

3. For j from 0 to l, let RC[2
j
 – 1] = rc(j + 7ir).

4. For all z such that 0 ≤ z < w, let A′ [0, 0, z] = A′ [0, 0, z] ⊕ RC[z].

5. Return A′.

The effect of ι is to modify some of the bits of Lane (0, 0) in a manner that depends on the round

index ir. The other 24 lanes are not affected by ι.

3.3 KECCAK-p[b, nr]

Given a state array A and a round index ir, the round function Rnd is the transformation that

results from applying the step mappings θ, ρ, π, χ, and ι, in that order, i.e.,:

Rnd(A, ir) = ι(χ(π(ρ(θ(A)))), ir).

Luca Giuzzi Blockchains: from bitcoin to robotics

Blockchains: from bitcoin to robotics

Algebraic cryptography

Hash functions

Operation

 17

The KECCAK-p[b, nr] permutation consists of nr iterations of Rnd, as specified in Algorithm 7.

Algorithm 7: KECCAK-p[b, nr](S)

Input:

string S of length b;

number of rounds nr.

Output:

string S′ of length b.

Steps:

1. Convert S into a state array, A, as described in Sec. 3.1.2.

2. For ir from 12 + 2l – nr to 12 + 2l – 1, let A = Rnd(A, ir).

3. Convert A into a string S′ of length b, as described in Sec. 3.1.3.

4. Return S′.

3.4 Comparison with KECCAK-f

The KECCAK-f family of permutations, originally defined in [8], is the specialization of the

KECCAK-p family to the case that nr = 12 + 2l :

 KECCAK-f [b] = KECCAK-p[b, 12 + 2l].

Consequently, the KECCAK-p[1600, 24] permutation, which underlies the six SHA-3 functions, is

equivalent to KECCAK-f [1600].

The rounds of KECCAK-f [b] are indexed from 0 to 11 + 2l . A result of the indexing within Step 2

of Algorithm 7 is that the rounds of KECCAK-p[b, nr] match the last rounds of KECCAK-f [b], or

vice versa. For example, KECCAK-p[1600, 19] is equivalent to the last nineteen rounds of

KECCAK-f [1600]. Similarly, KECCAK-f [1600] is equivalent to the last twenty-four rounds of

KECCAK-p[1600, 30]; in this case, the preceding rounds for KECCAK-p[1600, 30] are indexed by

the integers from −6 to −1.

4 SPONGE CONSTRUCTION

The sponge construction [4] is a framework for specifying functions on binary data with arbitrary

output length. The construction employs the following three components:

 An underlying function on fixed-length strings, denoted by f,

 A parameter called the rate, denoted by r, and

 A padding rule, denoted by pad.

The function that the construction produces from these components is called a sponge function,

denoted by SPONGE[f, pad, r]. A sponge function takes two inputs: a bit string, denoted by N, and

Luca Giuzzi Blockchains: from bitcoin to robotics

	Why cryptography ?
	Blockchains
	Basic algorithms
	Byzantine agreement
	Digital signatures
	Hash functions

	Bitcoin
	Bitcoin
	Consensus
	Byzantine Fault tolerance
	Hyperledger

	Applications to industry and robotics
	Smart contracts and VMs

	Algebraic tools
	Euclidean algorithm
	Fields
	Cyclic groups
	DLP
	DLOG and HSP

	Algebraic cryptography
	DSA and ECDSA
	Hash functions

