BULIETIN of The

TISTHMIE of

GOWBNUMORLES and its

 IPPIGIIIONS
Editors-in-Chief:

Marco Buratti, Donald Kreher, Ortrud Oellermann, Tran van Trung

Duluth, Minnesota, U.S.A.
ISSN: 2689-0674 [Online] ISSN: 1183-1278 [Print]

The extended graphical and bigraphical generalized Steiner systems

Donald L. Kreher

Abstract. A set system (X, \mathscr{B}) consists of a v-element set X of points and a collection \mathscr{B} of subsets of X called blocks. A set system (X, \mathscr{B}) is a (proper) t - $(v, \mathscr{K}, \lambda)$ design, provided

1. every t-element set of points is contained in precisely λ blocks,
2. \mathscr{K} is a set of integers, each of which is $>t$ and $<v$, and
3. if $B \in \mathscr{B}$, then $|B| \in \mathscr{K}$.

The parameters t and λ are called respectively the strength and index of the design. When the index is 1, they are called generalized Steiner systems. With respect to a given point $x \in X$, the blocks containing x (with x discarded) are called the derived design and the blocks that do not contain x are called the residual design.

If $X=E\left(K_{n}\right)$, then the blocks are subgraphs of K_{n}. We say that the set system is graphical, if whenever B is a block then all subgraphs of K_{n} isomorphic to B are also blocks. A $t-(v, \mathscr{K}, \lambda)$ design is an extended graphical design if respect to some fixed point x, both the residual and derived designs are graphical. In this note all extended graphical generalized Steiner systems are determined. In a similar fashion bigraphical designs are defined for $X=E\left(K_{m, n}\right)$ and all extended bigraphical generalized Steiner systems are also determined. This note concludes with several open problems that arise naturally from this investigation.

1 Exordium

A $2-(v, \mathscr{K}, \lambda)$ design is a pairwise balanced design, see [4, Part IV]. Among the first examples of pairwise balanced designs are those constructed by

[^0]Kirkman [10] in 1847, which he used to solve the schoolgirls problem on $v=5 \cdot 3^{m+1}$ points, [4, page 15]. Kramer [12] referred to $t-(v, \mathscr{K}, \lambda)$ designs as t-wise balanced designs or $t B D$ s. However Hanani [8] in 1963 first introduced such designs as C-designs, but called them pairwise balanced designs when $t=2$. For the case $t=3$ Brouwer [2] used the term triplewise balanced designs. When the index $\lambda=1$, the adjective Steiner is affixed even though they are only loosely related to Steiner's original problem, see [5]. Indeed $t-(v, \mathscr{K}, 1)$ designs were called Hanani generalized Steiner systems in [17] and generalized Steiner systems in [1, 18]. Note that generalized Steiner systems, as introduced in [7], are H-designs (see [16]) with certain coding properties and they should not be confused with the $t-(v, \mathscr{K}, 1)$ designs that are discussed here. Regardless of the terminology it is not difficult to see that $t-(v, \mathscr{K}, 1)$ designs have deep connections to geometries and codes. Furthermore they have proven to be invaluable in the construction of desired combinatorial configurations.

A set system (X, \mathscr{B}) is graphical if X is the set of $v=\binom{n}{2}$ labelled edges of the complete graph K_{n} with vertex set $\{1,2, \ldots, n\}$ and it has the natural action of the symmetric group S_{n} on the edges as an automorphism group. Thus if $B \in \mathscr{B}$, then all subgraphs isomorphic to B are also in \mathscr{B}. Hence a graphical set system can be presented as a list of unlabeled graphs. For example

graphically represents a $3-(10,4,1)$ design. The actual blocks are:

$$
\begin{aligned}
\mathscr{O} & =\{\{12,13,14,15\},\{21,23,24,25\},\{31,32,34,35\},\{41,42,43,45\},\{51,52,53,54\}\} \\
\underset{\sim}{\boldsymbol{u}} & =\left\{\begin{array}{l}
\{12,23,31,45\},\{12,24,41,35\},\{14,43,31,25\},\{42,23,34,15\},\{12,25,51,34\} \\
\{13,35,51,24\},\{32,25,53,14\},\{14,45,51,23\},\{24,45,52,13\},\{34,45,53,12\}
\end{array}\right\}
\end{aligned}
$$

and

$$
\sim\left\{\begin{array}{l}
\{12,23,34,41\},\{13,34,42,21\},\{14,42,23,31\},\{12,23,35,51\},\{13,35,52,21\} \\
\{15,52,23,31\},\{12,24,45,51\},\{14,45,52,21\},\{15,52,24,41\},\{13,34,45,51\} \\
\{14,45,53,31\},\{15,53,34,41\},\{23,34,45,52\},\{24,45,53,32\},\{25,53,34,42\}
\end{array}\right\}
$$

where $a b=b a=\{a, b\}$. A complete list of graphical $t-(v, K, 1)$ designs can be found in [3] and is provided for reference in Table 2. The presentation
of a design by a list of unlabeled graphs is I think quite beautiful. It gives a visual interpretation for the blocks of the design.

If (X, \mathscr{B}) is a set system and $x \in X$, then the derived set system with respect to x is $\left(X \backslash\{x\}, \mathscr{B}_{x}\right)$, where

$$
\mathscr{B}_{x}=\{B \backslash\{x\}: x \in B \in \mathscr{B}\}
$$

and the residual set system with respect to x is $\left(X \backslash\{x\}, \mathscr{B}^{x}\right)$, where

$$
\mathscr{B}^{x}=\{B \in \mathscr{B}: x \notin B\} .
$$

A t - $(v, \mathscr{K}, \lambda)$ design (X, \mathscr{B}) is an extended graphical design, if there is a point x such that both \mathscr{B}_{x} and \mathscr{B}^{x} are graphical. This article was motivated by my discovery that the $3-(16,\{4,6\}, 1)$ design studied by Assmus and Sardi [1] is the extended graphical design listed as D_{4} in Table 1. There is, by the way, a unique $3-(16,\{4,6\}, 1)$ design. It consists of the best biplane on 16 points and its 60 ovals. Having made this discovery (see [6]) I became interested in finding all extended graphical generalized Steiner systems. This article is the results of my efforts.

2 Proventus

It is not difficult to determine the extended graphical $t-(v, \mathscr{K}, 1)$ designs $(X \cup\{\infty\}, \mathscr{B})$, when the derived set system $\left(X, \mathscr{B}_{\infty}\right)$ is a known graphical $(t-1)-\left(v-1, \mathscr{K}^{\prime}, 1\right)$ design. Consider \mathscr{B}_{∞} as a list of unlabeled graphs on $v-1$ points and let \mathscr{R} be the t-edge unlabeled graphs on $v-1$ points that are not a subgraph of any graph in \mathscr{B}_{∞}. Let \mathscr{C} be the set of unlabeled graphs on $v-1$ points that have more than t edges. (Incidentally [13, Corollary 1.3] shows that subgraphs with more than $\frac{1}{2}\binom{v-1}{2}$ edges need not be considered.) Define the matrix $A: \mathscr{R} \times \mathscr{C} \rightarrow \mathbb{Z}_{\geq 0}$ by

$$
A[R, C]=\mid\{c \in C: r \text { is a subgraph of } c\} \mid
$$

where r is any fixed labeled subgraph in R. Then there will be a solution $U: \mathscr{C} \rightarrow\{0,1\}$ to the matrix equation $A U=J$, where $J[r]=1$, for all $r \in \mathscr{R}$, if and only if $\mathscr{B}^{\infty}=\{C \in \mathscr{C}: U[C]=1\}$ is such that $\left(X, \mathscr{B}_{\infty} \cup \mathscr{B}^{\infty}\right)$ is an extended graphical $t-(v, \mathscr{K}, 1)$ design. Columns $C \in \mathscr{C}$ of A that contain an entry exceeding 1 can of course be removed. Although the matrix equations $A U=J$ that need to be considered in this note are perhaps small enough that they could possibly be constructed and solved by hand, I employed computer algorithms. I used the algorithms

Table 1: Derived and residual systems
Extended graphical generalized Steiner systems

	Parameters	X	\mathscr{B}_{∞}	\mathscr{B}^{∞}
D_{1}	$2-(7,3,1)$	$E\left(K_{4}\right) \cup\{\infty\}$		\square
D_{2}	$2-(7,3,1)$	$E\left(K_{4}\right) \cup\{\infty\}$		\square
D_{3}	$3-(16,4,1)$	$E\left(K_{6}\right) \cup\{\infty\}$	$0 \cdot \infty$	$\square 0$.
D_{4}	$3-(16,\{4,6\}, 1)$	$E\left(K_{6}\right) \cup\{\infty\}$		
D_{5}	$5-(16,\{6,8\}, 1)$	$E\left(K_{6}\right) \cup\{\infty\}$	\&	

Extended BW-bigraphical generalized Steiner systems

	Parameters	X	\mathscr{B}_{∞}	\mathscr{B}^{∞}
D_{6}	$2-(10,\{3,4\}, 1)$	$E\left(K_{33}\right) \cup\{\infty\}$	\square_{0}°	Woo Ill
D_{7}	$2-(10,\{3,4\}, 1)$	$E\left(K_{33}\right) \cup\{\infty\}$	Wo	¢0 ¢ ¢

Extended bigraphical generalized Steiner systems

	Parameters	X	\mathscr{B}_{∞}	\mathscr{B}^{∞}
D_{8}	$3-(10,4,1)$	$E\left(K_{33}\right) \cup\{\infty\}$	¢id \&	did

described in [14, Chapter 6] to construct the matrices and I used the dancing links data structure described in [11] to solve them. The dancing link implementation I employed can be downloaded from:
http://pottonen.kapsi.fi/libexact.html
Theorem 1. The only extended graphical t-(v, $\mathscr{K}, 1)$ designs are D_{1}, D_{2}, \ldots, D_{5}, which are listed in Table 1.

Proof. Let $(X \cup\{\infty\}, \mathscr{B})$ be an extended graphical $t-(v, \mathscr{K}, 1)$ design. Then $\left(X, \mathscr{B}_{\infty}\right)$ is a graphical $(t-1)-\left(v-1, \mathscr{K}^{\prime}, 1\right)$ design. There is only one on K_{4}, one on K_{5} and three on K_{6}. It is computationally easy, by the method described above, to determine how a $(t-1)-\left(v-1, \mathscr{K}^{\prime}, 1\right) \operatorname{design}\left(X, \mathscr{B}_{\infty}\right)$ can be completed to an extended graphical $t-(v, \mathscr{K}, 1)$ design.

The automorphism group $\operatorname{AuT}\left(K_{m, n}\right)$ of the undirected complete bipartite graph $K_{m, n}$ with vertex set $\left\{1^{\prime}, 2^{\prime}, \ldots, m^{\prime}, 1,2, \ldots, n\right\}$ is the cross product $S_{m} \times S_{n}$, if $m \neq n$ and is the wreath product $S_{n} 2 S_{2}$, if $m=n$. A set system (X, \mathscr{B}) is bigraphical if X is the set of $v=m n$ labelled edges of $K_{m, n}$ and the natural action of $\operatorname{AUT}\left(K_{m, n}\right)$ on the edges of $K_{m, n}$ is an automorphism group. Thus if $B \in \mathscr{B}$, then all subgraphs of $K_{m, n}$, isomorphic to B, are also in \mathscr{B}.

If the vertices of $K_{n, n}$ are 2-colored, so that one independent set is colored black and the other is colored white, then the automorphism group G is $S_{n} \times S_{n} .\left(S_{n} \times S_{n}\right.$ is subgroup of index 2 in $\operatorname{Aut}\left(K_{n, n}\right)$.) A set system (X, \mathscr{B}) is $B W$-bigraphical if X is the set of $v=n^{2}$ labelled edges of the 2-colored $K_{n, n}$ and the natural action of G is an automorphism group. Thus if $B \in \mathscr{B}$, then all 2-colored subgraphs of $K_{m, n}$ isomorphic to B are also in \mathscr{B}.

A complete list of bigraphical $t-(v, \mathscr{K}, 1)$ designs can be found in [9] and is provided in Table 3.

The proofs of Theorems 2 and 3 are similar to the proof of Theorem 1.
Theorem 2. The only extended bigraphical $t-(v, \mathscr{K}, 1)$ design is D_{8}, which is listed in Table 1.

Theorem 3. The only extended $B W$-bigraphical t - $(v, \mathscr{K}, 1)$ designs are D_{6} and D_{7}, which are listed in Table 1.

Table 2：Graphical generalized Steiner systems（see［3］）．

Parameters	X	Graphical representation
$1-(6,2,1)$	$E\left(K_{4}\right)$	
$2-(15,3,1)$	$E\left(K_{6}\right)$	$\sqrt[j]{0} \cdot \infty$
$2-(15,\{3,5\}, 1)$	$E\left(K_{6}\right)$	
$3-(10,4,1)$	$E\left(K_{5}\right)$	
$4-(15,\{5,7\}, 1)$	$E\left(K_{6}\right)$	

Table 3：Bigraphical generalized Steiner systems（see［9］）．

Parameters	X	Graphical representation
1－（ $\left.n^{2}, n, 1\right)$	$E\left(K_{n, n}\right)$	$K_{1, n}$
1－（4，2，1）	$\mathrm{E}\left(K_{2,2}\right)$	¢0．
$2-(9,3,1)$	$\mathrm{E}\left(K_{3,3}\right)$	か．0．d．
$3-(16,4,1)$	$\mathrm{E}\left(K_{4,4}\right)$	Mッ か．．．．．．．．．．d．d．
$3-(16,\{4,6\}, 1)$	$\mathrm{E}\left(K_{4,4}\right)$	
$5-(16,\{6,8\}, 1)$	$\mathrm{E}\left(K_{4,4}\right)$	

Here are a few problems to consider.

1. What are the extended graphical and bigraphical designs with index 2? A complete list of graphical designs with index 2 can be found in [3] and the bigraphical designs with index 2 are in [15].
2. Do there exist doubly extended graphical and bigraphical designs? How should multi-extended graphical and bigraphical designs be defined?
3. Are there other actions of the symmetric group that yield interesting designs? Do they have extensions?

I close by thanking the reviewer for the inspiration to add more history and detail to my note. I also thank Ortrud Oellermann and Doug Stinson who read a preprint of this note and provided me with useful comments.

References

[1] E.F. Assmus Jr. and J.E.N. Sardi, Generalized Steiner systems of Type $3-(v,\{4,6\}, 1)$ in "Finite Geometries on Designs", L.M.S. Lecture Note Series, 49, pp. 16-21, 1981.
[2] A.E. Brouwer, Some triplewise balanced designs, report ZW 77, Math. center Amsterdam, 1976.
[3] L.G. Chouinard, D.L. Kreher and E.S. Kramer, Graphical t-wise balanced designs, Discrete Math., 46 (1983), 227-240.
[4] C.J. Colbourn and J.H. Dinitz (eds.), Handbook of Combinatorial Designs (2nd ed.), Chapman and Hall/CRC. 2006.
[5] C.J. Colbourn, D.L. Kreher and P.R.J. Östergård, Bussey systems and Steiner's tactical problem, Glas. Mat. Ser. III, to appear. web.math.pmf.unizg.hr/glasnik/forthcoming/pGM7100.pdf
[6] M. Epstein, D.L. Kreher and S.S. Magliveras, Small transitive homogeneous 3-($v,\{4,6\}, 1)$ designs, in "Stinson 66 - New Advances in Designs, Codes and Cryptography", C. J. Colbourn and J. H. Dinitz, eds., Fields Institute Communications Series, Springer 2023,
to appear. arXiv:2305.03833
[7] T. Etzion Optimal constant weight codes over Z_{k} and generalized designs, Discrete Math., 169 (1997), 55-82.
[8] H. Hanani, On some tactical configurations, Canadian J. Math., 15 (1963), 702-722.
[9] D.G. Hoffman and D.L. Kreher, The bigraphical t-wise balanced designs of index one, J. Combin. Des., 2 (1994), 41-48.
[10] T.P. Kirkman, Note on an unanswered prize question, Cambridge and Dublin Math. J., 2 (1847), 191-204.
[11] D. Knuth, D., Dancing links, in "Millennial Perspectives in Computer Science", J. Davies, B. Roscoe, J. Woodcock, eds., pp. 187-214, Palgrave, 2000.
[12] E.S. Kramer, Some results on t-wise balanced designs, Ars Combin., 15 (1983), 179-192.
[13] D.L. Kreher and R.S. Rees, A hole-size bound for incomplete t-wise balanced designs, J. Combin. Des., 9 (2001), 269-145.
[14] D.L. Kreher and D.R. Stinson, Combinatorial Algorithms: Generation, Enumeration and Search CRC Press, 1998.
[15] D.L. Kreher and L.M. Weiss, The bigraphical t-wise balanced designs of index two. J. Combin. Des., 3(3) (1995), 233-255.
[16] W.H. Mills, On the covering of triples by quadruples, Congr. Numer., X (1974), 573-581.
[17] J. van Buggenhaut, On some Hanani's generalized Steiner systems, Bull. Soc. Math. Belg., 23 (1971), 500-505.
[18] J.H. van Lint, On the number of blocks in a generalized Steiner system, J. Combin. Theory Ser. A, 80(2) (1997), 353-355.

Donald L. Kreher
Michigan Technological University
kreher@mtu.edu

[^0]: AMS (MOS) Subject Classifications: 05B05,05C99
 Key words and phrases: graphical, bigraphical, t-wise balanced, Steiner systems

