Algebra e Geometria - Secondo Test - 22/12/2020

Modalità di Esame

- 1. Ogni studente deve svolgere esclusivamente la traccia corrispondente alle iniziali del proprio cognome.
- 2. Il tempo a disposizione per lo svolgimento del compito è di 1 ora.
- 3. È permesso l'uso di libri, appunti e/o calcolatrici.
- 4. Durante l'esame gli studenti dovranno rimanere collegati alla sessione di microsoft teams approntata a tale fine.
- 5. Al termine dell'esame ogni studente dovrà inviare agli indirizzi di posta elettronica luca.giuzzi@unibs.it e silvia.pellegrini@unibs.it una mail dall'oggetto *Consegna compito studente NOME COGNOME* e contenente in allegato una immagine (in formato jpeg o pdf) del foglio con le risposte alle domande della traccia.
- 6. Il foglio di risposta al compito deve contenere come prima riga *Nome* e *Cognome* dello studente e deve riportare le sole risposte ai quesiti (non i calcoli corrispondenti).

Algebra e Geometria - Secondo Test - 22/12/2020

Содпоме	Nome
Corso di Laurea	MATRICOLA
Ogni studente deve svolgere solamen	te la traccia corrispondente all'iniziale del proprio cognome.
	Esercizi
variare di $k \in \mathbb{C}$ le coordinate dei punti co	
Risposta: $k = -1 \pm \sqrt{3}$: $r \subset \alpha$; $k \neq -1$	$\pm \sqrt{3} : r \parallel \alpha, r \cap \alpha = [(-k-2, -2k-4, k+2, 0)] \underline{\hspace{1cm}}$
2. In $\mathcal{A}_3(\mathbb{R})$, fissato il riferimento $\Gamma=(O,\mathcal{B})$ piano $\alpha:2x-y+z-1=0$.	$\mathcal{B}=(e_1,e_2,e_3))$ si determini una base \mathcal{T} dello spazio di traslazione del
Risposta: $\mathcal{T} = (e_1 + 2e_2, -e_1 + 2e_3)$	
3. In $\widetilde{\mathcal{E}}_2(\mathbb{C})$ si considerino le coniche di equazi k . Si determini per quali valori di $k\in\mathbb{R}$ la	zione $\mathcal{C}_k: x^2-y^2-2(k-1)xy-2y-1=0$ al variare del parametro a conica \mathcal{C}_k
(a) è degenere e se ne determinino le rett	e componenti.
Risposta: $k = 1$, $r_1 : x + y + 1 = 0$, $r_2 : x + y + 1 = 0$	$x_2: x - y - 1 = 0$
(b) è generale e se ne determini la natura.	
Risposta: $k \neq 1$: iperbole	
4. In $\mathcal{E}_3(\mathbb{R})$ si determini la distanza del punt	o $P=(0,1,1)$ dalla retta $r: egin{cases} x-y=2 \\ z=3 \end{cases}$.
Risposta: $d=\sqrt{rac{17}{2}}$	
5. Dati il punto $V = [(-1, 0, 1, 0)]$ e la conic	a ${\cal C}$ di equazione $y^2 - 2x^2 - 4xy + 2z - 3 = 0 = x + y - 1$,
•	el luogo Σ delle rette che proiettano $\mathcal C$ da V . $0 = 0$
(b) Si indichi la natura della quadrica sop	ra ottenuta e quali sono i suoi eventuali punti doppi.
Risposta: Cilindro; V : unico punto d	oppio
(c) Si trovi, se esiste, un piano α che inter	rseca Σ in una circonferenza, giustificando la risposta in caso negativo
Risposta: Non esiste, in quanto Σ no	n è un cilindro ellittico
6. In $\widetilde{\mathcal{E}}_3(\mathbb{C})$, data la quadrica $\mathcal Q$ di equazione	$x^2 + z^2 + 2xy - 1 = 0,$
(a) si classifichi ${\mathcal Q}$ specificando eventuali	punti doppi e la natura dei suoi punti semplici;
Risposta: Generale; Iperboloide iperb	polico
(b) Si determini, se esiste, un piano α tale	e che $\mathcal{Q}\cap lpha$ sia una conica riducibile in due rette reali e distinte.

Risposta: $\alpha: z=1$.

Algebra e Geometria - Secondo Test - 22/12/2020

Cognome	Nome
Corso di Laurea	Matricola
Ogni studente deve svolgere solame	ente la traccia corrispondente all'iniziale del proprio cognome.
	Esercizi
1. In $\widetilde{\mathcal{A}_3}(\mathbb{C})$ si considerino il piano $\alpha_k: x$	$z+z=k$ e la retta $r_k: egin{cases} 2x-y=2 \\ kx+y+(k+2)z=0 \end{cases}$. Si determinino al
variare di $k\in\mathbb{C}$ le coordinate dei punti	\
Risposta: $k=-1\pm\sqrt{3}:r\subset\alpha$; $k\neq-1$	$1 \pm \sqrt{3} : r \parallel \alpha, r \cap \alpha = [(-k-2, -2k-4, k+2, 0)]$
2. In $\mathcal{A}_3(\mathbb{R})$, fissato il riferimento $\Gamma=(O,$ piano $\alpha:x+3y+4z-3=0.$	$\mathcal{B}=(e_1,e_2,e_3))$ si determini una base \mathcal{T} dello spazio di traslazione del
Risposta: $\mathcal{T} = (-3e_1 + e_2, -4e_1 + e_3)$	
3. In $\widetilde{\mathcal{E}}_2(\mathbb{C})$ si considerino le coniche di equ determini per quali valori di $k\in\mathbb{R}$ la co	uazione $\mathcal{C}_k:4x^2-y^2-16x+20-k=0$ al variare del parametro $k.$ Si nica \mathcal{C}_k
(a) è degenere e se ne determinino le re Risposta: $k=4$: $r_1:2x+y-4=$	tte componenti. $0, r_2: 2x - y - 4 = 0.$
(b) è generale e se ne determini la natur	ra.
Risposta: $k \neq 4$: iperbole	
4. In $\mathcal{E}_3(\mathbb{R})$ si determini la distanza del pur	nto $P=(0,1,1)$ dalla retta $r: egin{cases} x-y=2 \\ z=3 \end{cases}$.
Risposta: $d = \sqrt{\frac{17}{2}}$	
5. Dati il punto $V = [(1, -1, 0, 0)]$ e la con	ica $\mathcal C$ di equazione $z^2-2y^2-4yz+2x-3=0=y+z-1$,
	del luogo Σ delle rette che proiettano ${\mathcal C}$ da V .
	= 0
•	opra ottenuta e quali sono i suoi eventuali punti doppi. doppio
	erseca Σ in una circonferenza, giustificando la risposta in caso negativo on è un cilindro ellittico.
6. In $\widetilde{\mathcal{E}_3}(\mathbb{C})$, data la quadrica $\mathcal Q$ di equazion	$e^{2} + y^{2} - z^{2} + 2xy - 2x = 0,$
. ,	
	li punti doppi e la natura dei suoi punti semplici;

(b) Si determini, se esiste, un piano α tale che $\mathcal{Q} \cap \alpha$ sia una conica riducibile in due rette reali e distinte.

Risposta: $\alpha: x_4 = 0$.

Algebra e Geometria - Secondo Test - 22/12/2020

Cognome	Nome
Corso di Laurea	MATRICOLA
Ogni studente deve svolgere solame	ente la traccia corrispondente all'iniziale del proprio cognome.
	Esercizi
1. In $\widetilde{\mathcal{A}_3}(\mathbb{C})$ si considerino il piano $\alpha_k:x$ variare di $k\in\mathbb{C}$ le coordinate dei punti	$x+z=k$ e la retta $r_k:$ $\begin{cases} 2x-y=2\\ kx+y+(k+2)z=0 \end{cases}$. Si determinino al comuni ad r e ad α .
Risposta: $k=-1\pm\sqrt{3}:r\subset\alpha;k eq-$	$1 \pm \sqrt{3} : r \parallel \alpha, r \cap \alpha = [(-k-2, -2k-4, k+2, 0)]$
2. In $\mathcal{A}_3(\mathbb{R})$, fissato il riferimento $\Gamma=(O,$ piano $\alpha:3x-4z+1=0.$	$\mathcal{B}=(e_1,e_2,e_3))$ si determini una base \mathcal{T} dello spazio di traslazione del
Risposta: $\mathcal{T} = (4e_1 + 3e_3, e_2)$	
3. In $\widetilde{\mathcal{E}}_2(\mathbb{C})$ si considerino le coniche di equ determini per quali valori di $k\in\mathbb{R}$ la co	uazione $\mathcal{C}_k:4x^2-y^2-16x+20-k=0$ al variare del parametro $k.$ Si nica \mathcal{C}_k
(a) è degenere e se ne determinino le re	tte componenti.
Risposta: $k = 4$: $r_1 : 2x + y - 4 =$	$0, r_2: 2x - y - 4 = 0.$
(b) è generale e se ne determini la natur	ra.
Risposta: $k \neq 4$: iperbole	
4. In $\mathcal{E}_3(\mathbb{R})$ si determini la distanza del pur	nto $P=(0,1,0)$ dalla retta $r: \begin{cases} x+z=3 \\ x=-4 \end{cases}$.
Risposta: $d = \sqrt{65}$	
5. Dati il punto $V = [(0, 1, -1, 0)]$ e la con	ica $\mathcal C$ di equazione $x^2+2y^2-4xy+2z-3=0=x+y-1$,
	del luogo Σ delle rette che proiettano ${\cal C}$ da V . = 0
•	opra ottenuta e quali sono i suoi eventuali punti doppi. doppio
(c) Si trovi, se esiste, un piano α che int	erseca Σ in una circonferenza, giustificando la risposta in caso negativo
Risposta: Non esiste, in quanto Σ n	on è un cilindro ellittico.
6. In $\widetilde{\mathcal{E}_3}(\mathbb{C})$, data la quadrica $\mathcal Q$ di equazion	$ext{ne } x^2 + y^2 + 2xz - 1 = 0,$
(a) si classifichi ${\cal Q}$ specificando eventua	li punti doppi e la natura dei suoi punti semplici;
Risposta: Generale; Iperboloide ipe	erbolico
(b) Si determini, se esiste, un piano α ta	lle che $\mathcal{Q}\cap \alpha$ sia una conica riducibile in due rette reali e distinte.

Risposta: $\alpha: y=1$.

Algebra e Geometria - Secondo Test - 22/12/2020

Cognome	Nome
Corso di Laurea	Matricola
Ogni studente <i>deve</i> svolgere <i>solan</i>	mente la traccia corrispondente all'iniziale del proprio cognome.
	Esercizi
1. In $\widetilde{\mathcal{A}_3}(\mathbb{C})$ si considerino il piano α_k :	$x+z=k$ e la retta $r_k: \begin{cases} 2x-y=2\\ kx+y+(k+2)z=0 \end{cases}$. Si determinino a
variare di $k \in \mathbb{C}$ le coordinate dei punt	
Risposta: $k=-1\pm\sqrt{3}:r\subset\alpha$; $k\neq-1$	$-1 \pm \sqrt{3} : r \parallel \alpha, r \cap \alpha = [(-k-2, -2k-4, k+2, 0)]$
2. In $\mathcal{A}_3(\mathbb{R})$, fissato il riferimento $\Gamma=(C)$ piano $\alpha:2x+5z-2=0$.	$\mathcal{O},\mathcal{B}=(e_1,e_2,e_3))$ si determini una base \mathcal{T} dello spazio di traslazione de
Risposta: $\mathcal{T} = (-5e_1 + 2e_3, e_2)$	
3. In $\widetilde{\mathcal{E}}_2(\mathbb{C})$ si considerino le coniche di eq k . Si determini per quali valori di $k\in\mathbb{N}$	quazione $\mathcal{C}_k: x^2-y^2-2(k-1)xy-2y-1=0$ al variare del parametro \mathbb{R} la conica \mathcal{C}_k
(a) è degenere e se ne determinino le r	rette componenti.
Risposta: $k = 1$, $r_1 : x + y + 1 =$	$0, r_2 : x - y - 1 = 0$
(b) è generale e se ne determini la natu	ura.
Risposta: $k \neq 1$: iperbole	
4. In $\mathcal{E}_3(\mathbb{R})$ si determini la distanza del pu	unto $P=(0,1,0)$ dalla retta $r: egin{cases} x+z=3 \ x=-4 \end{cases}$.
Risposta: $d = \sqrt{65}$	
5. Dati il punto $V = [(0, 1, -1, 0)]$ e la co	nica $\mathcal C$ di equazione $x^2+2z^2-4xz+2y-3=0=x+z-1$,
-	a del luogo Σ delle rette che proiettano ${\cal C}$ da V . ${f B}=0$
	sopra ottenuta e quali sono i suoi eventuali punti doppi. o doppio
-	nterseca Σ in una circonferenza, giustificando la risposta in caso negativo non è un cilindro ellittico. $_$
6. In $\widetilde{\mathcal{E}}_3(\mathbb{C})$, data la quadrica $\mathcal Q$ di equazio	one $x^2 - y^2 + z^2 + 2xz - 2x = 0$,
	uali punti doppi e la natura dei suoi punti semplici;
	perbolico
-	tale che $\mathcal{Q}\cap \alpha$ sia una conica riducibile in due rette reali e distinte.