Editors-in-Chief:

Marco Buratti, Donald Kreher, Ortrud Oellermann, Tran van Trung

Duluth, Minnesota, U.S.A.

ISSN: 2689-0674 [Online] ISSN: 1183-1278 [Print)

A note on the Buratti-Horak-Rosa conjecture about hamiltonian paths in complete graphs

Adrián Vázquez-Ávila
Subdirección de Ingeniería y Posgrado Universidad Aeronáutica en Querétaro, México
adrian.vazquez@unaq.mx

Abstract

The conjecture posed by Buratti, Horak and Rosa states that a (multiset) list L of $v-1$ positive integers not exceeding $\lfloor v / 2\rfloor$ is the list of edge-lengths of a suitable Hamiltonian path of the complete graph with vertex-set $\{0,1, \ldots, v-1\}$ if and only if for every divisor d of v, the number of multiples of d appearing in L is at most $v-d$. A list L is called realizable if there exists such Hamiltonian path P of the complete graph with $|L|+1$ vertices whose edge-lengths is the given list L. If the initial and the final vertices in P are 0 and $v-1$, respectively, then P is called perfect.

In this note, we show some properties of some perfect linear realizations. Also, we present a new operation over well-known linear realizations. For example, we give a linear realizations of the lists $\left\{1^{a}, 2^{b}, 4^{c}\right\}$, where $a, c \geq 1$ and $b \geq 3$ integers, $\left\{1^{a}, 2^{b}, 4^{2 c}, 8^{d}\right\}$, for all $a, d \geq 1, b \geq 3$ and $c \geq 2$ integers, and $\left\{1^{a}, 2^{b}, 4^{c}, 8^{d}\right\}$, for all $a, d \geq 1, b \geq 3$ and $c \geq 8$ integers.

1 Introduction

Throughout the paper, K_{p} will denote the complete graph on p vertices, labeled by the integers of the set $\{0,1, \ldots, p-1\}$. For the basic terminology on graphs we refer to [1] and for basic facts about the Buratti-Horak-Rosa

AMS (MOS) Subject Classifications: 05C35
Key words and phrases: Linear realization, perfect linear realizations, even-odd extensions, k-extensions
conjecture we refer to [10]. The length of the edge $x y$, where $x, y \in V\left(K_{p}\right)$ is given by

$$
\ell(x, y)=\min \{|y-x|, p-|y-x|\}
$$

Given a path $P=\left(x_{0}, x_{1}, \ldots, x_{k}\right)$, the list of edge-lengths of P is the list $\ell(P)$ of the lengths (taken with their respective multiplicities) of all the edges of P. Hence, if a list L consists of $a_{1} 1 s, a_{2} 2 s, \ldots, a_{t} t s$, then we write $L=\left\{1^{a_{1}}, 2^{a_{2}}, \ldots, t^{a_{t}}\right\}$ and $|L|=\sum_{i=1}^{t} a_{i}$. The set $U_{L}=\left\{i: a_{i}>0\right\} \subseteq L$ is called the underlying set of L.

The following conjecture was proposed in a private communication by Buratti to Rosa in 2007:

Conjecture 1.1 (M. Buratti). For any prime $p=2 n+1$ and any list L of $2 n$ positive integers not exceeding n, there exists a Hamiltonian path P of K_{p} with $\ell(P)=L$.

Talking with Professor Buratti, the origin of this problem comes from the study of dihedral Hamiltonian cycle decompositions of the cocktail party graph (see comments before Corollary 3.19 in [2]).

Buratti's conjecture is almost trivially true in the case when $\left|U_{L}\right|=1$. On the other hand, the case of exactly two distinct edge-lengths has been solved independently by Dinitz and Janiszewski [4] and Horak and Rosa [5]. Using a computer, Meszka has verified the validity of Buratti's conjecture for all primes ≤ 23. Monopoli [6] showed that the conjecture is true when all the elements of the list L appear exactly twice.

In [5] Horak and Rosa proposed a generalization of Buratti's conjecture, which has been restated in an easier way in [9] as follows:

Conjecture 1.2 (P. Horak and A. Rosa). Let L be a list of $v-1$ positive integers not exceeding $\lfloor v / 2\rfloor$. Then there exists a Hamiltonian path P of K_{v} such that $\ell(P)=L$ if and only if the following condition holds:

> for any divisor d of v, the number of multiples of d appearing in L does not exceed $v-d$.

The case of exactly three distinct edge-lengths has been solved when the underlying set is $U_{L}=\{1,2,3\}$ in [3], when U_{L} is one of the sets

$$
\{1,2,5\},\{1,3,5\},\{2,3,5\}
$$

in [9], and when $U_{L}=\{1,3,4\}$ or $U_{L}=\{2,3,4\}$ in [8]. In [10] the authors give a complete solution when $U_{L}=\{1,2, t\}$, where $t \in\{4,6,8\}$, and when $L=\left\{1^{a}, 2^{b}, t^{c}\right\}$ with $t \geq 4$ an even integer and $a+b \geq t-1$. The case with four distinct edge-lengths for which the conjecture has been shown to be true is when $U_{L}=\{1,2,3,4\}$ or $U_{L}=\{1,2,3,5\}$, see [6] and [10]. Recently, Ollis et al. [8] proved some partial results in which $U_{L}=\{x, y, x+y\}$, $U_{L}=\{1,2,4, \ldots, 2 x\}$ and $U_{L}=\{1,2,4, \ldots, 2 x, 2 x+1\} ;$ many other lists were considered, see [8].

A cyclic realization of a list L with $v-1$ elements each from the set $\{1,2, \ldots,\lfloor v / 2\rfloor\}$ is a Hamiltonian path P of K_{v} such that the multiset of edge-lengths of P equals L. Hence, it is clear that the Conjecture 1.2 can be formulated as follow: every such a list L has a cyclic realization if and only if condition $(1,1)$ is satisfied.

Example 1. The path $P=(0,1,2,3,6,4,5,7)$ is a cyclic realization of the list $L=\left\{1^{4}, 2^{2}, 3\right\}$.

A linear realization of a list L with $v-1$ positive integers not exceeding $v-1$ is a Hamiltonian path $P=\left(x_{0}, x_{1}, \ldots, x_{v-1}\right)$ of K_{v} such that $L=$ $\left\{\left|x_{i}-x_{i+1}\right|: i=0, \ldots, v-2\right\}$. The linear realization is standard if $x_{0}=0$ (see [8]). In this note we assume that any realization P of a given list L is standard. On the other hand, if $x_{v-1}=v-1$, the (standard) linear realization is called perfect (see [3]).

Example 2. The path $P=(0,2,4,6,5,3,1,7)$ is a perfect linear realization of the list $L=\left\{1^{1}, 2^{5}, 6\right\}$.

Remark 1. From the definitions presented before, it is not hard to see that any linear realization of a list L can be viewed as a cyclic realization of a list \hat{L} (not necessarily of the same list); however if all the elements in the list are less than or equal to $\left\lfloor\frac{|L|+1}{2}\right\rfloor$, then every linear realization of L is also a cyclic realization of the same list L. For example, the path $P=(0,5,7,8,6,4,3,1,2)$ is a linear realization of the list $L=\left\{1^{3}, 2^{4}, 5\right\}$ and a cyclic realization of the list $\hat{L}=\left\{1^{3}, 2^{4}, 4\right\}$.

In this note, we show some properties of some perfect linear realizations. Also, we present a new operation over well-known linear realizations and we give several examples.

2 Some perfect linear realizations

Let $P=\left(x_{0}, x_{1}, \ldots, x_{v-1}\right)$ and $P^{\prime}=\left(y_{0}, y_{1}, \ldots, y_{w-1}\right)$ be two paths (in general) such that $V(P) \cap V\left(P^{\prime}\right)=\emptyset$. If x_{v-1} and y_{0} are adjacent, then we can generate the path:

$$
P+P^{\prime}=\left(x_{0}, x_{1}, \ldots, x_{v-1}, y_{0}, y_{1}, \ldots, y_{w-1}\right)
$$

The path $P+P^{\prime}$ is also well-defined if $x_{v-1}=y_{0}$, in this case

$$
P+P^{\prime}=\left(x_{0}, x_{1}, \ldots, x_{v-1}, y_{1}, \ldots, y_{w-1}\right)
$$

Theorem 2.1 ([3]). Let P be a perfect linear realization of a list L and P^{\prime} be a linear realization of the list L^{\prime}. Then there exists a linear realization $P^{\prime \prime}$ of the list $L \cup L^{\prime}$. Furthermore, if P^{\prime} is also perfect, then $P^{\prime \prime}$ is perfect.

Remark 2. Let $P=\left(x_{0}=0, x_{1}, \ldots, x_{v-1}=v-1\right)$ be a perfect linear realization of a list L. Applying the previous theorem to the perfect linear realization $(0,1, \ldots, A)$ of $\left\{1^{A}\right\}, P^{\prime}=P+(v-1, v, \ldots, v-1+A)$ is a perfect linear realizations of $L \cup\left\{1^{A}\right\}$, for all $A \geq 0$ integer, see [3].

Let $P=\left(x_{0}, x_{1}, \ldots, x_{v-1}\right)$ be a path. For every $k \in \mathbb{Z}$ integer, let $\pi_{k}: \mathbb{Z} \rightarrow$ \mathbb{Z} given by $\pi_{k}(x)=x+k$. Hence, if $P=\left(x_{0}=0, x_{1}, \ldots, x_{v-1}\right)$ is a linear realization of a list L, then $P^{\prime}=(0,1, \ldots, A)+\pi_{A}(P)$ is a linear realization of the list $L \cup\left\{1^{A}\right\}$.

Let $P=\left(x_{0}, x_{1}, \ldots, x_{v-1}\right)$ be a path. For each $j \in\{1,2, \ldots, v-1\}$, the path P is called j-partitionable if $P=P_{j}+P_{j}^{c}$, where

$$
V\left(P_{j}\right)=\left\{x_{0}, x_{1}, \ldots, x_{j}\right\}=\{0,1, \ldots, j\}
$$

and $x_{j}=j$. A path P is called partitionable if P is j-partitionable for some $j \in\{1,2, \ldots, v-1\}$.

Example 3. The path $P=(0,1,2,5,3,4,6)$ is j-partitionable for $j \in$ $\{1,2,6\}$. On the other hand, the path $P^{\prime}=(0,1,2,5,3,4,6,7,8)$ is j partitionable for $j \in\{1,2,6,7,8\}$. In particular, both paths are perfect.

Let P be a j-partitionable, for some $j>0$. Then P is weakly j-partitionable if P is also $(j+1)$-partitionable; otherwise the path is called strong.

Lemma 2.2 ([10]). Let $P=\left(x_{0}, x_{1}, \ldots, x_{v-1}\right)$ be a linear realization of a list L. If there exists $i \in\{0,1, \ldots, v-2\}$ such that $\left\{x_{i}, x_{i+1}\right\}=\{v-2, v-1\}$, then $P=\left(x_{0}, \ldots, x_{i}, v, x_{i+1}, \ldots, x_{v-1}\right)$ is a linear realization of $L \cup\{2\}$.

Corollary 2.3 ([10]). Let $P=\left(x_{0}, x_{1}, \ldots, x_{v-1}\right)$ be a linear realization of a list L. If there exists $i \in\{0,1, \ldots, v-2\}$ such that $\left\{x_{i}, x_{i+1}\right\}=\{v-2, v-1\}$, then the list $L^{\prime}=L \cup\left\{2^{b}\right\}$ admits a linear realization, for any positive integer b.

Lemma 2.4. If a list L admits a weakly j-partitionable linear realization, for some $j \in\{1, \ldots,|L|-2\}$, then the list $L \backslash\{1\}$ admits a linear realization.

Proof. Let $P=\left(x_{0}, x_{1}, \ldots, x_{v-1}\right)$ be a weakly j-partitionable linear realization of a list L, for some $j \in\{1, \ldots,|L|-2\}$. Since the path is weakly j-partitionable, then j and $j+1$ are adjacent in P and $1 \in L$. Therefore, the path

$$
P^{\prime}=\left(x_{0}, \ldots, x_{j}, \pi_{-1}\left(x_{j+2}\right), \ldots, \pi_{-1}\left(x_{v-1}\right)\right)
$$

is a linear realization of $L \backslash\{1\}$.
Proposition 2.5. If a list L admits a perfect weakly i-partitionable linear realization, for all $i \in\left\{i_{1}, \ldots, i_{k}\right\}$, then $L=L_{i_{1}}, \cup \cdots \cup L_{i_{k}} \cup L_{v-1}$ where L_{i} admits a perfect strong linear realization for all $i \in\left\{i_{1}, \ldots, i_{k}\right\} \cup\{v-1\}$.

Proof. Let $P=\left(x_{0}, x_{1}, \ldots, x_{v-1}\right)$ be a perfect weakly i-partitionable linear realization of a list L, where $i \in\left\{i_{1}, \ldots, i_{k}\right\}$ and $i_{1}<i_{2}<\cdots<i_{k}$. Hence

$$
P=\left(x_{0}, \ldots, x_{i_{1}}\right)+\left(x_{i_{1}+1}, \cdots, x_{i_{2}}\right)+\ldots+\left(x_{i_{k}+1}, \ldots, x_{v-1}\right)
$$

Setting $i_{0}=0, i_{k+1}=v-1$ and $P_{i_{j}}=\left(x_{i_{j-1}+1}, \ldots, x_{i_{j}}\right)$, for all $j \in$ $\{1, \ldots, k\}$, then $P=P_{i_{1}}+P_{i_{2}}+\cdots+P_{i_{k+1}}$. Since P is perfect and partitionable,

$$
P_{i_{1}}, \pi_{-\left(x_{i_{1}}+1\right)}\left(P_{i_{2}}\right), \ldots, \pi_{-\left(x_{i_{k}+1}\right)}\left(P_{i_{k+1}}\right)
$$

are perfect strong linear realizations of $L_{i_{1}}, L_{i_{2}}, \ldots, L_{i_{k+1}}$, respectively, where $L_{i_{j}} \subseteq L$, for all $j \in\{1, \ldots, k+1\}$ and $L=L_{i_{1}} \cup \cdots \cup L_{i_{k+1}}$ (by Theorem 2.1).

Lemma 2.6 ([10]). If a list $L=\left\{1^{a_{1}}, 2^{a_{2}}, \ldots, t^{a_{t}}\right\}$ admits a linear realization, then $a_{i}+i-1 \leq|L|$ for all $i=1, \ldots, t$.

Proposition 2.7. If a list $L=\left\{1^{a}, 2^{b}, t^{c}\right\}$ admits a perfect linear realization, then $b+(t-1) c$ is even.

Proof. The proof is obtained straightforwardly of proof given by Proposition 3.1 in [3].

In particular of Lemma 2.6, if a list $L=\left\{1^{a}, 2^{b}, t^{c}\right\}$ admits a linear realization, then $a+b \geq t-1$.

Remark 3. If $P=\left(x_{0}, x_{1}, \ldots, x_{t}\right)$ is a perfect linear realization of $L_{t}=$ $\left\{1^{a}, 2^{b}, t\right\}$ with $a+b=t$, then either $x_{1}=t$ or $x_{t-1}=1$.

Proposition 2.8. There exist a perfect linear realization of the list $L_{t}=$ $\left\{1,2^{t-1}, t\right\}$, for all $t \geq 3$ integer.

Proof. It is very easy to see that the following paths are perfect linear realizations of L.
(a) $P_{t}=(0,2,4, \ldots, t, t-1, t-3, \ldots, 1, t+1)$ if $t \geq 4$ is even.
(b) $P_{t}=(0,2,4, \ldots, t-1, t, t-2, \ldots, 1, t+1)$ if $t \geq 3$ is odd.
(c) $\hat{P}_{t}=(0, t, t-2, \ldots, 2,1,3, \ldots, t-1, t+1)$ if $t \geq 4$ is even.
(d) $\hat{P}_{t}=(0, t, t-2, \ldots, 1,2,4, \ldots, t-1, t+1)$ if $t \geq 3$ is odd.

Example 4. The paths $P_{4}=(0,2,4,3,1,5)$ and $\hat{P}_{4}=(0,4,2,1,3,5)$ are perfect linear realizations of the list $L_{4}=\left\{1,2^{3}, 4\right\}$.

Theorem 2.9. Let $a+b=t \geq 3$ with $a, b \geq 1$ integers. The list $L_{t}=$ $\left\{1^{a}, 2^{b}, t\right\}$ admits a perfect linear realization if and only if $(a, b)=(1, t-1)$, in which the paths P_{t} and \hat{P}_{t} are the unique perfect linear realization of the list L_{t}.

Proof. Suppose that $t \geq 4$ is an even integer (the proof for $t \geq 3$ odd is completely analogous). Let $P=\left(x_{0}, x_{1}, \ldots, x_{t+1}\right)$ be a perfect linear realization of L_{t}. By Remark 3 either $x_{t}=1$ or $x_{1}=t$. Without loss of generality assume that $x_{t}=1$, which implies that $x_{1}=2$, which implies that $x_{t-1}=3$, which implies that $x_{2}=4$, which implies that $x_{t-2}=5$, and so on until $x_{\frac{t}{2}+2}=t-3$ and $x_{\frac{t}{2}}=t$. Which implies that $x_{\frac{t}{2}+1}=t-1$. Hence, we have that $P=P_{t}$. The proof to the case $x_{1}=t$ is analogous to the proof presented before.

3 Even-odd applications over paths

If $P=\left(x_{0}, x_{1}, \ldots, x_{v-1}\right)$ is a standard linear realization of a list L, then this path is called $\left(x_{1}, x_{v-1}\right)$-realization of L. Let P^{*} be the sub-path of P without initial vertex, that is $P^{*}=P \backslash\left\{x_{0}\right\}$. Hence, P^{*} is a (nonstandard) linear realization of the list $L \backslash\left\{x_{1}\right\}$. The reverse of $P, \operatorname{rev}(P)=$ $\left(x_{v-1}, x_{v-2}, \ldots, x_{0}\right)$, is also a liner realization of L, see [8]. The evenapplication of $P, E(P)$, is defined by the path

$$
E(P)=\left(2 x_{0}, 2 x_{1}, \ldots, 2 x_{v-1}\right)
$$

This application satisfies that $\ell(E(P))=2 L$. Finally, the odd-application of $P, O(P)$, is defined by the path:

$$
O(P)=\left(2 x_{1}-1,2 x_{2}-1, \ldots, 2 x_{v-1}-1\right)
$$

and the odd reverse-application of $P, O R(P)$, is defined as the path

$$
O R(P)=\left(2 x_{v-1}-1,2 x_{v-2}-1, \ldots, 2 x_{1}-1\right)
$$

These applications satisfy $\ell(O(P))=\ell(O R(P))=2 L \backslash\left\{2 x_{1}\right\}$.
We define two operations over a linear realization P of a list L, called evenodd extension, $E O(P)$, and even-odd reverse extension of $P, E O R(P)$, as follow:

$$
E O(P)=E(P)+O(P) \text { and } E O R(P)=E(P)+O R(P)
$$

The even-odd extension of P is a linear realization of the list

$$
\left(2 L \cup 2 L \backslash\left\{2 x_{1}\right\}\right) \cup\left\{\left|2\left(x_{v-1}-x_{1}\right)+1\right|\right\}
$$

On the other hand, the even-odd reverse extension of P is a linear realization of the list

$$
\left(2 L \cup 2 L \backslash\left\{2 x_{1}\right\}\right) \cup\{1\}
$$

To the next, we are going to construct some linear realization from wellknown linear realizations.

Example 5. As we have already seen, $P=(0,1, \ldots, k)$ is a (perfect) linear realization of the list $\left\{1^{k}\right\}$. On the other hand, $E(P)=(0,2,4, \ldots, 2 k)$ and
$O(P)=(1,3, \ldots, 2 k-1)$. Hence, $\ell(E(P))=\left\{2^{k}\right\}$ and $\ell(O(P))=\left\{2^{k-1}\right\}$. It follows that the even-odd reverse extension of P :

$$
\operatorname{EOR}(P)=(0,2,4, \ldots, 2 k, 2 k-1,2 k-3, \ldots, 3,1)
$$

is a linear realization of the list $\left\{1,2^{2 k-1}\right\}$. Notice that the new path is a $(2,1)$-realization.

Example 6. Let $k \geq 1$ be an integer, and take

$$
\begin{aligned}
P_{k} & =(0,2, \ldots, 2 k, 2 k-1,2 k-3, \ldots, 1), \\
P_{k}^{\prime} & =(0,2, \ldots, 2 k, 2 k+1,2 k-1, \ldots, 1)
\end{aligned}
$$

It is easy to see that P_{k} is a $(2,1)$-realization of $\left\{1,2^{2 k-1}\right\}$ (see Example 5) and P_{k}^{\prime} is $(2,1)$-realization of $\left\{1,2^{2 k}\right\}$. Hence, the even-application of P_{k} and P_{k}^{\prime} are

$$
\begin{aligned}
& E\left(P_{k}\right)=(0,4, \ldots, 4 k, 4 k-2,4 k-6, \ldots, 2) \\
& E\left(P_{k}^{\prime}\right)=(0,4, \ldots, 4 k, 4 k+2,4 k-2, \ldots, 2)
\end{aligned}
$$

satisfying $\ell\left(E\left(P_{k}\right)\right)=\left\{2,4^{2 k-1}\right\}$ and $\ell\left(E\left(P_{k}^{\prime}\right)\right)=\left\{2,4^{2 k}\right\}$, respectively. The odd-application of P_{k} and P_{k}^{\prime} are

$$
\begin{aligned}
& O\left(P_{k}\right)=(3,7, \ldots, 4 k-1,4 k-3,4 k-7, \ldots, 1), \\
& O\left(P_{k}^{\prime}\right)=(3,7, \ldots, 4 k-1,4 k+1,4 k-3, \ldots, 1),
\end{aligned}
$$

satisfying $\ell\left(O\left(P_{k}\right)\right)=\left\{2,4^{2 k-2}\right\}$ and $\ell\left(O\left(P_{k}^{\prime}\right)\right)=\left\{2,4^{2 k-1}\right\}$, respectively.
Hence, the even-odd extension of P_{k} and $P_{k}^{\prime}, E O\left(P_{k}\right)$ and $E O\left(P_{k}^{\prime}\right)$, are $(4,1)$-realization of the lists $\left\{1,2^{2}, 4^{4 k-3}\right\}$ and $\left\{1,2^{2}, 4^{4 k-1}\right\}$, respectively. Also, the even-odd reverse extension of P_{k} and $P_{k}^{\prime}, \operatorname{EOR}\left(P_{k}\right)$ and $\operatorname{EOR}\left(P_{k}^{\prime}\right)$, are $(4,3)$-realization of the same lists.

Lemma 3.1 ([10], Lemma 9). Let $P=\left(x_{0}, x_{1}, \ldots, x_{v-1}\right)$ be a standard linear realization of a list L. If $x_{v-1}=1$, then the list $L^{\prime}=L \cup\left\{2^{b}\right\}$ is linear realizable, for any $b \geq 2$ integer.

By Remark 2, Example 6 and Lemma 3.1, we have the following result, which is a particular case of Proposition 20 in [10]:

Corollary 3.2. There are linear realizations of the lists $\left\{1^{a}, 2^{2}, 4^{2 c-1}\right\}$ and $\left\{1^{a}, 2^{b}, 4^{2 c-1}\right\}$, for all positive integers a, b, c such that $b \geq 4$.
Theorem 3.3 ([3]). If $a \geq 2$ and $b \geq 0$ are integers, then the list $\left\{1^{a}, 3^{b}\right\}$ admits a linear realization. Also, this realization can be assumed to be perfect when $b \not \equiv 1$ (mod 3).

Corollary 3.4. Let $P=\left(x_{0}, x_{1}, \ldots, x_{v-1}\right)$ be a linear realization of a list L, where the vertices $v-1, v-2$ are adjacent. If $E O(P)$ is a linear realization of $L_{E O}$ and $E O R(P)$ is a linear realization of $L_{E O R}$, then the lists $L_{E O} \cup\{4\}$ and $L_{E O R} \cup\{4\}$ are linear realizable.

Proof. The proof is completely analogous to the proof of Lemma 7 of [10]. Since the vertices $v-1, v-2$ are adjacent in P, the vertices $2 v-3,2 v-5$ are adjacent in $O(P)$ (and in $O R(P)$), and the vertices $2 v-2,2 v-4$ are adjacent in $E(P)$. Hence, the new vertex $2 v-1$ can be added between $2 v-3,2 v-5$. So, there is a linear realization of $L_{E O} \cup\{4\}$ or $L_{E O R} \cup\{4\}$. Else, if we also add the vertex $2 v$ between $2 v-2$ ans $2 v-4$, we obtain a linear realization of $L_{E O} \cup\left\{4^{2}\right\}$ and of $L_{E O R} \cup\left\{4^{2}\right\}$.

Corollary 3.5. Let $P=\left(x_{0}, x_{1}, \ldots, x_{v-1}\right)$ be a linear realization of a list L, where the vertices $v-1, v-2$ are adjacent. If $E O(P)$ is a linear realization of $L_{E O}$ and $E O R(P)$ is a linear realization of $L_{E O R}$, then the lists $L_{E O} \cup\left\{4^{b}\right\}$ and $L_{E O R} \cup\left\{4^{b}\right\}$ are linear realizable, for any positive integer b.

By Remark 2, Example 6, Corollary 3.5 and Lemma 3.1, we have the following:

Corollary 3.6. There are linear realizations of the lists $\left\{1^{a}, 2^{2}, 4^{c}\right\}$ and $\left\{1^{a}, 2^{b}, 4^{c}\right\}$, for all positive integers a, b, c such that $b \geq 4$.

Corollary 3.7. Let $P=\left(x_{0}, x_{1}, \ldots, x_{v-1}\right)$ be a standard linear realization of a list L, where $x_{v-1}=1$. There exists a linear realization of $2 L \cup 2 L \cup$ $\left\{1,4^{2 b-1}\right\}$.

Proof. Following the proof of Lemma 9 of [10], there exists a (2,1)-realization P^{\prime} of $L \cup\left\{2^{b}\right\}$. Then $E O\left(P^{\prime}\right)$ and $\operatorname{EOR}\left(P^{\prime}\right)$ are linear realizations of $2 L \cup 2 L \cup\left\{1,4^{2 b-1}\right\}$.

Proposition 3.8. There exists a standard linear realization of the list $\left\{1^{a}, 2^{b}, 4^{c}\right\}$, for all positive integers a, b, c where $b \geq 3$.

Proof. Let $k \geq 2$ be an integer. Consider the path P_{k} of Example 5, obtained by applying the even-odd reverse extension of the perfect linear realization $I_{k}=\{0,1,2, \ldots, k\}$ of the list $\left\{1^{k}\right\}: P_{k}=\operatorname{EOR}\left(I_{k}\right)$. Then, we can write $P_{k}=P_{k, 0}^{E}+\operatorname{rev}\left(P_{k, 0}^{O}\right)$, where

$$
P_{k, 0}^{E}=E\left(I_{k}\right)=(0,2, \ldots, 2 k) \text { and } P_{k, 0}^{O}=O\left(I_{k}\right)=(1,3, \ldots, 2 k-1)
$$

So, $\ell\left(P_{k, 0}^{E}\right)=\left\{2^{k}\right\}$ and $\ell\left(P_{k, 0}^{O}\right)=\left\{2^{k-1}\right\}$. Now, let t be a positive integer. For all $j=1, \ldots, t$, we construct a path $P_{k, j}^{E}$ by adding the vertex $2 k+2 j$ between the consecutive vertices $2 k+2(j-2), 2 k+2(j-1)$ of the path $P_{k, j-1}^{E}$. Then, $\ell\left(P_{k, j}^{E}\right)=\left\{2^{k}, 4^{j}\right\}$. Similarly, for all $j=1, \ldots, t$, we construct a path $P_{k, j}^{O}$ by adding the vertex $2 k+2 j-1$ between the consecutive vertices $2 k+2 j-5,2 k+2 j-3$ of the path $P_{k, j-1}^{O}$. In this case, $\ell\left(P_{k, j}^{O}\right)=\left\{2^{k-1}, 4^{j}\right\}$. Hence, the path $P_{k, t}=P_{k, t}^{E}+\operatorname{rev}\left(P_{k, t}^{O}\right)$ is a $(2,1)$-realization of the list $\left\{1,2^{2 k-1}, 4^{2 t}\right\}$. Now, the path

$$
P_{k, 0}^{E}+\operatorname{rev}\left(P_{k, 0}^{O}\right)=(0,2,4, \ldots, 2 k, 2 k-1,2 k+1,2 k-3,2 k-5, \ldots, 1)
$$

is a $(2,1)$-realization of the list $\left\{1,2^{2 k-1}, 4\right\}$. Finally, for any positive integer t, the path $P_{k, t}^{E}+P_{k, t+1}^{O}$ is a $(2,1)$-realization of the list $\left\{1,2^{2 k-1}, 4^{2 t+1}\right\}$. Hence, there is a $(2,1)$-realization of $\left\{1,2^{2 x+1}, 4^{y}\right\}$ for all positive integers x, y. Finally, by Remark 2, Lemma 3.1, Corollary 3.6 and Corollary 3.7, there is a linear realization of $\left\{1^{a}, 2^{b}, 4^{c}\right\}$, for all positive integers a, b, c where $b \geq 3$.

Example 7. For instance, taking $t=2$ and $k=3$, we have

$$
\begin{gathered}
P_{3,0}^{E}=(0,2,4,6), \quad P_{3,1}^{E}=(0,2,4, \mathbf{8}, 6), \quad P_{3,2}^{E}=(0,2,4,8, \mathbf{1 0}, 6) \\
P_{3,0}^{O}=(1,3,5), \quad P_{3,1}^{O}=(1,3, \mathbf{7}, 5), P_{3,2}^{O}=(1,3,7, \mathbf{9}, 5)
\end{gathered}
$$

Hence, $P_{3,2}=(0,2,4,8,10,6,5,9,7,3,1)$ is a $(2,1)$-realization of $\left\{1,2^{5}, 4^{4}\right\}$, $P_{3,0}^{E}+\operatorname{rev}\left(P_{3,1}^{O}\right)=(0,2,4,6,5,7,3,1)$ is a $(2,1)$-realization of $\left\{1,2^{5}, 4\right\}$, and $P_{3,2}^{E}=(0,2,4,8,10,6,5,9,11,7,3,1)$ is a $(2,1)$-realization of $\left\{1,2^{5}, 4^{5}\right\}$. Furthermore, $P_{3,2}^{E}+\operatorname{rev}\left(P_{4,2}^{O}\right)=(0,2,4,8,10,6,7,11,9,5,3,1)$ is a $(2,1)$ realization of $\left\{1,2^{6}, 4^{4}\right\}, P_{3,1}^{E}=\operatorname{rev}\left(P_{4,0}^{O}\right)=(0,2,4,8,7,5,3,1)$ is a $(2,1)$ realization of $\left\{1,2^{6}, 4\right\}$, and $P_{3,3}^{E}+P_{4,2}^{O}=(0,2,4,8,12,10,6,7,11,9,5,3,1)$ is a $(2,1)$-realization of $\left\{1,2^{6}, 4^{5}\right\}$.

Proposition 3.9. There exists a standard linear realization of the list $\left\{1^{a}, 2^{b}, 4^{2 c}, 8^{d}\right\}$, for all positive integers a, b, c, d where $b \geq 3$ and $c \geq 2$. Moreover, there exists a standard linear realization of the list $\left\{1^{a}, 2^{b}, 4^{c}, 8^{d}\right\}$, for all positive integers a, b, c, d such that $a \geq 2, b \geq 3$ and $c \geq 4$.

Proof. Let $Q=P_{2,4}=(0,2,6,8,4,3,7,5,1)$ be a $(2,1)$-linear realization of $\left\{1,2^{3}, 4^{4}\right\}$ (see Proposition 3.8). Let $Q^{2}=(2,6), Q^{0}=(4,8), Q^{1}=(3,7)$ and $Q^{3}=(1,5)$. So,

$$
Q=(0)+Q^{2}+\operatorname{rev}\left(Q^{0}\right)+Q^{1}+\operatorname{rev}\left(Q^{3}\right)
$$

Let $l \geq 3$ be an integer and $i \in\{0,1,2,3\}$, we construct the path $Q_{l+1, i}$ by adding the vertex $4 l-i$ to the path $Q_{l, i}$, where $Q_{3}^{i}=Q^{i}$ for $i=0,1,2,3$, as follow:

- If $i=3$, we add the vertex $4 l-3$ between the vertices $4(l-1)-3$ and $4(l-2)-3$ to the path Q_{l}^{3}. Hence,

$$
Q_{l+1,3}=(0)+Q_{l}^{2}+\operatorname{rev}\left(Q_{l}^{0}\right)+Q_{l}^{1}+\operatorname{rev}\left(Q_{l+1}^{3}\right)
$$

- If $i=2$, then $Q_{l+1}^{2}=Q_{l+1}^{3}+1\left(\right.$ since $\left.Q^{2}=Q^{3}+1\right)$, we are adding the vertex $4 l-2$ between the vertices $4(l-1)-2$ and $4(l-2)-2$ of the path Q_{l}^{2}. Hence,

$$
Q_{l+1,2}=(0)+Q_{l+1}^{2}+\operatorname{rev}\left(Q_{l}^{0}\right)+Q_{l}^{1}+\operatorname{rev}\left(Q_{l+1}^{3}\right)
$$

- If $i=1$, we add the vertex $4 l-1$ between the vertices $4(l-1)-1$ and $4(l-2)-1$ to the path Q_{l}^{1}. Hence,

$$
Q_{l+1,1}=(0)+Q_{l+1}^{2}+\operatorname{rev}\left(Q_{l}^{0}\right)+Q_{l+1}^{1}+\operatorname{rev}\left(Q_{l+1}^{3}\right)
$$

- If $i=0$, then $Q_{l+1}^{0}=Q_{l+1}^{1}+1$ (since $Q^{0}=Q^{0}+1$), we are adding the vertex $4 l$ between the vertices $4(l-1)$ and $4(l-2)$ of the path Q_{l}^{0}. Hence,

$$
Q_{l+1,0}=(0)+Q_{l+1}^{2}+\operatorname{rev}\left(Q_{l+1}^{0}\right)+Q_{l+1}^{1}+\operatorname{rev}\left(Q_{l+1}^{3}\right)
$$

So, $\ell\left(Q_{l+1}^{i}\right)=\left\{4,8^{i}\right\}$, for $i=0,1,2,3$. Therefore, the path $Q_{l+1, i}$ is a $(2,1)$-realization of $\left\{1,2^{3}, 4^{4}, 8^{4 l-8-i}\right\}$, proving that there exists a $(2,1)$ realization of $\left\{1,2^{3}, 4^{4}, 8^{t}\right\}$, for all positive integer t. Proceeding as the same way as before taking $Q=P_{2,2 k}$ (see Proposition 3.8), for $k \geq 1$ integer, we can prove that there is a $(2,1)$-realization of the list $\left\{1,2^{3}, 4^{4 k}, 8^{s}\right\}$, for all positive integers k, s.

Now, let $\hat{Q}=(0,2,6,10,8,4,5,9,11,7,3,1)$ be a $(2,1)$-linear realization of $\left\{1,2^{4}, 4^{6}\right\}$. If $\hat{Q}^{2}=(2,6), \hat{Q}^{0}=(4,8), \hat{Q}^{1}=(5,9)$ and $\hat{Q}^{3}=(3,7)$, we have

$$
\hat{Q}=(0)+\hat{Q}^{2}+(10)+\operatorname{rev}\left(\hat{Q}^{0}\right)+\hat{Q}^{1}+(11)+\operatorname{rev}\left(\hat{Q}^{3}\right)+(1)
$$

As the same way as before, we can construct a $(2,1)$-linear realization of the list $\left\{1,2^{4}, 4^{6}, 8^{s}\right\}$, for $s \geq 1$ integer. Moreover, if we take $\hat{Q}=P_{2,2 k+1}^{\prime}$ (see Proposition 3.8), for $k \geq 1$ integer, we can prove that there is a $(2,1)$ realization of the list $\left\{1,2^{4}, 4^{4 k+2}, 8^{s}\right\}$, for all positive integers k, s.

On the other hand, let $Q=(0,2,6,8,4,5,9,7,3,1)$ be a $(2,1)$-linear realization of $\left\{1,2^{4}, 4^{4}\right\}$. Let $Q^{2}=(2,6), Q^{0}=(4,8), Q^{1}=(5,9)$ and $Q^{3}=(3,7)$, we have

$$
Q=(0)+Q^{2}+\operatorname{rev}\left(Q^{0}\right)+Q^{1}+\operatorname{rev}\left(Q^{3}\right)+(1) .
$$

Let $l \geq 3$ be an integer and $i \in\{0,1,2,3\}$, we construct the path $Q_{l+1, i}$ by adding the vertex $(4 l-3)+i$ to the path $Q_{l, i}$, where $Q_{3}^{i}=Q^{i}$ for $i=0,1,2,3$, as follow:

- If $i=0$, we add the vertex $(4 l-2)$ between the vertices $4(l-2)-2$ and $4(l-3)-2$ to the path Q_{l}^{2}. Hence,

$$
Q_{l+1,0}=(0)+Q_{l+1}^{2}+\operatorname{rev}\left(Q_{l}^{0}\right)+Q_{l}^{1}+\operatorname{rev}\left(Q_{l}^{3}\right)
$$

- If $i=1$, then $Q_{l+1}^{3}=Q_{l+1}^{2}+1\left(\right.$ since $\left.Q^{2}=Q^{3}+1\right)$. Hence,

$$
Q_{l+1,1}=(0)+Q_{l+1}^{2}+\operatorname{rev}\left(Q_{l}^{0}\right)+Q_{l}^{1}+\operatorname{rev}\left(Q_{l+1}^{3}\right) .
$$

- If $i=2$, we add the vertex $4 l-1$ between the vertices $4(l-1)-1$ and $4(l-2)-1$ to the path Q_{l}^{1}. Hence,

$$
Q_{l+1,2}=(0)+Q_{l+1}^{2}+\operatorname{rev}\left(Q_{l}^{0}\right)+Q_{l+1}^{1}+\operatorname{rev}\left(Q_{l+1}^{3}\right) .
$$

- If $i=3$, then $Q_{l+1}^{0}=Q_{l+1}^{1}+1\left(\right.$ since $\left.Q^{0}=Q^{0}+1\right)$, we are adding the vertex $4 l$ between the vertices $4(l-1)$ and $4(l-2)$ of the path Q_{l}^{0}. Hence,

$$
Q_{l+1,3}=(0)+Q_{l+1}^{2}+\operatorname{rev}\left(Q_{l+1}^{0}\right)+Q_{l+1}^{1}+\operatorname{rev}\left(Q_{l+1}^{3}\right) .
$$

So, we can construct a $(2,1)$-linear realization of the list $\left\{1,2^{4}, 4^{4}, 8^{t}\right\}$, for $t \geq 1$ integer. Moreover, if we take $\hat{Q}=P_{2,2 k}^{\prime}$ (see Proposition 3.8), for $k \geq 1$ integer, we can prove that there is a $(2,1)$-realization of the list $\left\{1,2^{4}, 4^{4 k}, 8^{s}\right\}$, for all positive integers k, s. Finally, taking the path $\hat{Q}=P_{2,2 k+1}$ (see Proposition 3.8) and all ideas presented before, we can construct a $(2,1)$-linear realization of the list $\left\{1,2^{3}, 4^{4 k+2}, 8^{s}\right\}$, for all positive integers k, s. By Remark 2 and Lemma 3.1, there is a linear realization of $\left\{1^{a}, 2^{b}, 4^{2 c}, 8^{d}\right\}$, for all positive integers a, b, c, d such that $b \geq 3$ and $c \geq 2$. Moreover, By Remark 2, Corollary 3.7 and Lemma 3.1 there exists a linear realization of $\left\{1^{a}, 2^{b}, 4^{c}, 8^{d}\right\}$, for all positive integers a, b, c, d such that $a \geq 2, b \geq 3$ and $c \geq 4$.

Proposition 3.10. There are linear realizations of the lists

$$
\left\{1^{a}, 2^{4}, 4^{c}, 6^{6 d+1}\right\},\left\{1^{a}, 2^{5}, 4^{c}, 6^{6 d-2}\right\} \text { and }\left\{1^{a}, 2^{b}, 4^{c}, 6^{6 d-2}\right\},
$$

for all positive integer a, b, c, d such that $b \geq 7$.

Proof. Let $k \geq 1$ be an integer. The path

$$
Q_{k}=(0,3, \ldots, 3 k+3,3 k+2,3 k-1, \ldots, 2,1,4, \ldots, 3 k+1)
$$

is a realization of the list $\left\{1^{2}, 3^{3 k+1}\right\}$. Then, the even-odd reverse extension of $Q_{k}, \operatorname{EOR}\left(Q_{k}\right)$, is a linear realization of the list $\left\{1,2^{4}, 6^{6 k+1}\right\}$. By Remark 2 and Corollary 3.5, there exists a linear realization of $\left\{1^{a}, 2^{4}, 4^{c}, 6^{6 k+1}\right\}$ for all positive integer a, c.

On the other hand, the path

$$
\hat{Q}_{k}=(0,1,4, \ldots, 3 k+1,3 k+2,3 k-1, \ldots, 2,3,6, \ldots, 3 k),
$$

is a linear realization of the list $\left\{1^{3}, 3^{3 k-1}\right\}$. Then, the even-odd reverse extension of $\hat{Q}_{k}, \operatorname{EOR}\left(\hat{Q}_{k}\right)$, is a $(2,1)$-linear realization of the list $\left\{1,2^{5}, 6^{6 k-2}\right\}$. Using Remark 2, Corollary 3.5 and Lemma 3.1, there are linear realizations of the lists $\left\{1^{a}, 2^{5}, 4^{c}, 6^{6 k-2}\right\}$ and $\left\{1^{a}, 2^{b}, 4^{c}, 6^{6 k-2}\right\}$, for all positive integer a, b, c such that $b \geq 7$.

Let $P=\left(x_{0}, x_{1}, \ldots, x_{v-1}\right)$ be a linear realization of a list L, and let $P^{\prime}=$ $\left(y_{0}, y_{1}, \ldots, y_{v-1}\right)$ be a standard linear realization of the list L^{\prime}, such that $|L|=\left|L^{\prime}\right|$. The even-odd extension of P and P^{\prime}, denoted by $E O\left(P, P^{\prime}\right)$, is defined as follow:

$$
\begin{aligned}
E O\left(P, P^{\prime}\right) & =E(P)+O\left(P^{\prime}\right) \\
& =\left(2 x_{0}, 2 x_{1}, \ldots, 2 x_{v-1}, 2 y_{1}-1,2 y_{2}-1, \ldots, 2 y_{v-1}-1\right)
\end{aligned}
$$

the even-odd reverse extension of P and P^{\prime}, denoted by $E O\left(P, P^{\prime}\right)$, is defined as follow:

$$
\begin{aligned}
\operatorname{EOR}\left(P, P^{\prime}\right) & =E(P)+O R\left(P^{\prime}\right) \\
& =\left(2 x_{0}, 2 x_{1}, \ldots, 2 x_{v-1}, 2 y_{v-1}-1,2 y_{v-2}-1, \ldots, 2 y_{1}-1\right)
\end{aligned}
$$

The even-odd extension of P and P^{\prime} is a linear realization of the list $\left(2 L \cup 2 L^{\prime} \backslash\left\{2 y_{1}\right\}\right) \cup\left\{\left|2\left(x_{v-1}-y_{1}\right)+1\right|\right\}$, while the even-odd reverse extension of P and P^{\prime} is a linear realization of the list $\left(2 L \cup 2 L^{\prime} \backslash\left\{2 y_{1}\right\}\right) \cup$ $\left\{\left|2\left(x_{v-1}-y_{v-1}\right)+1\right|\right\}$. In particular, if $P^{\prime}=P$, then $E O(P, P)=E O(P)$ and $\operatorname{EOR}(P, P)=E O R(P)$.

To the next, we are going to construct some linear realization from wellknown linear realizations.

Example 8. Let $a \geq 2$ and $b \geq 1$ integers. Let $P=\left(x_{0}, x_{1}, \ldots, x_{a+b}\right)$ be a linear realization of the list $\left\{1^{a}, 3^{b}\right\}$, and let $Q=(0,1,2, \ldots, a+b)$ be a
linear realization of the list $\left\{1^{a+b}\right\}$. If P is a perfect linear realization, then the even-odd reverse extension of P and $Q, \operatorname{EOR}(P, Q)$, is a (standard) linear realization of the list $\left\{1,2^{2 a+b-1}, 6^{b}\right\}$. Also, if $x_{a+b}=1$, then the even-odd extension of P and $Q, E O(P, Q)$, is a linear realization of the same list.

Example 9. Let $k=2 s$ and $h=3 s+1$, where $s \geq 1$ is an integer. Let $P_{h}=(0,1, \ldots, h)$ be a linear realization of the list $\left\{1^{h}\right\}$. By Example 5, the even-odd reverse extension of $P_{h}, \operatorname{EOR}\left(P_{h}\right)$, is a $(2,1)$-realization of the list $\left\{1,2^{2 h-1}\right\}$. If $\hat{P}_{h}=\operatorname{EOR}\left(P_{h}\right)$, then the even-odd extension of \hat{P}_{h} and $\hat{Q_{k}}$ (see Proposition 3.10), $E O\left(\hat{P}_{h}, \hat{Q_{k}}\right)$, is $(2,1)$ - realization of the list $\left\{1,2^{2}, 4^{2 h-1}, 6^{3 k}\right\}$; that is, the even-odd extension of $\hat{P}_{3 s+1}$ and $\hat{Q}_{2 s}$ is a (2,1)-realization of the list $\left\{1,2^{2}, 4^{6 s+1}, 6^{6 s}\right\}$. By Remark 2, Corollary 3.5 and Lemma 3.1 there are linear realizations of $\left\{1^{a}, 2^{2}, 4^{c}, 6^{6 d}\right\}$ and $\left\{1^{a}, 2^{b}, 4^{c}, 6^{6 d}\right\}$ for all positive integers a, b, c, d such that $b \geq 4$ and $c \geq 7$.

$4 k$-extension of linear realizations

In this section, we are going to generalize the even-odd extension given in Section 3 for well-known linear realizations.

Let $P=\left(x_{0}=0, x_{1}, \ldots, x_{v-1}\right)$ be a (standard) linear realization of a list L. For each $i \in\{1,2, \ldots, k-1\}$, the i-application of P is defined by the path

$$
P_{k, i}=\left(k x_{1}-i, k x_{2}-i, \ldots, k x_{v-1}-i\right) .
$$

So, $\ell\left(P_{k, i}\right)=k L \backslash\left\{k x_{1}\right\}$. We define the k-extension of P, denoted by $E_{k}(P)$, as follow:

$$
E_{k}(P)=P_{k, 0}+P_{k, 1}+\cdots+P_{k, k-1}
$$

where $P_{k, 0}=k P=\left(0, k x_{1}, \ldots, k x_{v-1}\right)$. Notice that

$$
\left|k x_{1}-(i+1)-\left(k x_{v-1}-i\right)\right|=\left|k\left(x_{1}-x_{v-1}\right)-1\right| .
$$

Hence, the k-extension of P is a linear realization of the list

$$
\left(k L \cup k L \backslash\left\{k x_{1}\right\} \cup k L \backslash\left\{k x_{1}\right\} \cup \cdots \cup k L \backslash\left\{k x_{1}\right\}\right) \cup\left\{\left|k\left(x_{1}-x_{v-1}\right)-1\right|^{k-1}\right\} .
$$

Corollary 4.1. Let $P=\left(x_{0}, x_{1}, \ldots, x_{v-1}\right)$ be a standard linear realization of L, where the vertices $v-1$ and $v-2$ are adjacent. If $E_{k}(P)$ is the linear realization of L_{k}, then the list $L_{k} \cup\left\{(2 k)^{b}\right\}$ admits a linear realization for any positive integer b.

Proof. Note that the vertices $k(v-1)-i, k(v-2)-i$ are adjacent in $E_{k}(P)$ for all $i=0, \ldots, k-1$. Then, one can proceed as the proof of Lemma 7 of [10].

Example 10. Let $P=(0,1, \ldots, s)$ be a linear realization of the list $\left\{1^{s}\right\}$. For each $i=\{1,2\}$ (in this case $k=3$), the i-application of P is given by the path

$$
P_{3, i}=(3 \cdot 1-i, 3 \cdot 2-i, \ldots, 3 \cdot s-i),
$$

which satisfies that $\ell\left(P_{3, i}\right)=\left\{3^{s-1}\right\}$. Hence, the 3-extension of P :

$$
E_{3}(P)=(0,3,6, \ldots, 3 s, 2,5, \ldots, 3 s-1,1,4, \ldots, 3 s-2)
$$

is a linear realization of the list $\left\{3^{3 s-2},(3 s-2)^{2}\right\}$. By Remark 2 and Corollary 4.1 there exists a linear realization of the list $\left\{1^{a}, 3^{3 s-2}, 6^{b},(3 s-2)^{2}\right\}$ for all positive integer a, b, s.

Proposition 4.2. There are linear realizations of the lists $\left\{1^{a}, 2^{2}, 3^{3}, 6^{c}\right\}$ and $\left\{1^{a}, 2^{b}, 3^{3}, 6^{c}\right\}$, for all positive integers a, b, c such that $b \geq 4$.

Proof. Let $s \geq 1$ be an integer. Consider the linear realizations P_{s} and P_{s}^{\prime} of the lists $\left\{1,2^{2 s-1}\right\}$ and $\left\{1,2^{2 s}\right\}$, respectively, given in Example 6:

$$
\begin{aligned}
P_{s} & =(0,2, \ldots, 2 s, 2 s-1,2 s-3, \ldots, 1) \\
P_{s}^{\prime} & =(0,2, \ldots, 2 s, 2 s+1,2 s-1, \ldots, 1)
\end{aligned}
$$

For each $i=\{1,2\}$ (in this case $k=3$), the i-realization of P_{s}, and P_{s}^{\prime} are:

$$
\begin{aligned}
P_{s, i} & =(3 \cdot 2-i, \ldots, 3 \cdot 2 s-i, 3 \cdot(2 s-1)-i, 3 \cdot(2 s-3)-i, \ldots, 3 \cdot 1-i) \\
P_{s, i}^{\prime} & =(3 \cdot 2-i, \ldots, 3 \cdot 2 s-i, 3 \cdot(2 s+1)-i, 3 \cdot(2 s-1)-i, \ldots, 3 \cdot 1-i)
\end{aligned}
$$

respectively. So, $\ell\left(P_{s, i}\right)=\left\{3,6^{2 s-2}\right\}$ and $\ell\left(P_{s, i}^{\prime}\right)=\left\{3,6^{2 s-1}\right\}$. Therefore, the 3 -extensions of $P_{s}, E_{3}\left(P_{s}\right)$, and $P_{s}^{\prime}, E_{3}\left(P_{s}^{\prime}\right)$, are $(6,1)$-realization of the lists $\left\{2^{2}, 3^{3}, 6^{6 s-5}\right\}$ and $\left\{2^{2}, 3^{3}, 6^{6 s-2}\right\}$, respectively. By Remark 2, Corollary 4.1 and Lemma 3.1, there are linear realizations of the lists $\left\{1^{a}, 2^{2}, 3^{3}, 6^{c}\right\}$ and $\left\{1^{a}, 2^{b}, 3^{3}, 6^{c}\right\}$, for all positive integers a, b, c such that $b \geq 4$.

For each $i \in\{0,1,2, \ldots, k-1\}$ let $Q_{i}=\left(x_{i, 0}=0, x_{i, 1}, \ldots, x_{i, v-1}\right)$ be k (standard) linear realizations of the list L_{i}, such that $\left|L_{i}\right|=\left|L_{j}\right|$, for every $0 \leq i<j \leq k-1$. A k-extension of $Q_{0}, Q_{1}, \ldots, Q_{k-1}$, denoted by $E_{k}\left(Q_{0}^{T_{0}}, Q_{1}^{T_{1}}, \ldots, Q_{k-1}^{T_{k}}\right)$, is defined as follow:

$$
E_{k}\left(Q_{0}^{T_{0}}, Q_{1}^{T_{1}}, \ldots, Q_{k-1}^{T_{k}}\right)=Q_{k, 0}^{T_{0}}+Q_{k, 1}^{T_{1}}+\cdots+Q_{k, k-1}^{T_{k}}
$$

where either $Q_{k, i}^{T_{i}}=Q_{k, i}$ if $Q_{i}^{T_{i}}=Q_{i}$ or $Q_{k, i}^{T_{i}}=\operatorname{rev}\left(Q_{k, i}\right)$ if $Q_{i}^{T_{i}}=Q_{i}^{\text {rev }}$, for all $i=0,1, \ldots, k-1$, and where $Q_{k, i}=\left(k x_{i, 1}-i, k x_{i, 2}-i, \ldots, k x_{i, v-1}-i\right)$, for all $i=1, \ldots, k-1$, and $Q_{k, 0}=\left(0, k x_{0,1}, \ldots, k x_{0, v-1}\right)$. So, $\ell\left(Q_{k, i}\right)=$ $k L_{i} \backslash\left\{k x_{i, 1}\right\}$, for all $i=1, \ldots, k-1$, and $\ell\left(Q_{k, 0}\right)=k L_{0}$.

A k-extension of $Q_{0}, Q_{1}, \ldots, Q_{k-1}, E_{k}\left(Q_{0}^{T_{0}}, Q_{1}^{T_{1}}, \ldots, Q_{k-1}^{T_{k-1}}\right)$, is a linear realization of the list

$$
\left(k L_{0} \cup k L_{1} \backslash\left\{k x_{1,1}\right\} \cup k L_{2} \backslash\left\{k x_{2,1}\right\} \cup \cdots \cup k L_{k-1} \backslash\left\{k x_{(k-1), 1}\right\}\right) \cup R,
$$

where $R=\bigcup_{i=0}^{k-2}\left|k\left(x_{(i+1), p}-x_{i, q}\right)-1\right|$, where either $p=1$ if $Q_{i+1}^{T_{i+1}}=Q_{i+1}$ or $p=v-1$ if $Q_{i+1}^{T_{i+1}}=Q_{i+1}^{\text {rev }}$, and $q=v-1$ if $Q_{i}^{T_{i}}=Q_{i}$ or $q=1$ if $Q_{i}^{T_{i}}=Q_{i}^{\text {rev }}$, for all $i=0,1, \ldots, k-2$.

Proposition 4.3. For all $k \geq 2$ an even integer and s a positive integer, there exists a linear realization of the list

$$
\left\{1^{k-1}, k^{k},(2 k)^{k}, \ldots,((s-1) k)^{k},(s k)\right\}
$$

Proof. Let $C=C_{s}=\left(x_{0}, x_{1}, \ldots, x_{s}\right)$ with $x_{2 i}=i$ and $x_{2 i+1}=s-i$, for all $i \in\{0,1, \ldots,\lfloor s / 2\rfloor\}$, be the well-known Walecki linear realization of the list $\{1,2, \ldots, s\}$, see [8] (page 3). The following k-extension of C :
$E_{k}\left(C, C^{r e v}, \ldots, C, C^{r e v}\right)=C_{k, 0}+\operatorname{rev}\left(C_{k, 1}\right)+\cdots+C_{k, k-2}+\operatorname{rev}\left(C_{k, k-1}\right)$,
is a linear realization of the list $\left\{1^{k-1}, k^{k},(2 k)^{k}, \ldots,((s-1) k)^{k},(s k)\right\}$.
Corollary 4.4. For $i=0,1, \ldots, k$, let $Q_{i}=\left(x_{i, 0}, x_{i, 1}, \ldots, x_{i, v-1}\right)$ be a standard linear realization of L_{i}, where the vertices $v-1$ and $v-2$ are adjacent for all i. If $E_{k}\left(Q_{0}^{T_{0}}, Q_{1}^{T_{1}}, \ldots, Q_{k-1}^{T_{k-1}}\right)$ is a (standard) linear realization of L, then the list $L \cup\left\{(2 k)^{b}\right\}$ is linear realizable, for any positive integer b.

Proof. See proof of Corollary 4.1.
Proposition 4.5. Let $k \geq 2$ be an integer, then there exists a linear realization of the list

$$
\left\{1^{a}, 2^{b}, k^{k(t-1)+1},(2 k)^{c}\right\}
$$

for all integers a, b, c, t such that $a \geq k-1$ and $t, b \geq 2$.

Proof. Let $I=I_{t}=\{0,1, \ldots, t\}$ be the linear realization of the list $\left\{1^{t}\right\}$, where $t \geq 2$ is a positive integer. The following k-extension of I :

$$
E_{k}\left(I, I^{r e v}, \ldots, I, I^{r e v}\right)=I_{k, 0}+\operatorname{rev}\left(I_{k, 1}\right)+\cdots+I_{k, k-2}+\operatorname{rev}\left(I_{k, k-1}\right)
$$

is a $(k, 1)$-realization of $\left\{1^{k-1}, k^{k(t-1)+1}\right\}$. By Remark 2, Corollary 4.4 and Lemma 3.1, there exists a linear realization of the list

$$
\left\{1^{a}, 2^{b}, k^{k(t-1)+1},(2 k)^{c}\right\}
$$

for all integers a, b, c such that $a \geq k-1$ and $b \geq 2$.
Proposition 4.6. There exists a linear realization of the lists $\left\{1^{a}, 4^{4}, 8^{c}\right\}$, for all positive integers a, b, c such that $a \geq 3$ and $c \geq 1$.

Proof. Let $s \geq 1$ be an integer. Consider the linear realizations P_{s} of the list $\left\{1,2^{2 s-1}\right\}$ (given in Example 6): $P_{s}=(0,2, \ldots, 2 s, 2 s-1,2 s-3, \ldots, 1)$. The following 4-extension $E_{4}\left(P_{s}, P_{s}^{r e v}, P_{s}, P_{s}^{r e v}\right)$ is a linear extension of $\left\{1^{3}, 4^{4}, 8^{8 s-7}\right\}$. By Remark 2 and Corollary 4.4 there exists a linear realization of the lists $\left\{1^{a}, 4^{4}, 8^{c}\right\}$, for all positive integers a, b, c such that $a \geq 3$ and $c \geq 1$.

Acknowledgment I would like to thank the anonymous referee for reading carefully the paper and for all comments and suggestions for improving the paper. Also, I would like to thank the Editor-in-Chief Professor Buratti for all his support and advice. The research was partially supported by SNI and CONACyT.

References

[1] J.A. Bondy, Graph theory with applications, Elsevier Science Ltd., Oxford, UK, 1976.
[2] M. Buratti and F. Merola, Dihedral Hamiltonian Cycle Systems of the Cocktail Party Graph, J. Combin. Des., 21(1) (2013), 1-23.
[3] S. Capparelli and A. Del Fra, Hamiltonian paths in the complete graph with edge-lengths $1,2,3$, Electron. J. Combin., 17, \#R44 (2010)
[4] J.H. Dinitz and S.R. Janiszewski, On Hamiltonian Paths with Prescribed edgelengths in the Complete Graph, Bull. Inst. Combin. Appl., 57 (2009), 42-52.
[5] P. Horak and A. Rosa, On a problem of Marco Buratti, Electron. J. Combin., 16(1), \#R20 (2009)
[6] F. Monopoli, Absolute differences along Hamiltonian paths, Electron. J. Combin., 22(3), \#P3.20 (2015)
[7] M.A. Ollis, A. Pasotti, M.A. Pellegrini, and J.R. Schmitt, New methods to attack the Buratti-Horak-Rosa conjecture, Discrete Math., 344(9) (2010), 112486.
[8] M.A. Ollis and A. Pasotti and M.A. Pellegrini and J.R. Schmitt, Growable realizations: a powerful approach to the Buratti-Horak-Rosa conjecture, https://arxiv.org/abs/2105.00980.
[9] A. Pasotti and M.A. Pellegrini, A new result on the problem of Buratti, Horak and Rosa, Discrete Math., 319 (2014), 1-14.
[10] A. Pasotti and M.A. Pellegrini, On the Buratti-Horak-Rosa Conjecture about Hamiltonian Paths in Complete Graphs, Electron. J. Combin., 21(2), \#P2.30 (2014)

