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On non-isomorphic biminimal pots realizing

the cube

Margherita Maria Ferrari, Anita Pasotti∗ and Tommaso
Traetta

Abstract. This paper deals with two new graph invariants called the min-
imum number of tile types and the minimum number of bond-edge types,
which have been introduced to study DNA self-assembly processes. In par-
ticular, we disprove a conjecture recently proposed in [L. Almodóvar et al.,
Computational complexity and pragmatic solutions for flexible tile based
DNA self-assembly, https://arxiv.org/abs/2108.00035] on the non-ex-
istence of biminimal pots realizing the cube, namely pots simultaneously
achieving both minimums. Indeed, after introducing the concepts of iso-
morphic pots and isomorphic realizations, we present two biminimal pots
realizing the cube and show that these two pots are unique up to isomor-
phism.

1 Introduction

In this paper we study two new graph invariants, namely the minimum
number of tile types and the minimum number of bond-edge types. These
two parameters have been introduced to optimally build a target graph-
like structure through DNA self-assembly processes using branched junc-
tion molecules [8]. We refer the reader to [6, 11, 14] for experimental works
on tile-based DNA self-assembly and to [7] for an overview of mathematical
problems arising from these processes. In this context, the minimum num-
ber of tile types corresponds to the smallest number of molecules required
to self-assembly a larger molecule with the structure of a target graph G;
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the minimum number of bond-edge types represents instead the smallest
number of bonds needed to construct G. The increasing interest in these
parameters is reflected in the growing body of work addressing their compu-
tation for certain classes of graphs under different experimental conditions
[1, 2, 3, 4, 8, 9, 10, 12]. Except for [9], in all these studies it is assumed that
the molecules have “flexible” arms, so that no geometric properties have to
be encoded into the mathematical formalism.

Here, we focus on a conjecture about the assembly of the cube Q posed
in [1]. In this recent paper, Almodóvar et al. concentrate on determining
an optimal set of molecules, called pot, that self-assembles into the cube Q
so that no graph with order smaller than that of Q, or having the same
order but not isomorphic to Q, can be constructed. More precisely, the
authors provide two distinct pots assembling the cube in this scenario: one
pot utilizes the minimum number of tile types, which equals 6, and the
other utilizes the minimum number of bond-edge types, which is 5. They
conjecture that there is no pot achieving both the minimum number of tile
types and the minimum number of bond-edge types for the cube Q. In
this work, we disprove this conjecture by presenting two biminimal pots
assembling the cube and having 6 tile types and 5 bond-edge types. Impor-
tantly, we show that these two pots are unique (up to isomorphism). To
this end, we use edge-colorings and orientations of an undirected graph G
to describe the problem of computing the minimum number of tile types
and the minimum number of bond-edge types of G. Note that these no-
tions have already been employed to study the two quantities of interest;
see [8] and [4] where, in the latter, this topic is strongly related to graph de-
compositions [5] and some chromatic parameters. Nonetheless, we believe
our setup facilitates the mathematical exposition of the theoretical results
while offering another avenue to study the minimum number of tile types
and the minimum number of bond-edge types of a graph G (for instance,
via weighted graphs).

This paper is organized as follows. In Section 2, we introduce the back-
ground definitions and basic properties used in this work. In Section 3,
we recall known results related to the assembly of the cube. In Section 4,
we show that there are only two biminimal pots (up to isomorphism) that
assemble the cube in the considered setting.
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2 Preliminaries

In this paper, graphs are connected and may have loops or multiple edges.
To avoid ambiguity, we define a graph G as a triple (V (G), E(G), µ) where
V (G) is the set of vertices, E(G) is the set of edges, and µ : E(G) → V (G)(2)

is a map, where

1. V (G)(2) = V (G)× V (G), and in this case G is directed ; or

2. V (G)(2) is the set of (not necessarily distinct) unordered pairs of ver-
tices of G, and in this case G is undirected.

If µ(e) = {x, y} or µ(e) = (x, y), then x and y are called the end-vertices
of e. We will sometimes identify the edge e with µ(e) and write e = µ(e).
Let L(G) denote the set of all loops of G and, given a vertex x of G, we
denote by Gx the subgraph of G induced by all the edges (including loops)
of G incident with x.

An edge-coloring of G with c colors is a map λ : E(G) → [1, c], where [1, c]
denotes the set of all positive integers not greater than c. The set λ−1(j)
of all edges colored j is referred to as the j-color class. Clearly, the color
classes of G partition between them E(G), hence |E(G)| = ∑c

j=1 |λ−1(j)|.

A tile is a finite multiset of Z and a finite set of tiles is called a pot. Given
a pot P , we denote by Σ(P ) ⊂ N the set of all distinct positive integers
(colors), say c1, . . . , cn, such that ci or −ci appears in some tile of P , for
every i ∈ [1, n]. In the following, we define the concepts of tile and pot
induced by an edge-coloring λ.

1. The tile induced by λ on x ∈ V (G) is the multiset

τx(λ) = {exλ(e) | e ∈ E(Gx)} ∪ {λ(e) | e ∈ L(Gx)}where

ex =

{
1 if e = {x, y}, or e = (x, y) and x ̸= y,

−1 if e = (y, x).

2. The pot induced by λ (on G) is the set P(λ) = {τx(λ) | x ∈ V (G)}
of distinct tiles induced by λ.

We note that the concept of tile given above coincides with the equivalent
notion of tile type used in previous works on this topic, as in [7, 8]. We also
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recall that for an edge-coloring λ of an undirected graph G, the notion of
tile τx(λ) on x ∈ V (G) coincides with the notion of multi-palette of x with
respect to λ (see [4]). In the following we will denote multisets using the
right exponential notation, for instance by X = {12, 2} we will mean that
1 appears twice, while 2 appears exactly once in X.

Example 2.1. Let G be the directed graph in Figure 1 and λ : E(G) → [1, 3]
the associated edge-coloring. The tiles induced by λ are: τx0(λ) = {1, 22},
τx1

(λ) = {−1,−2, 3}, τx2
(λ) = {1,−2,−3}, τx3

(λ) = {1,−12}. Hence the
set

P(λ) = {{1, 22}, {−1,−2, 3}, {1,−2,−3}, {1,−12}}
is the pot induced by λ on G.

Example 2.2. Let G1 be the directed graph in Figure 2 and λ1 : E(G1) →
[1, 3] the associated edge-coloring. Note that the pot induced by λ1 is nothing
but the pot P(λ) of Example 2.1.
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1

1

x0 x1

x3

x2

Figure 1.

2
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1
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1

x0 x1
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Figure 2.

From now on, G denotes an undirected graph. Also, by Or(G) we mean
the set of all orientations of G, that is, all directed graphs obtained from
G by choosing an orientation of its edges. We denote an arbitrary graph
in Or(G) by

#‰

G, and for every edge e ∈ E(G), by e⃗ and ⃗e we mean the two
orientations of e. Note that for a loop, the two orientations coincide.

We recall here the standard terminology and notation used for some undi-
rected graphs, see for instance [15]. The degree of a vertex x of a simple
graph G is the number of vertices of G adjacent to x. If every vertex of G
has degree r, one says thatG is r-regular. In particular, a 3-regular graph, is
also called a cubic graph. A set of pairwise non-adjacent vertices of a graph
G is called independent. A graph G is called bipartite if V (G) has a biparti-
tion into two independent subsets. We denote by C = (x1, . . . , xk) the cycle
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C of length k whose edges are {x1, x2}, . . . , {xk−1, xk}, {xk, xk+1 = x1}.
We denote by [x1, . . . , xk] the path with k vertices (and length k − 1) ob-
tained from C by removing the edge {x1, xk}. We recall that a graph is
bipartite if and only if it contains no cycle of odd length. A star of size k (a
k-star) is a set of k edges, none of which are loops, all incident in the same
vertex. Clearly, a 2-star is nothing but a path of length 2. A matching of
a graph G is a set of pairwise non-incident edges of G, none of which are
loops.

Let λ : E(
#‰

G) → [1, c] be an edge-coloring of an orientation of G. The

edge-coloring λ of G induced by λ is defined as follows: if e⃗ ∈ E(
#‰

G) is an

orientation of e ∈ E(G), then λ(e) = λ(e⃗). Given two orientations
#‰

G1 and
#‰

G2 of G, the map σ : E(
#‰

G1) → E(
#‰

G2) such that σ(e⃗) ∈ {e⃗, ⃗e} is called

the orientation map from
#‰

G1 to
#‰

G2. Clearly, σ
−1 is an orientation map, as

well.

Given a map f defined on a set X ⊆ Z, we extend f pointwise to any
(family of) multisets of X. For example, letting ∥z∥ denote the absolute
value of z ∈ Z, and given the tile t = { zµi

i | i = 1, . . . , u} containing exactly
µi copies of zi for each i, then ∥t∥ = { ∥zi∥µi | i = 1, . . . , u}.

The following result points out a clear connection between tiles and pots of
λ and λ. Its proof is straightforward and therefore left to the reader. Note
that this inequality was also obtained in [4].

Lemma 2.3. τx(λ) = ∥τx(λ)∥ and P(λ) = ∥P(λ)∥. Therefore, |P(λ)| ≤
|P(λ)|.

Definition 2.4. Let G be an undirected graph and let P be a pot. A real-
ization of G through P is an edge-coloring λ of an orientation

#‰

G of G such
that P(λ) ⊆ P . In this case, we say that P realizes G and write G ∈ O(P )
(meaning that G is in the output of P ).

Furthermore, we say that P realizes G in Scenario i ∈ [1, 3], and write
G ∈ Oi(P ), if the following conditions hold:

i = 1: G ∈ O(P ).

i = 2: G ∈ O(P ) and there is no H ∈ O(P ) such that |V (H)| < |V (G)|.

i = 3: G ∈ O(P ) and there is no H ∈ O(P ) such that H ̸≃ G and
|V (H)| ≤ |V (G)|.
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If G ∈ Oi(P ), we say that P i-realizes G, or that there exists an i-realization
of G through P .

The minimum size of a pot i-realizing G is denoted by

Ti(G) = min{|P | | P is a pot that i-realizes G}.

The minimum number of colors used by a pot that i-realizes G is denoted
by

Bi(G) = min{|Σ(P )| | P is a pot that i-realizes G}.
These parameters are called minimum number of tiles (or, equivalently,
of tile types) and minimum number of bond-edge types, respectively. For
i ∈ [1, 3], Ti(G) and Bi(G) have been determined for cycles, trees, complete
and complete bipartite graphs in [8]. Recent works have instead focused on
Platonic solids, square and triangular lattices, and other graph classes [1,
2, 3, 10, 12].

Definition 2.5. A pot P that i-realizes G is biminimal if |P | = Ti(G) and
|Σ(P )| = Bi(G).

We now introduce the concept of isomorphic pots.

Definition 2.6. Two pots P and P ′ are isomorphic if there exists a bi-
jection (isomorphism) f : Σ(P ) ∪ −Σ(P ) → Σ(P ′) ∪ −Σ(P ′) such that
f(−i) = −f(i) and f(P ) = P ′.

Clearly, isomorphic pots have the same cardinality and use the same number
of colors. Given two isomorphic pots P and P ′, we denote by f+ : Σ(P ) →
Σ(P ′) the map defined as follows: f+(i) = ∥f(i)∥.

Definition 2.7. Let λ : E(
#‰

G) → Σ(P ) be a realization of G through P .

A λ-orientation map is an orientation map from
#‰

G to
#‰

G′ that reverses or
preserves the orientation of all the edges of

#‰

G belonging to the same color
class.

Given an isomorphism f from P to a pot P ′, we denote by σf,λ : E(
#‰

G) →
E(

#‰

G′) the λ-orientation map such that σf,λ(e⃗) = e⃗ if and only if f(λ(e⃗)) >
0, otherwise σf,λ(e⃗) = ⃗e.

The following result shows that an i-realization of a graph through a pot
is preserved by isomorphic pots.
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Theorem 2.8. Let λ : E(
#‰

G) → [1, c] be an i-realization of G and let
P = P(λ).

(i) Given an isomorphism f from P to a pot P ′, the map λ′ = f+ ◦λ◦σ,
with σ = σ−1

f,λ, is an i-realization of G through P ′.

(ii) Given a bijection g : Σ(P ) → X ⊆ N, a λ-orientation map σ :

E(
#‰

G) → E(
#‰

G′) and an automorphism ρ of G, then λ′ = g◦λ◦σ−1◦ρ is
an i-realization of G where P(λ′) is isomorphic to P and Σ(P(λ′)) =
X.

Proof. We start by proving (i). Consider the edge-coloring λ′ = f+ ◦ λ ◦ σ
of

#‰

G′, where σ−1 = σf,λ : E(
#‰

G) → E(
#‰

G′) is the orientation map defined as
follows: σf,λ(e⃗) = e⃗ if f(λ(e⃗)) > 0, otherwise σf,λ(e⃗) = ⃗e.

Since the maps f, λ and σ are all surjective, we have that λ′(E(
#‰

G′)) =
Σ(P ′). We are going to show that τx(λ

′) = f(τx(λ)) for every x ∈ V (G),
which implies that P(λ′) = f(P ) = P ′. It is enough to notice that for

every non-loop e⃗ ∈ E(
#‰

Gx) the following property holds: if f(λ(e⃗)) > 0,
then σ−1(e⃗)x = e⃗x and f+(λ(e⃗)) = f(λ(e⃗)), otherwise σ−1(e⃗)x = −e⃗x and
f+(λ(e⃗)) = −f(λ(e⃗)). This implies that

σ−1(e⃗)x · f+(λ(e⃗)) = e⃗xf(λ(e⃗)) = f(e⃗xλ(e⃗)), for every e⃗ ∈ E(
#‰
Gx) \ L( #‰

Gx) (1)

and recalling that σ(E(
#‰

G′
x)) = E(

#‰

Gx), we have that

τx(λ
′) = {e⃗x · λ′(e⃗) | e⃗ ∈ E(

#‰
G′

x)} ∪ {λ′(e⃗) | e⃗ ∈ L(
#‰
G′

x)}
= {e⃗x · f+(λ(σ(e⃗))) | e⃗ ∈ E(

#‰
G′

x)} ∪ {f+(λ(σ(e⃗))) | e⃗ ∈ L(
#‰
G′

x)}
= {σ−1(e⃗)x · f+(λ(e⃗)) | e⃗ ∈ E(

#‰
Gx)} ∪ {f+(λ(e⃗)) | e⃗ ∈ L(

#‰
Gx)}

(1)
= {f(e⃗x · λ(e⃗)) | e⃗ ∈ E(

#‰
Gx) \ L( #‰

Gx)} ∪ {±f+(λ(e⃗)) | e⃗ ∈ L(
#‰
Gx)}

= {f(e⃗x · λ(e⃗)) | e⃗ ∈ E(
#‰
Gx) \ L( #‰

Gx)} ∪ {f(λ(e⃗)), f(−λ(e⃗)) | e⃗ ∈ L(
#‰
Gx)}

= {f(e⃗x · λ(e⃗)) | e⃗ ∈ E(
#‰
Gx)} ∪ {f(λ(e⃗)) | e⃗ ∈ L(

#‰
Gx)} = f(τx(λ)),

for every x ∈ V (G). Therefore, λ′ is a realization of G through P ′.

Assuming now that λ is an i-realization of G (i = 2, 3), it is left to show
that P ′ i-realizes G. For a contradiction, assume that P ′ realizes a graph
H non-isomorphic to G whose order is either smaller than |V (G)| (i = 2, 3)
or equal to |V (G)| (i = 3). Then, by the first part of the proof it follows
that P = P(λ) realizes H (since P and P ′ are isomorphic), contradicting
the assumption that λ is an i-realization of G.
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It is left to prove (ii). Considering that τx(λ
′) = τρ(x)(λ

′ ◦ ρ−1) for each
x ∈ V (G), it is enough to prove the assertion when ρ is the identity, that
is, λ′ = g ◦ λ ◦ σ−1. It is not difficult to check that λ′ is a realization of
G through P ′ = P(λ′), where Σ(P ′) = X. Now let f : Σ(P ) ∪ −Σ(P ) →
Σ(P ′) ∪ −Σ(P ′) be the map such that f(−i) = −f(i), and

f(i) =

{
g(i) if σ fixes the orientation of all edges of the i-color class of λ,

−g(i) otherwise,

for each i ∈ Σ(P ). One can check that f(P ) = P ′, hence P and P ′ are
isomorphic pots. By part (i), we have that P ′ i-realizes G, therefore λ′ is
an i-realization of G.

Remark 2.9. We point out that Theorem 2.8.(ii) states that starting from

a realization λ : E(
#‰

G) → Σ(P ) of G, if we permute the colors in Σ(P ),
switch the orientation of all edges of some color class of λ, or apply an
automorphism of the graph G, we obtain another realization, say λ′, of
G whose pot is isomorphic to P . We say that λ′ is a realization of G
isomorphic to λ.

3 Known results

In this section, we recall some known facts on realizations of undirected
graphs. The following result is straightforward.

Remark 3.1. Let λ : E(
#‰

G) → [1, c] be a realization of an undirected graph
G. We note that:

(i) If G has a loop then there exists a tile t ∈ P(λ) such that |− t∩ t| ≥ 2.

(ii) If G has a multiple edge then there exist two tiles ti, tj ∈ P(λ) such
that | − ti ∩ tj | ≥ 2.

We refer the reader to Example 2.2 for an application of Remark 3.1.

Remark 3.2 [1, Section 4]. Let λ : E(
#‰

G) → [1, c] be a 3-realization of an

undirected loopless graph G. We note that if #‰e1,
#‰e2 ∈ E(

#‰

Gx) and λ( #‰e1) =
λ( #‰e2), then x is either the tail or the head of both #‰e1 and #‰e2. In other words,

the edges of
#‰

Gx receiving the same color from λ must be all outgoing from
or all ingoing in x.

On non-isomorphic biminimal pots realizing the cube

129



Now we recall a very important class of graphs, the so called Cayley graphs.
Let Γ be an additive group (not necessarily abelian) and let Ω ⊆ Γ \ {0}
such that for every ω ∈ Ω, also −ω ∈ Ω. The Cayley graph on Γ with
connection set Ω is the simple graph G defined as follows: V (G) = Γ and
{x, y} ∈ E(G) ⇔ x − y ∈ Ω. We will denote this graph by Cay[Γ : Ω]. It
is well known that the cube graph Q can be seen as a Cayley graph on Z3

2.
To ease notation, each triple (i, j, k) ∈ Z3

2 will be denoted by ijk, and let
Q = Cay[Z3

2 : S], where S = {100, 010, 001}. Given an edge {x, y} of Q
and an element g ∈ Z3

2, we set {x, y} + g = {x + g, y + g}. Note that for

every
−→
Q ∈ Or(Q), a tile of

−→
Q (resp. Q) is a multiset of Z of size 3.

Since the cube is a 3-regular graph, from [8] it follows that B1(Q) = 1 and
T1(Q) = 2. Furthermore, from [1] we know that B2(Q) = 2 and T2(Q) = 3
and these values are simultaneously achieved by the same pot. In [1], it is
also shown that a 3-realization of Q uses at least 5 colors (B3(Q) ≥ 5) and
determines pots of size at least six (T3(Q) ≥ 6). The authors also construct
two pots P and P ′ that 3-realizes Q and reach the minimum number of
colors or of distinct tiles, respectively; more precisely, |Σ(P )| = 5, |P | = 8,
while |Σ(P ′)| = |P ′| = 6. Therefore, we have the following.

Lemma 3.3 [1]. B3(Q) = 5 and T3(Q) = 6.

In [1], the authors leave open the problem of determining whether there
exists a binimimal pot 3-realizing Q.

The following lemma is a restatement of [1, Lemma 4.4] in terms of color
classes.

Lemma 3.4 [1, Lemma 4.4]. Let λ : E(
#‰

Q) → [1, c] be a 3-realization of Q
and let C be the set of color classes of λ.

(i) A color class G ∈ C is either a star (with 1, 2 or 3 edges) or a
matching {e, e+ 111} for some e ∈ E(Q).

(ii) C contains n 3-stars (resp. 2-stars) if and only if P(λ) contains n
monochromatic (resp. bichromatic) tiles.
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4 The structure of a biminimal pot that 3-
realizes the cube

In this section, we provide two biminimal pots, P1 and P2, that realize the
cube in Scenario 3 (Propositions 4.1 and 4.2). We then show that these
pots are unique up to isomorphism (Theorem 4.5).

Proposition 4.1. The pot

P1 =
{
{13}, {23}, {−2, −32}, {−1, −42}, {−1, 3,−5}, {−2, 4, 5}

}

is a biminimal pot that 3-realizes the cube.

Proof. Let λ : E(
#‰

Q) → [1, 5] be the edge-coloring of an orientation of Q
inducing the pot P1, that is P1 = P(λ). In Figure 3 it is shown that P1

realizes the cube and the following table shows the tiles:

x 000 111 100 011 001, 010 101, 110
τx(λ) {13} {23} {−1,−42} {−2,−32} {−1, 3,−5} {−2, 4, 5}

We set t1 = {13}, t2 = {23}, t3 = {−1,−42}, t4 = {−2,−32}, t5 =
{−1, 3,−5} and t6 = {−2, 4, 5}. First of all note that, by Remark 3.1, if

G is a graph such that G ∈ O(P1), that is, there exists λ′ : E(
#‰

G) → [1, 5]
inducing the pot P1, then G is a simple graph. Now we prove that G has at
least 8 vertices, to do this it is useful to analyze solutions to the equations
that the tiles in P1 must satisfy. For i = 1, . . . , 6, denote by Ri the number
of times a tile ti appears in the realization, or, equivalently, the number of
vertices in

#‰

G receiving the tile ti, that is Ri = |{x ∈ V (G) | τx(λ′) = ti}|.
Clearly, R1 + · · · + R6 = |V (G)|. Also, as shown in [8], the Ri’s have to
satisfy the following homogeneous system of linear equations:

3R1 −R3 −R5 = 0

3R2 −R4 −R6 = 0

−2R3 +R6 = 0

−2R4 +R5 = 0

−R5 +R6 = 0

Therefore, (R1, . . . , R6) = r(1, 1, 1, 1, 2, 2) and |V (G)| = 8r for some integer
r ≥ 1. Hence we get |V (G)| ≥ 8, and when r = 1, we have (R1, . . . , R6) =
(1, 1, 1, 1, 2, 2). So we focus on simple cubic graphs with 8 vertices and it
is well known, see for instance [13], that there are exactly five graphs with
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these properties. Let H be a cubic graph such that V (H) = {v1, v2, . . . , v8}
and H ∈ O(P1). Then there exists an edge-coloring λ′′ : E(

#‰

H) → [1, 5]
inducing the pot P1, that is

vi v1 v2 v3 v4 v5, v6 v7, v8
τvi(λ

′′) {13} {23} {−1,−42} {−2,−32} {−1, 3,−5} {−2, 4, 5}

Note that if two distinct vertices x, y are adjacent in H then there exists
j ∈ [1, 5] such that j ∈ τx(λ

′′) and −j ∈ τy(λ
′′). Hence one can directly

check that S1 = {v1, v4, v7, v8} and S2 = {v2, v3, v5, v6} are two maximal
disjoint independent sets of vertices of H, such that S1 ∪ S2 = V (H). In
other words, the graph H is a bipartite graph with parts S1 and S2. Since
among the five cubic graphs of order 8 the unique bipartite graph is the
cube, see [13], the graph H is the cube.
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Proposition 4.2. The pot

P2 =
{
{13}, {23}, {−2, −32}, {−1, −42}, {3, 4, 5}, {−1,−2,−5}

}

is a biminimal pot that 3-realizes the cube.

Proof. Let λ : E(
#‰

Q) → [1, 5] be the edge-coloring of an orientation of Q
inducing the pot P2, that is P2 = P(λ), see Figure 4. The following table
shows the tiles:

x 000 011 111 100 101, 110 001, 010
τx(λ) {13} {23} {−2,−32} {−1,−42} {3, 4, 5} {−1,−2,−5}

Then the result can be proved reasoning as in the proof of Proposition 4.1.
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Remark 4.3. Note that P1 e P2 are non-isomorphic pots. By contradic-
tion, assume there exists an isomorphism f between P1 and P2. Recall
that f(−i) = −f(i) for all i in Σ(P1) ∪ −Σ(P1) = Σ(P2) ∪ −Σ(P2) =
{±1,±2, . . . ,±5}. Then f either fixes colors 1, 2, 3, and 4, or f swaps 1
with 2 and 3 with 4. Therefore, in both cases, f([1, 4]) = [1, 4]. It follows
that there is no tile in P1 whose image is the tile {3, 4, 5} ∈ P2.

Lemma 4.4. If P is a pot that 3-realizes Q and |Σ(P )| = 5, then P has at
least two monochromatic tiles.

Proof. Let λ : E(
#‰

Q) → [1, 5] be a 3-realization of Q and set P = P(λ). By
Lemma 3.4.(i), the color classes induced by λ on Q have size at most 3.
Denoting by c1 the number of those of size 3, we have that

12 = |E(Q)| =
5∑

i=1

|λ−1(i)| ≤ 3c1 + 2(5− c1) = c1 + 10.

By Lemma 3.4.(ii), it follows that P has c1 ≥ 2 monochromatic tiles.

We now prove that the pots in Proposition 4.1 and Proposition 4.2 are the
unique (up to isomorphism) biminimal pots that 3-realize the cube.

Theorem 4.5. A biminimal pot that 3-realizes the cube is necessarily iso-
morphic to one of the following:

(i) P1 =
{
{13}, {23}, {−2, −32}, {−1, −42}, {−1, 3,−5}, {−2, 4, 5}

}
;

(ii) P2 =
{
{13}, {23}, {−2, −32}, {−1, −42}, {3, 4, 5}, {−1,−2,−5}

}
.

Proof. Let λ : E(
#‰

Q) → [1, c] be a 3-realization of Q and set P = P(λ). We
assume that P is biminimal, that is, c = 5 and |P | = 6. By Theorem 2.8 and
Remark 2.9, it is enough to show that up to a permutation of the colors
[1, c], up to an automorphism of Q, and by switching (if necessary) the
directions of all edges of some color classes of λ, we obtain a 3-realization
of Q whose pot is either P1 or P2.

Let Q(i) be the i-color class determined by λ on Q, for 1 ≤ i ≤ 5. By
Lemma 4.4 we have that P contains at least two monochromatic tiles,
say t1 and t2. Up to a permutation of the colors, we may assume that
∥tj∥ = {j3}, for j = 1, 2. Then Q(1) and Q(2) contain at least three
edges each; therefore, by Lemma 3.4 they are necessarily 3-stars. It is not
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restrictive to assume that t1 is the tile of vertex 000, and in view of the
symmetries of the cube, we may assume without loss of generality that t2
is the tile of either 111 or 011.

Case 1: t2 = τ111(λ).

Then, as shown in Figure 5, Q \ {Q000 ∪ Q111} is the 6-cycle

C = (010, 011, 001, 101, 100, 110).

Note that Q(3), Q(4), Q(5) can be seen as the color classes induced by λ on
C. By Lemma 3.4, we necessarily have that each Q(i), i = 3, 4, 5, has size
exactly 2, hence each Q(i) is either a 2-star or a matching {e, e+ 111} for
some e ∈ E(C). By the structure of C, if among Q(3), Q(4), Q(5) there are
two matchings, the third color class is a matching, as well.
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010 110

Figure 5.
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Figure 6.

Case 1.1: Q(3), Q(4), Q(5) are matchings.

Up to a permutation of the colors, we may assume that

Q(3) =
{
{010, 011}, {101, 100}

}
,

Q(4) =
{
{011, 001}, {100, 110}

}
,

and

Q(5) =
{
{001, 101}, {110, 010}

}
.

The edge-coloring λ is then completely determined by its color classes,
and one can check that |P(λ)| ≥ 7. By Lemma 2.3, it follows that
|P(λ)| ≥ 7, contradicting the assumption.
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Case 1.2: Q(3), Q(4), Q(5) are 2-stars.

Up to a permutation of the colors and up to an automorphism of Q, we
may assume that

Q(3) = [010, 011, 001],

Q(4) = [001, 101, 100],

Q(5) = [100, 110, 010].

As before, one can check that |P(λ)| ≥ 7. By Lemma 2.3, it follows that
|P(λ)| ≥ 7, contradicting the assumption.

Case 1.3: Among Q(3), Q(4), Q(5), there are two 2-stars and one match-
ing.

Up to a color permutation, we may assume that Q(5) is the matching.
Up to an automorphism of Q and a further color permutation, we may
assume that

Q(3) = [010, 011, 001],

Q(4) = [101, 100, 110],

Q(5) =
{
{001, 101}, {110, 010}

}
.

One can check that

x 000 111 011 100 001, 010 101, 110
τx(λ) {13} {23} {2, 32} {1, 42} {1, 3, 5} {2, 4, 5}

In view of Remark 3.2, by switching if necessary the directions of all edges
of

#‰

Q with the same color, we can assume that the edges of
#‰

Q000 (resp.
#‰

Q111) are all outgoing from 000 (resp. 111): hence

τ000(λ) = {13} and τ111(λ) = {23}.

We can also assume that the two edges of
#‰

Q colored 3 (resp. 4) are
ingoing in 011 (resp. 100), while the two edges colored 5 are outgoing
from 101 and 110. Therefore, λ is the realization of Q shown in Figure
3, and

τ011(λ) = {−2, −32}, τ100(λ) = {−1, −42},
τ001(λ) = τ010(λ) = {−1, 3,−5} and τ101(λ) = τ110(λ) = {−2, 4, 5}.
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Case 2: t2 = τ011(λ).

Then, as shown in Figure 6, Q\{Q000 ∪ Q011} is the graph G = C ∪ {e, e+
111} consisting of a 4-cycle C = (110, 111, 101, 100) with two pendant edges
e = {110, 010} and e+111 = {001, 101}. Note that Q(3), Q(4), Q(5) can be
seen as the color classes induced by λ on G. By Lemma 3.4, we necessarily
have that either some Q(i) has size 3, or each Q(i) (has size 2, hence) is
either a 2-star or the matching {e, e+ 111}.

Case 2.1: some Q(i), 3 ≤ i ≤ 5, is a 3-star.

Up to a permutation of the colors, we may assume that Q(3) is a 3-star.
Also, the center of Q(3) is either 110 or 101. In both cases, one can
check that |P(λ)| ≥ 7, hence (by Lemma 2.3) |P(λ)| ≥ 7 contradicting
the assumption.

Case 2.2: Q(3), Q(4) and Q(5) are 2-stars.

Then, up to a permutation of the colors, we have that either

Q(3) = [010, 110, 111], Q(4) = [110, 100, 101], Q(5) = [111, 101, 001],
or

Q(3) = [010, 110, 100], Q(4) = [001, 101, 100], Q(5) = [110, 111, 101].

In both cases, one can check that |P(λ)| ≥ 7, hence (by Lemma 2.3)
|P(λ)| ≥ 7 contradicting the assumption.

Case 2.3: {e, e+ 111} is a color class of λ.

Up to a permutation of the colors, we may assume that

Q(5) = {e, e+ 111}.

Therefore, both Q(3) and Q(4) are 2-stars of the 4-cycle

C = (110, 111, 101, 100).

Again, up to a color permutation, we may assume that {110, 111} ∈
Q(3). If Q(3) = [100, 110, 111] and Q(4) = [111, 101, 100], one can check
that |P(λ)| ≥ 7, hence (by Lemma 2.3) |P(λ)| ≥ 7 contradicting the
assumption. Therefore, Q(3) = [110, 111, 101], Q(4) = [101, 100, 110],
and

x 000 011 111 100 001, 010 101, 110
τx(λ) {13} {23} {2, 32} {1, 42} {1, 2, 5} {3, 4, 5}

On non-isomorphic biminimal pots realizing the cube

136



In view of Remark 3.2, by switching if necessary the directions of all edges
of

#‰

Q with the same color, we can assume that the edges of
#‰

Q000 (resp.
#‰

Q011) are all outgoing from 000 (resp. 011): hence

τ000(λ) = {13} and τ011(λ) = {23}.

We can also assume that the two edges of
#‰

G colored 3 (resp. 4) are
ingoing in 111 (resp. 100), while the two edges colored 5 are outgoing
from 101 and 110. Therefore, λ is the realization of Q shown in Figure
4, and

τ111(λ) = {−2, −32}, τ100(λ) = {−1, −42},
τ001(λ) = τ010(λ) = {−1,−2,−5} and τ101(λ) = τ110(λ) = {3, 4, 5}.
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nazionale” 2019 INTER DICATAM TRAETTA.

References
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