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In the frame

Douglas R. Stinson

Abstract. In this expository paper, I survey Room frames and Kirkman
frames, concentrating on the early history of these objects. I mainly look
at the basic construction techniques, but I also provide some historical
remarks and discussion. I also briefly discuss some other types of frames
that have been investigated as well as some applications of frames to the
construction of other types of designs.

1 Room squares and Room frames

I begin by briefly discussing the Room square problem. I refer to the 1992
survey by Dinitz and Stinson [19] for a thorough summary of the history
of Room squares and related designs up to that time.

Definition 1.1. A Room square of side n is an n by n array, F , on a set
S of n+ 1 symbols, that satisfies the following properties:

1. every cell of F either is empty or contains an unordered pair of sym-
bols from S,

2. each symbol in S occurs in exactly one cell in each row and each
column of F , and

3. every unordered pair of symbols occurs in exactly one cell of F .

A Room square of side seven is presented in Figure 1.

It is clear that n must be an odd positive integer if a Room square of side n
exists. Although Room squares have been studied since the 1850’s, it was
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0, 4 3, 5 1, 2 7, 6

6, 3 2, 4 0, 1 7, 5

5, 2 1, 3 6, 0 7, 4

0, 2 5, 6 7, 3 4, 1

6, 1 4, 5 7, 2 3, 0

3, 4 7, 1 2, 6 5, 0

7, 0 1, 5 4, 6 2, 3

Figure 1: A Room square of side seven

not until 1974 that a complete existence result was given by Wallis [59], as
a culmination of work by Mullin, Nemeth, Wallis and others. See [39] for
a short self-contained proof of the existence of Room squares.

Theorem 1.1. There exists a Room square of side n if and only if n is an
odd positive integer and n ̸= 3, 5.

In this paper, I am interested in a generalization of a Room square called
a Room frame. Here is a definition.

Definition 1.2. Let t and u be positive integers and let S be a set of tu
symbols. Suppose that S is partitioned into u sets of size t, denoted Si,
1 ≤ i ≤ u. A Room frame of type tu is a tu by tu array, F , that satisfies
the following properties:

1. the rows and columns of F are indexed by S,

2. every cell of F either is empty or contains an unordered pair of sym-
bols from S,

3. the subarrays of F indexed by Si ×Si are empty, for 1 ≤ i ≤ u (these
empty subarrays are called holes),

4. if s ∈ Si, then row or column s contains each symbol in S \Si exactly
once, and
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0, 5

1, 6

2, 7

3, 8

4, 9
3, 6 2, 8 1, 5 0, 7

1, 3 7, 8 0, 6 2, 5

1, 7 4, 5 6, 9 0, 2

2, 6 0, 9 1, 4 5, 7

8, 9 3, 5 4, 6 0, 1

4, 8 0, 3 1, 9 5, 6

2, 9 5, 8 0, 4 3, 7

4, 7 0, 8 5, 9 2, 3

7, 9 3, 4 1, 2 6, 8

2, 4 3, 9 6, 7 1, 8

Figure 2: A Room frame of type 25

5. the unordered pairs of symbols occurring in F are precisely the pairs
{x, y}, where x, y are in different Si’s (each such pair occurs in one
cell of F ).

Room frames of types 25 and 26 are depicted in Figures 2 and 3, respectively.

The Room frames defined above are uniform, which means that all the
holes have the same size. Non-uniform Room frames have also received
much study, but I mainly focus on the uniform case in this paper.

One initial observation is that a Room square of side n is equivalent to a
Room frame of type 1n. Suppose F is a Room square of side n. Pick a
particular symbol x and permute the rows and columns of F so the cells
containing x are precisely the cells on the main diagonal (such a Room
square is said to be standardized). Then delete the pairs in these cells.
Conversely, given a Room frame of type 1n, then we can introduce a new
a symbol x and place the pair {x, s} in the cell (s, s) for all s.

For example, suppose we start with the Room square of side seven that was
presented in Figure 1. This Room square is already standardized, so we
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4, 7 0, 8 1, 9 2, 5 3, 6

2, 9 3, 5 4, 6 0, 7 1, 8

1, 3 7,B 5, 6 0,A 2, 8

6, 8 2,B 0, 1 5,A 3, 7

6,B 5, 9 4,A 0, 2 1, 7

1,B 0, 4 9,A 5, 7 2, 6

8, 9 3,A 1, 4 5,B 0, 6

3, 4 8,A 6, 9 0,B 1, 5

2,A 0, 3 9,B 7, 8 4, 5

7,A 5, 8 4,B 2, 3 0, 9

2, 4 8,B 6, 7 1,A 3, 9

7, 9 3,B 1, 2 6,A 4, 8
0, 5

1, 6

2, 7

3, 8

4, 9

A,B

Figure 3: A Room frame of type 26

simply remove the pairs in the diagonal cells to construct a Room frame of
type 17. This Room frame is presented in Figure 4.

Perhaps surprisingly, there is no Room frame of type 24 (this was shown by
exhaustive case analysis in [49]). There is also no Room frame of type 15,
since such a structure would be equivalent to a (nonexistent) Room square
of side five. It is also clear that u ≥ 4 and t(u− 1) is even if a Room frame
of type tu exists. The following theorem gives complete existence results
for uniform Room frames. This result is the culmination of many papers
spanning a time period of 30 years.

Theorem 1.2 [17, 14, 21, 22, 28]. There exists a Room frame of type tu if
and only if u ≥ 4, t(u− 1) is even, and (t, u) ̸= (1, 5) or (2, 4).

I now define a special type of Room frame that has received considerable
attention.

In the frame
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0, 4 3, 5 1, 2

6, 3 2, 4 0, 1

5, 2 1, 3 6, 0

0, 2 5, 6 4, 1

6, 1 4, 5 3, 0

3, 4 2, 6 5, 0

1, 5 4, 6 2, 30

1

2

3

4

5

6

Figure 4: A Room frame of type 17

Definition 1.3. Suppose S is a symbol set that is partitioned into u sets
of size t, denoted Si, 1 ≤ i ≤ u. A Room frame F of type tu is skew if,
for any r and s where r and s are not in the same Si, precisely one of the
two cells F (r, s) and F (s, r) is empty. This skew definition also applies to
Room squares.

Skew Room frames are more difficult to construct than “ordinary” (i.e.,
non-skew) Room frames. In the case of skew Room squares, the following
result was shown in 1981.

Theorem 1.3 [50]. There exists a skew Room square of side n if and only
if n is an odd positive integer and n ̸= 3, 5.

Theorem 1.3 was the consequence of a long series of papers by a number of
different authors. The paper [50] gives a short proof of Theorem 1.3 that
is based on skew Room frames.

For skew Room frames of type tu, the following theorem is the current state
of knowledge. Note that this theorem generalizes Theorem 1.3, which is the
special case t = 1.

In the frame
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Theorem 1.4 [53, 10, 65]. There exists a skew Room frame of type tu if
and only if u ≥ 4, t(u−1) is even, (t, u) ̸= (1, 5) or (2, 4), with the following
possible exceptions:

1. u = 4 and t ≡ 2 (mod 4);

2. u = 5 and t ∈ {17, 19, 23, 29, 31}.

2 Constructions for Room frames

2.1 Orthogonal starters

Constructions for Room frames come in two flavours: direct and recursive.
The main direct construction is based on orthogonal frame starters. (It
is also possible to construct “random-looking” examples of Room squares
and Room frames using hill-climbing algorithms; see [18, 19].) I briefly
discuss the method of orthogonal (frame) starters in this section. For more
information on frame starters and orthogonal frame starters, see the recent
surveys [55, 56]. Note that all of our definitions will refer to additive abelian
groups.

Definition 2.1. Let G be an abelian group of order g and let H be a
subgroup of order h. A frame starter in G \H is a set of (g − h)/2 pairs{
{xi, yi} : 1 ≤ i ≤ (g − h)/2

}
that satisfies the following two properties:

1. {xi, yi : 1 ≤ i ≤ (g − h)/2} = G \H.

2. {±(xi − yi) : 1 ≤ i ≤ (g − h)/2} = G \H.

In other words, the pairs in the frame starter form a partition of G \ H,
and the differences obtained from these pairs also partitions G \H.

Definition 2.2. Suppose that S1 =
{
{xi, yi} : 1 ≤ i ≤ (g − h)/2

}
and

S2 =
{
{ui, vi} : 1 ≤ i ≤ (g−h)/2

}
are both frame starters in G\H. Without

loss of generality, assume that yi − xi = vi − ui for 1 ≤ i ≤ (g − h)/2. We
say that S1 and S2 are orthogonal if the following two properties hold:

1. yi − vi ̸∈ H for 1 ≤ i ≤ (g − h)/2.

2. yi − vi ̸= yj − vj if 1 ≤ i, j ≤ (g − h)/2, i ̸= j.

In the frame
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Thus, when we match up the pairs in S1 and S2 according to their differ-
ences, the “translates” are distinct elements of G \H. These translates are
often called an adder.

Example 2.1. Suppose G = Z10 and H = {0, 5}. Here are two orthogonal
frame starters in G \H:

S1 =
{
{3, 4}, {7, 9}, {8, 1}, {2, 6}

}

S2 =
{
{6, 7}, {1, 3}, {9, 2}, {4, 8}

}
.

Example 2.2. Suppose G = Z7 and H = {0}. Here are two orthogonal
frame starters in G \H:

S1 =
{
{3, 4}, {2, 5}, {1, 6}

}

S2 =
{
{2, 3}, {5, 1}, {6, 4}

}
.

Example 2.3. Suppose G = Z15 and H = {0, 5, 10}. Here are two orthog-
onal frame starters in G \H:

S1 =
{
{1, 2}, {9, 11}, {3, 6}, {8, 12}, {13, 4}, {7, 14}

}

S2 =
{
{2, 3}, {11, 13}, {9, 12}, {4, 8}, {1, 7}, {14, 6}

}
.

Example 2.4. Suppose G = Z4 × Z4 and H = {(0, 0), (0, 2), (2, 0), (2, 2)}.
Here are two orthogonal frame starters in G \H:

S1 =
{
{(1, 1), (3, 2)}, {(3, 0), (3, 1)}, {(2, 1), (3, 3)}, {(0, 3), (1, 3)},

{(1, 0), (2, 3)}, {(0, 1), (1, 2)}
}

S2 =
{
{(1, 2), (3, 3)}, {(1, 3), (1, 0)}, {(1, 1), (2, 3)}, {(3, 1), (0, 1)},

{(2, 1), (3, 0)}, {(3, 2), (0, 3)}
}

Orthogonal frame starters can be used to construct a Room frame of the
relevant type. The resulting Room frame has G in its automorphism group.
In the case where |H| = 1, then we have a starter. Orthogonal starters can
be used to generate Room squares.

Suppose that S1 =
{
{xi, yi} : 1 ≤ i ≤ (g − h)/2

}
and S2 =

{
{ui, vi} : 1 ≤

i ≤ (g−h)/2
}
are orthogonal frame starters in G\H, where yi−xi = vi−ui

for 1 ≤ i ≤ (g−h)/2. S1 and S2 are skew-orthogonal if yi−vi ̸= −(yj −vj)
if 1 ≤ i, j ≤ (g − h)/2, i ̸= j. Equivalently, the set of adders and their
negatives is precisely G \ H. It can be verified that all four examples of
orthogonal frame starters presented above are in fact skew-orthogonal. As
one would suspect, skew-orthogonal starters give rise to skew Room frames
(e.g., see Figure 4).

In the frame
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It has been proven that orthogonal frame starters cannot be used to con-
struct a Room frame of type 26 (in fact, there is no frame starter in G \H
when |G| = 12 and |H| = 2). However, a modification known as orthogo-
nal intransitive frame starters permit the construction of these (and many
other useful) Room frames. The Room frame depicted in Figure 3 illus-
trates the basic idea. The ten by ten square in the upper left of the diagram
is developed modulo 10, similar to a Room frame obtained from orthogonal
frame starters, except that there are two additional fixed points, denoted A
and B. The last two rows and the last two columns are developed modulo
10, and there is a hole containing the two fixed points. We do not give a
formal definition, but the associated orthogonal intransitive frame starters,
denoted by the quadruple (S1, C, S2, R), are defined on Z10 ∪ {A,B} and
they are obtained from the first row and the first column of the Room frame.
Note that R and C refer to the last two rows and the last two columns of
the Room frame, respectively.

S1 =
{
{7, 9}, {1, 2}, {6, A}, {3, B}

}

C =
{
{4, 8}

}

S2 =
{
{6, 8}, {3, 4}, {7, A}, {1, B}

}

R =
{
{2, 9}

}
.

2.2 Existence of uniform Room frames

I now discuss some aspects of the proof of Theorem 1.2. The cases t = 1
are of course equivalent to Room squares. Thus there exists a Room frame
of type 1u if and only if u is odd and u ≥ 7. The most important cases in
establishing the general existence result (Theorem 1.2) are when t = 2 or
t = 4. I examine these cases now.

2.2.1 The case t = 2

Since a Room frame of type 24 does not exist, the goal was to prove that
there is a Room frame of type 2u for all u ≥ 5. Jeff Dinitz and I considered
this problem in detail in [17].

Our approach used pairwise balanced designs (PBDs). A pairwise balanced
design is a pair (X,A), where X is a finite set of points and A is a set of
subsets of X (called blocks), with the property that every pair of points is
contained in a unique block. Assume that |A| > 1 for every A ∈ A. We
say that (X,A) is a (v,K)-PBD if |X| = v and |A| ∈ K for every A ∈ A.

In the frame
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Also, a set K is PBD-closed if v ∈ K whenever there exists a (v,K)-PBD.
Finally, if K = {k}, then a (v,K)-PBD is a (v, k, 1)-BIBD (i.e., a balanced
incomplete block design).

For any fixed integer t, the set

Ut = {u : there exists a Room frame of type tu}

is PBD-closed. Thus, the natural approach is to construct a sufficient
number of “small” Room frames by various appropriate techniques and
then appeal to PBD-closure. For PBDs with block sizes not less than five,
the following classical result due to Hanani is relevant.

Theorem 2.1 [30, Lemma 5.18]. Let

K≥5 = {5, 6, . . . , 20, 22, 23, 24, 27, 28, 29, 32, 33, 34, 39}.

Then, for all u ≥ 5, there is a (u,K≥5)-PBD.

Therefore, if we can construct Room frames of type 2u for all u ∈ K≥5, we
could then conclude that there is a Room frame of type 2u for all u ≥ 5.

We took the following approach in [17]. First, we have already exhibited a
Room frame of type 25 in Figure 3. For odd values u > 5, we made use of
a “doubling construction” which creates a Room frame of type 2u from a
skew Room square of side u. The idea is as follows:

Construction 1 Doubling Construction.

1. We construct a Room frame, say F , of type 1u from a skew Room
frame of side u. Suppose the holes are {i}, for 0 ≤ i ≤ u− 1.

2. Construct a second Room frame of type 1u by transposing F , in which
the holes are {i′}, for 0 ≤ i ≤ u− 1. Superimpose F and F ′.

3. Construct a pair of latin squares, say L and L′, of order u, having a
common transversal. Assume that L is on symbols {i : 0 ≤ i ≤ u−1},
and L′ is on symbols {i′ : 0 ≤ i ≤ u − 1}. Superimpose L and L′.
Assume the common transversal is (i, i′) for 0 ≤ i ≤ u− 1.

4. Construct an array of side 2u in which the superposition of F and F ′

is in the top left corner and the superposition of L and L′ is in the
bottom right corner. Finally, remove the common transversal from L
and L′. The result is the desired Room frame of type 2u.
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6, 2 4, 5 4′, 6′ 1, 3 2′, 3′ 5′, 1′

6′, 2′ 0, 3 5, 6 5′, 0′ 2, 4 3′, 4′

4′, 5′ 0′, 3′ 1, 4 6, 0 6′, 1′ 3, 5

4, 6 5′, 6′ 1′, 4′ 2, 5 0, 1 0′, 2′

1′, 3′ 5, 0 6′, 0′ 2′, 5′ 3, 6 1, 2

2, 3 2′, 4′ 6, 1 0′, 1′ 3′, 6′ 4, 0

5, 1 3, 4 3′, 5′ 0, 2 1′, 2′ 4′, 0′

6, 2′ 5, 4′ 4, 6′ 3, 1′ 2, 3′ 1, 5′

0, 3′ 6, 5′ 5, 0′ 4, 2′ 3, 4′2, 6′

1, 4′ 0, 6′ 6, 1′ 5, 3′4, 5′ 3, 0′

2, 5′ 1, 0′ 0, 2′6, 4′ 5, 6′ 4, 1′

3, 6′ 2, 1′1, 3′ 0, 5′ 6, 0′ 5, 2′

4, 0′3, 2′ 2, 4′ 1, 6′ 0, 1′ 6, 3′

5, 1′ 4, 3′ 3, 5′ 2, 0′ 1, 2′ 0, 4′

Figure 5: A Room frame of type 27

Example 2.5. We construct a Room frame of type 27 from a skew Room
square of side seven in Figure 5. One of the holes is indicated in grey.

For values u ∈ K≥5 that are divisible by four, we constructed orthogonal
frame starters in Z2u \ {0, u} to obtain the relevant Room frames. The
remaining values u ∈ K≥5, for which u ≡ 2 mod 4, were handled by or-
thogonal intransitive frame starters.
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2.2.2 The case t = 4

The next cases to consider are for t = 4. This is similar to the t = 2 case
but a bit easier, because a Room frame of type 44 exists while a Room
frame of type 24 does not exist. It is possible to use another PBD result
due to Hanani:

Theorem 2.2 [30, lemma 5.10]. Let

K≥4 = {4, 7, . . . , 12, 14, 15, 18, 19, 23, 27}.

Then, for all u ≥ 4, there is a (u,K≥4)-PBD.

It is required to find a small number of Room frames of type 4u. The
following standard result will be useful in the subsequent discussion.

Theorem 2.3 (Inflation by MOLS). If there exists a Room frame of type
tu and s ̸= 2, 6 is a positive integer, then there is a Room frame of type
(st)u.

The idea is to take s copies of each point and replace each filled cell of the
Room frame of type by an appropriate pair of orthogonal latin squares of
side s.

Let us return to our analysis of Room frames of type 4u. For u odd, u ≥ 7,
we can start with a Room square of side u (i.e., a Room frame of type 1u)
and apply Theorem 2.3 (inflation by MOLS) with s = 4. For u = 4, see
Example 2.4. The case u = 5 is a special case of a finite field starter-based
construction from [16]. For u = 8, 10, 12, 14 and 18, strong frame starters
in cyclic groups yield the desired Room frames (see [17]). The last case
is u = 6, which was handled in [17] using orthogonal intransitve frame
starters.

2.2.3 General values of t

Given the existence results for t = 1, 2 and 4 that are discussed above,
we can handle most other values of t by using Theorem 2.3 (inflation by
MOLS). Starting with Room frames of type 2u (for u ≥ 5) and 4u (for
u ≥ 5), we immediately get Room frames of type tu for all even t and all
u ≥ 5. Similarly, starting with Room frames of type 1u (for u odd, u ≥ 7),
we obtain Room frames of type tu for all odd t and all odd u, u ≥ 7.

In the frame
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The remaining cases are Room frames of type t4 (for even t) and t5 (for odd
t). As of 1981, Room frames of types 44 and 84 had been constructed using
orthogonal frame starters. In conjunction with Theorem 2.3, this showed
that Room frames of type t4 exist for all t ≡ 0 mod 4 (see [17]).

Also, by 1981, Room frames of types 25, 35, 55 and 75 had been constructed
using orthogonal frame starters. Using Theorem 2.3, this showed that Room
frames of type t5 exist for all t such that gcd(t, 210) > 1 (see [17]).

It was several years until these results were improved. However, by the early
1990’s, Room frames of types 64 and 104 were constructed (see [20]) using
the hill-climbing algorithm described in [18], suitably modified to construct
Room frames. Using Theorem 2.3, it followed that Room frames of type t4

exist for all t divisible by 4, 6 or 10. So all the remaining unknown cases
for type t4 had t ≡ 2, 10 mod 12.

A major advance was due to Ge and Zhu [28] in 1993, who utilized a
sophisticated construction based on incomplete Room frames. Their paper
[28] solved all but a few cases of types t4 and t5, as stated in the following
theorem.

Theorem 2.4 [28]. There exists a Room frame of type t4 for all even t ≥ 4,
except possibly for t ∈ {14, 22, 26, 34, 38, 46, 62, 74, 82, 86, 98, 122, 134, 146}.
Also, there exists a Room frame of type t5 for all t ≥ 5, except possibly for
t = 11, 13, 17 or 19.

The four possible exceptions of type t5 were handled in a 1993 paper by
Dinitz and Lamken [14], who constructed these Room frames using orthog-
onal frame starters. Then, in 1994, all but one of the possible exceptions
of type t4 were constructed by Dinitz, Stinson and Zhu [21]. This was
accomplished by a recursive construction that made use of starters hav-
ing complete ordered transversals. The single remaining exception was a
Room frame of type 144, which was finally constructed by Dinitz and War-
rington [22] in 2010. This “last” Room frame was constructed using the
hill-climbing algorithm from [19]; it required over 5,000,000 trials before it
completed successfully.

An observant reader will note that Room frames of types 64, 104 and 144

were constructed using hill-climbing. This is because is impossible to con-
struct these Room frames from orthogonal frame starters (see [55]).
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2.3 Some historical remarks

The first Room frame can be found in the 1974 paper published by Wallis
[59]. This was a Room frame of type 25, which I presented in Figure 2.
Other early examples of Room frames in the literature include a Room
frame of type 84 (Wallis, [60]), and a skew Room frame of type 25 (Beaman
and Wallis, [4]). These papers appeared in 1976 and 1977, respectively.

These papers from the 1970’s did not define Room frames as a specific
combinatorial structure. For example, the “original” Room frame, of type
25, was simply a component used in a construction that created a Room
square of side 5(v−w)+w from a Room square of side v containing a Room
subsquare of side w. This construction was used to obtain a Room square
of side 257, which completed the solution of the Room square existence
problem (we provide a few more details below).

The term “frame” was apparently first coined in the 1981 paper by Mullin,
Schellenberg, Vanstone and Wallis [38]. This paper refers to the 1972 survey
by Wallis [58] as the place where Room frames were introduced. However,
although [58, Chapter IV] discusses a construction that is termed “the frame
construction,” there does not seem to be any actual use of Room frames
(as we now understand the term) there.

It is clear that the paper [38] was the first one where Room frames were
studied as objects of interest in their own right. (However, I should point
out that the Room frames studied in [38] were in fact skew Room frames.)
The main result proven in [38] was that a skew Room frame of type 2n

exists for all positive integers n ≡ 1 mod 4, n ̸= 33, 57, 93, 133. Skew Room
frames of types 2n were known to exist for n = 5, 9, 13, 17 and the set {n :
there exists a skew Room frame of type 2n} is PBD-closed. Constructions
of PBDs with blocks of sizes 5, 9, 13 and 17 given in [38] completed the
proof.

I became aware of the paper [38] in 1978 when Ron Mullin gave me a
preprint version of the paper (there was no arXiv in those days!). I found
the idea of Room frames quite fascinating and they became an important
technique in my research tool chest for many years. Room frames were in
fact a central theme in my PhD thesis [48] and I subsequently published a
number of papers focussed on Room frames and their applications starting
in the early 1980’s.
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I would like to comment briefly on direct product constructions, which have
had a long history in combinatorial designs. A singular direct product con-
struction was in fact the original motivation for Room frames (see Wallis
[59]). In the case of Room squares, a direct product construction creates a
Room square of side uv from Room squares of sides u and v. A singular di-
rect product creates a Room square of side u(v−w)+w from a Room square
of side u and a Room square of side v that contains a Room subsquare of
side w > 0. The singular direct product requires that there exists a pair of
orthogonal latin squares of order v − w, which rules out the ordered pair
(v, w) = (7, 1), since a pair of orthogonal latin squares of order six does
not exist. The resulting Room square of side u(v − w) + w contains Room
subsquares of sides u, v and w.

Since a Room square of side five does not exist, we cannot take u = 5 in the
singular direct product. However, the existence of a Room frame of type 25

provides a clever way to circumvent this restriction. Given a Room square
of side v that contains a Room subsquare of side w > 0, a singular direct
product uses the Room frame of type 25 to create a Room square of side
5(v − w) + w, provided that v − w ̸= 12. (The reason for the restriction
v − w ̸= 12 is that this variation of the singular direct product requires a
pair of orthogonal latin squares of order (v − w)/2.)

The previously mentioned construction of a Room square of side 257 (from
[59]) uses two applications of the singular direct product:

57 = 7(9− 1) + 1

257 = 5(57− 7) + 7.

The first equation leads to a Room square of side 57 that contains a Room
subsquare of side seven. This is then used, in the “Room frame” variation
of the singular direct product, in the second equation.

3 Kirkman frames

3.1 Motivation: fromRoom frames toKirkman frames

A couple of years after getting my PhD—probably around 1983—I started
thinking about generalizations of Room frames. The obvious place to begin
was to look at block size three rather than block size two. At the same
time, it seemed simplest to start with a single resolution rather than the
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orthogonal resolutions that exist in Room squares and Room frames. So
this led to the definition of a Kirkman frame as a “Kirkman triple system
with holes” that I gave in my paper [52], which was published in 1987.

There was a long delay in the publication of this paper, as it was rejected by
at least three journals before it was accepted by Discrete Math.. Ironically,
it has turned out be one of my most highly cited papers in design theory.
The following quote is from the 2003 survey by Rees and Wallis [45, p. 332]:

“Since their introduction by Stinson, however, Kirkman Frames
have proven to be the single most valuable tool for the construc-
tion of the various generalizations of KTSs that will be discussed
in this survey.”

I should also mention the book by Furino, Miao and Yin [25], which is
devoted to the topic of Kirkman frames, as evidence of the importance of
this topic.

In a Room frame, a hole of size t intersects t rows and t columns of the
array. This is often stated as part of the definition. In the case of a Kirkman
frame, I decided to simply require that the set of blocks could be partitioned
into holey parallel classes, where each holey parallel class forms a partition
of all the points not in some hole. It then can be proven using a simple
counting argument that a hole of size t is associated with exactly t/2 holey
parallel classes. This of course implies that every hole has even size.

It is easy to see that a Kirkman triple system of order v is equivalent to
a Kirkman frame of type 2v/2. So the smallest Kirkman frame that is not
equivalent to a Kirkman triple system is the Kirkman frame of type 44.
Example 3.1 provides a construction of this Kirkman frame.

Example 3.1. I construct a Kirkman frame of type 44 using the technique
that I described in [51]. Here is a pair of incomplete orthogonal latin squares
of order six with a hole of size two, which were discovered by Euler in the
eighteenth century:
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5 6 3 4 1 2
2 1 6 5 3 4
6 5 1 2 4 3
4 3 5 6 2 1
1 4 2 3
3 2 4 1

a b e f c d
f e a b d c
d c f e a b
e f d c b a
b d c a
c a b d

From these incomplete orthogonal latin squares, construct an incomplete
group-divisible design. I label the rows and columns and obtain a block of
size four from each of the 32 filled cells:

{r1, c1, 5, a} {r1, c2, 6, b} {r1, c3, 3, e} {r1, c4, 4, f}
{r1, c5, 1, c} {r1, c6, 2, d}
{r2, c1, 2, f} {r2, c2, 1, e} {r2, c3, 6, a} {r2, c4, 5, b}
{r2, c5, 3, d} {r2, c6, 4, c}
{r3, c1, 6, d} {r3, c2, 5, c} {r3, c3, 1, f} {r3, c4, 2, e}
{r3, c5, 4, a} {r3, c6, 3, b}
{r4, c1, 4, e} {r4, c2, 3, f} {r4, c3, 5, d} {r4, c4, 6, c}
{r4, c5, 2, b} {r4, c6, 1, a}
{r5, c1, 1, b} {r5, c2, 4, d} {r5, c3, 2, c} {r5, c4, 3, a}
{r6, c1, 3, c} {r6, c2, 2, a} {r6, c3, 4, b} {r6, c4, 1, d}

Every block contains exactly one point from {5, 6, e, f, r5, r6, c5, c6}. Then
delete these eight points, obtaining 32 blocks of size three. Each deleted
point gives rise to a holey parallel class. The resulting Kirkman frame has
holes {1, 2, 3, 4}, {a, b, c, d}, {r1, r2, r3, r4} and {c1, c2, c3, c4}. The blocks,
arranged into eight holey parallel classes, are as follows:

{1, 2, 3, 4}
{r1, c1, a} {r1, c2, b}
{r2, c4, b} {r2, c3, a}
{r3, c2, c} {r3, c1, d}
{r4, c3, d} {r4, c4, c}

{a, b, c, d}
{r1, c3, 3} {r1, c4, 4}
{r2, c2, 1} {r2, c1, 2}
{r3, c4, 2} {r3, c3, 1}
{r4, c1, 4} {r4, c2, 3}

{r1, r2, r3, r4}
{c1, 1, b} {c1, 3, c}
{c2, 4, d} {c2, 2, a}
{c3, 2, c} {c3, 4, b}
{c4, 3, a} {c4, 1, d}

{c1, c2, c3, c4}
{r1, 1, c} {r1, 2, d}
{r2, 3, d} {r2, 4, c}
{r3, 4, a} {r3, 3, b}
{r4, 2, b} {r4, 1, a}
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In [52], I proved that there is a Kirkman frame of type tu if and only if t is
even and t(u−1) ≡ 0 mod 3. I will review the main steps in the proof. The
proof used PBDs and group-divisible designs (GDDs) along with a few small
Kirkman frames. One useful recursive tool is the “GDD Construction” from
[52]. This is just a standard Wilson-type GDD construction (see, e.g., [64]),
adapted to the setting of Kirkman frames.

I recall a special case of the GDD Construction that is sufficient for our
needs, but first I define group-divisible designs (GDDs). A group-divisible
design is a triple (X,G,A), where X is a finite set of points, G is a partition
of X into subsets called groups1, and A is a set of subsets of X, with the
property that every pair of points is contained in a unique group, or a
unique block, but not both. Assume that |A| > 1 for every A ∈ A. Observe
that a PBD is equivalent to a GDD in which every group has size 1.

Theorem 3.1 (GDD construction). Let (X,G,A) be a GDD in which |X| =
gu and there are u groups of size g, and let w ≥ 1 (w is often called a
weight). For each block A ∈ A, suppose there is a Kirkman frame of type
w|A|. Then there is a Kirkman frame of type (gw)u.

Remark 3.1. If |G| = 1 for all G ∈ G (i.e., the GDD is a PBD), then we
obtain a PBD-closure result. More precisely, the set

{u : there exists a Kirkman frame of type tu}

is PBD-closed for any fixed t.

Now I discuss the existence proof for uniform Kirkman frames. When t = 2,
it follows that u ≡ 1 mod 3. Thus all the Kirkman frames in the case t = 2
can immediately be obtained from Kirkman triple systems.

The next case, t = 4, is easily handled as follows. Again, u ≡ 1 mod 3 is a
necessary condition. I presented a Kirkman frame of type 44 in Example
3.1. When u ≡ 1 mod 3, u ≥ 7, it suffices to apply Theorem 3.1 as follows.
Start with a group-divisible design having u groups of size two and blocks
of size four, and define w = 2. Every block is replaced by a Kirkman frame
of type 24. The required GDDs are constructed in [5].

The case t = 6 is only a bit more difficult. Here there are no congruential
conditions on u. I split the proof into two subcases, namely u ≡ 0, 1 mod 4
and u ≡ 2, 3 mod 4.

1Of course these are not algebraic groups.
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When u ≡ 0, 1 mod 4, start with a (3u+ 1, {4})-PBD (i.e., a (3u+ 1, 4, 1)-
BIBD). Delete a point, creating a GDD with u groups of size three and
blocks of size four. Define w = 2 and apply Theorem 3.1, filling in Kirkman
frames of type 24. The result is a Kirkman frame of type 6u.

For u ≡ 2, 3 mod 4, u ≥ 7, start with a (3u+1, {4, 7})-PBD that contains a
unique block of size seven (see [6]). Delete a point that is not in the block
of size seven, creating a GDD with u groups of size three and blocks of size
four and seven. Define w = 2 and apply Theorem 3.1, filling in Kirkman
frames of type 24 and 27. The result is a again Kirkman frame of type 6u.

It remains to construct a Kirkman frame of type 66. A direct construction
for this Kirkman frame can be found in [44].

Having handled the cases t = 2, 4 and 6, all other cases follow by “Inflation
by MOLS” (Theorem 2.3), which also works for Kirkman frames. The
reader can fill in the details.

3.2 Some historical remarks

Kirkman frames can be used in existence proofs for Kirkman triple sys-
tems. In particular, several of the constructions for Kirkman triple systems
given by Ray-Chaudhuri and Wilson in [40] (see also [31]) can be recast as
Kirkman frame-based constructions. For example, [40, Theorem 1] proves
that the set

R∗
3 = {r : there exists a Kirkman triple system of order 2r + 1}

is PBD-closed. That is, if there exists a (v,K)-PBD where K ⊆ R∗
3, then

v ∈ R∗
3.

2

I sketch the proof of this fundamental result using Kirkman frame language,
making use of the fact that a Kirkman frame of type 2r is equivalent to
a Kirkman triple system of order 2r + 1. Basically, it suffices to delete a
point from the Kirkman triple system to obtain the desired Kirkman frame
(see Example 3.2). Then apply Theorem 3.1 with w = 2. (In more detail,
let (X,B) be a (v,K)-PBD where K ⊆ R∗

3. Give every point in X weight
two. For every block B ∈ B, construct a Kirkman frame of type 2|B| on the

2Note that this result is a special case of Theorem 3.1.
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points B × {1, 2}, where the holes are {x} × {1, 2}, x ∈ B. The result is a
Kirkman frame of type 2v, which is equivalent to a Kirkman triple system
of order 2v + 1.)

Interestingly, the original proof of this result, given in [40], is slightly dif-
ferent. Rather than utilizing Kirkman frames (implicitly or explicitly), the
proof instead uses the notion of a completed resolvable design. The idea is
to add a new point to the blocks of each parallel class of a given Kirkman
triple system of order 2r+1. Then a new block is formed, consisting of the
r new points. The result is a (3r + 1, {4, r})-PBD (and this PBD contains
a unique block of size r if r > 4). Clearly this process can be reversed; see
Example 3.2. The PBD-closure proof given in [40] starts with a PBD and
gives every point weight 3. Every block is replaced by a suitable completed
resolvable design. At the end, a completed resolvable design is constructed;
this design is equivalent to a Kirkman triple system of order 2v + 1.

The following example illustrates a KTS, a Kirkman frame and a completed
resolvable design, all of which are equivalent structures.

Example 3.2. I present a Kirkman triple system of order 15 that was
originally discovered by Cayley in 1850 (see [11, Example 19.7]). This
Kirkman triple system has the following 35 blocks, where each row of five
blocks is a parallel class:

abc d35 e17 f 28 g46
ade b26 c48 f 15 g37
afg b13 c57 d68 e24
bdf a47 c16 e38 g25
beg a58 c23 d14 f 67
cdg a12 b78 e56 f 34
cef a36 b45 d27 g18

To construct the associated Kirkman frame of type 27, delete a point. The
holes of the Kirkman frame are formed by the blocks containing the given
point. Suppose the point a is deleted. Then we obtain the following Kirkman
frame:

hole holey parallel class
bc d35 e17 f 28 g46
de b26 c48 f 15 g37
fg b13 c57 d68 e24
47 bdf c16 e38 g25
58 beg c23 d14 f 67
12 cdg b78 e56 f 34
36 cef b45 d27 g18
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Notice that there are seven holes of size two, and seven holey parallel classes.

Finally, I construct the associated completed resolvable design. For each of
the seven parallel classes, add a new point to all the blocks in that parallel
class. Then create a new block consisting of the seven new points.

∞1abc ∞1d35 ∞1e17 ∞1f 28 ∞1g46
∞2ade ∞2b26 ∞2c48 ∞2f 15 ∞2g37
∞3afg ∞3b13 ∞3c57 ∞3d68 ∞3e24
∞4bdf ∞4a47 ∞4c16 ∞4e38 ∞4g25
∞5beg ∞5a58 ∞5c23 ∞5d14 ∞5f 67
∞6cdg ∞6a12 ∞6b78 ∞6e56 ∞6f 34
∞7cef ∞7a36 ∞7b45 ∞7d27 ∞7g18
∞1∞2∞3∞4∞5∞6∞7

On the other hand, as Assaf and Hartman pointed out in [2], Hanani con-
structs frames with block size three and λ = 2 in his 1974 paper [29]3.
These frames are the same thing as near-resolvable (v, 3, 2)-BIBDs. There
are v holey parallel classes in such a BIBD, each of which misses a single
point (thus a necessary condition for existence is that v ≡ 1 mod 3). Hanani
gives direct constructions for several such frames, and he also proves a PBD-
closure result in [29, Lemma 8]. This establishes the existence of frames of
type 13u+1 (with block size three and λ = 2) for all positive integers u.

Assaf and Hartman [2] also note that the paper [29] constructs examples of
frames with holes of size t, for t = 3, 12, 24 (again, these frames have block
size three and λ = 2).

It is somewhat difficult to identify the first paper to actually include a Kirk-
man frame construction (i.e., one with λ = 1 that incorporates a resolution
into holey parallel classes). Perhaps it is the 1977 Baker-Wilson paper ([3])
on nearly Kirkman triple systems (NKTS). Here is the statement and proof
of a main recursive construction, exactly as it appears in [3].

Theorem 3.2 [3, Lemma 3]. If there exists a GDD on u points with group
sizes from M = {g1, . . . , gm} and block sizes from K = {k1, . . . , kℓ} such
that: (i) for each gi there exists an NKTS[2gi+2], and (ii) for each ki there
exists a KTS[2ki + 1], then there exists an NKTS[2u+ 2].

3We discuss frames with λ > 1 in greater detail in Section 4.
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Proof. Let the GDD have points Y and sets G ∪B. The point set X of the
NKTS[2u+2] is to consist of θ′, θ′′ and two symbols y′, y′′ for each y ∈ Y .
The matching is to be A0 =

{
{θ′, θ′′}

}
∪
{
{y′, y′′} : y ∈ Y

}
, and the parallel

classes are to be Ay, y ∈ Y , obtained as follows: For each G ∈ G, form an
NKTS with matching

{
{θ′, θ′′}

}
∪
{
{y′, y′′} : y ∈ G

}
and parallel classes

AG
y , arbitrarily indexed by the elements y ∈ G. For each B ∈ B, form a

KTS on the points y′, y′′, y ∈ B and another symbol ∗ so that {∗, y′, y′′}
is a triple of the KTS for each y ∈ B; the other triples which belong to
the parallel class containing {∗, y′, y′′} will be denoted by AB

y (these triples
partition the set of z′, z′′ with z ∈ B, z ̸= y). Then the parallel class Ay is
to be the union of AG

y , where G is the unique member of G containing y,

and all the classes AB
y , where B is a member of B containing y.

Now where is the Kirkman frame in the above proof? Let B ∈ B be any
block. For each y ∈ B, we observe that each AB

y is a holey parallel class
with hole {y′, y′′}. Further, the union of these holey parallel classes forms a
Kirkman frame of type 2|B|. We can describe this construction informally,
omitting details and using Kirkman frame-based language, as follows:

1. start with a GDD, take two copies of every point and take two new
points

2. replace every block B by a Kirkman frame of type 2|B|, and

3. replace every group G by an NKTS[2|G|+ 2] containing the two new
points.

Finally, I should mention the paper by Lee and Furino ([35]) entitled A
translation of J.X. Lu’s “an existence theory for resolvable balanced incom-
plete block designs”. Lu’s 1984 paper is another early example of a paper
that uses Kirkman frame techniques in the context of resolvable designs.
According to Furino and Lee,

“We have remained faithful to the constructions provided by Lu
but have altered the presentation to be more consistent with con-
temporary techniques and notation. Specifically, Lu’s Theorem
4 is presented via frames which are never explicitly mentioned
in the original but which are clearly embedded in the construc-
tions.”
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4 Other kinds of frames

Various generalizations of frames have been studied. We briefly discuss
some possible aspects that have been considered.

4.1 Frames with larger block size

Room frames have block size two and Kirkman frames have block size three.
Frames with larger block size can also be studied. The most obvious gener-
alization of Kirkman frames would be frames with block size four, which are
often known as 4-frames (analogously, a frame with block size k is termed
a k-frame). These were first studied systematically by Rees and Stinson
in [44], and additional results can be found in [12, 61, 65]. The following
theorem summarizes the current existence results for 4-frames.

Theorem 4.1. There exists a 4-frame of type hu if and only if u ≥ 5,
h ≡ 0 (mod 3) and h(u− 1) ≡ 0 (mod 4), except possibly where

1. h = 36 and u = 12;

2. h ≡ 6 (mod 12) and

(a) h = 6 and u ∈ {7, 23, 27, 35, 39, 47};
(b) h = 18 and u ∈ {15, 23, 27};
(c) h ∈ {30, 66, 78, 114, 150, 174, 222, 246, 258, 282, 318, 330,

354, 534} and u ∈ {7, 23, 27, 39, 47};
(d) h∈{n : 42 ≤ n ≤ 11238} \ {66, 78, 114, 150, 174, 222, 246,

258, 282, 318, 330, 354, 534} and u ∈ {23, 27}.

We should also mention that it is easy to see that a resolvable (v, k, 1)-BIBD
is equivalent to a k-frame of type (k − 1)r, where r = (v − 1)/(k − 1). It
suffices to delete a point from the BIBD to construct the frame, and the
process can be reversed.

4.2 Frames with larger dimension

Room frames have dimension two (since they have two orthogonal frame
resolutions) and, analogously, Kirkman frames have dimension one. Frames
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of higher dimension have also received attention. For example, it was shown
in [16] that a Room frame of type 2q having dimension t can be constructed
if q = 2kt+1 is a prime power, t ≥ 3 is odd and k ≥ 2. There have also been
numerous papers addressing the case of two-dimensional Kirkman frames;
see [23] for recent results.

4.3 Frames for graph decompositions

The “blocks” in Room and Kirkman frames correspond to complete graphs
(K2 and K3, resp.) Graph decompositions into graphs other than complete
graphs are also possible in a frame setting.

Cycle frames were introduced in [1]. Here we have a decomposition of a
complete multipartite graph into holey parallel classes of cycles of lengths
three and five. These cycle frames were useful in solving the uniform Ober-
wolfach problem for odd length cycles. There has also been considerable
research done on cycle frames where there is only one cycle length; see [7]
for a very general existence result.

Another variation is K1,3-frames [8]. This is a frame-type graph decom-
position into graphs isomorphic to K1,3. And, as might be expected, a
(K4 − e)-frame (see [12]) involves decompositions into graphs isomorphic
to K4 with an edge deleted.

4.4 Frames with λ > 1

Various types of frames can also be considered for λ > 1, i.e., where ev-
ery pair in the underlying design occurs λ > 1 times. For example, two-
dimensional Room frames having block size three and λ = 2 were first
studied in [33, 34].

In general, we can consider frames with block size k and a specified value of
λ; such a frame is commonly denoted as a (k, λ)-frame. For example, nec-
essary and sufficient existence conditions for (3, λ)-frames are determined
in [2]. There also has been considerable work done on (4, 3)-frames; see,
e.g., [24, 26, 27].
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Finally, a near-resolvable (v, k, k−1)-BIBD is the same thing as a (k, k−1)-
frame of type 1v, since there are v holey parallel classes in the BIBD, each
missing one point (we already mentioned this result in Section 3.2 in the
case k = 3).

4.5 Nonuniform frames

A nonuniform frame is one in which not all the holes have the same size.
Nonuniform frames are often used in constructions of uniform frames. Also,
Room squares or Kirkman triple systems containing subdesigns are closely
related to certain frames where all but one of the holes have the same size.
For example, a Room square of side v containing a Room subsquare of side
w gives rise to a Room frame of type 1v−ww1. The process can be reversed
if there is a Room square of side w. Additionally, various other classes
of nonuniform frames have been studied, e.g., Room frames of type 2tu1

([21]).

4.6 Frames with special properties

There has been some study of frames with various special properties. We
have already mentioned skew Room frames in Section 1. Other examples
of Room frames having special properties that have been studied include
partitionable skew Room frames [12, 65], as well as Room frames with par-
titionable transversals [15].

Finally, I should mention a generalization of frames known as double frames.
These objects were defined by Chang and Miao in [9], where they were
used to unify various frame-type recursive constructions. One application
of double frames is to construct frames, e.g., see [61].

4.7 Equiangular tight frames

It is not surprising that a term such as “frame” could have multiple mean-
ings, even within combinatorial mathematics. However, it is probably not to
be expected that the phrase “Kirkman frame” would arise in two completely
different contexts. To be specific, “Kirkman equiangular tight frames and
codes” is the title of a 2014 paper by Jasper, Mixon and Fickus [32].
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In this context, the term “frame” can be found in the 1992 book by
Daubechies [13]; it refers to a generalization of an orthonormal basis. The
equiangular tight frames (see [57]) meet the Welch bound with equality.
Many of the known constructions for these objects use combinatorial de-
signs such as conference matrices, difference sets and Steiner systems. In
[32], a construction utilizing Kirkman triple systems was proposed; the re-
sulting frames were termed “Kirkman equiangular tight frames.” Thus we
have two completely different notions of a Kirkman frame!

5 Applications

In this paper, I have concentrated on construction methods for Room frames
and Kirkman frames. However, I would be remiss if I did not mention
some applications of frames. Here are a few “obvious” applications. Room
frames were essential in proving the existence of Room squares with sub-
squares (see [21, 22]), and analogously, Kirkman frames were of crucial
importance in constructing Kirkman triple systems with Kirkman subsys-
tems ([43]). Skew Room frames were a very important tool in solving the
skew Room square existence problem ([50]), and Kirkman frames were em-
ployed in the construction of resolvable group-divisible designs with block
size three ([42]). The survey by Rees and Wallis [45] is especially useful
as it gives detailed discussion and self-contained proofs of several impor-
tant applications of Kirkman frames. Finally, frames with larger block size
(in particular, 4-frames) are utilized in similar problems relating to designs
with larger block size (see, e.g., [61]).

There are many other applications that are perhaps not immediately obvi-
ous. I will list a few representative examples now; however, I should note
that this is far from being a complete list.

• Skew Room frames were used in [36] and elsewhere to construct nested
cycle systems.

• Skew Room frames were used in [46, 47] to construct weakly 3-chromatic
BIBDs with block size four.

• Partitionable skew Room frames can be used to construct resolvable
(K4−e)-designs (see [12]). For information on partitionable skew Room
frames, see [65].
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• 4-frames have been used to construct three mutually orthogonal latin
squares with holes (i.e., three HMOLS); see [54, 12].

• Uniformly resolvable designs, which were introduced by Rees [41], have
been studied by numerous authors. Their construction often employs
frames. Two recent papers on this topic are [62, 63].

• Ling [37] uses splittable 4-frames to give improved results concerning
a problem in generalized Ramsey theory involving edge-colourings of
Kn,n.
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