Il sottospazio di \mathbb{R}^n generato dai vettori riga $\mathbf{a}_1, \mathbf{a}_2, \ldots, \mathbf{a}_m$ di A dicesi **spazio delle righe** di A ed il sottospazio di \mathbb{R}^m generato dai vettori colonna $\mathbf{a}^1, \mathbf{a}^2, \ldots, \mathbf{a}^n$ di A dicesi **spazio delle colonne** di A. Tali spazi verranno indicati con \mathcal{R}_A e \mathcal{C}_A rispettivamente. Si ha il seguente:

Teorema. Lo spazio delle righe e lo spazio delle colonne di una matrice A(m,n) hanno la stessa dimensione.

Dim. Se tutti gli elementi di A sono zero, le righe e le colonne di A sono vettori nulli, quindi $\dim \mathcal{R}_A = \dim \mathcal{C}_A = 0$.

Se A non è la matrice nulla, vi è qualche vettore riga e qualche vettore colonna che non sono vettori nulli.

Quindi, per il teorema 4.3 del capitolo 2, tra gli m vettori riga ci saranno al più $r \leq m$ vettori riga che sono un base di \mathcal{R}_A ed al più $s \leq n$ vettori colonna che sono una base di \mathcal{C}_A .

Supponiamo, senza ledere la generalità, che $\{\mathbf{a}_1,\mathbf{a}_2,\ldots,\mathbf{a}_r\}$ sia una base $\mathrm{di}\;\mathcal{R}_{A}$.

Allora, per un qualunque vettore riga \mathbf{a}_i di A si ha:

(4.2)
$$\mathbf{a}_i = h_{i1}\mathbf{a}_1 + h_{i2}\mathbf{a}_2 + \ldots + h_{ir}\mathbf{a}_r \qquad (i = 1, 2, \ldots, m).$$

Ricavando dalle precedenti il j-esimo elemento di \mathbf{a}_i si ha:

$$(4.3) a_{ij} = h_{i1}a_{1j} + h_{i2}a_{2j} + \ldots + h_{ir}a_{rj}$$

o, più esplicitamente:

per j = 1, 2, ..., n.

Le relazioni (4.4) mostrano che il j-esimo vettore colonna \mathbf{a}^j di A, è combinazione lineare degli r vettori di \mathbb{R}^m :

$$\mathbf{h}^{1} = (h_{11}, h_{21}, \dots, h_{m1}), \mathbf{h}^{2} = (h_{12}, h_{22}, \dots, h_{m2}), \dots, \mathbf{h}^{r} = (h_{1r}, h_{2r}, \dots, h_{mr})$$

e quindi, per $j = 1, 2, \ldots, n$, si ha:

$$\mathbf{a}^j \in L(\mathbf{h}^1, \mathbf{h}^2, \dots, \mathbf{h}^r)$$
 .

Dalla proposizione 3.5 del capitolo 2, segue che $\mathcal{C}_A\subseteq L(\mathbf{h}^1,\mathbf{h}^2,\ldots,\mathbf{h}^r)$, pertanto:

$$\dim \mathcal{C}_A \leq \dim L(\mathbf{h}^1, \mathbf{h}^2, \dots, \mathbf{h}^r)$$

cioè:

Scambiando il ruolo delle righe e delle colonne e procedendo analogamente, si prova che:

 $r \leq s$

e quindi:

r=s.

Poiché r ed s sono il numero dei vettori di una base di \mathcal{R}_A e \mathcal{C}_A rispettivamente, allora dim $\mathcal{R}_A = \dim \mathcal{C}_A$, da cui la tesi.