P)L)LKLLMQ—CJL—JLS&A& G lyi '}0 ["w«.n.AA.A'ALAﬂ—)c

w movans pin puli A possmen

wodi ﬂfut—l—hto——»lww&;i

(v (ammwji
d

o nessYauts M paliziow.

| H) ‘ . . ‘
4 (]

r\omws \ B(h/i C/(A! ww (n (M&L-’)!{kf/a W/.N
'n\a: AVe

L0Un; sl

ahauhs voe %fm A

Eve A\zm_lof_z_(ulzaﬂg

l.._paégy:.oé .

Slotue b B (0oh ki bawhn) NI Wy,

OUME S'A ta TRANSKZINE “reer” 5 hasls colo o wae 4ia

L aeelsls w0y,

- 537 ot L

‘rﬁﬁ [P . | f { - 1 \
AN W “249% helco W cavriamt Yully ¢ dae,

J \b(nl‘ab- Y ('W'V; o Atua cA‘VuM

n_r__]_r’_ _<{. ,/,,,/:”___"'2 :k“ =< —‘:j ‘
7 —

Blockchains: from bitcoin to robotics
Blockchains

Blockchains

@ Immutable distributed database
© Byzantine agreement protocol

A blockchain might offer other facilities:

@ Virtual Machines
@ Smart contracts
@ Storage optimizations (Merkle trees)

@ eftc.

Luca Giuzzi Blockchains: from bitcoin to robotics

Blockchains: from bitcoin to robotics
Blockchains

Immutable distributed database

A blockchain is

@ Distributed: data can be read and written by a set of
non-coordinated agents;

@ Immutable: once accepted the data cannot be altered in any
way.

Luca Giuzzi Blockchains: from bitcoin to robotics

Blockchains: from bitcoin to robotics

Blockchains

Blockchain

A verified transaction
can involve cryptocurrency,
contracts, records, or other

> ' = 1 s
QYYD g

SOmeans requests The requested transaction The P2P network of nodes
a trangaction, validates the transaction

and the user’s status using
known algorithms.

Crypocurmency |

Has na intrinsic

Once verfied,
the transaction

Is combined sical
| M th other exists
only in the
network

| tocreate a new
block of data
for the ledger.

The new biock is then added to
the existing blockchain in a way
that is permanent and unalterable

The transaction
s complote!
completely

decentralized.

i
I
]
i
1
i
wransactions |
]
i
1
i
L8

Blockgeelks

Blockchains: from bitcoin to robotics
Blockchains

Consensus

o Different agents can have a different view of the database (fork).

@ We need an algorithm for deciding which is the version of the
database to be trusted in the case of conflicts (byzantine
agreement).

NP maon iwrarh o,«dx Lot

Luca Giuzzi Blockchains: from bitcoin to robotics

Blockchains: from bitcoin to robotics
Blockchains

Limitations

Brewer’s Conjecture and the Feasibility of
Consistent, Available, Partition-Tolerant Web

Services
Seth Gilbert* Nancy Lynch*
Abstract

When designing distributed web services, there are three
properties that are commonly desired: consistency, avail-
ability, and partition tolerance. It is impossible to achieve
all three. In this note, we prove this conjecture in the asyn-
chronous network model, and then discuss solutions to this
dilemma in the partially synchronous model,

1 Introduction
At PODC 2000, Brewer!, in an invited talk [2], made the following con-
jecture: it is impossible for a web service to provide the following three
guarantees:

o Consistency

o Availability

e Partition-tolerance

All three of these properties are desirable - and expected — from real-world
web services. In this note, we will first discuss what Brewer meant by the
conjecture; next we will formalize these concepts and prove the conjecture;

Blockchains: from bitcoin to robotics
Blockchains

Taxonomy of blockchains

Various kinds:
@ Public/Private
@ Permissioned/Permissionless

@ Decentralized/Centralized

Luca Giuzzi Blockchains: from bitcoin to robotics

Blockchains: from bitcoin to robotics

Blockchains

Taxonomy of blockchains/2

dh l _ N

Blockchain

Do you nee:
to store state?

writers?

Are there
N

mltple
yes

SN

Per d
“Blockehain

Don't use
Blockchain

Blockchains: from bitcoin to robotics
Blockchains

Applications

[y e Electronic currencies (bitcoin, ethereum, libra, etc.)
@ Smart contracts (ethereum, libra, hyperledger)

Asset tracking (hyperledger)

Manufacturing quality control

E-voting (?)
etc.

L/—]”L:]ﬂ (D

Luca Giuzzi Blockchains: from bitcoin to robotics

Blockchains: from bitcoin to r
Blockchains

obotics

Uses of blockchains

1

ASKING AIRCRAFT DESIGNERS
ABOUT AIRPLANE SAFETY:

ASKING BUILDING ENGINEERS
ABOUT ELEVATOR SAFETY:

NOTHING 15 EVER FOOLPROOF,
BUT MODERN AIRLINERS ARE
INCREDIBLY RESILIENT. FLYING IS
THE SAFEST WAY T0 TRAVEL.

it

ELEVATORS ARE PROTECTED BY
MULTIPLE TRIED-AND-TESTED

FAILSAFE. MECHANISMS. THEY'RE
NEARLY INCAPABLE. OF FALLING.

\

PSKING SOFTWARE |
ENGINEERS ABOUT
COMPUTERIZED VDTING:

THATS TERRIFYING.

w7

VAT, REALLY?

) DON'T TRUST VOTING SOFTUARE. AND DONT
UISTEN o ANONE LIHO TELLS YOU 5 SAFE.

WHY?

I DON'T QUITE KNOW HOW To PUT THIS, BUT'
OUR ENTIRE FIELD IS BAD AT WHAT WE DO,
AND IF YOU RELY ON US, EVERYONE WILLDIE.

02

THEY SAY THEY'VE FIXED IT WITH
SOMETHING CALLED “BLOCKCHAIN."

AAAAA!L!
WHATEVER THEY S0LD
YOU, DON'T TOUCH rr

BURY ITIN THE DESERT

il

VEARR GLOVES

Luca Giuzzi

om bitcoin to robotics

Blockchains: from bitcoin to robotics
Basic algorithms
Byzantine agreement

Byzantine agreement

5 1
The Byzantine Generals Problem @/\ -

L
LESLIE LAMPORT, ROBERT SHOSTAK, and MARSHALL PEASE E“
SRI International %}' * g
oy 9
o
Reliable computer systems must handle malfunctioning components that give conflicting information ‘ &
to different parts of the system. This situation can be expressed abstractly in terms of a group of o b QG.""‘
generals of the Byzantine army camped with their troops around an enemy city. Communicating only
by messenger, the generals must agree upon a common battle plan. However, one or more of them &Ul M
may be traitors who will try to confuse the others. The problem is to find an algorithm to ensure that

the loyal generals will reach agreement. It is shown that, using only oral messages, this problem is p
solvable if and only if more than two-thirds of the generals are loyal; so a single traitor can confound 1 m, F’f

two loyal Is. With unf ble written the problem is solvable for any number of .

Is and possible traitors. Applicati of the solutions to reliable computer systems are then M, . o
discussed.
Categories and Subject Descri : C.24. [C C ication Networks]: Distributed M‘I.
Systems—network operating systems; D.4.4 [Operating Sy]: C ications M:
network communication; D.4.5 [Operating Systems]: Reliability—fault tolerance
General Terms: Algorithms, Reliability 1‘ & wao &‘.
Additional Key Words and Phrases: Interactive consistenc

Y @ v tadtae.

bitcoin to robotics

Blockchains: from bitcoin to robotics
Basic algorithms
Byzantine agreement

Byzantine agreement

A byzantine agreement protocol is a distributed protocol among
agents Ay, ..., A such that

@ all non-faulty/honest agents terminate the protocol in a finite
number of steps;

© all non-faulty/honest agents agree upon termination on the
same decision;

© different decisions are possible.

<% The decision taken is irrelevant as far as all non-faulty agents agree. \

Luca Giuzzi Blockchains: from bitcoin to robotics

Blockchains: from bitcoin to robotics
Basic algorithms

Byzantine agreement

Byzantine fault

“he said 'retreat’”

"

t 2 a traitor.

“he said ‘retreat’”"

Luca Giuzzi i om bitcoin to robotics

Blockchains: from bitcoin to robotics
Basic algorithms

Byzantine agreement

Byzantine agreement

,/_\\

COMMANDER /\

Fig. 3. Algorithm OM(1); Lieutenant 3 a
traitor.

S e D D

%

Fig. 4. Algorithm OM(1); the comman-
to

der a traitor. (
: \ @

Luca Giuzzi

Blockchains: from bitcoin to robotics

Basic algorithms

Byzantine agreement

Byzantine agreement/limits

_powe e
UL raru

o *
1 dynenrony

CYNTHIA DWORK AND NANCY LYNCH
Massachusetts Institute of Technology, Cambridge, Massachusetts
AND

LARRY STOCKMEYER

IBM Almaden Research Center, San Jose, California

Abstract. The concept of partial in a distril system is i Partial lies
between the cases of a system and an system. In a system,
there is a known fixed upper bound A on the time required for a message to be sent from one processor
to another and a known fixed upper bound & on the relative speeds of different processors. In an
asynchronous system no fixed upper bounds A and @ exist. In one version of partial synchrony, fixed
bounds A and & exist, but they are not known a priori. The problem is to design protocols that work
correctly in the partially synchronous system regardless of the actual values of the bounds A and &. In
another version of partial the hounds are k. hut, . tohald starti

at some unknown time 7, and protocols must be designed to work correctly regardless of when ti
Gocurs, Fault-tolorant consensus protocols are given for various cases of partial synchrony and various
fault models. Lower bounds that show in most cases that our protocols are optimal with respect to the
number of faults tolerated are also given. Our consensus protocols for partially synchronous processors
use new protocols for fault-tolerant “distributed clocks” that allow partially synchronous processors to
reach some approximately common notion of time.

Categones and Sllbjecl Descnpvms C. 2 4 [Computer-Communication Networks]: Distributed Systems—
nelwark operalmg systems; C.4 [Computer Systems
Organizati of Syst li and s ility; H.2.4 [Database
Msmgemenx] Sys!ems—dzsmbmed systems

Blockchains: from bitcoin to robotics
Basic algorithms

Byzantine agreement

Byzantine agreement/limits

Consensus in the Presence of Partial Synchrony

291
TABLE 1. SMALLEST NUMBER OF PROCESSORS Npmin FOR WHICH A ¢-RESILIENT
CoNSENsUS PROTOCOL EXISTS -
Partially syn-
j Partially syn- Partially syn- chronous pro-
chronous com- chronous cessors and
e IMUNication and - communica- synchronous
Syn- Asyn- synchronous tion and pro- communica-
Failure type chronous | chronous Processors cessors tion
I Fail-stop © 2t+ 1 2t+ 1 t
Omission t © 2t+1 2t+ 1 [2¢, 2t + 1]
_.) Authenticated Byzantine % © 3t+1 3t+1 2t+1
~, Byzantine 1+) m 73+, ArF T
/

3’ ""‘"’ 7'1’ & &SMV.

Luca Giuzzi

m bitcoin to robotics

Blockchains: from bitcoin to robotics

Basic algorithms

Digital signatures

Byzantine agreement with signatures

‘retreat’’

I"attac ":0:

“retreat” :x: 2
—___Pig.5. Algorithm SM(1); the commander a traitor.

-

Luca Giuzzi Blockchains: from bitcoin to robotics

Blockchains: from bitcoin to robotics
Basic algorithms
Hash functions

Hash functions (MDC)

@ Provide digests of messages to simplify signatures
@ Provide a way to construct robust pointers
4 > || @ Provide problems which are computationally expensive to solvﬂ

ekl wohueh > puhtai ai coulton K. ‘
l NATI ‘W:L(va.). "

Luca Giuzzi Blockchains: from bitcoin to robotics

Blockchains: from bitcoin to robotics
Bitcoin

Bitcoin

Bitcoin

Bitcoin: A Peer-to-Peer Electronic Cash System

1’\11\ l”‘ah 'Iv & W \l-u }, Satoshi Nakamoto

satoshin@gmx.com
www.bitcoin.org
: faka e Wlls

b Abstract. A purely peer-to-peer version of electronic cash would allow online

“(1(’ . payments to be sent directly from one party to another without going through a
financial institution. Digital signatures provide part of the solution, but the main
benefits are lost if a trusted third party is still required to prevent double-spending.
‘We propose a solution to the double-spending problem using a peer-to-peer network.
The network timestamps transactions by hashing them into an ongoing chain of
hash-based proof-of-work, forming a record that cannot be changed without redoing
the proof-of-work. The longest chain not only serves as proof of the sequence of
cvents witnessed, but proof that it came from the largest pool of CPU power. As
long as a majority of CPU power is controlled by nodes that are not cooperati
attack the network, they'll generate the longest chain and outpace attackers. The
network itself requires minimal structure. Messages are broadcast on a best effort
basis, and nodes can leave and rejoin the network at will, accepting the longest
proof-of-work chain as proof of what happened while they were gone.

1. Introduction

Blockchains: from bitcoin to robotics
Bitcoin

Bitcoin

Bitcoin

@ Electronic cash not baked by external entities
@ Based on a blockchain which is

@ Public
© Permissionless

© Distributed——

Luca Giuzzi Blockchains: from bitcoin to robotics

Blockchains: from bitcoin to robotics
Bitcoin

Bitcoin

Bitcoin/2

@ Fully decentralized and peer-to-peer;

@ Database: list of all transactions between pseudonimous
accounts;

@ Blocks are linked by means of hash functions acting as pointers;
@ Transactions are validated by means of digital signatures; l
—>| @ Consensus is reached by proof-of-work.

@,Nw,‘} Y73
&2 st

Luca Giuzzi Blockchains: from bitcoin to robotics

Blockchains: from bitcoin to robotics
Bitcoin
Bitcoin

Bitcoin/transactions

@ People in bitcoin are identified by their public keys.

@ Suppose Alice to have keys @, ska) and Bob to have keys
(pkB, SkB).

@ A payment form Alice to Bob is a message m containing as
payee/pkg|signed wit@\—and indicating a certain number of
bitcoins to be transferred. pk,

@ The database is updated by subtracting the number of bitcoins
paid by Alice from the account@ and crediting the same
amount on the accoun@

@ Digital signatures guarantee authentication.

@ Transactions are batched in blocks. AUece R2M

Luca Giuzzi Blockchains: from bitcoin to robotics

Blockchains: from bitcoin to robotics

Bitcoin
Bitcoin
Transactions
AllCE Ron, CARoL
Transaction Transaction™ Transaction
wneri‘-s /’ Owner 2's N Owner 3's _L |capot
Public key _ Public key | Public key
Y Y Y
Hash Hash Hash
R R
A i, y g, \
/1 owneros |) "M owner 1's "N owner 2's
Signature / Signature Signature
L 729 7>
T \ 5&?' - 5&“’
4 — o
/ Owner@s ' /‘ “Owner2's |/ Owner 3's
(Private Key / [Private Key Private Key

Luca Giuzzi Blockchains: from bitcoin to robotics

Blockchains: from bitcoin to robotics

Bitcoin

Bitcoin

(N

Bitcoin/consensus: proof of work

How to guarantee consensus? (against malicious agents or errors)
@ All transaction blocks must be appended to a linear chain
(blockchain). oO-O— 1 —_-D
[@ Appending blocks is expensive. (ua foiwcsc w patamads solom
@ If thereis a fork (more than one potentially valid chain) all ¢ Llat~

honest agents must choose the longest chain. “.::i-)
. . Ve -
o| Ultimately all honest agents will reach an agreement on
transactions deep enough. e~ --0

@ We want consistency and do not care about truth.

We are not interested in whether Alice has really paid Bob or not but
we want that for all agents it is true that either Alice has been

debited and Bob credited or Alice has not been debited and Bob has
not been credited.

Luca Giuzzi Blockchains: from bitcoin to robotics

Blockchains: from bitcoin to robotics
Bitcoin

Bitcoin

Mining

ﬂ)

- t;l—{_j_a~
Block/].o - BIock 11 BIock 12
Prev_Hash ([Tlmestam Prev_| Hash Tlmestamp Prev_| Hash Tlmestamp]
Tx_Root Nonce T Tx_Root Nonce Tx_Root Nonce]
HashOl Hash23 iou ‘ V
Lol 7SV

/
[HashO] Hashl Hash2 Hash3 WAJ 06\"

r Tt T 1] 6 (Buees) < aoh

[(w0) [) (32) (e

ey "
MiNve = collisoa pM?.JA w & wn bach.

Luca Giuzzi Blockchains: from bitcoin to robotics

Blockchains: from bitcoin to robotics
Bitcoin

Bitcoin

Forks

Luca Giuzzi i m bitcoin to robotics

Blockchains: from bitcoin to robotics
Bitcoin
Consensus

Proof of Work

Pricing via Processing
or
Combatting Junk Mail

Cynthia Dwork and Moni Naor

IBM Almaden Research Center
650 Harry Road
San Jose, CA 95120

Abstract. We present a computational technique for combatting junk
mail in particular and controlling access to a shared resource in general.
The main idea is to require a user to compute a moderately hard, but
not intractable, function in order to gain access to the resource, thus pre-
venting frivolous use. To this end we suggest several pricing functions,
based on, respectively, extracting square roots modulo a prime, the Fiat-
Shamir signature scheme, and the Ong-Schnorr-Shamir (cracked) signa-
ture scheme.

Luca Giuzzi i om bitcoin to robotics

Blockchains: from bitcoin to robotics
Bitcoin
Consensus

Proof of Work (PoW)

@ In order to append a block to the chain it is necessary to solve a
computationally hard problem. & cosl,e, !

@ The first to solve the problem has the right to append the block.
@ Each participant chooses as valid chain the longest available.

@ To alter the contents of a block it would be necessary to solve
several PoW problems faster than the growth of the chain.

Luca Giuzzi Blockchains: from bitcoin to robotics

Blockchains: from bitcoin to robotics
Bitcoin
Consensus

Bitcoin/PoW

Block Block
7*‘ Prev Hash ‘ ‘ Nonce‘ F} Prev Hash ‘ ‘ Nonce‘
B ENE s

Work to be done

@ Determine a Nonce such that the hash of the combined block is
less than N = 2" (for suitable h).

Luca Giuzzi Blockchains: from bitcoin to robotics

Blockchains: from bitcoin to robotics

Bitcoin

Consensus

Proof of Work/costs

natre . ANALYSIS
sustain dbl l 1 ty https://doi.org/10.1038/541893-018-0152-7

Quantification of energy and carbon costs for
mining cryptocurrencies

Max J.Krause ®™ and Thabet Tolaymat?

There are now hundreds of cryptocurrencies in exi: and the technol 1] of many of these currencies is block-
chain—a digital ledger of transactions. The competitive process of adding blocks to the :ham is computatln intensive and
requires large energy input. Here we a hod: for of several
cryptocurrency networks and the energy consumed to produce one US dollar's (US$) worth of dlgltal assets Frol January
2016 to 30 June 2018, we estimate that mining Bitcoin, Ethereum, Litecoin and Monero consumed an average of 7,7 and
14MJ to one US$, C mining of copper, gold, platinum and rare
earth oxides consumed 122, 4, 5, 7 and 9MJ to one US$, i indicating that (with the exception of alumin-
ium) cryptomining consumed more energy than mineral mining to produce an equivalent market value. While the market prices
of the coms are quite volatlle, the network hashrates for three of the four cryptocurrencies have trended consistently upward,

that energy req will continue to increase. During this period, we estimate mining for all 4 cryptocurrencies
was responsible for 3-15 million tonnes of CO, emissions.

tionary new technology for securely transferring money or (4-5TWhyr~'in 2017)". All of these estimates indicate that crypto-
information from one entity to another'~. Many cryptocur- currencies already consume a non-negligible fraction of the world’s
rencies utilize blockchain, a public ledger, to accurately and con- energy production.
tinuously record transactions among many decentralized nod ‘With Bitcoin energy demand now estimated to be equiva-
of conse: i i

D ecentralized cryptocurrencies represent a potentially revolu- (44 TWhyr' in 2017)", but significantly lower estimates also exist

Luca Giuz

Blockchains: from bitcoin to robotics

coin

Consensus

Proof of Work/costs

Joule Cell

The Carbon Footprint of Bitcoin

Christian Stoll,’?>* Lena KlaaBen,® and Ulrich Gallersdorfer”

SUMMARY Context & Scale
Participation in the Bitcoin blockchain validation process requires specialized Blockchain technology has its
hardware and vast amounts of electricity, which translates into a significant car- roots in the cryptocurrency
bon footprint. Here, we d ate a methodology for estimating the power Bitcoin, which was the first
consumption associated with Bitcoin’s blockchain based on IPO filings of major successful attempt to validate
hardware manufacturers, insights on mining facility operations, and mining pool transactions via a decentralized
compositions. We then translate our power consumption estimate into carbon data protocol. This validation

i using the localization of IP addr . We determine the annual elec- process requires vast amounts of
tricity consumption of Bitcoin, as of November 2018, to be 45.8 TWh and esti- electricity, which translates into a
mate that annual carbon emissions range from 22.0 to 22.9 MtCO. This means significant level of carbon
that the emissions produced by Bitcoin sit between the levels produced by the emissions. Our approximation of
nations of Jordan and Sri Lanka, which is comparable to the level of Kansas City. Bitcoin’s carbon footprint
With this article, we aim to gauge the external costs of Bitcoin and inform the underlines the need to tackle the
broader debate on the costs and benefits of cryptocurrencies. environmental externalities that

result from cryptocurrencies.
INTRODUCTION

Blockchain solutions are

Blockchains: from bitcoin to robotics
Bitcoin
Consensus

Proof of Work/costs

Power Consumption

G e =

Mining-Pool Shares Mining Operations IPO Filings

Carbon Emissions @

IP-Address Emission
Localization Factor

Results @

45.8 TWh
Power Consumption

22, -9 MtCO,
Carbon Footprint

rom bitcoin to robotics

Blockchains: from bitcoin to robotics
Bitcoin

Consensus

Proof of Work/considerations

A Byzantine attacker in bitcoin aims to keep a fork alive; ultimately
this costs more than the expected gain.

|| @ Mining works well for e-currencies
@ It does not work so well for:

@ Tracking external items
@ Validating code to be executed
© Enforcing fairness

Luca Giuzzi Blockchains: from bitcoin to robotics

Blockchains: from bitcoin to robotics
Bitcoin

Consensus

P2P consensus algorithms

A
Q -—
@ Proof of Work fisarge < f’*‘j«’f/ 3
cviwile Hows .

@ Proof of Burn
o | Proof of Authority (endorsement) |

v »f' Vo hbelk rdin

Luca Giuzzi Blockchains: from bitcoin to robotics

Blockchains: from bitcoin to robotics

coin

Byzantine Fault tolerance

Practical Byzantine Fault tolerance

Appears in the Proceedings of the Third Symposium on Operating Systems Design and Implementation, New Orleans, USA, February 1999

Practical Byzantine Fault Tolerance

Miguel Castro and Barbara Liskov
Laboratory for Computer Science,
Massachusetts Institute of Technology,

545 Technology Square, Cambridge, MA 02139

{castro, liskov}@lcs.mit.edu

Abstract

This paper describes a new replication algorithm that is able
to tolerate Byzantine faults. We believe that Byzantine-
fault-tolerant algorithms will be increasingly important in
the future because malicious attacks and software errors are
increasingly common and can cause faulty nodes to exhibit
arbitrary behavior. Whereas previous algorithms assumed a
synchronous system or were too slow to be used in practice,
the algorithm described in this paper is practical: it works in
asynchronous environments like the Internet and incorporates
several important optimizations that improve the response time
of previous algorithms by more than an order of magnitude. We
implemented a Byzantine-fault-tolerant NFS service using our
algorithm and measured its performance. The results show that
our service is only 3% slower than a standard unreplicated NFS.

1 Introduction

and replication techniques that tolerate Byzantine faults
(starting with [19]). However, most earlier work (e.g..
[3, 24, 10]) either concerns techniques designed to
demonstrate theoretical feasibility that are too inefficient
to be used in practice, or assumes synchrony, i.e.,
relies on known bounds on message delays and process
speeds. The systems closest to ours, Rampart [30] and
SecureRing [16], were designed to be practical, but they
rely on the synchrony assumption for correctness, which
is dangerous in the presence of malicious attacks. An
attacker may compromise the safety of a service by
delaying non-faulty nodes or the communication between
them until they are tagged as faulty and excluded from the
replica group. Such adenial-of-service attack is generally
easier than gaining control over a non-faulty node.

Our algorithm is not vulnerable to this type of

Blockchains: from bitcoin to robotics

Bitcoin

Byzantine Fault tolerance

Practical Byzantine Fault tolerance

Several phases:

Q
2]

o

Request: a client sends a request for an update to a primary;
Pre-Prepare: the primary-notifies the backups that has received
a request for a given view v and assigns a request number;
Prepare: all backups which accepted pre-prepare enter the
prepare phase by multicasting a message with the sequence
number and the view number;

Commit: once a replica has received a sufficient number of
prepare messages sends a commit message to the others;

Reply: the primary and the backup reply to the request.

Luca Giuzzi Blockchains: from bitcoin to robotics

Blockchains: from bitcoin to robotics
Bitcoin
Byzantine Fault tolerance

Practical Byzantine Fault tolerance

/\u/(

request pre—prepare ; ﬁe}ﬁ\ commit ;ﬂy?@

Figure 1: Normal Case Operation

Luca Giuzzi Blockchains: from bitcoin to robotics

Blockchains: from bitcoin to robotics

Bitcoin

Byzantine Fault tolerance

Redundant Byzantine Fault tolerance

> 33rd International Conference on Distributed Computing Systems

RBFT: Redundant Byzantine Fault Tolerance

Pierre-Louis Aublin
Grenoble University

Abstract—Byzantine Fault 'loleranl state machine repllcauon
(BET) protocols are replicat pmtncul: that tolerate arl
faults of & fraction of the replitas, Although signiicant elforis
have been recently made, existing BFT protocols do not provide
acceptable performance when faults occur. As we show in this
paper, this comes from the fact that all existing BFT protocols tar-
geting Ingh throughput use a special replica, called the primary,
which indicates to other replicas the order in which requests
hould be processed. This primary can be smartly malicious and
degrade the performance of the system without being detected
by correct replicas. In this paper, we propose a new approach,
called RBFT for Redundant-BFT: we execute multiple instances
of the same BET protocol, each with a primary replica executing
on a different machine. All the instances order the requests, but
only the requests ordered by one of the instances, called the
‘master instance, are actually executed. The performance of the
different instances is closely monitored, in order to check that
i i is not

ieves similas
the most robust protocols when there is no failure and that,
under faults, its maximum performance degradation is about
3%, whereas it is at least equal to 78% for existing protocols.

1. INTRODUCTION
ntine Fault Tolerant (BFT) state machine replication

Sonia Ben Mokhtar
CNRS - LIRIS

Vivien Quéma
Grenoble INP

to order requests. Even if there exists several mechanisms to
detect and recover from a malicious primary, the primary can
be smartly malicious. Despite efforts from other replicas to
control that it behaves correctly, it can slow the performance
down to the detection threshold, without being caught. To
design a really robust BFT protocol, a legitimate idea that
comes to mind is to avoid using a primary. One such protocol
has been proposed by Boran and Schiper [4]. This protocol
has a theoretical interest, but it has no practical interest.
Indeed, the price to pay to avoid using a primary is that,
before ordering every request, replicas need to be sure that
they received a message from all other correct replicas. As
replicas do not know which replicas are correct, they need to
wait for a timeout (that is increased if it is not long enough).
This yields very poor performance and this explains why this
protocol has never been implemented. A number of other
protocols have been devised to enforce intrusion tolerance
(e.g., [18]). These protocols rely on what is called proactive
recovery, in which nodes are periodically rejuvenated (c.g.,
their cryptographic keys are changed and/or a clean version
of their operating system is loaded). If performed sufficiently
often, node reju»sndllon makes it difficult for an attacker to
system. These soluti

hani

Blockchains: from bitcoin to robotics
Bitcoin

Byzantine Fault tolerance

Redundant Byzantine Fault tolerance

—_ 1 1
PRE-PREPARE PREPARE COMMIT ! REPLY

Client 1 1 :

| | | !
Node 0 T 1

./

Node 1

| | L //
Node 2]] /
Node 3 1 $

3 | 4 | 5 — | 6
N— g
~—

Redundant agreement performed by the replicas

Luca Giuzzi i m bitcoin to robotics

Blockchains: from bitcoin to robotics
Bitcoin
Hyperledger

Hyperledger

CONSENSUS

client CONSENSUS SMART CONTRACT (on other peers)

Transactions are delivered into the pending pool)

Transactions are selected from the pending pool :
Transactions sent for application ,

Speculatively apply the transactions :
‘ Return a proof of correctness and/or change set

alt [If transactions have been successfully applied]

Order transactions :
Broadcast ordered list of transactions, the proof of correciness, and the change sets,

Send requests -
Cal

Verify transactions (policy, conflict resolution) deterministically :

‘ return corrected block of transactions

commit block of transactions :
E Motify clients of events (if any

CONSENSUS

client CONSENSUS SMART CONTRACT (on other peers)

www.websequencediagrams.com

Blockchains: from bitcoin to robotics
Bitcoin

Hyperledger

Hyperledger
|

TABLE 2.

N

CoEm i || Cmremn e “

Kafka in Permi
Hyperledger Fabric
Ordering Service

ioned voting-
based. Leader doe:
ordering. Only in-sync
licas can
leader. (xafkar 2017,

Tin Pluggable election

Hyperledger Indy | stralegy set t
permi ing-
based strategy by
default (Pienum; 2076)
All instances do

actually executed,
Publn, Moktiar & Quéma, 2013

Sumeragi in Permissioned servel

Hyperledger Iroha

POET in Gggable election
Hyperledger strategy setto a
Sawtooth permissioned, lottery-

based strategy by
default

Provides crash fault
tolerance. Finality
happens in a matter of
seconds.

Provides Byzant
fault tolerance. Finality
happens in a matter of
seconds.

e

Provides Byzantine
fault tolerance. Finality
happens in a matter

distributed across many.
clusters (stucknort 2016)

rovides scalabilty and
/Byzantine fault tolerance.

Blockchains: from

While Kafka s crash

fault tolerant, it s not
Byzantine fault tolerant,
which prevents the
system from reaching
agreement in the case of
malicious or faulty nodes.

The more nodes that
exist on the network,
the more time it takes to
reach consensus.

The nodes in the
network are known

and must be totally
connected.

The more nodes that
exist on the network,

the more time it takes to
reach consensus.

“The nodes in the network
are known and must b
totally connected.

Finalty can be delayed
due to forks that must be
resolved,

coin to robotics

Blockchains: from bitcoin to robotics
Bitcoin

Hyperledger

Hyperledger

tx=<clientID,
chaincodelD,
txPayload,
timestamp,
clientSig>

Collect
TRANSACTION-ENDORSED
Msgs into a valid

endorsement that 2
satisfies - .
endorsementPolicy
(chaincodelD) 3)
- o |
broadcast{endorsement)
L
|-
client () endorsing endorsing
peer (EP1) peer(EP2)

—
=
= a |\
- o
Simulate/Execute tx / = \
- Sign TRANSACTION-ENDORSED 0?2
= 7
(1]
=
=
N 3
2) | R
- P = —
Verify endorsement, readset
| ifok ,
apply writeset to state
endorsing | ‘ (committing)
peer (CP1)
peer (EP3) orderers

m bitcoin to robof

Blockchains: from bitcoin to robotics
Applications to industry and robotics
Smart contracts and VMs

Virtual Machines

@ Blockchains implement VMs for increased flexibility
@ These VMs can be either

@ non-Turing complete (bitcoin)
© Turing complete with bounds on resurce consumption
(ethereum, libra, etc.)

@ Blockchains as distributed computing frameworks;

@ Blockchains as hosts for smart contracts.
(e
r Q'Miu/v ({M AT 2 A /M & uw/wiw‘;u.'-

Luca Giuzzi Blockchains: from bitcoin to robotics

Blockchains: from bitcoin to robotics
Applications to industry and robotics
Smart contracts and VMs

Smart contracts

Procedures
@ safely stored on a platform (blockchain)
@ automatically triggered by events

@ audited and controlled only by the platform itself (not
server-side)

@ able to trigger new events.

- In general a smart contract acts only on the state of the blockchain. \
Smart contracts can be dangerous and hard to debug. \

Luca Giuzzi Blockchains: from bitcoin to robotics

Blockchains: from bitcoin to robotics
Applications to industry and robotics
Smart contracts and VMs

Smart contracts

Preprint self-archived version. Published version forthcoming in Bitcoin and Beyond (Routledge).

Chapter 8

Experiments in Algorithmic Governance: A history
and ethnography of “The DAO,” a failed

Decentralized Autonomous Organization

Quinn DuPont
University of Toronto

This chapter describes an emerging form of algorithmic governance, using
the case study of “The DAO,” a short-lived attempt to create a decentral-
ized autonomous organization on the Ethereum blockchain platform. In
June, 2016, The DAO launched and raised an unprecedented $250m
USD in investment. Within days of its launch, however, The DAO was
exploited and drained of nearly 3.7m Ethereum tokens.

This study traces the rise and fall of this emerging technology, and details

the governance structures that were promised and hoped for, and those

that were actually observed in its discourses. Through 2016-2017, these
Luca Giuzzi Blockchains: from bitcoin to robotics

Blockchains: from bitcoin to robotics
Applications to industry and robotics
Smart contracts and VMs

Applications to industry and robotics

Auditability and tracking of manufacturing steps
Robustness and replication of commands
Distributed computation and collaborative logic
Transparency and accountability

Bidding and decentralized business models
Economy of things (Machine to machine interaction)

Luca Giuzzi Blockchains: from bitcoin to robotics

Blockchains: from bitcoin to robotics
Applications to industry and robotics
Smart contracts and VMs

M2M interaction in Industry 4.0

@ On demand manufacturing
@ Auditing and diagnostics

° @é&eabil\i:cb

@ Authentication

@ Subscription production

@ Quality and stock control

Luca Giuzzi Blockchains: from bitcoin to robotics

