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Probabilistic zero forcing on grid, regular, and

hypercube graphs

David Hu and Alec Sun∗

Abstract. Probabilistic zero-forcing is a coloring process on a graph. In
this process, an initial set of vertices is colored blue, and the remaining
vertices are colored white. At each time step, blue vertices have a non-zero
probability of forcing white neighbors to blue. The expected propagation
time is the expected amount of time needed for every vertex to be colored
blue. We derive asymptotic bounds for the expected propagation time
of several families of graphs. We prove the optimal asymptotic bound of

Θ(m+n) for m×n grid graphs. We prove an upper bound of O
(

log d
d · n

)

for d-regular graphs on n vertices and provide a graph construction that

exhibits a lower bound of Ω
(

log log d
d · n

)
. Finally, we prove an asymptotic

upper bound of O(n log n) for hypercube graphs on 2n vertices.

1 Introduction

Zero-forcing is a widely studied coloring process on a graph. Initially, some
vertices in a graph G are colored blue, while other vertices are white. At
each time step, each blue vertex u connected to a white vertex v changes the
color of v to blue if v is the only white neighbor of u. When this happens, we
say that u forces v. At a given time step, a white vertex v may be forced
by one or more blue vertices, in which case it will become blue. Every
vertex that is colored blue will always remain blue, and it may force other
white vertices to blue in future time steps. The concept of zero-forcing
has been used to attack the maximum nullity problem of combinatorial
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matrix theory in [1], [3], [6], and [12]. Zero forcing is also related to power
domination [2] and graph searching [16]. Viewing zero forcing through the
lens of dynamical processes, Fallat et al. [8] and Hogben et al. [11] have
studied the number of steps it takes for an initial vertex set to force all other
vertices to blue, assuming that all the vertices will eventually become blue
under the zero forcing rule. This is known as the propagation time of a set.
Zero forcing can potentially model certain real world propagation processes
such a rumor spreading. That being said, the deterministic nature of zero-
forcing presents an obstacle for simulating the seemingly random process
of rumor spreading in the real world.

The probabilistic color change rule is a probabilistic modification of the
classic zero-forcing coloring rule introduced by Kang and Yi [13]. For every
blue vertex u connected to a white vertex v, u forces v with probability

Pr[u → v] =
C[u]

deg u
,

where C[u] denotes the number of blue vertices in the closed neighborhood
of u including u itself, and deg u is the total number of vertices connected
to u. When some blue vertex has exactly one white neighbor, note that
the probabilistic color change rule corresponds to the classical color change
rule, because that white neighbor is forced blue with probability 1. For
a random probabilistic zero-forcing process on a graph G which initially
starts with a set of vertices S colored blue, the propagation time of S,
taking values in N ∪ {∞}, is defined as the number of time steps until all
vertices in G are colored blue. The expected propagation time of S, denoted
by ept(G,S), is the expected value of the propagation time of S. We also
define the expected propagation time of a graph G, denoted by ept(G),
as the minimum expected propagation time over all single-vertex subsets
S = {v}, v ∈ G.

As noted in [7], probabilistic zero-forcing is very similar to the well-studied
push and pull models for rumor spreading from theoretical computer science
[5, 14]. For the push model, one starts with a set of blue vertices, and at
each time step, each blue vertex chooses one neighbor independently and
uniformly at random and forces that vertex blue, if that vertex is white.
For the pull model, at each time step each white vertex chooses a neighbor
independently and uniformly at random, and the white vertex turns blue
if the chosen neighbor is blue. The two models can also be combined to
create a push and pull model in which at each time step, blue vertices
choose a random neighbor to force and white vertices choose a random
neighbor to try to become blue. As with probabilistic zero-forcing, the
primary parameter of interest is the expected propagation time.
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Returning now to probabilistic zero forcing, recent work has been done to
compute bounds on propagation time for many families of graphs, including
paths, cycles, complete graphs, and bipartite graphs [4, 9]. In [15], it is
shown for a connected graph G with order n and radius r that ept(G) ≤
O
(
r log n

r

)
, and the authors construct an example to show tightness of the

asymptotic. They also prove for a connected graph G with order n that
ept(G) ≤ n

2 +o(n). Proving further bounds for expected propagation times
of different families of graphs has been proposed as an area of study in [9]
and [15]. In [7], the authors have established high probability results for
the expected propagation time for the Erdős-Renyi graph G(n, p), where p
is a function of n. In this paper, we adapt the tools used in [15] to build
upon the work and produce new results in probabilistic zero forcing. We
prove bounds on the expected propagation times of several other well-known
families of graphs. Our main results are as follows:

Theorem 1.1. We have
(
1
2−o(1)

)
(m+n)≤ ept(Gm×n)≤ (4+o(1))(m+n).

Theorem 1.2. The expected propagation time of a d-regular graph G is

O
(
n · log d

d

)
for d ≥ 2. Furthermore, there exists a family of d-regular

graphs, with d constant as a function of n, such that the expected propaga-

tion time is Ω
(
n · log log d

d

)
.

Theorem 1.3. The expected propagation time of an n-dimensional hyper-
cube graph with 2n vertices is O(n log n).

2 Preliminaries

We review some well-known tools from probability theory that will be used
in the paper.

Theorem 2.1 (Chebyshev’s Inequality). Given a random variable X, for
all λ ≥ 0 we have

Pr [|X − E[X]| ≥ λ] ≤ Var [X]

λ2
.

Theorem 2.2 (Chernoff Bound). Let X1, X2, . . . , Xn be independent ran-

dom variables taking on values in {0, 1}. Let X =

n∑

i=1

Xi and µ = E[X].

Then we have
Pr[X ≤ (1− δ)µ] ≤ e−

1
2µδ

2

.
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Theorem 2.3 (Edge Isoperimetric Inequality for Hypercubes). Let S be
any set of vertices in a dimension n hypercube graph with 2n vertices. Then
the number of edges in G between a vertex in S and a vertex not in S is at
least |S|(n− log2 |S|).

We will also use a coupling argument proven in [15].

Lemma 2.4 ([15], Lemma 2.14). Suppose that initially in some graph G,
some set of vertices S is colored blue. We follow a modified probabilistic
process where at the t-th point in time, for any connected blue vertex u
and white vertex v, the probability Prt[u → v] that u converts v to become
blue at the t-th step, is some function of G, u, v, and Bt−1, the set of blue
vertices after the (t − 1)-th step. In addition, suppose that for all u, v,

Prt[u → v] ≤ C[u]
deg u . Then the expected propagation time of S under this

modified probabilistic color change rule is less than or equal to the expected
propagation time of S under the original probabilistic color change rule.

3 Grid graphs

In this section we prove Theorem 1.1. For a grid graph Gm×n on m × n
vertices, given any initial vertex, one of the four corner vertices of Gm,n is
a distance of at least 1

2 (m + n − 2) away from the initial vertex. Hence it
must take at least this amount of time to color it blue, and the lower bound
ept(Gm×n) ≥

(
1
2 − o(1)

)
(m + n) follows immediately. Thus it suffices to

show ept(Gm×n) ≤ (4 + o(1))(m+ n).

We consider a modified color change rule, in which a vertex that is currently
white and has a blue neighbor becomes blue with probability exactly 1

4 .
Note that each vertex v in Gm×n has deg v ≤ 4, so the probability of a blue
vertex forcing any adjacent white vertex is at least 1

4 . By Lemma 2.4, the
expected propagation time under this modified process, which we denote
by ept′, is at least as large as that of the original process.

Lemma 3.1. We have ept′(Gm×n, {vcorner}) ≤ (4 + o(1))(m+ n) for any
of the four corner vertices vcorner ∈ G.

Proof. Without loss of generality, assume m ≤ n. Assign Cartesian coordi-
nates (i, j) ∈ [0,m − 1] × [0, n − 1] to the vertices of Gm×n. Without loss
of generality, suppose that vcorner = (0, 0). Starting from vcorner = (0, 0),
let T1 denote the time at which all vertices on the x-axis are blue. Starting
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from a configuration in which all vertices on the x-axis are blue, let T2

denote the amount of time it takes for all vertices to be blue. Note that
ept′(G) ≤ E[T1] + E[T2].

The expected time needed for all vertices on the x-axis to be blue is at most
the expected propagation time for a modified probabilistic color change
process on a line, starting with an end vertex blue and such that every
blue vertex forces a white neighbor with probability 1

4 . Denote by ti the
expected time needed from when (i, 0) is colored blue to the time when

(i + 1, 0) is colored blue, so that E[T1] ≤
m−1∑

i=0

ti. Using the relationship

between the number of trials and expected amount of time to success, the
expected number of trials from when (i, 0) is colored blue to the time when

(i + 1, 0) is at most
(
1
4

)−1
= 4. We conclude that ti ≤ 4 for all i, so

E[T1] ≤ 4m− 4.

Now consider the point in time at which the entire x-axis is blue. At
this point, by Lemma 2.4, E[T2] is bounded above by the expected time
it takes to color m independent paths of length n blue, starting from an
end vertex of each path. Fix any constant ε > 0. We claim that with
exponentially small probability in n, the propagation time on any one path
is more than (4 + 4ε)n. The probability that the propagation time on a
path of length n is more than (4 + 4ε)n is at most the probability that the
sum of (4 + 4ε)n independent Bern( 14 ) random variables is at most n. By
the Chernoff Bound for µ = (1 + ε)n and δ = ε/(1 + ε), we have that this

is bounded above by e−
1
2µδ

2

= e−
ε2

2(1+ε)
n. By a union bound over all m ≤ n

paths, the probability that not all paths are completely blue after (1 + ε)n

steps is at most me−
ε2

2(1+ε)
n. Using the relationship between the number

of trials and expected amount of time to success, we have that for every
ε > 0,

E[T2] ≤
(4 + 4ε)n

1−me−
ε2

2(1+ε)
n
≤ (4 + 5ε)n

for sufficiently large n. We conclude that

ept′(Gm×n) ≤ E[T1] + E[T2] ≤ (4 + o(1)))(m+ n).

Note that Lemma 3.1 implies Theorem 1.1, because

ept′(Gm×n, {v}) ≤ ept(G, {v}) ≤ ept(G).
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3.1 Simulation for grid graphs

For each 2 ≤ m,n ≤ 14, we run a program to simulate the probabilistic
zero-forcing process 1000 times on an m × n grid graph. Figure 1 shows
the average propagation time for 1000 trials for each pair (m,n) with 2 ≤
m,n ≤ 14.

ept 2 3 4 5 6 7 8 9 10 11 12 13 14
2 2.33 3.15 3.90 4.19 4.90 5.24 5.90 6.17 6.90 7.17 7.94 8.21 8.94
3 3.15 3.89 4.51 4.92 5.52 5.95 6.56 6.88 7.57 7.87 8.57 8.88 9.58
4 3.90 4.51 5.25 5.56 6.29 6.58 7.30 7.63 8.32 8.51 9.29 9.55 10.39
5 4.19 4.92 5.56 5.94 6.71 6.95 7.63 7.91 8.51 8.94 9.64 9.94 10.64
6 4.90 5.52 6.29 6.71 7.34 7.62 8.41 8.64 9.36 9.67 10.36 10.72 11.35
7 5.24 5.95 6.58 6.95 7.62 8.00 8.67 8.97 9.68 10.00 10.70 11.03 11.69
8 5.90 6.56 7.30 7.63 8.41 8.67 9.34 9.64 10.33 10.51 11.42 11.67 12.43
9 6.17 6.88 7.63 7.91 8.64 8.97 9.64 9.97 10.66 10.93 11.67 11.96 12.63
10 6.90 7.57 8.32 8.51 9.36 9.68 10.33 10.66 11.39 11.67 12.45 12.61 13.45
11 7.17 7.87 8.51 8.94 9.67 10.00 10.51 10.93 11.67 12.03 12.74 13.04 13.62
12 7.94 8.57 9.29 9.64 10.36 10.70 11.42 11.67 12.45 12.74 13.41 13.69 14.41
13 8.21 8.88 9.55 9.94 10.72 11.03 11.67 11.96 12.61 13.04 13.69 14.01 14.72
14 8.94 9.58 10.39 10.64 11.35 11.69 12.43 12.63 13.45 13.62 14.41 14.72 15.35

Figure 1: Simulated expected propagation times of m × n grid graphs for
2 ≤ m,n ≤ 14.

Remark 3.2. Experimentally, for the family of m× n rectangular graphs,
ept(Gm×n) appears to grow asymptotically as 1

2 (m+ n).

4 Regular graphs

In this section, we prove Theorem 1.2. Let k denote the diameter of G.
Suppose that u and v are two vertices in G with shortest distance equal
to k. Let Si be the set of vertices with distance exactly i from u, so that
S0 = u, v ∈ Sk, and Si = ∅ for i > k.

Lemma 4.1. For a d-regular graph G on n vertices, k ≤ 3n
d+1 .

Proof. For all 0 < i < k, |Si−1| + |Si| + |Si+1| > d, since Si is nonempty
and any vertex in Si has degree d but can only be connected to vertices in
Si−1, Si, or Si+1. Thus

n =

⌊ k
3 ⌋∑

i=0

(|S3i|+ |S3i+1|+ |S3i+2|) ≥ (d+ 1)

(⌊
k

3

⌋
+ 1

)
≥ (d+ 1)

k

3
,

implying k ≤ 3n
d+1 .
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Lemma 4.2. Let H be a star graph with n leaves, with its center blue and
all other vertices colored white. If t > 12 log(n+ 1), the blue vertex will
propagate to all leaves in t steps with probability at least 1− (0.97)t.

Proof. The proof is identical to that of Lemma 3.4 in [15].

We will now show the upper bound on expected propagation time for a
d-regular graph. More precisely, we prove the below lemma.

Lemma 4.3. For a d-regular graph G on n vertices,

ept(G) ≤ 318
log
(

(d+1)
3

)

d+ 1
· n+O(log n).

Proof. By a proof similar to Lemma 3.5 of [15], if there exists a vertex
u such that all vertices in G are at distance at most r from u, ept(G) ≤
20(r log n

r ) +O(log n). Taking r = 3n
d+1 finishes.

Now we construct a family of d-regular graphs with expected propagation

time Ω
(

log log d
d · n

)
. We assume that d ≥ 5.

Lemma 4.4. Assume that d+1 | n. Start with n
d+1 copies C1, C2, ..., C n

d+1

of Kd+1. For each copy Ci, designate two distinct vertices v(i,1), v(i,2) ∈ Ci

and delete the edge connecting v(i,1) and v(i,2). Then, for all 1 ≤ i ≤ n
d+1 ,

insert an edge connecting v(i,1) and v(i+1,2), where indices are taken mod
n

d+1 . Denote by G the resulting graph. Then ept(G) = Ω
(

log log d
d · n

)
.

To prove this theorem, we begin with the following lemma.

Lemma 4.5. Suppose that for some i, v(i−1,1) and v(i,2) are blue and v(i,1)
and v(i+1,2) are white. Then, given that v(i+1,2) remains white through the
entire process, the expected amount of time for vertex v(i,1) to be blue is
Ω(log log d).

Proof. Let p(b) be the probability, starting from a state in which v(i+1,1)

is white and there are b blue vertices in Ci, including v(i,2) but not v(i,1),
that in one time step at most 2b2 additional vertices are colored blue and
v(i,1) remains white.
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Each white vertex v ∈ Ci, v ̸= v(i,1) has an independent probability of

(
1− b

d

)b−1(
1− b+ 1

d

)
≥
(
1− b+ 1

d

)b

of remaining white in one unit of time, where the factor 1− b+1
d comes from

the fact that v(i,2) is connected to an additional blue vertex v(i−1,1) ∈ Ci−1.

Therefore, we have p(b) ≥
(
1− b

d

)b−1 · q(b), where the factor
(
1− b

d

)b−1

comes from the fact that each of the b − 1 blue vertices v ∈ Ci, v ̸= vi,2
has a probability b

d of forcing vi,1 blue, and q(b) is the probability that,
among d− b independent events that happen with probability at least 1−(
1− b+1

d

)b
, less than 2b2 events occur. Denote a random variable X for the

number of such events that occur. For d ≥ 2, 1 ≤ b ≤ 4
√
d we have

E[X] = (d− b)

(
1−

(
1− b+ 1

d

)b
)

≤ (d− b)

(
1−

(
1− b(b+ 1)

d

))

= (d− b)

(
b(b+ 1)

d

)

≤ b(b+ 1).

Furthermore,

Var [X] = (d− b)

(
1−

(
1− b+ 1

d

)b
)(

1− b+ 1

d

)b

So by Chebyshev’s inequality,

1− q(b) = Pr
[
X ≥ 2b2

]

≤ Pr
[
|X − E[X]| ≥ 2b2 − b(b+ 1)

]

≤ Var [X]

(b2 − b)2

=
(d− b)

(
1−

(
1− b+1

d

)b) (
1− b+1

d

)b

(b2 − b)2

≤
(d− b)

(
b(b+1)

d

) (
1− b+1

d

)b

(b2 − b)2

≤ b+ 1

b(b− 1)2
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so

p(b) ≥
(
1− b

d

)b−1(
1− b+ 1

b(b− 1)2

)

≥
(
1− b(b− 1)

d

)(
1− b+ 1

b(b− 1)2

)

≥ 1− b2

d
− 2b

b(b− 1)2

≥ 1− b2

b4
− 8

b2

≥ 1− 9

b2
.

This means that when b ≤ 4
√
d, we have p(b) ≥ 1− 9

b2 , so 1− p(b) ≤ 9
b2 .

We now use a similar argument as in Proposition 2.8 of [9]. Since starting
with log d ≤ b ≤ 4

√
d blue vertices and coloring at most 4b2 additional

vertices blue means there are at most 5b2 ≤ b3 blue vertices after the round
for b ≥ 5, the probability that there are at most b(3

r) blue vertices after r

rounds is at least
(
1−O( 1

(log d)2 )
)r
. Thus going from b ≤ log d blue vertices

to 4
√
d blue vertices requires that (log d)(3

r) ≥ 4
√
d, or r ≥ 1

4 log3

(
log d

log log d

)
=

Ω(log log d). Thus, starting from a state in which less than log d vertices are
blue, v(i,2) is blue, and vertices v(i,1) and v(i+1,2) are white, the expected

amount of time until at least 4
√
d vertices are blue or vertex v(i,1) is blue is

Ω(log log d).

We now finish the proof of 4.4.

Proof of Lemma 4.4. In order for all vertices in G to become blue, the
process described in Lemma 4.5 must occur at least n

2(d+1) − 1 times. The

expected amount of time for the process to occur once is Ω(log log d). Thus

for fixed d, we have ept(G) = Ω
(

log log d
d · n

)
.

The proof of Theorem 1.2 follows by Lemma 4.3 and Lemma 4.4.
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5 Hypercube graphs

In this section, we prove Theorem 1.3. We prove the following key lemma:

Lemma 5.1. Let G be an n-dimensional hypercube graph. At a given time
in the probabilistic zero forcing process, let S denote the set of blue vertices
in G, and let 0 ≤ k < n− 1 be the integer such that 2k ≤ |S| < 2k+1. Then
the expected amount of time steps to go from |S| blue vertices to at least

2k+1 blue vertices is at most 67n
(

1
n−k−1

)
.

Proof. The lemma can easily be checked by hand for n ≤ 2. We assume
n ≥ 3.

By the Edge Isoperimetric Inequality, there are at least |S|(n− log2 |S|) ≥
2k(n−k−1) edges between a white and a blue vertex. A white vertex that
is connected to d blue vertices has a probability of at least 1 − (n−1

n )d of
becoming colored blue, since, for each of these d edges, the probability that
propagation does not occur on that edge is at most 1− 1

n = n−1
n .

Let ci be the number of white vertices in G that are connected to exactly i
blue vertices. Then note that the expected number of white vertices colored

blue is at least the expected number of successes in

n∑

i=1

ci independent

trials in which for each i, ci trials have probability 1 −
(
n−1
n

)i
of success.

Among positive integers i ∈ [n],

(
1−(n−1

n )
i
)

i is minimized when i = n and
maximized when i = 1. Hence the expected number of successes among

these

n∑

i=1

ci independent trials, which we denote by µ, satisfies

µ =

n∑

i=1

ci

(
1−

(
n− 1

n

)i
)

=

n∑

i=1

ici ·

(
1−

(
n−1
n

)i)

i

≤
(
1−

(
n−1
n

))

1

(
n∑

i=1

ici

)

≤ 2k+1

n
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and

µ =

n∑

i=1

ci

(
1−

(
n− 1

n

)i
)

=
n∑

i=1

ici ·

(
1−

(
n−1
n

)i)

i

≥
(
1−

(
n−1
n

)n)

n
· 2k · (n− k − 1)

≥ e− 1

e
· 2k ·

(
n− k − 1

n

)

≥ 2(e− 1)

3e

for n ≥ 3 by the Edge Isoperimetric Inequality, noting that

n∑

i=1

ici is equal

to the number of edges between a blue vertex and a white vertex. While
there are 2k ≤ |S| < 2k+1 blue vertices, the probability that fewer than 1

2µ

white vertices are colored blue is at most e−
1
8µ ≤ e−

e−1
12e < 19

20 . Thus, the
probability that at least 1

2µ white vertices are colored blue is at least 1
20 .

The probability that there remain between 2k and 2k+1 blue vertices in

40 2k

µ/2 units of time is at most the probability that among 40 2k

µ/2 events

that each independently happen with probability 1
20 , fewer than

2k

µ/2 occur.

By the Chernoff bound, this probability is at most

p = e
− 1

2 (
1
2 )

2
(
2· 2k

µ/2

)
= e

− 1
2

(
2k

µ

)
≤ e−n ≤ 0.05

Therefore, if 2k ≤ |S| < 2k+1, with probability at least 0.95, after 40 2k

µ/2

units of time the number of blue vertices will be greater than 2k+1. We
conclude that the expected time to go from |S| blue vertices to at least 2k+1

blue vertices is at most

1

0.95
· 40 · 2k

µ/2
≤ 1

0.95
· 40 · e

e− 1
· n

n− k − 1
≤ 67

n

n− k − 1

as desired.
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Lemma 5.2. Let G be an n-dimensional hypercube graph. At a given time
in the probabilistic zero white vertices in G, and let 0 ≤ k < n − 1 be
the integer such that 2k < |S| ≤ 2k+1. Then the expected amount of time
steps to go from |S| white vertices to at most 2k white vertices is at most

67n
(

1
n−k−1

)
.

Proof. The proof proceeds similarly to the proof of Lemma 5.1. By the Edge
Isoperimetric Inequality, there are at least |S|(n− log2 |S|) ≥ 2k(n− k− 1)
edges between a white and a blue vertex.

Let ci be the number of white vertices in G that are connected to exactly i
blue vertices. Then note that the expected number of white vertices colored

blue is at least the expected number of successes in

n∑

i=1

ci independent trials

in which ci trials have probability 1 − (n−1
n )i of success. The expected

number of successes among these

n∑

i=1

ci independent trials, which we denote

by µ, satisfies e−1
2e ≤ µ ≤ 2k+1

n for n ≥ 1. While there are 2k < |S| ≤ 2k+1

white vertices, the probability that fewer than 1
2µ white vertices are colored

blue is at most e−
1
8µ < 19

20 . Thus, the probability that at least 1
2µ white

vertices are colored blue is at least 1
20 . The probability that there remain

between 2k and 2k+1 blue vertices in 40 2k

µ/2 units of time is at most the

probability that among 40 2k

µ/2 events that each independently happen with

probability 1
20 , fewer than

2k

µ/2 occur. This probability is at most 0.05 as in

Lemma 5.1.

Therefore, if 2k < |S| ≤ 2k+1, with probability at least 0.95, after 40 2k

µ/2

units of time the number of white vertices will be at most 2k. We conclude
that the expected time to go from |S| white vertices to at most 2k white

vertices is at most 1
0.95 · 40 · 2k

µ/2 ≤ 67 n
n−k−1 .

We are finally ready to prove Theorem 1.3.

Proof of Theorem 1.3. By linearity of expectation, the expected amount of
time, starting from 1 initial blue vertex, for there to be at least 2n−1 blue
vertices is at most the sum over i = 0, 1, . . . , n− 2 of the expected amount
of times to go from 2k ≤ |S| < 2k+1 blue vertices to at least 2k+1 blue
vertices. By Lemma 5.1, this sum is at most

Hu and Sun

130



n−2∑

k=0

67n · 1

n− k − 1
≤ 67n · (1 + log n).

Once there at least 2n−1 blue vertices, there are at most 2n−1 white vertices.
The expected amount of time to go from at most 2n−1 white vertices to at
most one white vertex is, by Lemma 5.2, at most

n−2∑

k=0

67n · 1

n− k − 1
≤ 67n · (1 + log n).

When there is at most one white vertex remaining, this vertex has a prob-
ability of 1−

(
n−1
n

)n ≥ 1− 1
e of being colored blue at any time step, so the

expected amount of time steps until it is blue is e
e−1 . We conclude that the

expected propagation time of the entire hypercube is O(n log n).

5.1 Simulation for hypercube graphs

Remark 5.3. Experimentally, for this family of graphs, the expected prop-
agation time appears to approximate n+ 0.8 for small n.

For each 1 ≤ n ≤ 16, we run a program to simulate the probabilistic zero-
forcing process 1000 times on a hypercube graph with dimension n and 2n

vertices, starting from a single blue vertex. Figure 2 shows the average
propagation time over 1000 trials for each value of n.

n 1 2 3 4 5 6 7 8
ept 1.00 2.32 3.51 4.68 5.78 6.79 7.78 8.79

9 10 11 12 13 14 15 16
9.78 10.81 11.78 12.82 13.88 14.80 15.80 16.79

Figure 2: Simulated expected propagation times of hypercube graphs of
dimension n, 1 ≤ n ≤ 16.
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