BULIETIN of The
 Volume 95 June 2022

 INSTITIUIE: Of

 INSTITIUIE: Of GOW:HWHORLES and its APPIBLIIONS

Editors-in-Chief:

Marco Buratti, Donald Kreher, Ortrud Oellermann, Tran van Trung

Duluth, Minnesota, U.S.A.

ISSN: 2689-0674 [Online] ISSN: 1183-1278 [Print]

Some matrix constructions of L_{2}-type Latin square designs

Shyam Saurabh*1 and Kishore Sinha ${ }^{2}$
${ }^{1}$ Ranchi University, Ranchi, India
shyamsaurabh785@gmail.com
${ }^{2}$ Formerly at Birsa Agricultural University, Ranchi, India
kishore.sinha@gmail.com

Abstract. Several methods of construction of L_{2}-type Latin square designs by various authors are scattered over literature, see Clatworthy [2] and elsewhere. We have constructed L_{2}-type Latin square designs from combinatorial matrices including Hadamard matrices, Generalized Bhaskar Rao designs, circulant matrices, mutually orthogonal Latin squares and others. These constructions yield solutions of all L_{2}-type Latin square designs listed in Clatworthy [2] except one.

1 Introduction

Several methods of constructions of L_{2}-type Latin square design may be found in Dey [3, 4], Raghavarao [7] and Raghavarao and Padgett [8]. By using matrix approaches, solutions of all the L_{2}-type Latin square designs listed in Clatworthy [2] are obtained except one. Some of the series obtained here may be new as these are not found in Dey [3,4], Raghavarao [7] and Raghavarao and Padgett [8]. This paper is in sequel to the paper by Saurabh and Singh [10]. We recall some relevant definitions in the context of the paper.

A balanced incomplete block design (BIBD) or a $2-(v, k, \lambda)$ design is an arrangement of v treatments in b blocks, each of size $k(<v)$ such that

[^0]every treatment occurs in exactly r blocks and any two distinct treatments occur together in λ blocks. v, b, r, k, λ are called parameters of the BIBD. A BIBD is symmetric if $v=b$ and is self-complementary if $v=2 k$.

An $n \times n$ matrix $H=\left[H_{i j}\right]$ with entries $H_{i j}$ as ± 1 is called a Hadamard matrix if $H H^{\prime}=H^{\prime} H=n I_{n}$, where H^{\prime} is the transpose of H and I_{n} is the identity matrix of order n. A Hadamard matrix is in normalized form if its first row and first column contain only +1 s.

A generalized Bhaskar Rao design GBRD $(v, b, r, k, \lambda ; G)$ over a group G is a $v \times b$ array with entries from $G \cup\{0\}$ such that:

1. Every row has exactly r group element entries;
2. Every column has exactly k group element entries;
3. For every pair of distinct rows $\left(x_{1}, x_{2}, \ldots, x_{b}\right)$ and $\left(y_{1}, y_{2}, \ldots, y_{b}\right)$, the multi-set $\left\{x_{i} y_{i}^{-1}: i=1,2, \ldots, b ; x_{i}, y_{i} \neq 0\right\}$ contains each group element exactly $\lambda /|G|$ times.

When $|G|=2$, such a design is a Bhaskar Rao design. A generalized Bhaskar Rao design $\operatorname{GBRD}(v, b, r, k, \lambda ; G)$ with $v=b$ and $r=k$ is also known as a balanced generalized weighing matrix $\operatorname{BGW}(v, k, \lambda ; G)$. A generalized Hadamard matrix $\mathrm{GH}(\lambda, g)$ over a group G of order g is a balanced generalized weighing matrix with $v=b=k=r=\lambda$. For details we refer to Ionin and Kharghani [6], Abel et al. [1]) and Tonchev [11].

A Latin square of order n is an $n \times n$ array on n symbols such that each of the n symbols occurs exactly once in each row and each column. The join of two Latin squares $A=\left[a_{i j}\right]_{1 \leq i, j \leq n}$ and $B=\left[b_{i j}\right]_{1 \leq i, j \leq n}$ is the $n \times n$ array whose (i, j)-th entry is the ordered pair $\left(a_{i j}, b_{i j}\right)$. Two Latin squares are orthogonal if the join of A and B contains every ordered pair exactly once. A set of Latin squares are mutually orthogonal Latin squares (MOLS) if they are pairwise orthogonal.

Let $v=n^{2}$ treatments be arranged in an $n \times n$ array. An L_{2}-type Latin square design is an arrangement of the $v=n^{2}$ treatments in b blocks each of size k such that:

1. Every treatment occurs at most once in a block;
2. Every treatment occurs in r blocks;
3. Every pair of treatments, which are in the same row or in the same column of the $n \times n$ array, occur together in λ_{1} blocks; while every other pair of treatments occur together in λ_{2} blocks.

The parameters of the L_{2}-type Latin square design are $v=n^{2}, b, r, k, \lambda_{1}$ and λ_{2} and they satisfy the relations: $b k=v r ; 2(n-1) \lambda_{1}+(n-1)^{2} \lambda_{2}=$ $r(k-1)$. Let N be the incidence matrix of an L_{2}-type Latin square design with $v=n^{2}$ treatments then the structure of $N N^{\prime}$ is:

$$
N N^{\prime}=\left[\begin{array}{cccc}
\left.\left(r-\lambda_{1}\right) I_{n}+\lambda_{1} J_{n}\right) & \left.\left(\lambda_{1}-\lambda_{2}\right) I_{n}+\lambda_{2} J_{n}\right) & \cdots & \left.\left(\lambda_{1}-\lambda_{2}\right) I_{n}+\lambda_{2} J_{n}\right) \\
\left.\left(\lambda_{1}-\lambda_{2}\right) I_{n}+\lambda_{2} J_{n}\right) & \left.\left(r-\lambda_{1}\right) I_{n}+\lambda_{1} J_{n}\right) & \cdots & \left.\left(\lambda_{1}-\lambda_{2}\right) I_{n}+\lambda_{2} J_{n}\right) \\
\vdots & \vdots & \ddots & \vdots \\
\left.\left(\lambda_{1}-\lambda_{2}\right) I_{n}+\lambda_{2} J_{n}\right) & \left.\left(\lambda_{1}-\lambda_{2}\right) I_{n}+\lambda_{2} J_{n}\right) & \cdots & \left.\left(r-\lambda_{1}\right) I_{n}+\lambda_{1} J_{n}\right)
\end{array}\right] .
$$

Notations: I_{n} is the identity matrix of order $n, J_{v \times b}$ is the $v \times b$ matrix all of whose entries are $1, J_{v \times v}=J_{v},[A \mid B]$ is the juxtaposition of two matrices A and $B ; A \otimes B$ is the Kronecker product of two matrices A and B and LSX numbers are from Clatworthy [2].

2 Matrix constructions

Method I: From I and J matrices.

The following Theorem is the same as the Theorem 4.4.18 of Dey [4, p. 110]. Here the proof is given using a matrix approach.

Theorem 2.1. There exists a symmetric L_{2}-type Latin square design with parameters:

$$
\begin{equation*}
v=b=n^{2}, r=k=2 n-1, \lambda_{1}=n, \lambda_{2}=2 \tag{1}
\end{equation*}
$$

Proof. $N=I_{n} \otimes J_{n}+(J-I)_{n} \otimes I_{n}$ is the incidence matrix of the symmetric L_{2}-type Latin square design with parameters (1).

Theorem 2.2. There exists a symmetric L_{2}-type Latin square design with parameters:

$$
\begin{equation*}
v=b=n^{2}, r=k=2(n-1), \lambda_{1}=(n-2), \lambda_{2}=2 . \tag{2}
\end{equation*}
$$

Proof. $N=I_{n} \otimes(J-I)_{n}+(J-I)_{n} \otimes I_{n}$ is the incidence matrix of the symmetric L_{2}-type Latin square design with parameters (2)

Theorem 2.3. There exists an L_{2}-type Latin square design with parameters:

$$
\begin{array}{lll}
v=n^{2}, & b=2 n^{2}, & r=2(n-1), \\
k=n-1, & \lambda_{1}=n-2, & \lambda_{2}=0 . \tag{3}
\end{array}
$$

Proof. $N=\left[I_{n} \otimes(J-I)_{n} \mid(J-I)_{n} \otimes I_{n}\right]$ is the incidence matrix of the L_{2}-type Latin square design with parameters (3).

Method II: From 2-($v, \boldsymbol{k}, \boldsymbol{\lambda})$ designs and Hadamard Matrices.

Theorem 2.4. The existence of a 2-($v, k, \lambda)$ design implies the existence of an L_{2}-type Latin square design with parameters:

$$
\begin{array}{ll}
v^{*}=v^{2}, & b^{*}=b^{2},
\end{array} \quad r^{*}=r^{2}, ~ 子 ~ k^{*}=k^{2}, \quad \lambda_{1}=\lambda r, \quad \lambda_{2}=\lambda^{2} .
$$

Proof. Let $N_{v \times b}$ be the incidence matrix of a $2-(v, k, \lambda)$ design. Since the inner product of any two distinct rows of the $2-(v, k, \lambda)$ design is λ, $N_{v \times b} \otimes N_{v \times b}$ is the incidence matrix of L_{2}-type Latin square design with parameters (4)

The following Theorem is the same as the Theorem 4.4.17 of Dey [4, p. 109]. Here the proof is given using matrix approach.

Theorem 2.5. The existence of a 2-($v, k, \lambda)$ design implies the existence of an L_{2}-type Latin square design with parameters:

$$
\begin{array}{lll}
v^{*}=v^{2}, & b^{*}=2 v b, & r^{*}=2 r \\
k^{*}=k, & \lambda_{1}=\lambda, & \lambda_{2}=0 \tag{5}
\end{array}
$$

Proof. Let be the incidence matrix of a $2-(v, k, \lambda)$ design. Then

$$
N=\left[I_{v} \otimes M_{v \times b} \mid M_{v \times b} \otimes I_{v}\right]
$$

is the incidence matrix of the L_{2}-type Latin square design with parameters(5)

The following Theorem is the same as the Theorem 4.4.16 of Dey [4, p. 109]. Here the proof is given using matrix approach.

L_{2}-TYPE LATIN SQUARE DESIGNS

Theorem 2.6. The existence of a $2-(v, k, \lambda)$ design implies the existence of an L_{2}-type Latin square design with parameters:

$$
\begin{array}{lll}
v^{*}=v^{2}, & b^{*}=2 b, & r^{*}=2 r \\
k^{*}=v k, & \lambda_{1}=r+\lambda, & \lambda_{2}=2 \lambda \tag{6}
\end{array}
$$

Proof. Let M be the incidence matrix of a $2-(v, k, \lambda)$ design. Let $R_{i}=$ $(\ldots 11 \ldots 000 \ldots 1 \ldots), i \leq i \leq v$ be the $i^{t h}$ row of M with 1 at $i_{1}^{t h}, i_{2}^{t h}, i_{\ell}^{t h}$ positions and 0 elsewhere. Then corresponding to each R_{i} we form a $v \times b$ matrix Γ_{i} whose $i_{1}^{t h}$, $i_{2}^{t h}, i_{\ell}^{t h}$ columns have entries ones and zero elsewhere. Since each row sum of M is r and any pair of distinct rows have 1 at λ positions we have: $\Gamma_{i} \Gamma_{j}^{\prime}=\left\{\begin{array}{ll}r J_{v}, & i=j \\ \lambda J_{v}, & i \neq j\end{array}\right.$. Then

$$
\left[\begin{array}{cc}
M & \Gamma_{1} \\
M & \Gamma_{2} \\
\vdots & \vdots \\
M & \Gamma_{v}
\end{array}\right]
$$

represents an L_{2}-type Latin square design with parameters (6)

Example 1: Consider a 2- $(4,2,1)$ design whose incidence matrix M is:

$$
M=\left[\begin{array}{llllll}
1 & 0 & 1 & 0 & 1 & 0 \\
1 & 0 & 0 & 1 & 0 & 1 \\
0 & 1 & 1 & 0 & 0 & 1 \\
0 & 1 & 0 & 1 & 1 & 0
\end{array}\right]
$$

Then using Theorem 2.6 the incidence matrix of LS98: $v=16, b=12$, $r=6, k=8, \lambda_{1}=4, \lambda_{2}=2$ is given as:

Theorem 2.7. The existence of a Hadamard matrix of order $4 t$ and a selfcomplementary $2-(v, k, \lambda)$ design satisfying $(4 t-1) \lambda=(2 t-1) r$ and $4 t v a$ perfect square implies the existence of an L_{2}-type Latin square design with parameters:

$$
\begin{array}{ll}
v^{*}=4 t v, & b^{*}=(4 t-1) b, \tag{7}\\
k^{*}=4 t k, & \lambda_{1}=(4 t-1) \lambda, \\
\left.\lambda_{2}=2 t r-1\right) r \\
\end{array}
$$

Proof. Let N be the incidence matrix of a self-complementary $2-(v, k, \lambda)$ design and H be a $4 t \times(4 t-1)$ matrix obtained by deleting the first column of a normalized Hadamard matrix of order $4 t$. Then replacing 1 by N and -1 by $J-N$ in H, we obtain the incidence matrix of an L_{2}-type Latin square design with parameters (7).

Example 2: For $t=2$ and a $2-(8,4,3)$ design, Theorem 2.7 yields $L_{2^{-}}$ type Latin square design with parameters: $v=64, b=98, r=49, k=32$, $\lambda_{1}=21, \lambda_{2}=25$.

Method III: From mutually orthogonal Latin squares.

Here we define $B_{i}^{j}, 1 \leq i, j \leq q$, as a $q \times q$ matrix whose $j^{t h}$ row is $(\cdots 011 \cdots 1)$ with 0 at the (j, i)-th position, 1 elsewhere and the entries of remaining rows are zero. Then
(i) $B_{i}^{j}\left(B_{i}^{k}\right)^{\prime}=(q-1)$ at (j, k)-th position irrespective of j and k;
(ii) For $i \neq j$; $B_{i}^{k}\left(B_{j}^{\ell}\right)^{\prime}=(q-1)$ at (k, ℓ)-th position irrespective of k and ℓ.

Example 3: For $q=4, B_{1}^{1}=\left[\begin{array}{cccc}0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0\end{array}\right] ; B_{1}^{2}=\left[\begin{array}{cccc}0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0\end{array}\right]$.
Theorem 2.8. There exists an L_{2}-type Latin square design with parameters:

$$
\begin{array}{lll}
v=q^{2}, & b=q^{2}(q-1), & r=(q-1)^{2} \tag{8}\\
k=q-1, & \lambda_{1}=0, & \lambda_{2}=q-2
\end{array}
$$

where q is a prime or prime power.

Proof. Consider a set of $q \times q$ matrices $S=\left\{B_{i}^{j}: 1 \leq i, j \leq q\right\}$. Let GF $(q)=$ $\{1,2,3, \ldots, q\}$ be a finite field of order q after renaming the elements. It is known, see Furino et al. [5, p. 10] that there exist $q-1$ MOLS of order q.

Let

$$
L_{i}=\left[\begin{array}{cccc}
1 & 2 & \cdots & q \\
q & 1 & \cdots & q-1 \\
\vdots & \vdots & \ddots & \vdots \\
2 & 3 & \cdots & 1
\end{array}\right]
$$

be one of the $q-1$ MOLS. Corresponding to each L_{i} we form a $q \times q$ matrix N_{i} as:

$$
N_{i}=\left[\begin{array}{cccc}
B_{1}^{1} & B_{1}^{2} & \cdots & B_{1}^{q} \\
B_{2}^{q} & B_{2}^{1} & \cdots & B_{2}^{q-1} \\
\vdots & \vdots & \ddots & \vdots \\
B_{q}^{2} & B_{q}^{3} & \cdots & B_{q}^{1}
\end{array}\right]
$$

Then $N=\left[N_{1}\left|N_{2}\right| \cdots \mid N_{q-1}\right]$ represents an L_{2}-type Latin square design with parameters (8).

Example 4: Consider a set of MOLS of order 4:

$$
M=\left[\begin{array}{llll|llll|llll}
1 & 2 & 3 & 4 & 1 & 2 & 3 & 4 & 1 & 2 & 3 & 4 \\
4 & 3 & 2 & 1 & 3 & 4 & 1 & 2 & 2 & 1 & 4 & 3 \\
2 & 1 & 4 & 3 & 4 & 3 & 2 & 1 & 3 & 4 & 1 & 2 \\
3 & 4 & 1 & 2 & 2 & 1 & 4 & 3 & 4 & 3 & 2 & 1
\end{array}\right]
$$

Then

$$
N=\left[\begin{array}{llll|llll|llll}
B_{1}^{1} & B_{1}^{2} & B_{1}^{3} & B_{1}^{4} & B_{1}^{1} & B_{1}^{2} & B_{1}^{3} & B_{1}^{4} & B_{1}^{1} & B_{1}^{2} & B_{1}^{3} & B_{1}^{4} \\
B_{2}^{4} & B_{2}^{3} & B_{2}^{2} & B_{2}^{1} & B_{2}^{3} & B_{2}^{4} & B_{2}^{1} & B_{2}^{2} & B_{2}^{2} & B_{2}^{1} & B_{2}^{4} & B_{2}^{3} \\
B_{3}^{2} & B_{3}^{1} & B_{3}^{4} & B_{3}^{3} & B_{3}^{4} & B_{3}^{3} & B_{3}^{2} & B_{3}^{1} & B_{3}^{3} & B_{3}^{4} & B_{3}^{1} & B_{3}^{2} \\
B_{4}^{3} & B_{4}^{4} & B_{4}^{1} & B_{4}^{2} & B_{4}^{2} & B_{4}^{1} & B_{4}^{4} & B_{4}^{3} & B_{4}^{4} & B_{4}^{3} & B_{4}^{2} & B_{4}^{1}
\end{array}\right]
$$

represents LS20: $v=16, b=48, r=9, k=3, \lambda_{1}=0, \lambda_{2}=2$.
Method IV: From $E_{i}, 1 \leq i \leq n$, and I matrices.

On page 229 of [12] van Lint and Wilson used E_{i}-matrices, $1 \leq i \leq 3$, in the construction of a $2-(9,3,1)$ design where E_{i} denotes a 3 by 3 matrix with ones in column i and zero elsewhere. Here we have used such types of matrices in the construction of L_{2}-type Latin square designs.

Theorem 2.9. There exists an L_{2}-type Latin square design with parameters:

$$
\begin{array}{ll}
v=n^{2}, & b=2 n, \\
k=n, & \lambda_{1}=1, \tag{9}
\end{array} \lambda_{2}=0,
$$

Proof. Let $E_{i}, 1 \leq i \leq n$, denote an $n \times n$ matrix whose $i^{t h}$ column contains only +1 s and 0 elsewhere. Then

$$
N=\left[\begin{array}{cc}
E_{1} & I_{n} \\
E_{2} & I_{n} \\
\vdots & \vdots \\
E_{n} & I_{n}
\end{array}\right]
$$

represents the incidence matrix of the L_{2}-type Latin square design with parameters (9).

Method V: From generalized Bhaskar Rao designs over EA(g).

As $\operatorname{GH}(g, \lambda)$ is a special case of $\operatorname{GBRD}(v, b, r, k, \lambda ; G)$, the following Theorem follows from the method in Section 2 of Sarvate and Seberry [9] with slight modification.

Theorem 2.10. There exists an L_{2}-type Latin square design with parameters:

$$
\begin{array}{lll}
v^{*}=g^{2}, & b^{*}=g[t(g-1)+2 s], & r^{*}=t(g-1)+2 s, \\
k^{*}=g, & \lambda_{1}=s, & \lambda_{2}=t, \tag{10}
\end{array}
$$

where g is a prime or prime power.

Proof. Let M be a $g \times(g-1)$ matrix obtained by deleting the first column of a normalized Generalized Hadamard Matrix, $\mathrm{GH}(g, g)$ over elementary abelian group, $\mathrm{EA}(g)$. Then replacing the elements of an $\mathrm{EA}(g)$ by the corresponding right regular $g \times g$ permutation matrices and 0 entry by $g \times g$ null matrix in M we obtain an L_{2}-type Latin square design with parameters:

$$
\begin{array}{lll}
v^{*}=g^{2}, & b^{*}=g(g-1), & r^{*}=g-1 \\
k^{*}=g, & \lambda_{1}=0, & \lambda_{2}=1 . \tag{11}
\end{array}
$$

Let N_{1} be the matrix obtained by taking t copies of the incidence matrix of an $L_{2^{-}}$type Latin square design with parameters (11). Let $N_{2}=s$ copies of the block matrix

$$
\left[\begin{array}{c}
E_{1} \\
E_{2} \\
\vdots \\
E_{g}
\end{array}\right]
$$

and $N_{3}=s$ copies of the block matrix $\left[\begin{array}{c}I_{g} \\ I_{g} \\ \vdots \\ I_{g}\end{array}\right]$ arranged column-wise where
$E_{i}, 1 \leq i \leq g$, denote a $g \times g$ matrix whose $i^{t h}$ column contains only +1 s and 0 elsewhere. Then $N=\left[N_{1}\left|N_{2}\right| N_{3}\right]$ represents an L_{2}-type Latin square design with generalized parameters (10).

3 Tables of designs

This section contains Tables 1 and 2 of L_{2}-type Latin square designs listed in Clatworthy [2] constructed using the present Theorems. Designs obtained by taking m copies or the complement of a design are not included in the Tables.

Table 1: Symmetric L_{2}-type Latin square designs

No.	LS: $\left(v, k, \lambda_{1}, \lambda_{2}\right)$	Source
1	LS26: $(9,4,1,2)$	Th. $2.2 ; n=3$
2	LS83: $(16,7,4,2)$	Th. $2.1 ; n=4$
3	LS101:(25, 8, 3, 2)	Th. $2.2 ; n=5$
4	LS117:(25, 9, 5, 2)	Th. $2.1 ; n=5$
5	LS118:(49, 9, 3, 1)	Th. $2.4 ; 2-(7,3,1)$ design
6	LS136:(36, 10, 4, 2)	Th. $2.2 ; n=6$

4 Conclusion

In this paper we have constructed some series of L_{2}-type Latin square designs using matrix approaches. These series yield patterned constructions of all the L_{2}-type Latin square designs listed in Clatworthy [2] except one. The series (10)) for a prime g may be found in Saurabh and Singh [10]. The series (11)) may be found in Dey [4, p. 109]. Here the proof is given using matrix approach. The series (2)), (3)), (4)), (7)), (8)) and (9)) obtained above may be new as these are not found in Dey [3, 4], Raghavarao [7] and Raghavarao and Padgett [8].

Acknowledgement

The authors are thankful to the referee for valuable suggestions in improving the presentation of the paper.

References

[1] R.J.R. Abel, D. Combe, G. Price and W.D. Palmer, Existence of generalized Bhaskar Rao designs with block size 3, Discrete Math., 309 (2009), 4069-4078.
[2] W.H. Clatworthy, Tables of two-associate-class partially balanced designs, National Bureau of Standards (U.S.), Applied Mathematics, Series 63, 1973.
[3] A. Dey, Theory of block designs, Wiley Eastern, New Delhi, 1986.

Table 2: Asymmetric L_{2}-type Latin square designs

No.	LS: $\left(v, r, k, b, \lambda_{1}, \lambda_{2}\right)$	Source
1	LS1: $(9,4,2,18,1,0)$	Th. 2.3; $n=3$
2	LS3: (16, 6, 2, 48, 1, 0)	Th. 2.5; 2-(4, 2, 1) design
3	LS4: $(16,9,2,72,0,1)$	Unknown
4	LS5: $(25,8,2,100,1,0)$	Th. 2.5; 2-(5, 2, 1) design
5	LS6: $(36,10,2,180,1,0)$	Th. 2.5; 2-(6, 2, 1) design
6	LS7: $(9,2,3,6,1,0)$	Th. 2.9; $n=3$
7	LS12: $(9,6,3,18,1,2)$	Saurabh and Singh [10]
8	LS13: (9, 8, 3, 24, 1, 3)	Saurabh and Singh [10]
9	LS14: $(9,10,3,30,2,3)$	Saurabh and Singh [10]
10	LS15: $(9,10,3,30,1,4)$	Saurabh and Singh [10]
11	LS16: $(16,6,3,32,2,0)$	Th. 2.3; $n=4$
12	LS20: (16, 9, 3, 48, 0, 2)	Th. 2.8; $q=4$
13	LS23: $(36,10,3,120,2$,	Th. 2.5; 2-(6, 3, 2) design
14	LS24: (49, 6, 3, 98, 1, 0)	Th. 2.5; 2-(7, 3, 1) design
15	LS25: (81, 8, 3, 216, 1, 0)	Th. 2.5; 2-(9, 3, 1) design
16	LS28: (16, 2, 4, 8, 1, 0)	Th. 2.9; $n=4$
17	LS36: $(16,3,4,12,0,1)$	Th. 2.10; GH (4, 4) ; s=0,t=1
18	LS37: $(16,7,4,28,2,1)$	Th. 2.10; GH (4, 4) ; s=2,t=1.
19	LS39: (16, 9, 4, 36, 3, 1)	Th. 2.4; 2-(4, 2, 1) design
20	LS42: (16, 8, 4, 32, 1, 2)	Th. 2.10; GH $(4,4) ; s=1, t=2$
21	LS45: $(25,8,4,50,3,0)$	Th. 2.3; $n=5$
22	LS47: $(169,8,4,338,1$,	Th. 2.5; 2-(13, 4, 1) design
23	LS48: (256 10, 4, 640, 1, 0)	Th. 2.5; 2-(16, 4, 1) design
24	LS51: $(25,2,5,10,1,0)$	Th. 2.9; $n=5$
25	LS61: $(25,4,5,20,0,1)$	Saurabh and Singh [10]
26	LS62: ($25,8,5,40,2,1)$	Saurabh and Singh [10]
27	LS63: $(25,10,5,50,3,1)$	Saurabh and Singh [10]
28	LS66: $(25,10,5,50,1,2)$	Saurabh and Singh [10]
29	LS67: (36, 10, 5, 72, 4, 0)	Th. 2.3; $n=6$
30	LS70: (121, 10, 5, 242, 2, 0)	Th. 2.5; 2-(11, 5, 2) design
31	LS71: (441, 0, 5, 442, 1, 0)	Th. 2.5; 2-(21,5,1) design
32	LS74: $(36,2,6,12,1,0)$	Th. 2.9; $n=6$
33	LS84: $(49,2,7,14,1,0)$	Th. 2.9; $n=7$
34	LS97: (49, 10, 7, 70, 2, 1)	Saurabh and Singh [10]
35	LS98: (16, 6, 8, 12, 4, 2)	Th. 2.6; 2-(4, 2, 1) design
36	LS100: (16, 9, 8, 18, 3, 5)	Th. 2.7; H_{4} and 2-(4, 2, 1) design
37	LS102: (64, 2, 8, 16, 1, 0)	Th. 2.9; $n=8$
38	LS119: (81, 2, 9, 18, 1, 0)	Th. 2.9; $n=9$
39	LS135: (25, 8, 10, 20, 5, 2)	Th. 2.6, 2-($5,2,1)$ design
40	LS137: (100, 2, 10, 20, 1, 0)	Th. 2.9; $n=10$

[4] A. Dey, Incomplete block designs, Hindustan Book Agency, New Delhi, 2010.
[5] S. Furino, Y. Miao and J. Yin, Frames and resolvable designs: Uses constructions and existence, CRC Press, Boca Raton, 1996.
[6] Y.J. Ionin and H. Kharaghani, Balanced generalized weighing matrices and conference matrices, in "Handbook of Combinatorial designs, Second edition", C.J. Colbourn and J.H. Dinitz, eds., Chapman \& Hall/ CRC, New York, pp. 306-313, 2007.
[7] D. Raghavarao, Constructions and Combinatorial Problems in Design of Experiments, John Wiley, 1971.
[8] D. Raghavarao and L.V. Padgett, Block designs: Analysis, combinatorics and applications, Series on Applied Mathematics, 17, World Scientific, 2005.
[9] D.G. Sarvate and J. Seberry, Group divisible designs, GBRSDS and generalized weighing matrices, Util. Math., 54 (1998), 157-174.
[10] S. Saurabh. and M.K. Singh, A note on the construction of Latin square type designs, Comm. Statist. Theory Methods, (2020).
https://doi.org/10.1080/03610926.2020.1734837
[11] V.D. Tonchev, Generalized weighing matrices and self-orthogonal codes, Discrete Math., 309 (2009), 4697-4699.
[12] J.H. van Lint and R.M. Wilson A Course in Combinatorics. Cambridge University Press, (2001).

[^0]: * Corresponding author.

 AMS (MOS) Subject Classifications: 05B05, 62K10
 Key words and phrases: L_{2}-type Latin square designs; Balanced incomplete block designs; Hadamard Matrices; Generalized Bhaskar Rao designs; Mutually orthogonal Latin squares

