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Zonal graphs revisited

Gary Chartrand, Cooroo Egan, and Ping Zhang∗

In memory of Ralph Gordon Stanton (1923–2010)
on the 100th anniversary of his birth

Abstract. A labeling of the vertices of a connected plane graph G with
the two nonzero elements of the ring Z3 of integers modulo 3 such that the
sum of the labels of the vertices on the boundary of every region of G is the
zero element of Z3 is called a zonal labeling and such a graph possessing a
zonal labeling is a zonal graph. Several results dealing with zonal graphs
are discussed, especially those dealing with proper edge colorings of cubic
maps.

1 Introduction

There are many areas within graph theory where the vertices or edges of
a graph G (or regions if G is a plane graph) are assigned elements of a
set (usually nonnegative integers) in such a way that a desired outcome is
produced. Such an assignment is ordinarily referred to as a graph labeling
or a graph coloring. Typically, the goal of such an assignment is to minimize
the number of elements used to accomplish the goal – but not always.

One of the best known examples of this is a graceful labeling of a graph, a
concept introduced by Rosa [11] in 1967, although the terminology is due
to Golomb [8] in 1972. For a graph G of order n and size m, a graceful
labeling f of G is an assignment of distinct integers from the set {0, 1, . . . ,m}
to distinct vertices of G so that an edge uv of G is assigned the label
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|f(u) − f(v)| in such a way that distinct edges have distinct labels. A
graph possessing a graceful labeling is called a graceful graph. Many results
dealing with graceful and related labelings have been obtained and many
of these results have been described in a periodically updated survey due
to Gallian [9]. A popular conjecture dealing with graceful graphs is the
following due to Kotzig and Ringel [9].

The graceful tree conjecture Every nontrivial tree is graceful.

In 1980, Graham and Sloane [10] introduced another graph labeling called
a harmonious labeling. For a connected graph G of order n and size m, a
harmonious labeling f of G is an assignment of distinct elements from the
ring Zm of integers modulo m to the vertices of G so that an edge uv of G
is assigned the label f(u) + f(v) in Zm in such a way that distinct edges
have distinct labels in Zm. For m = n− 1, the graph G is a tree and such
a labeling is impossible. In this case, some element of Zm is assigned to
two vertices of G, while all other elements of Zm are used exactly once. A
connected graph possessing a harmonious labeling is a harmonious graph.
From this concept, the following corresponding conjecture arose.

The harmonious tree conjecture Every nontrivial tree is harmonious.

In 1986, another labeling concept was introduced, where positive integers
were assigned to the edges of a graph in such a way that the resulting vertex
labels obtained by adding the labels of the incident edges are distinct. The
irregularity strength of a graph G is the smallest positive integer k such that
if each edge of G is assigned one of the labels from the set [k] = {1, 2, . . . , k},
then distinct vertices have distinct labels (see [4]). Interpreting vertex labels
in this way as colors led to a corresponding proper coloring when in 2004
Karoński,  Luczak, and Thomason [6] stated the following conjecture.

The 1-2-3 conjecture For every connected graph G of order 3 or more,
each edge of G can be assigned one of the labels 1, 2, 3 in such a way that
the vertex colors obtained by adding the labels of the incident edges of every
two adjacent vertices are different.

While it was shown in [7] that there is a corresponding 1-2-3-4-5 theorem,
no 1-2-3-4 theorem is known at present.

Probably the most common and oldest examples of such labelings or color-
ings are proper colorings of a graph where the vertices are assigned positive
integer colors from a set [k] for some positive integer k in such a way that
every two adjacent vertices are assigned distinct colors. The goal here is
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to determine the minimum positive integer k for which this is possible, re-
sulting in the chromatic number of the graph. Certainly the best known
problem dealing with this topic concerns planar graphs and is due to Fran-
cis Guthrie in 1852, which was ultimately solved by Appel and Haken [1]
in 1976. The book by Wilson [15] provides much information on the his-
tory and solution of this problem. One way to state this famous resulting
theorem in terms of graphs is the following.

The Four Color Theorem The chromatic number of every planar graph
is at most 4.

The problem (referred to as the Four Color Problem), as originally stated
by Guthrie, did not deal with graphs at all but with maps, that is, plane
graphs, asking whether the regions of every map could be colored with
at most four colors in such a way that every two regions with a common
boundary line are colored differently.

In 2014, Egan introduced another vertex labeling concept dealing with plane
graphs, which was discussed in [3]. This concept involved the use of only
two labels.

2 Zonal labelings

Let G be a connected planar graph (or multigraph) embedded in the plane,
that is, G is a plane graph. A labeling of the vertices of G with the two
nonzero elements 1 and 2 of the ring Z3 of integers modulo 3 is called a
zonal labeling of G if the sum of the labels of the vertices on the boundary
of every region (or zone) of G, called the value of the region, is 0, the zero
element in Z3. If a plane graph G possesses such a labeling, then G is called
a zonal graph. A planar graph G is said to be zonal if there exists a zonal
planar embedding of G. As is the case with graceful labelings, harmonious
labelings, and many other labelings, the primary question here as well is
the following: Which plane graphs are zonal?

Before presenting some results dealing with zonal labelings, we state a num-
ber of observations. Let there be given a vertex labeling f of a graph G
with the labels 1 and 2 of Z3. The complementary labeling f of f is defined
as f(v) = 3 − f(v) for each vertex v of G. We then have the following
observation.
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Observation 2.1. If a labeling of the vertices of a plane graph is zonal,
then its complementary labeling is also zonal.

For example, consider the cycles C3, C4, C5, and C6. All four of these cycles
are zonal. As a consequence of Observation 2.1, there is essentially only
one way to give a zonal labeling of C3, essentially only two ways to give a
zonal labeling of C4, essentially only one way to give a zonal labeling of C5,
and essentially only four ways to give a zonal labelings of C6. These zonal
labelings are shown in Figure 1.
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Figure 1: Zonal labelings of C3, C4, C5, and C6

In fact, every cycle Cn, n ≥ 2, and every nontrivial tree is zonal (see [3]).

Proposition 2.2. Every nontrivial tree and every cycle is zonal.

The zonal labelings of the graphs of Figure 1 illustrate the following obser-
vation.

Observation 2.3. Let H be the boundary of a region R in a plane graph G
with a zonal labeling ℓ. If ni vertices of H are labeled i by ℓ for i = 1, 2,
then n1 ≡ n2 (mod 3).

Proof. Since the value of a region R in G is 0 in Z3, it follows that 1 · n1 +
2 · n2 ≡ 0 (mod 3). Therefore, n1 ≡ n2 (mod 3).

Consider the plane graphs G1 and G2 of Figure 2. A zonal labeling of G1

is given in that figure; therefore, G1 is zonal. Now consider G2. If there
exists a zonal labeling of G2, then u2, v2, w2 must all be assigned 1 or all
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assigned 2. The same is true for x2, y2, z2. Regardless of how this is done,
however, the sum of the labels of the vertices on the boundary cycle (a 5-
cycle) of the region R in G2 or on the exterior boundary cycle is not 0 in Z3.
Thus, G2 is not zonal. Since the graphs G1 and G2 are isomorphic, this
shows that it’s possible for a planar graph to be embedded in the plane in
two different ways and obtain two different outcomes. A planar graph G is
absolutely zonal if every planar embedding of G is zonal and a a zonal planar
graph G is conditionally zonal if there is a planar embedding of G that is
not zonal. These concepts were studied in [2]. Thus, the planar graph in
Figure 2 is conditionally zonal. Since the boundary of a planar embedding of
a nontrivial tree and a cycle is the graph itself, it follows by Proposition 2.2
that every nontrivial tree and every cycle is absolutely zonal. Whitney [14]
showed that every 3-connected planar graph is uniquely embeddable in the
plane. Therefore, no 3-connected planar graph is conditionally zonal.
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Figure 2: Two plane graphs

3 Zonal labelings and cycles

That there is a connection that zonal labelings of cycles has with proper
edge colorings of cycles using three colors is mentioned in [3]. Let C =
(v1, v2, . . . , vn, v1) be an n-cycle embedded in the plane where the vertices
of C are labeled as shown in Figure 3. That is, we assume that we proceed
about the interior of C in a counter-clockwise direction.

Thus, after an edge vi−1vi is encountered, the next edge encountered is
vivi+1, as indicated in Figure 4. Let there be given a proper coloring c of
edges of C with the three colors 1, 2, 3. If the color c(vivi+1) of the edge
vivi+1 immediately follows the color c(vi−1vi) of the edge vi−1vi numerically
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Figure 3: A cycle C

(that is, if 2 follows 1, 3 follows 2, or 1 follows 3), then the vertex vi on C
is said to be of type 1. Otherwise, vi is of type 2. See Figure 4 in the case
where c(vi−1vi) = 1.
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Figure 4: The type of a vertex

Theorem 3.1. For every proper edge coloring of a cycle C with the col-
ors 1, 2, 3, the resulting types of the vertices of C produce a zonal labeling
of C.

Proof. There is essentially only one way to properly color the edges of C3

and essentially only two ways to properly color the edges of C4 with the
colors 1, 2, 3. These are shown in Figure 5 and the resulting vertex types
result in a zonal labeling in each case.
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Figure 5: Proper edge colorings of C3 and C4 and resulting vertex types
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Suppose that the statement is false. Then there is a least integer n ≥ 5
for which a proper edge coloring of Cn results in vertex types that is not
a zonal labeling of Cn. If only two of the three colors 1, 2, 3 are used in
the edge coloring of Cn, then the edge colors alternate in Cn. This implies
that n is even and the vertex types alternate in Cn, which results in a zonal
labeling of Cn. This produces a contradiction. Consequently, all three
colors must be used in the edge coloring of Cn, which implies that Cn has
a path of length 3 whose three edges have distinct colors. We may assume
that Cn contains the path (u, v1, v2, w) where the edge uv1 is colored 1, the
edge v2w is colored 2, and the edge v1v2 is colored 3. We now identify the
vertices v1 and v2 in Cn, denoting the resulting vertex by v and producing
the cycle Cn−1. In Cn, the type of the vertices v1 and v2 are both 2, while
in Cn−1, the type of the vertex v is 1. Since the vertex types in Cn−1 is a
zonal labeling of Cn−1, the sum of the labels of the vertices of Cn−1 is 0
in Z3. Consequently, the sum of the vertex types in Cn is also 0 in Z3,
which implies that the vertex types in Cn is a zonal labeling of Cn. This is
a contradiction.

In fact, the converse of Theorem 3.1 is true as well.

Theorem 3.2. For each zonal labeling ℓ of a cycle C, there is a proper
edge coloring of C with the colors 1, 2, 3 such that the resulting type of each
vertex v of C is ℓ(v).

Proof. For a given zonal labeling ℓ of a cycle C, we define a proper edge
coloring of C with the colors 1, 2, 3 such that the type of each vertex v
of C is ℓ(v). First, suppose that each vertex of C has the same label.
By Observation 2.1, we may assume that every vertex is labeled 1 by ℓ.
Then 3 | n and the coloring 1, 2, 3, 1, 2, 3, . . . , 1, 2, 3 of the edges of C in a
counter-clockwise direction results in each vertex of C having type 1.

Next, suppose that both labels 1 and 2 are used in the zonal labeling ℓ of C.
Then n ≥ 4. In this case, we proceed by the Strong Form of Induction on n
to define a proper edge coloring of C with the colors 1, 2, 3 such that the
type of each vertex v of C is ℓ(v). Since there are adjacent vertices of C
with distinct labels, we may assume that ℓ(v3) = 1 and ℓ(v4) = 2. Let C ′

be the (n− 2)-cycle obtained from C by deleting v3 and v4 and joining v2
to v5. Then C ′ = (v1, v2, v5, v6, . . . , vn, v1) is an (n − 2)-cycle. Let ℓ′ be
the labeling of C ′ where ℓ′(v) = ℓ(v) for each vertex v of C ′. Since ℓ is a
zonal labeling of C, so is ℓ′. By the induction hypothesis, there is a proper
edge coloring of C ′ with the colors 1, 2, 3 such that the type of each vertex
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v of C ′ is ℓ′(v). We may assume that c′(v5v6) = 1. We now consider four
situations, depending on the labels ℓ′(v2) and ℓ′(v5) in C ′.

⋆ If ℓ′(v2) = ℓ′(v5) = 1, then c′(v2v5) = 3 and c′(v1v2) = 2. Define
c(v4v5) = 3, c(v3v4) = 1 and c(v2v3) = 3.

⋆ If ℓ′(v2) = ℓ′(v5) = 2, then c′(v2v5) = 2 and c′(v1v2) = 3. Define
c(v4v5) = 2, c(v3v4) = 3 and c(v2v3) = 2.

⋆ If ℓ′(v2) = 1 and ℓ′(v5) = 2, then c′(v2v5) = 2 and c′(v1v2) = 1.
Define c(v4v5) = 3, c(v3v4) = 1 and c(v2v3) = 3.

⋆ If ℓ′(v2) = 2 and ℓ′(v5) = 1, then c′(v2v5) = 3 and c′(v1v2) = 1.
Define c(v4v5) = 3, c(v3v4) = 1 and c(v2v3) = 3.

In each case, a proper edge coloring of C with the colors 1, 2, 3 is produced
such that the type of each vertex v of C is ℓ(v).

4 Zonal labelings and cubic maps

A natural question concerning zonal labelings asks whether there’s any
special motivation for studying zonal labelings in graph theory. To give one
possible answer to this question, we now turn to the class of plane graphs
often called cubic maps. A cubic map is a connected bridgeless cubic plane
graph (or multigraph). The following result was obtained in [3].

Theorem 4.1. A connected cubic plane graph G is zonal if and only if G
is bridgeless.

By Theorem 4.1, all cubic maps are absolutely zonal. Clearly, every cubic
map has even order. The cubic maps of order 6 or less are shown in Figure 6.
A zonal labeling of each such graph is also shown in Figure 6.

Not only does every cubic map have a zonal labeling, its complementary
labeling is also a zonal labeling. That is, if the label of every vertex in
a cubic map with a zonal labeling is replaced by its complementary label,
then another zonal labeling is produced. However, we do not consider these
two zonal labelings distinct. Rather than give a universal complementary
labeling of a cubic map, it may be possible to give a more localized com-
plementary labeling and produce another zonal labeling. That is, it may
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Figure 6: Zonal labelings of cubic maps with two, four, or six vertices

be possible to find a proper subset S of the vertex set of a cubic map M
and replace only the label of every vertex of S by its complementary label
and produce another zonal labeling of M . For example, consider the zonal
labeling of the 3-cube Q3 shown in Figure 7(a). If the labels of the vertices
in the set {u, v, w, x} are replaced by their complementary labels, then the
resulting labeling of Q3, shown in Figure 7(b), is also a zonal labeling of Q3.

x

.......
................................................................
......

.......
................................................................
......

.......
................................................................
...... .......

................................................................

......

.......
................................................................
......

.......
................................................................
......

.......
................................................................
......

.......
................................................................
......

.......
................................................................
......

.......
................................................................
......

.......
................................................................
......

.......
................................................................
...... .......

................................................................

......

.......
................................................................
.............

................................................................

......

............................................ .........
.........
.........
.........
.........

.......................................................
.........
.........
.........
.........
.

.........................................

......................................................
.........
.........
.........
.........

..........................
............

.........
.........
.........
.........
.........

1

2

2

1

1

2 1

2

2

1

1

2 1

2 21

v

w

(a) (b)

u

.......
................................................................
......

Figure 7: Producing a new zonal labeling of the 3-cube Q3

The following result shows that in some cases, there are many possibilities
for the number of vertices whose labels may be reversed in a cubic map
with a zonal labeling to obtain a new zonal labeling.

Theorem 4.2. For every two even integers r and n such that n ≥ 10 and
2 ≤ r ≤ n− 2, there exists a cubic map M of order n with a zonal labeling
and an r-element subset Sr of V (G) such that if the labels of all vertices
of Sr are replaced by their complementary labels, then the resulting labeling
is zonal.

Proof. Let n ≥ 10 be an even integer. Then n = 2k + 8 for some positive
integer k. We construct a cubic map M of order n as follows. Let F
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and H be two disjoint copies of the graph K4 − e such that V (F ) = X =
{x1, x2, x3, x4} where e = x1x2 and V (H) = Y = {y1, y2, y3, y4} where
e = y1y2. The vertices x1 and y1 are connected in M by the path (x1,
u1, u2, . . ., uk, y1) and the vertices x2 and y2 are connected in G by the
path (x2, v1, v2, . . ., vk, y2). The construction of M is completed by adding
the edges uivi for 1 ≤ i ≤ k. The cubic map M is embedded in the plane
as shown in Figure 8. The cubic map M has order n = 2k + 8 where
the boundary of the exterior region is an (n − 2)-cycle. The boundaries
of two interior regions are 5-cycles, the boundaries of four interior regions
are 3-cycles, while the boundary of each of the remaining k− 1 regions is a
4-cycle.
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Figure 8: The cubic map G in the proof of Theorem 4.2

Let Vi = {ui, vi} for 1 ≤ i ≤ k. Then P = {X,Y, V1, V2, . . . , Vk} is a
partition of V (M). For every even integer r with 2 ≤ r ≤ n−2, there exists
a subset of P such that the union Sr of the elements in this subset has |Sr| =
r. By replacing the labels of all vertices of Sr by their complementary labels,
a zonal labeling of M is obtained.

Certainly, for a cubic map M with a zonal labeling, it is impossible to
replace the label of just one vertex v of M with its complementary label
to produce a zonal labeling, as doing this give a nonzero value to each of
the three regions having v on their boundaries. It is not only impossible
to replace the label of exactly one vertex of M by its complementary label
to produce a zonal labeling, it is also impossible to replace the labels of
exactly three vertices of M by their complementary labels to produce a
zonal labeling. To see this, we first present the following lemma.

Lemma 4.3. No set of three vertices in a cubic map M lie on three different
boundary cycles of M .

Proof. Assume, to the contrary, that there is a cubic map M with three
vertices u, v, w, all of which lie on three distinct boundary cycles in M . Let
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M be embedded in the plane so that one of these three boundary cycles,
say C, is the exterior cycle of M . Let C = (u = x1, x2, . . . , xa = v, . . . , xb =
w, . . . , xk, u). Let e be the edge incident with u that does not lie on C, let
C ′ be the boundary cycle containing the edges e and x1x2, and let C ′′ be
the boundary cycle containing the edges e and x1xk. Next, let P ′ be the
path on C ′ with initial vertex u and initial edge e such that the terminal
vertex of P ′, say y, is the first vertex of P ′ belonging to C. Now, let Q′

be the u− y path of C containing x1x2 and let Q′′ be the u− y path of C
containing x1xk. Thus, P ′ and Q′ form a cycle S′ and P ′ and Q′′ form a
cycle S′′. Let M ′ be the plane subgraph of M induced by the edges lying on
and inside S′ and let M ′′ be the plane subgraph of M induced by the edges
lying on and inside S′′. Hence, C ′ lies within M ′ and C ′′ lies within M ′′.
The subgraphs M ′ and M ′′ have only P ′ in common and u and y are the
only vertices of C belonging to both M ′ and M ′′. Thus, at most one of C ′

and C ′′ contains all three vertices u, v, w, which is a contradiction.

Proposition 4.4. For any zonal labeling of a cubic map M , the label-
ing obtained by replacing the labels of exactly three vertices of M by their
complementary labels is not a zonal labeling of M .

Proof. Assume, to the contrary, that there is a zonal labeling ℓ of a cubic
map M for which the labeling ℓ′ obtained by replacing the labels of three
vertices u, v, w of M by their complementary labels is a zonal labeling of M .
Since there is no boundary cycle of a region R in M that contains exactly
one of u, v, w, it follows that any boundary cycle in M containing any of the
vertices u, v, w must contain exactly two or exactly three of these vertices.

Suppose that there is a boundary cycle C in M containing all three of the
vertices u, v, w. Necessarily, these three vertices must have the same label.
Since every vertex lies on three boundary cycles, it follows by Lemma 4.3
that there must be a boundary cycle C ′ of a region R′ containing exactly
two of u, v, w. However, when the labels of these two vertices on C ′ are
replaced by their complementary labels, the value of R′ is nonzero and so
ℓ′ is not a zonal labeling, a contradiction. Consequently, every boundary
cycle of M containing any of the vertices u, v, w contains exactly two of
these vertices. This implies that these three vertices cannot have the same
label. Thus, we may assume that exactly two of u, v, w have the same label,
say ℓ(u) = ℓ(v) = 1 and ℓ(w) = 2. Hence, no boundary cycle in M contains
both u and v. Since u lies on three distinct boundary cycles, say Cu, C

′
u, C

′′
u ,

of M , it follows that w must lie on these three boundary cycles as well.
Since v also lies on three distinct boundary cycles, say Cv, C

′
v, C

′′
v , of M

and none of these boundary cycles contains u, it follows that w must lie on
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these three boundary cycles. However then, w lies on six distinct boundary
cycles of M , which is impossible.

We are led to the following conjecture.

Conjecture 4.5. For any zonal labeling of a cubic map M and any odd
positive integer r, the labeling obtained by replacing the labels of exactly r
vertices of M by their complementary labels is not a zonal labeling of M .

5 Edge colorings of cubic maps

Suppose that G is a cubic map possessing a proper coloring of the edges
with the colors 1, 2, 3. With each such edge coloring, one can also define a
type of each vertex of G, as we did for cycles. Let v be a vertex of G. There
are three edges of G incident with v and these three edges are colored 1,
2, 3 in some order as one proceeds clockwise about v. If the colors of the
edges are encountered in the order 1 − 2 − 3, then v is said to be type 1.
If the colors of the edges are encountered in the order 1 − 3 − 2, then v is
said to be type 2. See Figure 9. Observe that if C is the boundary cycle of
a region in G and v is a vertex of C, then the type of the vertex v on the
cycle C is the same as the type of v in the cubic map G.
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Figure 9: The vertex types in a proper 3-coloring of the edges of a cubic
map

For example, the 3-cube Q3 = C4 □ K2 as drawn in Figure 10 is a cubic
map. A proper edge coloring of Q3 with the colors 1, 2, 3 is shown in
Figure 10 and the vertices of Q3 are labeled with their types from this edge
coloring. This labeling is a zonal labeling of Q3. Not only do the vertex
types of the proper edge coloring of the cubic map Q3 in Figure 10 produce
a zonal labeling of Q3, this is the case for every cubic map.
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Figure 10: A proper edge coloring and a zonal labeling of Q3

Theorem 5.1. The vertex types of every proper edge coloring of a cubic
map M with the colors 1, 2, 3 produce a zonal labeling of M .

Proof. Let M be a cubic map with a proper edge coloring using the col-
ors 1, 2, 3. Let C be the boundary cycle of a region of M . We saw that
vertex types of the vertices of C are the vertex types of C obtained from
the proper edge coloring C using the colors 1, 2, 3. By Theorem 3.1, this is
a zonal labeling of C and so the value of C is 0 in Z3. Since this is the case
for every boundary cycle of a region of M , the vertex types of M produce
a zonal labeling of M .

The following observation will be useful to us.

Lemma 5.2. Let G be a cubic map with a zonal labeling ℓ. For a cycle C
of G, let

S = {v ∈ V (C) : G contains an edge incident with v lying outside of C}
T = {v ∈ V (C) : G contains an edge incident with v lying inside of C}

Then
∑

v∈S

ℓ(v) +
∑

v∈T

2ℓ(v) ≡ 0 (mod 3).

Proof. For each region R lying within C, let B(R) denote the boundary
cycle of R. Since ℓ is a zonal labeling of G, it follows that

∑
v∈V (B(R)) ℓ(v) ≡

0 (mod 3). Let W be the set of all vertices of G lying interior to C. If v ∈ W ,
then v lies on exactly three boundary cycles within C; if v ∈ S, then v lies
on exactly one boundary cycle within C; and if v ∈ T , then v lies on exactly
two boundary cycles within C. Let R be the set of all regions lying interior
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to C. Since
∑

v∈V (B(R)) ℓ(v) ≡ 0 (mod 3) for each R ∈ R, it follows that

∑

R∈R


 ∑

v∈V (B(R))

ℓ(v)


 =

∑

v∈S

ℓ(v) +
∑

v∈T

2ℓ(v) +
∑

v∈W

3ℓ(v) ≡ 0 (mod 3)

and so
∑

v∈S

ℓ(v) +
∑

v∈T

2ℓ(v) ≡ 0 (mod 3).

We now show that for a given cubic map G with a zonal labeling ℓ, if
some color in Z3 = {1, 2, 3} is assigned to an edge e of G, then there is
a unique color in Z3 assigned to each edge in a proper edge coloring of G
with elements of Z3 according to the vertex type ℓ(x) of each vertex x of G.
Let f be an arbitrary edge of G distinct from e and let P = (v1, v2, . . . , vk),
k ≥ 3, be a v1 − vk path in G, where e = v1v2 and f = vk−1vk. The vertex
type ℓ(vi), 1 ≤ i ≤ k, of each vertex vi of P produces a color from Z3 for
each of the edges v2v3, v3v4, . . . , vk−1vk recursively as we proceed along the
path P . This results in a color c(f) for the edge f . It remains to show
that if the color of f had been determined in this manner from any other
path Q from e to f , we would have exactly the same color c(f) for f . We
verify this next. In the first result, we consider the case where Q belongs to
a cycle in G. In the second result, we consider the more general situation
where Q does not lie on a cycle of G.

Theorem 5.3. Let G be a cubic map with a zonal labeling ℓ and let C be
a cycle of G. If an edge of C is assigned a color from {1, 2, 3} in Z3, then
there is a unique proper edge coloring of C with the colors 1, 2, 3 such that
the type of each vertex x of C is ℓ(x).

Proof. Let C = (v1, v2, . . . , vk, vk+1 = v1) be a k-cycle of G, where k ≥ 2,
and let e ∈ E(C), where the subscript of a vertex of C is expressed as a
positive integer modulo k. We may assume that e = vkv1 and that vkv1
is assigned color c(vkv1) ∈ {1, 2, 3}. For 1 ≤ i ≤ k, let wi be the neighbor
of vi that is not on C. Furthermore, for 1 ≤ j ≤ k, let

Sj = {vi ∈ V (C) : 1 ≤ i ≤ j and wi lies outside of C}
Tj = {vi ∈ V (C) : 1 ≤ i ≤ j and wi lies inside of C}.

First, we proceed from vkv1 to vjvj+1 along the path (vk, v1, v2, . . . , vj+1).
According to the label ℓ(v1) of v1 and the color c(vkv1) of vkv1, we assign
the two colors {1, 2, 3} − {c(vkv1)} to the two edges v1v2 and v1w1 inci-
dent with v1 such that the type of v1 is ℓ(v1). Thus, if v1w1 lies exterior
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to C, then c(v1v2) = c(vkv1) + ℓ(v1) in Z3; while if v1w1 lies interior to C,
then c(v1v2) = c(vkv1) + 2ℓ(v1) in Z3. Consequently, c(v1v2) is uniquely
determined by the label ℓ(v1) and c(vkv1). In general, consider an edge
vjvj+1 where 2 ≤ j ≤ k. If we proceed from vkv1 to vjvj+1 along the
path (vk, v1, v2, . . . , vj , vj+1), then the color c(vjvj+1) of the edge vjvj+1 is

c(vjvj+1) = c(vkv1) +
∑

v∈Sj

ℓ(v) +
∑

v∈Tj

2ℓ(v) in Z3. (1)

Since
∑

v∈Sk
ℓ(v) +

∑
v∈Tk

2ℓ(v) = 0 in Z3 by Lemma 5.2, it follows that

c(vkvk+1) = c(vkv1) +
∑

v∈Sk

ℓ(v) +
∑

v∈Tk

2ℓ(v) = c(vkv1) in Z3.

Thus, we return to the color of vkv1. Furthermore, every two adjacent edges
of C are colored differently and the type of each vertex x of C is ℓ(x).

Next, we proceed from vkv1 to vjvj+1 along the path (v1, vk, vk−1, . . ., vj+1,
vj). According to the label ℓ(vk) of vk and the color c(vkv1) of vkv1, we
assign the two colors {1, 2, 3}−{c(vkv1)} to the two edges vkvk−1 and vkwk

incident with vk such that the type of vk is ℓ(vk). Thus, if vkwk lies exterior
to C, then c(vkvk−1) = c(vkv1) + 2ℓ(vk) in Z3; while if vkwk lies interior
to C, then c(vkvk−1) = c(vkv1) + ℓ(vk) in Z3. Consequently, c(vkvk−1) is
uniquely determined by the label ℓ(v1) and c(vkv1). In general, consider an
edge vjvj+1 where 1 ≤ j ≤ k − 1. If we proceed from vkv1 to vjvj+1 along
the path (v1, vk, vk−1, . . ., vj+1, vj), the color c(vjvj+1) of the edge vjvj+1

is
c(vjvj+1) = c(vkv1) +

∑

v∈Sk−Sj

2ℓ(v) +
∑

v∈Tk−Tj

ℓ(v) in Z3. (2)

It remains to show that the colors of the edge vjvj+1 described in (1) and
(2), respectively, are the same. Since

∑

v∈Sk

ℓ(v) +
∑

v∈Tk

2ℓ(v)

=


∑

v∈Sj

ℓ(v) +
∑

v∈Tj

2ℓ(v)


 +


 ∑

v∈Sk−Sj

ℓ(v) +
∑

v∈Tk−Tj

2ℓ(v)



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and
∑

v∈Sk
ℓ(v) +

∑
v∈Tk

2ℓ(v) = 0 in Z3 by Lemma 5.2, it follows that

∑

v∈Sj

ℓ(v) +
∑

v∈Tj

2ℓ(v)

= −
∑

v∈Sk−Sj

ℓ(v) −
∑

v∈Tk−Tj

2ℓ(v)

=
∑

v∈Sk−Sj

2ℓ(v) +
∑

v∈Tk−Tj

ℓ(v).

Hence,

c(vjvj+1) = c(vkv1) +
∑

v∈Sj

ℓ(v) +
∑

v∈Tj

2ℓ(v)

= c(vkv1) +
∑

v∈Sk−Sj

2ℓ(v) +
∑

v∈Tk−Tj

ℓ(v).

Therefore, the color c(vjvj+1) of vjvj+1 in (1) obtained by proceeding along
the path (vk, v1, v2, . . ., vj , vj+1) is exactly the same as the color c(vjvj+1)
of vjvj+1 in (2) obtained by proceeding along the path (v1, vk, vk−1, . . .,
vj+1, vj). Consequently, with a prescribed color c(vkv1) and a zonal label-
ing ℓ of G, there is a unique proper edge coloring of C with the colors 1, 2, 3
such that the type of each vertex x of C is ℓ(x).

By Theorem 5.3, if G is a cubic map with a zonal labeling ℓ and some edge
of a cycle C of G is assigned a color from Z3 = {1, 2, 3}, then there is a
unique proper coloring of the edges of C with three colors such that the
type of each vertex of C is the label assigned by ℓ. This is not only true
for every cycle of G but for G itself.

Theorem 5.4. Let G be a cubic map with a zonal labeling ℓ. If an edge
of G is assigned a color from Z3 = {1, 2, 3}, then there is a unique proper
edge coloring of G with the colors 1, 2, 3 such that the type of each vertex x
of G is ℓ(x).

Proof. Let G be a cubic map with a zonal labeling ℓ and let e be an edge
of G, where e is assigned a color from the set Z3 = {1, 2, 3}. Let f be an
arbitrary edge of G distinct from e. We show that f is assigned a unique
color from the zonal labeling ℓ. Since G is 2-connected, there is a cycle C
containing both e and f . By Theorem 5.3, there is a unique color c(f)
assigned to f from the cycle C. We now show that for every path in G with
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initial edge e and terminal edge f , the color assigned to f according to the
labels of the vertices of P is also c(f) and so the color of f is uniquely
determined.

Suppose that the edges of P are encountered in the orders

e = f1, f2, . . . , fk = f.

If all edges of P lie on a cycle, then the color c(f) is uniquely determined by
Theorem 5.3. Hence, we may assume that P does not lie on a cycle in G.
Since G is a cubic map, it follows that there is a sequence P (1), P (2), . . . , P (t)

of subpaths of P (proceeding from e to f) such that the terminal edge
of P (i) is the initial edge of P (i+1) for 1 ≤ i ≤ t − 1 and each P (i) be-
longs to a cycle C(i) of G for 1 ≤ i ≤ t. Let P (1) = (e = f1, f2, . . . , fj1),
P (2) = (fj1 , fj1+1, . . . , fj2), . . ., P (t) = (fjt−1

, fjt−1+1, . . . , fjt = f). Ap-

plying Theorem 5.3 to the cycle C(1), we see that the color c(e) = c(f1)
and the labels of the vertices of P (1) uniquely determine the color c(fi)
of each edge fi of P (1) for 2 ≤ i ≤ j1. Since c(fj1) is known, it follows
that Theorem 5.3 can be applied to the cycle C(2) and so the color c(fj1)
and the labels of the vertices of P (2) uniquely determine the color c(fi))
of each edge fi of P (2) for j1 + 1 ≤ i ≤ j2. Continuing in this manner,
we see that the color c(fi) of each edge fi of P (t) is uniquely determined
for jt−1 + 1 ≤ i ≤ jt. Hence, the colors of all edges of P are uniquely
determined, as is the edge f .

Theorem 5.4 gives us the following result.

Corollary 5.5. Every zonal cubic map has a proper edge coloring with
three colors.

6 In closing

Cubic maps have been encountered in the study of graph theory as far
back as the 19th century. In 1884, Tait made a conjecture dealing with
3-connected cubic planar graphs (a subset of the cubic maps).

Tait’s conjecture Every 3-connected cubic planar graph is Hamiltonian.

This conjecture turned out to be false. In 1946, Tutte [13] gave an example
of a 3-connected cubic planar graph of order 46 that is not Hamiltonian.
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(Later, counterexamples for this conjecture of smaller order were discov-
ered.) Had Tait’s Conjecture turned out to be true (as Tait believed), then
this would have been significant for there would be an immediate corollary
that there is a proper edge coloring of every 3-connected cubic planar graph
that uses three colors. Then the following known theorem could be applied
(see [5]).

Theorem 6.1. There is a proper edge coloring of every cubic map with
three colors if and only if there is a proper edge coloring of every 3-connected
cubic planar graph.

Therefore, if Tait’s Conjecture had been true, then it would have followed
by Theorem 6.1 that there is a a proper edge coloring of every cubic map
with three colors. From this fact, the following 1880 result of Tait [12] could
be applied.

Tait’s theorem There is a proper edge coloring of a cubic map M with
three colors if and only if the regions of M can be colored with four or fewer
colors so that every two adjacent regions are colored differently.

Consequently, had Tait’s Conjecture been correct, this would have resulted
in a proof of the Four Color Theorem.

As we saw, there is a proper edge coloring of a cubic map M with three
colors if and only if M is zonal (Theorem 5.1 and Corollary 5.5). Since
we know that there is a proper edge coloring of any cubic map with three
colors, it follows that every cubic map is zonal. Furthermore, if we know
that all cubic maps are zonal, then it follows that the regions of all cubic
maps can be properly colored with four colors (by Tait’s Theorem). That
is, showing that all cubic maps are zonal results in establishing the Four
Color Theorem. However, the reason that we know all cubic maps are zonal
(Theorem 4.1) is because of the truth of the Four Color Theorem. If this
fact could be established (without the aid of the Four Color Theorem), then
this would result in an alternative proof of the Four Color Theorem.
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