

Blockchains: from bitcoin to robotics

Blockchains

Blockchains

1 Immutable distributed database
2 Byzantine agreement protocol

Remark
A blockchain might offer other facilities:

Virtual Machines

Smart contracts

Storage optimizations (Merkle trees)

etc.

Luca Giuzzi Blockchains: from bitcoin to robotics

Blockchains: from bitcoin to robotics

Blockchains

Immutable distributed database

A blockchain is

Distributed: data can be read and written by a set of
non-coordinated agents;

Immutable: once accepted the data cannot be altered in any
way.

Luca Giuzzi Blockchains: from bitcoin to robotics

Blockchains: from bitcoin to robotics

Blockchains

Blockchain

Luca Giuzzi Blockchains: from bitcoin to robotics

Blockchains: from bitcoin to robotics

Blockchains

Consensus

Different agents can have a different view of the database (fork).

We need an algorithm for deciding which is the version of the
database to be trusted in the case of conflicts (byzantine
agreement).

Luca Giuzzi Blockchains: from bitcoin to robotics

Blockchains: from bitcoin to robotics

Blockchains

Limitations

���

��� ���

� �������������

����������������������� ���������������������

���������������

���
� ��� � ���
��������������������� � ��� � �������������������������������
��� � ���
���
����������������������� � ���

� �����������������������

� ���
��������������������������� � ��� � ���
���������������������

� ���������������������

� � ���������������������

� �������������������������������������

� ��������������������������� � ��� � ��� � ���������������������������������������
���
��� � ��������� � �����������������������������������
���

���������������
��� ���Luca Giuzzi Blockchains: from bitcoin to robotics

Blockchains: from bitcoin to robotics

Blockchains

Taxonomy of blockchains

Various kinds:

Public/Private

Permissioned/Permissionless

Decentralized/Centralized

Luca Giuzzi Blockchains: from bitcoin to robotics

Blockchains: from bitcoin to robotics

Blockchains

Taxonomy of blockchains/2

Do you need
to store state?

Are there
multiple
writers?

Can you use
an always

online TTP?

Are all
writers
known?

Are all
writers
trusted?

Is public
verifiability
required?

Public
Permissioned
Blockchain

Private
Permissioned
Blockchain

Permissionless
Blockchain

Don’t use
Blockchain

no no yes yes

yes no

yes yes no no

no yes

Luca Giuzzi Blockchains: from bitcoin to robotics

Blockchains: from bitcoin to robotics

Blockchains

Applications

Electronic currencies (bitcoin, ethereum, libra, etc.)

Smart contracts (ethereum, libra, hyperledger)

Asset tracking (hyperledger)

Manufacturing quality control

E-voting (?)

etc.

Luca Giuzzi Blockchains: from bitcoin to robotics

Blockchains: from bitcoin to robotics

Blockchains

Uses of blockchains

Luca Giuzzi Blockchains: from bitcoin to robotics

Blockchains: from bitcoin to robotics

Basic algorithms

Byzantine agreement

Byzantine agreement

Luca Giuzzi Blockchains: from bitcoin to robotics

Blockchains: from bitcoin to robotics

Basic algorithms

Byzantine agreement

Byzantine agreement

A byzantine agreement protocol is a distributed protocol among
agents A1, . . . ,Ak such that

1 all non-faulty/honest agents terminate the protocol in a finite
number of steps;

2 all non-faulty/honest agents agree upon termination on the
same decision;

3 different decisions are possible.

Note
The decision taken is irrelevant as far as all non-faulty agents agree.

Luca Giuzzi Blockchains: from bitcoin to robotics

Blockchains: from bitcoin to robotics

Basic algorithms

Byzantine agreement

Byzantine fault

Luca Giuzzi Blockchains: from bitcoin to robotics

Blockchains: from bitcoin to robotics

Basic algorithms

Byzantine agreement

Byzantine agreement

Luca Giuzzi Blockchains: from bitcoin to robotics

Blockchains: from bitcoin to robotics

Basic algorithms

Byzantine agreement

Byzantine agreement/limits

Luca Giuzzi Blockchains: from bitcoin to robotics

Blockchains: from bitcoin to robotics

Basic algorithms

Byzantine agreement

Byzantine agreement/limits

Luca Giuzzi Blockchains: from bitcoin to robotics

Blockchains: from bitcoin to robotics

Basic algorithms

Digital signatures

Byzantine agreement with signatures

Luca Giuzzi Blockchains: from bitcoin to robotics

Blockchains: from bitcoin to robotics

Basic algorithms

Hash functions

Hash functions (MDC)

Provide digests of messages to simplify signatures

Provide a way to construct robust pointers

Provide problems which are computationally expensive to solve

Luca Giuzzi Blockchains: from bitcoin to robotics

Blockchains: from bitcoin to robotics

Bitcoin

Bitcoin

Bitcoin

Bitcoin: A Peer-to-Peer Electronic Cash System

Satoshi Nakamoto

satoshin@gmx.com

www.bitcoin.org

Abstract. A purely peer-to-peer version of electronic cash would allow online

payments to be sent directly from one party to another without going through a

financial institution. Digital signatures provide part of the solution, but the main

benefits are lost if a trusted third party is still required to prevent double-spending.

We propose a solution to the double-spending problem using a peer-to-peer network.

The network timestamps transactions by hashing them into an ongoing chain of

hash-based proof-of-work, forming a record that cannot be changed without redoing

the proof-of-work. The longest chain not only serves as proof of the sequence of

events witnessed, but proof that it came from the largest pool of CPU power. As

long as a majority of CPU power is controlled by nodes that are not cooperating to

attack the network, they'll generate the longest chain and outpace attackers. The

network itself requires minimal structure. Messages are broadcast on a best effort

basis, and nodes can leave and rejoin the network at will, accepting the longest

proof-of-work chain as proof of what happened while they were gone.

1. Introduction

Commerce on the Internet has come to rely almost exclusively on financial institutions serving as

trusted third parties to process electronic payments. While the system works well enough for

t tr tio it till ff f th inh t k f th tr t b d d l.

Luca Giuzzi Blockchains: from bitcoin to robotics

Blockchains: from bitcoin to robotics

Bitcoin

Bitcoin

Bitcoin

Electronic cash not baked by external entities
Based on a blockchain which is

1 Public
2 Permissionless
3 Distributed

Luca Giuzzi Blockchains: from bitcoin to robotics

Blockchains: from bitcoin to robotics

Bitcoin

Bitcoin

Bitcoin/2

Fully decentralized and peer-to-peer;

Database: list of all transactions between pseudonimous
accounts;

Blocks are linked by means of hash functions acting as pointers;

Transactions are validated by means of digital signatures;

Consensus is reached by proof-of-work.

Luca Giuzzi Blockchains: from bitcoin to robotics

Blockchains: from bitcoin to robotics

Bitcoin

Bitcoin

Bitcoin/transactions

People in bitcoin are identified by their public keys.

Suppose Alice to have keys (pkA, skA) and Bob to have keys
(pkB, skB).

A payment form Alice to Bob is a message m containing as
payee pkB signed with skA and indicating a certain number of
bitcoins to be transferred.

The database is updated by subtracting the number of bitcoins
paid by Alice from the account pkA and crediting the same
amount on the account pkB.

Digital signatures guarantee authentication.

Transactions are batched in blocks.

Luca Giuzzi Blockchains: from bitcoin to robotics

Blockchains: from bitcoin to robotics

Bitcoin

Bitcoin

Transactions

Transaction

Verify

Sign

Owner 1's
Public key

Hash

Owner 0's
Signature

Owner 1's
Private Key

Transaction

Verify

Sign

Owner 2's
Public key

Hash

Owner 1's
Signature

Owner 2's
Private Key

Transaction

Owner 3's
Public key

Hash

Owner 2's
Signature

Owner 3's
Private Key

Luca Giuzzi Blockchains: from bitcoin to robotics

Blockchains: from bitcoin to robotics

Bitcoin

Bitcoin

Bitcoin/consensus: proof of work

How to guarantee consensus? (against malicious agents or errors)
All transaction blocks must be appended to a linear chain
(blockchain).
Appending blocks is expensive.
If there is a fork (more than one potentially valid chain) all
honest agents must choose the longest chain.
Ultimately all honest agents will reach an agreement on
transactions deep enough.
We want consistency and do not care about truth.

Note
We are not interested in whether Alice has really paid Bob or not but
we want that for all agents it is true that either Alice has been
debited and Bob credited or Alice has not been debited and Bob has
not been credited.

Luca Giuzzi Blockchains: from bitcoin to robotics

Blockchains: from bitcoin to robotics

Bitcoin

Bitcoin

Mining

Block 11

Prev_Hash

Tx_Root

Timestamp

Nonce

Block 10

Prev_Hash

Tx_Root

Timestamp

Nonce

Block 12

Prev_Hash

Tx_Root

Timestamp

Nonce

Hash01 Hash23

Hash0 Hash1 Hash2 Hash3

Tx0 Tx1 Tx2 Tx3

Luca Giuzzi Blockchains: from bitcoin to robotics

Blockchains: from bitcoin to robotics

Bitcoin

Bitcoin

Forks

Luca Giuzzi Blockchains: from bitcoin to robotics

Blockchains: from bitcoin to robotics

Bitcoin

Consensus

Proof of Work

Luca Giuzzi Blockchains: from bitcoin to robotics

Blockchains: from bitcoin to robotics

Bitcoin

Consensus

Proof of Work (PoW)

In order to append a block to the chain it is necessary to solve a
computationally hard problem.

The first to solve the problem has the right to append the block.

Each participant chooses as valid chain the longest available.

To alter the contents of a block it would be necessary to solve
several PoW problems faster than the growth of the chain.

Luca Giuzzi Blockchains: from bitcoin to robotics

Blockchains: from bitcoin to robotics

Bitcoin

Consensus

Bitcoin/PoW

Block

Prev Hash Nonce

Tx Tx ...

Block

Prev Hash Nonce

Tx Tx ...

Work to be done
Determine a Nonce such that the hash of the combined block is
less than N = 2h (for suitable h).

Luca Giuzzi Blockchains: from bitcoin to robotics

Blockchains: from bitcoin to robotics

Bitcoin

Consensus

Proof of Work/costs

AnAlysis
https://doi.org/10.1038/s41893-018-0152-7

Decentralized cryptocurrencies represent a potentially revolu-
tionary new technology for securely transferring money or
information from one entity to another1–4. Many cryptocur-

rencies utilize blockchain, a public ledger, to accurately and con-
tinuously record transactions among many decentralized nodes5.
A process of consensus, or agreement, is performed by ‘miners’
through repetitive calculations using specialized computer hard-
ware. The first miner to determine the correct ‘answer’ adds a new

(44 TWh yr−1 in 2017)13, but significantly lower estimates also exist
(4–5 TWh yr−1 in 2017)14. All of these estimates indicate that crypto-
currencies already consume a non-negligible fraction of the world’s
energy production.

With Bitcoin energy demand now estimated to be equiva-
lent to some countries, new questions arise. Do all cryptocurren-
cies require a similar energy supply to function? In the context of
energy invested and value extracted, what conventional processes

Quantification of energy and carbon costs for
mining cryptocurrencies
Max J. Krause   1* and Thabet Tolaymat2

There are now hundreds of cryptocurrencies in existence and the technological backbone of many of these currencies is block-
chain—a digital ledger of transactions. The competitive process of adding blocks to the chain is computation-intensive and
requires large energy input. Here we demonstrate a methodology for calculating the minimum power requirements of several
cryptocurrency networks and the energy consumed to produce one US dollar’s (US$) worth of digital assets. From 1 January
2016 to 30 June 2018, we estimate that mining Bitcoin, Ethereum, Litecoin and Monero consumed an average of 17, 7, 7 and
14 MJ to generate one US$, respectively. Comparatively, conventional mining of aluminium, copper, gold, platinum and rare
earth oxides consumed 122, 4, 5, 7 and 9 MJ to generate one US$, respectively, indicating that (with the exception of alumin-
ium) cryptomining consumed more energy than mineral mining to produce an equivalent market value. While the market prices
of the coins are quite volatile, the network hashrates for three of the four cryptocurrencies have trended consistently upward,
suggesting that energy requirements will continue to increase. During this period, we estimate mining for all 4 cryptocurrencies
was responsible for 3–15 million tonnes of CO2 emissions.

Luca Giuzzi Blockchains: from bitcoin to robotics

Blockchains: from bitcoin to robotics

Bitcoin

Consensus

Proof of Work/costs

Article

The Carbon Footprint of Bitcoin
Christian Stoll,1,2,5,* Lena Klaaßen,3 and Ulrich Gallersdörfer4

SUMMARY

Participation in the Bitcoin blockchain validation process requires specialized

hardware and vast amounts of electricity, which translates into a significant car-

bon footprint. Here, we demonstrate a methodology for estimating the power

consumption associated with Bitcoin’s blockchain based on IPO filings of major

hardware manufacturers, insights onmining facility operations, andmining pool

compositions. We then translate our power consumption estimate into carbon

emissions, using the localization of IP addresses. We determine the annual elec-

tricity consumption of Bitcoin, as of November 2018, to be 45.8 TWh and esti-

mate that annual carbon emissions range from 22.0 to 22.9 MtCO2. This means

that the emissions produced by Bitcoin sit between the levels produced by the

nations of Jordan and Sri Lanka, which is comparable to the level of Kansas City.

With this article, we aim to gauge the external costs of Bitcoin and inform the

broader debate on the costs and benefits of cryptocurrencies.

INTRODUCTION

In 2008, Satoshi, the pseudonymous founder of Bitcoin, published a vision of a dig-

ital currency which, only a decade later, reached a peak market capitalization of over

$800 billio 1,2 The lu le of h ide of d al

Context & Scale

Blockchain technology has its

roots in the cryptocurrency

Bitcoin, which was the first

successful attempt to validate

transactions via a decentralized

data protocol. This validation

process requires vast amounts of

electricity, which translates into a

significant level of carbon

emissions. Our approximation of

Bitcoin’s carbon footprint

underlines the need to tackle the

environmental externalities that

result from cryptocurrencies.

Blockchain solutions are

increasingly discussed for a broad

variety of use cases beyond
Luca Giuzzi Blockchains: from bitcoin to robotics

Blockchains: from bitcoin to robotics

Bitcoin

Consensus

Proof of Work/costs

Luca Giuzzi Blockchains: from bitcoin to robotics

Blockchains: from bitcoin to robotics

Bitcoin

Consensus

Proof of Work/considerations

Remark
A Byzantine attacker in bitcoin aims to keep a fork alive; ultimately
this costs more than the expected gain.

Mining works well for e-currencies
It does not work so well for:

1 Tracking external items
2 Validating code to be executed
3 Enforcing fairness

Luca Giuzzi Blockchains: from bitcoin to robotics

Blockchains: from bitcoin to robotics

Bitcoin

Consensus

P2P consensus algorithms

Proof of Work

Proof of Burn

Proof of Stake

Proof of Authority (endorsement)

Luca Giuzzi Blockchains: from bitcoin to robotics

Blockchains: from bitcoin to robotics

Bitcoin

Byzantine Fault tolerance

Practical Byzantine Fault tolerance

Appears in the Proceedings of the Third Symposium on Operating Systems Design and Implementation, New Orleans, USA, February 1999

Practical Byzantine Fault Tolerance

Miguel Castro and Barbara Liskov
Laboratory for Computer Science,

Massachusetts Institute of Technology,
545 Technology Square, Cambridge, MA 02139

castro,liskov @lcs.mit.edu

Abstract

This paper describes a new replication algorithm that is able
to tolerate Byzantine faults. We believe that Byzantine-
fault-tolerant algorithms will be increasingly important in
the future because malicious attacks and software errors are
increasingly common and can cause faulty nodes to exhibit
arbitrary behavior. Whereas previous algorithms assumed a
synchronous system or were too slow to be used in practice,
the algorithm described in this paper is practical: it works in
asynchronous environments like the Internet and incorporates
several important optimizations that improve the response time
of previous algorithms by more than an order of magnitude. We
implemented a Byzantine-fault-tolerant NFS service using our
algorithm and measured its performance. The results show that
our service is only 3% slower than a standard unreplicated NFS.

1 Introduction

Malicious attacks and software errors are increasingly
The wing reliance of industry and

and replication techniques that tolerate Byzantine faults
(starting with [19]). However, most earlier work (e.g.,
[3, 24, 10]) either concerns techniques designed to
demonstrate theoretical feasibility that are too inefficient
to be used in practice, or assumes synchrony, i.e.,
relies on known bounds on message delays and process
speeds. The systems closest to ours, Rampart [30] and
SecureRing [16], were designed to be practical, but they
rely on the synchrony assumption for correctness, which
is dangerous in the presence of malicious attacks. An
attacker may compromise the safety of a service by
delaying non-faulty nodes or the communication between
them until they are tagged as faulty and excluded from the
replica group. Such a denial-of-service attack is generally
easier than gaining control over a non-faulty node.

Our algorithm is not vulnerable to this type of
attack because it does not rely on synchrony for
safety. In addition, it improves the performance of
Rampart and SecureRing by than order of

Luca Giuzzi Blockchains: from bitcoin to robotics

Blockchains: from bitcoin to robotics

Bitcoin

Byzantine Fault tolerance

Practical Byzantine Fault tolerance

Several phases:
1 Request: a client sends a request for an update to a primary;
2 Pre-Prepare: the primary notifies the backups that has received

a request for a given view v and assigns a request number;
3 Prepare: all backups which accepted pre-prepare enter the

prepare phase by multicasting a message with the sequence
number and the view number;

4 Commit: once a replica has received a sufficient number of
prepare messages sends a commit message to the others;

5 Reply: the primary and the backup reply to the request.

Luca Giuzzi Blockchains: from bitcoin to robotics

Blockchains: from bitcoin to robotics

Bitcoin

Byzantine Fault tolerance

Practical Byzantine Fault tolerance

X

request pre-prepare prepare commit reply

C

0

1

2

3

Figure 1: Normal Case Operation

Luca Giuzzi Blockchains: from bitcoin to robotics

Blockchains: from bitcoin to robotics

Bitcoin

Byzantine Fault tolerance

Redundant Byzantine Fault tolerance

RBFT: Redundant Byzantine Fault Tolerance
Pierre-Louis Aublin
Grenoble University

Sonia Ben Mokhtar
CNRS - LIRIS

Vivien Quéma
Grenoble INP

Abstract—Byzantine Fault Tolerant state machine replication
(BFT) protocols are replication protocols that tolerate arbitrary
faults of a fraction of the replicas. Although significant efforts
have been recently made, existing BFT protocols do not provide
acceptable performance when faults occur. As we show in this
paper, this comes from the fact that all existing BFT protocols tar-
geting high throughput use a special replica, called the primary,
which indicates to other replicas the order in which requests
should be processed. This primary can be smartly malicious and
degrade the performance of the system without being detected
by correct replicas. In this paper, we propose a new approach,
called RBFT for Redundant-BFT: we execute multiple instances
of the same BFT protocol, each with a primary replica executing
on a different machine. All the instances order the requests, but
only the requests ordered by one of the instances, called the
master instance, are actually executed. The performance of the
different instances is closely monitored, in order to check that
the master instance provides adequate performance. If that is not
the case, the primary replica of the master instance is considered
malicious and replaced. We implemented RBFT and compared
its performance to that of other existing robust protocols. Our
evaluation shows that RBFT achieves similar performance as
the most robust protocols when there is no failure and that,
under faults, its maximum performance degradation is about
3%, whereas it is at least equal to 78% for existing protocols.

I. INTRODUCTION

Byzantine Fault Tolerant (BFT) state machine replication
is an efficient and effective approach to deal with arbitrary
software and hardware faults [1], [6], [8], [10], [20]. The

to order requests. Even if there exists several mechanisms to
detect and recover from a malicious primary, the primary can
be smartly malicious. Despite efforts from other replicas to
control that it behaves correctly, it can slow the performance
down to the detection threshold, without being caught. To
design a really robust BFT protocol, a legitimate idea that
comes to mind is to avoid using a primary. One such protocol
has been proposed by Boran and Schiper [4]. This protocol
has a theoretical interest, but it has no practical interest.
Indeed, the price to pay to avoid using a primary is that,
before ordering every request, replicas need to be sure that
they received a message from all other correct replicas. As
replicas do not know which replicas are correct, they need to
wait for a timeout (that is increased if it is not long enough).
This yields very poor performance and this explains why this
protocol has never been implemented. A number of other
protocols have been devised to enforce intrusion tolerance
(e.g., [18]). These protocols rely on what is called proactive
recovery, in which nodes are periodically rejuvenated (e.g.,
their cryptographic keys are changed and/or a clean version
of their operating system is loaded). If performed sufficiently
often, node rejuvenation makes it difficult for an attacker to
corrupt enough nodes to harm the system. These solutions are
complementary to the robustness mechanisms studied in this
paper.

In this paper, we propose RBFT (Redundant Byzantine

2013 IEEE 33rd International Conference on Distributed Computing Systems2013 IEEE 33rd International Conference on Distributed Computing Systems2013 IEEE 33rd International Conference on Distributed Computing Systems

Luca Giuzzi Blockchains: from bitcoin to robotics

Blockchains: from bitcoin to robotics

Bitcoin

Byzantine Fault tolerance

Redundant Byzantine Fault tolerance

Luca Giuzzi Blockchains: from bitcoin to robotics

Blockchains: from bitcoin to robotics

Bitcoin

Hyperledger

Hyperledger

Luca Giuzzi Blockchains: from bitcoin to robotics

Blockchains: from bitcoin to robotics

Bitcoin

Hyperledger

Hyperledger

Consensus Algorithm Consensus Approach Pros Cons

Kafka in
Hyperledger Fabric

Ordering Service

Permissioned voting-
based. Leader does
ordering. Only in-sync
replicas can be voted as
leader. (“Kafka,” 2017).

Provides crash fault
tolerance. Finality
happens in a matter of
seconds.

While Kafka is crash
fault tolerant, it is not
Byzantine fault tolerant,
which prevents the
system from reaching
agreement in the case of
malicious or faulty nodes.

RBFT in
Hyperledger Indy

Pluggable election
strategy set to a
permissioned, voting-
based strategy by
default (“Plenum,” 2016).
All instances do
ordering, but only the
requests ordered by
the master instance are
actually executed.
(Aublin, Mokhtar & Quéma, 2013)

Provides Byzantine
fault tolerance. Finality
happens in a matter of
seconds.

The more nodes that
exist on the network,
the more time it takes to
reach consensus.
The nodes in the
network are known
and must be totally
connected.

Sumeragi in
Hyperledger Iroha

Permissioned server
reputation system.

Provides Byzantine
fault tolerance. Finality
happens in a matter
of seconds. Scale to
petabytes of data,
distributed across many
clusters (Struckhoff, 2016).

The more nodes that
exist on the network,
the more time it takes to
reach consensus.
The nodes in the network
are known and must be
totally connected.

PoET in
Hyperledger

Sawtooth

Pluggable election
strategy set to a
permissioned, lottery-
based strategy by
default.

Provides scalability and
Byzantine fault tolerance.

Finality can be delayed
due to forks that must be
resolved.

TABLE 2. COMPARISON OF CONSENSUS ALGORITHMS USED IN HYPERLEDGER FRAMEWORKS

Luca Giuzzi Blockchains: from bitcoin to robotics

Blockchains: from bitcoin to robotics

Bitcoin

Hyperledger

Hyperledger

Luca Giuzzi Blockchains: from bitcoin to robotics

Blockchains: from bitcoin to robotics

Applications to industry and robotics

Smart contracts andVMs

Virtual Machines

Blockchains implement VMs for increased flexibility
These VMs can be either

1 non-Turing complete (bitcoin)
2 Turing complete with bounds on resurce consumption

(ethereum, libra, etc.)

Blockchains as distributed computing frameworks;

Blockchains as hosts for smart contracts.

Luca Giuzzi Blockchains: from bitcoin to robotics

Blockchains: from bitcoin to robotics

Applications to industry and robotics

Smart contracts andVMs

Smart contracts

Procedures

safely stored on a platform (blockchain)

automatically triggered by events

audited and controlled only by the platform itself (not
server-side)

able to trigger new events.

Remark
In general a smart contract acts only on the state of the blockchain.

Warning

Smart contracts can be dangerous and hard to debug.

Luca Giuzzi Blockchains: from bitcoin to robotics

Blockchains: from bitcoin to robotics

Applications to industry and robotics

Smart contracts andVMs

Smart contracts

Preprint self-archived version. Published version forthcoming in Bitcoin and Beyond (Routledge).

Chapter 8

Experiments in Algorithmic Governance: A history
and ethnography of “The DAO,” a failed
Decentralized Autonomous Organization

Quinn DuPont

University of Toronto

This chapter describes an emerging form of algorithmic governance, using
the case study of “The DAO,” a short-lived attempt to create a decentral-
ized autonomous organization on the Ethereum blockchain platform. In
June, 2016, The DAO launched and raised an unprecedented $250m
USD in investment. Within days of its launch, however, The DAO was
exploited and drained of nearly 3.7m Ethereum tokens.

This study traces the rise and fall of this emerging technology, and details
the governance structures that were promised and hoped for, and those
that were actually observed in its discourses. Through 2016-2017, these
discourses were collected from online discussions and subsequently ana-
lysed assisted, qualitative analysis and coding, I traced th

Luca Giuzzi Blockchains: from bitcoin to robotics

Blockchains: from bitcoin to robotics

Applications to industry and robotics

Smart contracts andVMs

Applications to industry and robotics

Auditability and tracking of manufacturing steps

Robustness and replication of commands

Distributed computation and collaborative logic

Transparency and accountability

Bidding and decentralized business models

Economy of things (Machine to machine interaction)

Luca Giuzzi Blockchains: from bitcoin to robotics

Blockchains: from bitcoin to robotics

Applications to industry and robotics

Smart contracts andVMs

M2M interaction in Industry 4.0

On demand manufacturing

Auditing and diagnostics

Traceability

Authentication

Subscription production

Quality and stock control

Luca Giuzzi Blockchains: from bitcoin to robotics

