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Abstract. The conjecture posed by Buratti, Horak and Rosa states that
a (multiset) list L of v − 1 positive integers not exceeding bv/2c is the list
of edge-lengths of a suitable Hamiltonian path of the complete graph with
vertex-set {0, 1, . . . , v−1} if and only if for every divisor d of v, the number
of multiples of d appearing in L is at most v−d. A list L is called realizable
if there exists such Hamiltonian path P of the complete graph with |L|+ 1
vertices whose edge-lengths is the given list L. If the initial and the final
vertices in P are 0 and v − 1, respectively, then P is called perfect.

In this note, we show some properties of some perfect linear realizations.
Also, we present a new operation over well-known linear realizations. For
example, we give a linear realizations of the lists {1a, 2b, 4c}, where a, c ≥ 1
and b ≥ 3 integers, {1a, 2b, 42c, 8d}, for all a, d ≥ 1, b ≥ 3 and c ≥ 2 integers,
and {1a, 2b, 4c, 8d}, for all a, d ≥ 1, b ≥ 3 and c ≥ 8 integers.

1 Introduction

Throughout the paper, Kp will denote the complete graph on p vertices,
labeled by the integers of the set {0, 1, . . . , p−1}. For the basic terminology
on graphs we refer to [1] and for basic facts about the Buratti-Horak-Rosa
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conjecture we refer to [10]. The length of the edge xy, where x, y ∈ V (Kp)
is given by

`(x, y) = min{|y − x|, p− |y − x|}.
Given a path P = (x0, x1, . . . , xk), the list of edge-lengths of P is the
list `(P ) of the lengths (taken with their respective multiplicities) of all the
edges of P . Hence, if a list L consists of a1 1s, a2 2s, . . . , at ts, then we write

L = {1a1 , 2a2 , . . . , tat} and |L| =

t∑

i=1

ai. The set UL = {i : ai > 0} ⊆ L is

called the underlying set of L.

The following conjecture was proposed in a private communication by Bu-
ratti to Rosa in 2007:

Conjecture 1.1 (M. Buratti). For any prime p = 2n + 1 and any list L
of 2n positive integers not exceeding n, there exists a Hamiltonian path P
of Kp with `(P ) = L.

Talking with Professor Buratti, the origin of this problem comes from the
study of dihedral Hamiltonian cycle decompositions of the cocktail party
graph (see comments before Corollary 3.19 in [2]).

Buratti’s conjecture is almost trivially true in the case when |UL| = 1. On
the other hand, the case of exactly two distinct edge-lengths has been solved
independently by Dinitz and Janiszewski [4] and Horak and Rosa [5]. Using
a computer, Meszka has verified the validity of Buratti’s conjecture for all
primes ≤ 23. Monopoli [6] showed that the conjecture is true when all the
elements of the list L appear exactly twice.

In [5] Horak and Rosa proposed a generalization of Buratti’s conjecture,
which has been restated in an easier way in [9] as follows:

Conjecture 1.2 (P. Horak and A. Rosa). Let L be a list of v − 1 positive
integers not exceeding bv/2c. Then there exists a Hamiltonian path P of
Kv such that `(P ) = L if and only if the following condition holds:

for any divisor d of v, the number of multiples of d
appearing in L does not exceed v − d.

The case of exactly three distinct edge-lengths has been solved when the
underlying set is UL = {1, 2, 3} in [3], when UL is one of the sets

{1, 2, 5}, {1, 3, 5}, {2, 3, 5}
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in [9], and when UL = {1, 3, 4} or UL = {2, 3, 4} in [8]. In [10] the authors
give a complete solution when UL = {1, 2, t}, where t ∈ {4, 6, 8}, and when
L = {1a, 2b, tc} with t ≥ 4 an even integer and a+ b ≥ t− 1. The case with
four distinct edge-lengths for which the conjecture has been shown to be
true is when UL = {1, 2, 3, 4} or UL = {1, 2, 3, 5}, see [6] and [10]. Recently,
Ollis et al. [8] proved some partial results in which UL = {x, y, x + y},
UL = {1, 2, 4, . . . , 2x} and UL = {1, 2, 4, . . . , 2x, 2x + 1}; many other lists
were considered, see [8].

A cyclic realization of a list L with v − 1 elements each from the set
{1, 2, . . . , bv/2c} is a Hamiltonian path P of Kv such that the multiset
of edge-lengths of P equals L. Hence, it is clear that the Conjecture 1.2
can be formulated as follow: every such a list L has a cyclic realization if
and only if condition (1,1) is satisfied.

Example 1. The path P = (0, 1, 2, 3, 6, 4, 5, 7) is a cyclic realization of the
list L = {14, 22, 3}.

A linear realization of a list L with v − 1 positive integers not exceeding
v − 1 is a Hamiltonian path P = (x0, x1, ..., xv−1) of Kv such that L =
{|xi − xi+1| : i = 0, . . . , v − 2}. The linear realization is standard if x0 = 0
(see [8]). In this note we assume that any realization P of a given list L
is standard. On the other hand, if xv−1 = v − 1, the (standard) linear
realization is called perfect (see [3]).

Example 2. The path P = (0, 2, 4, 6, 5, 3, 1, 7) is a perfect linear realization
of the list L = {11, 25, 6}.

Remark 1. From the definitions presented before, it is not hard to see
that any linear realization of a list L can be viewed as a cyclic realization
of a list L̂ (not necessarily of the same list); however if all the elements

in the list are less than or equal to b |L|+1
2 c, then every linear realization

of L is also a cyclic realization of the same list L. For example, the path
P = (0, 5, 7, 8, 6, 4, 3, 1, 2) is a linear realization of the list L = {13, 24, 5}
and a cyclic realization of the list L̂ = {13, 24, 4}.

In this note, we show some properties of some perfect linear realizations.
Also, we present a new operation over well-known linear realizations and
we give several examples.
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2 Some perfect linear realizations

Let P = (x0, x1, . . . , xv−1) and P ′ = (y0, y1, . . . , yw−1) be two paths (in
general) such that V (P )∩V (P ′) = ∅. If xv−1 and y0 are adjacent, then we
can generate the path:

P + P ′ = (x0, x1, . . . , xv−1, y0, y1, . . . , yw−1).

The path P + P ′ is also well-defined if xv−1 = y0, in this case

P + P ′ = (x0, x1, . . . , xv−1, y1, . . . , yw−1).

Theorem 2.1 ([3]). Let P be a perfect linear realization of a list L and P ′

be a linear realization of the list L′. Then there exists a linear realization
P ′′ of the list L∪L′. Furthermore, if P ′ is also perfect, then P ′′ is perfect.

Remark 2. Let P = (x0 = 0, x1, . . . , xv−1 = v − 1) be a perfect linear
realization of a list L. Applying the previous theorem to the perfect linear
realization (0, 1, . . . , A) of {1A}, P ′ = P + (v − 1, v, . . . , v − 1 + A) is a
perfect linear realizations of L ∪ {1A}, for all A ≥ 0 integer, see [3].

Let P = (x0, x1, . . . , xv−1) be a path. For every k ∈ Z integer, let πk : Z→
Z given by πk(x) = x + k. Hence, if P = (x0 = 0, x1, . . . , xv−1) is a linear
realization of a list L, then P ′ = (0, 1, . . . , A)+πA(P ) is a linear realization
of the list L ∪ {1A}.

Let P = (x0, x1, . . . , xv−1) be a path. For each j ∈ {1, 2, . . . , v − 1}, the
path P is called j-partitionable if P = Pj + P c

j , where

V (Pj) = {x0, x1, . . . , xj} = {0, 1, . . . , j}

and xj = j. A path P is called partitionable if P is j-partitionable for some
j ∈ {1, 2, . . . , v − 1}.
Example 3. The path P = (0, 1, 2, 5, 3, 4, 6) is j-partitionable for j ∈
{1, 2, 6}. On the other hand, the path P ′ = (0, 1, 2, 5, 3, 4, 6, 7, 8) is j-
partitionable for j ∈ {1, 2, 6, 7, 8}. In particular, both paths are perfect.

Let P be a j-partitionable, for some j > 0. Then P is weakly j-partitionable
if P is also (j + 1)-partitionable; otherwise the path is called strong.

Lemma 2.2 ([10]). Let P = (x0, x1, . . . , xv−1) be a linear realization of a
list L. If there exists i ∈ {0, 1, . . . , v−2} such that {xi, xi+1} = {v−2, v−1},
then P = (x0, . . . , xi, v, xi+1, . . . , xv−1) is a linear realization of L ∪ {2}.
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Corollary 2.3 ([10]). Let P = (x0, x1, . . . , xv−1) be a linear realization of a
list L. If there exists i ∈ {0, 1, . . . , v−2} such that {xi, xi+1} = {v−2, v−1},
then the list L′ = L∪{2b} admits a linear realization, for any positive integer
b.

Lemma 2.4. If a list L admits a weakly j-partitionable linear realization,
for some j ∈ {1, . . . , |L|−2}, then the list L\{1} admits a linear realization.

Proof. Let P = (x0, x1, . . . , xv−1) be a weakly j-partitionable linear real-
ization of a list L, for some j ∈ {1, . . . , |L| − 2}. Since the path is weakly
j-partitionable, then j and j + 1 are adjacent in P and 1 ∈ L. Therefore,
the path

P ′ = (x0, . . . , xj , π−1(xj+2), . . . , π−1(xv−1))

is a linear realization of L \ {1}.

Proposition 2.5. If a list L admits a perfect weakly i-partitionable linear
realization, for all i ∈ {i1, . . . , ik}, then L = Li1,∪· · ·∪Lik ∪Lv−1 where Li

admits a perfect strong linear realization for all i ∈ {i1, . . . , ik} ∪ {v − 1}.

Proof. Let P = (x0, x1, . . . , xv−1) be a perfect weakly i-partitionable linear
realization of a list L, where i ∈ {i1, . . . , ik} and i1 < i2 < · · · < ik. Hence

P = (x0, . . . , xi1) + (xi1+1, · · · , xi2) + . . .+ (xik+1, . . . , xv−1).

Setting i0 = 0, ik+1 = v − 1 and Pij = (xij−1+1, . . . , xij ), for all j ∈
{1, . . . , k}, then P = Pi1 + Pi2 + · · ·+ Pik+1

. Since P is perfect and parti-
tionable,

Pi1 , π−(xi1
+1)(Pi2), . . . , π−(xik+1)(Pik+1

)

are perfect strong linear realizations of Li1 , Li2 , . . . , Lik+1
, respectively,

where Lij ⊆ L, for all j ∈ {1, . . . , k + 1} and L = Li1 ∪ · · · ∪ Lik+1

(by Theorem 2.1).

Lemma 2.6 ([10]). If a list L = {1a1 , 2a2 , . . . , tat} admits a linear realiza-
tion, then ai + i− 1 ≤ |L| for all i = 1, . . . , t.

Proposition 2.7. If a list L = {1a, 2b, tc} admits a perfect linear realiza-
tion, then b+ (t− 1)c is even.

Proof. The proof is obtained straightforwardly of proof given by Proposi-
tion 3.1 in [3].
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In particular of Lemma 2.6, if a list L = {1a, 2b, tc} admits a linear realiza-
tion, then a+ b ≥ t− 1.

Remark 3. If P = (x0, x1, . . . , xt) is a perfect linear realization of Lt =
{1a, 2b, t} with a+ b = t, then either x1 = t or xt−1 = 1.

Proposition 2.8. There exist a perfect linear realization of the list Lt =
{1, 2t−1, t}, for all t ≥ 3 integer.

Proof. It is very easy to see that the following paths are perfect linear
realizations of L.

(a) Pt = (0, 2, 4, . . . , t, t− 1, t− 3, . . . , 1, t+ 1) if t ≥ 4 is even.

(b) Pt = (0, 2, 4, . . . , t− 1, t, t− 2, . . . , 1, t+ 1) if t ≥ 3 is odd.

(c) P̂t = (0, t, t− 2, . . . , 2, 1, 3, . . . , t− 1, t+ 1) if t ≥ 4 is even.

(d) P̂t = (0, t, t− 2, . . . , 1, 2, 4, . . . , t− 1, t+ 1) if t ≥ 3 is odd.

Example 4. The paths P4 = (0, 2, 4, 3, 1, 5) and P̂4 = (0, 4, 2, 1, 3, 5) are
perfect linear realizations of the list L4 = {1, 23, 4}.

Theorem 2.9. Let a + b = t ≥ 3 with a, b ≥ 1 integers. The list Lt =
{1a, 2b, t} admits a perfect linear realization if and only if (a, b) = (1, t−1),
in which the paths Pt and P̂t are the unique perfect linear realization of the
list Lt.

Proof. Suppose that t ≥ 4 is an even integer (the proof for t ≥ 3 odd
is completely analogous). Let P = (x0, x1, . . . , xt+1) be a perfect linear
realization of Lt. By Remark 3 either xt = 1 or x1 = t. Without loss of
generality assume that xt = 1, which implies that x1 = 2, which implies
that xt−1 = 3, which implies that x2 = 4, which implies that xt−2 = 5, and
so on until x t

2+2 = t − 3 and x t
2

= t. Which implies that x t
2+1 = t − 1.

Hence, we have that P = Pt. The proof to the case x1 = t is analogous to
the proof presented before.
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3 Even-odd applications over paths

If P = (x0, x1, . . . , xv−1) is a standard linear realization of a list L, then
this path is called (x1, xv−1)-realization of L. Let P ∗ be the sub-path of
P without initial vertex, that is P ∗ = P \ {x0}. Hence, P ∗ is a (non-
standard) linear realization of the list L\{x1}. The reverse of P , rev(P ) =
(xv−1, xv−2, . . . , x0), is also a liner realization of L, see [8]. The even-
application of P , E(P ), is defined by the path

E(P ) = (2x0, 2x1, . . . , 2xv−1).

This application satisfies that `(E(P )) = 2L. Finally, the odd-application
of P , O(P ), is defined by the path:

O(P ) = (2x1 − 1, 2x2 − 1, . . . , 2xv−1 − 1)

and the odd reverse-application of P , OR(P ), is defined as the path

OR(P ) = (2xv−1 − 1, 2xv−2 − 1, . . . , 2x1 − 1).

These applications satisfy `(O(P )) = `(OR(P )) = 2L \ {2x1}.

We define two operations over a linear realization P of a list L, called even-
odd extension, EO(P ), and even-odd reverse extension of P , EOR(P ), as
follow:

EO(P ) = E(P ) +O(P ) and EOR(P ) = E(P ) +OR(P ).

The even-odd extension of P is a linear realization of the list

(2L ∪ 2L \ {2x1}) ∪ {|2(xv−1 − x1) + 1|}.

On the other hand, the even-odd reverse extension of P is a linear realiza-
tion of the list

(2L ∪ 2L \ {2x1}) ∪ {1}.

To the next, we are going to construct some linear realization from well-
known linear realizations.

Example 5. As we have already seen, P = (0, 1, . . . , k) is a (perfect) linear
realization of the list {1k}. On the other hand, E(P ) = (0, 2, 4, . . . , 2k) and
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O(P ) = (1, 3, . . . , 2k − 1). Hence, `(E(P )) = {2k} and `(O(P )) = {2k−1}.
It follows that the even-odd reverse extension of P :

EOR(P ) = (0, 2, 4, . . . , 2k, 2k − 1, 2k − 3, . . . , 3, 1)

is a linear realization of the list {1, 22k−1}. Notice that the new path is a
(2, 1)-realization.

Example 6. Let k ≥ 1 be an integer, and take

Pk = (0, 2, . . . , 2k, 2k − 1, 2k − 3, . . . , 1),

P ′k = (0, 2, . . . , 2k, 2k + 1, 2k − 1, . . . , 1).

It is easy to see that Pk is a (2, 1)-realization of {1, 22k−1} (see Example 5)
and P ′k is (2, 1)-realization of {1, 22k}. Hence, the even-application of Pk

and P ′k are

E(Pk) = (0, 4, . . . , 4k, 4k − 2, 4k − 6, . . . , 2),

E(P ′k) = (0, 4, . . . , 4k, 4k + 2, 4k − 2, . . . , 2),

satisfying `(E(Pk)) = {2, 42k−1} and `(E(P ′k)) = {2, 42k}, respectively. The
odd-application of Pk and P ′k are

O(Pk) = (3, 7, . . . , 4k − 1, 4k − 3, 4k − 7, . . . , 1),

O(P ′k) = (3, 7, . . . , 4k − 1, 4k + 1, 4k − 3, . . . , 1),

satisfying `(O(Pk)) = {2, 42k−2} and `(O(P ′k)) = {2, 42k−1}, respectively.

Hence, the even-odd extension of Pk and P ′k, EO(Pk) and EO(P ′k), are
(4, 1)-realization of the lists {1, 22, 44k−3} and {1, 22, 44k−1}, respectively.
Also, the even-odd reverse extension of Pk and P ′k, EOR(Pk) and EOR(P ′k),
are (4, 3)-realization of the same lists.

Lemma 3.1 ([10], Lemma 9). Let P = (x0, x1, . . . , xv−1) be a standard
linear realization of a list L. If xv−1 = 1, then the list L′ = L ∪ {2b} is
linear realizable, for any b ≥ 2 integer.

By Remark 2, Example 6 and Lemma 3.1, we have the following result,
which is a particular case of Proposition 20 in [10]:

Corollary 3.2. There are linear realizations of the lists {1a, 22, 42c−1} and
{1a, 2b, 42c−1}, for all positive integers a, b, c such that b ≥ 4.

Theorem 3.3 ([3]). If a ≥ 2 and b ≥ 0 are integers, then the list {1a, 3b}
admits a linear realization. Also, this realization can be assumed to be
perfect when b 6≡ 1 (mod 3).
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Corollary 3.4. Let P = (x0, x1, . . . , xv−1) be a linear realization of a
list L, where the vertices v − 1, v − 2 are adjacent. If EO(P ) is a linear
realization of LEO and EOR(P ) is a linear realization of LEOR, then the
lists LEO ∪ {4} and LEOR ∪ {4} are linear realizable.

Proof. The proof is completely analogous to the proof of Lemma 7 of [10].
Since the vertices v − 1, v − 2 are adjacent in P , the vertices 2v − 3, 2v − 5
are adjacent in O(P ) (and in OR(P )), and the vertices 2v − 2, 2v − 4 are
adjacent in E(P ). Hence, the new vertex 2v − 1 can be added between
2v− 3, 2v− 5. So, there is a linear realization of LEO ∪{4} or LEOR ∪{4}.
Else, if we also add the vertex 2v between 2v − 2 ans 2v − 4, we obtain a
linear realization of LEO ∪ {42} and of LEOR ∪ {42}.

Corollary 3.5. Let P = (x0, x1, . . . , xv−1) be a linear realization of a
list L, where the vertices v − 1, v − 2 are adjacent. If EO(P ) is a linear
realization of LEO and EOR(P ) is a linear realization of LEOR, then the
lists LEO ∪ {4b} and LEOR ∪ {4b} are linear realizable, for any positive
integer b.

By Remark 2, Example 6, Corollary 3.5 and Lemma 3.1, we have the fol-
lowing:

Corollary 3.6. There are linear realizations of the lists {1a, 22, 4c} and
{1a, 2b, 4c}, for all positive integers a, b, c such that b ≥ 4.

Corollary 3.7. Let P = (x0, x1, . . . , xv−1) be a standard linear realization
of a list L, where xv−1 = 1. There exists a linear realization of 2L ∪ 2L ∪
{1, 42b−1}.

Proof. Following the proof of Lemma 9 of [10], there exists a (2, 1)-realiza-
tion P ′ of L ∪ {2b}. Then EO(P ′) and EOR(P ′) are linear realizations of
2L ∪ 2L ∪ {1, 42b−1}.

Proposition 3.8. There exists a standard linear realization of the list
{1a, 2b, 4c}, for all positive integers a, b, c where b ≥ 3.

Proof. Let k ≥ 2 be an integer. Consider the path Pk of Example 5,
obtained by applying the even-odd reverse extension of the perfect linear
realization Ik = {0, 1, 2, . . . , k} of the list {1k}: Pk = EOR(Ik). Then, we
can write Pk = PE

k,0 + rev(PO
k,0), where

PE
k,0 = E(Ik) = (0, 2, . . . , 2k) and PO

k,0 = O(Ik) = (1, 3, . . . , 2k − 1).
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So, `(PE
k,0) = {2k} and `(PO

k,0) = {2k−1}. Now, let t be a positive integer.

For all j = 1, . . . , t, we construct a path PE
k,j by adding the vertex 2k + 2j

between the consecutive vertices 2k + 2(j − 2), 2k + 2(j − 1) of the path
PE
k,j−1. Then, `(PE

k,j) = {2k, 4j}. Similarly, for all j = 1, . . . , t, we construct

a path PO
k,j by adding the vertex 2k+2j−1 between the consecutive vertices

2k+2j−5, 2k+2j−3 of the path PO
k,j−1. In this case, `(PO

k,j) = {2k−1, 4j}.
Hence, the path Pk,t = PE

k,t + rev(PO
k,t) is a (2, 1)-realization of the list

{1, 22k−1, 42t}. Now, the path

PE
k,0 + rev(PO

k,0) = (0, 2, 4, . . . , 2k, 2k − 1, 2k + 1, 2k − 3, 2k − 5, . . . , 1)

is a (2, 1)-realization of the list {1, 22k−1, 4}. Finally, for any positive integer
t, the path PE

k,t + PO
k,t+1 is a (2, 1)-realization of the list {1, 22k−1, 42t+1}.

Hence, there is a (2, 1)-realization of {1, 22x+1, 4y} for all positive integers
x, y. Finally, by Remark 2, Lemma 3.1, Corollary 3.6 and Corollary 3.7,
there is a linear realization of {1a, 2b, 4c}, for all positive integers a, b, c
where b ≥ 3.

Example 7. For instance, taking t = 2 and k = 3, we have

PE
3,0 = (0, 2, 4, 6), PE

3,1 = (0, 2, 4,8, 6), PE
3,2 = (0, 2, 4, 8,10, 6),

PO
3,0 = (1, 3, 5), PO

3,1 = (1, 3,7, 5), PO
3,2 = (1, 3, 7,9, 5).

Hence, P3,2 = (0, 2, 4, 8, 10, 6, 5, 9, 7, 3, 1) is a (2, 1)-realization of {1, 25, 44},
PE
3,0+rev(PO

3,1) = (0, 2, 4, 6, 5, 7, 3, 1) is a (2, 1)-realization of {1, 25, 4}, and

PE
3,2 = (0, 2, 4, 8, 10, 6, 5, 9, 11, 7, 3, 1) is a (2, 1)-realization of {1, 25, 45}.

Furthermore, PE
3,2 + rev(PO

4,2) = (0, 2, 4, 8, 10, 6, 7, 11, 9, 5, 3, 1) is a (2, 1)-

realization of {1, 26, 44}, PE
3,1 = rev(PO

4,0) = (0, 2, 4, 8, 7, 5, 3, 1) is a (2, 1)-

realization of {1, 26, 4}, and PE
3,3 + PO

4,2 = (0, 2, 4, 8, 12, 10, 6, 7, 11, 9, 5, 3, 1)
is a (2, 1)-realization of {1, 26, 45}.

Proposition 3.9. There exists a standard linear realization of the list
{1a, 2b, 42c, 8d}, for all positive integers a, b, c, d where b ≥ 3 and c ≥ 2.
Moreover, there exists a standard linear realization of the list {1a, 2b, 4c, 8d},
for all positive integers a, b, c, d such that a ≥ 2, b ≥ 3 and c ≥ 4.

Proof. Let Q = P2,4 = (0, 2, 6, 8, 4, 3, 7, 5, 1) be a (2, 1)-linear realization of
{1, 23, 44} (see Proposition 3.8). Let Q2 = (2, 6), Q0 = (4, 8), Q1 = (3, 7)
and Q3 = (1, 5). So,

Q = (0) +Q2 + rev(Q0) +Q1 + rev(Q3).
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Let l ≥ 3 be an integer and i ∈ {0, 1, 2, 3}, we construct the path Ql+1,i by
adding the vertex 4l − i to the path Ql,i, where Qi

3 = Qi for i = 0, 1, 2, 3,
as follow:

• If i = 3, we add the vertex 4l − 3 between the vertices 4(l − 1) − 3
and 4(l − 2)− 3 to the path Q3

l . Hence,

Ql+1,3 = (0) +Q2
l + rev(Q0

l ) +Q1
l + rev(Q3

l+1).

• If i = 2, then Q2
l+1 = Q3

l+1 + 1 (since Q2 = Q3 + 1), we are adding
the vertex 4l− 2 between the vertices 4(l− 1)− 2 and 4(l− 2)− 2 of
the path Q2

l . Hence,

Ql+1,2 = (0) +Q2
l+1 + rev(Q0

l ) +Q1
l + rev(Q3

l+1).

• If i = 1, we add the vertex 4l − 1 between the vertices 4(l − 1) − 1
and 4(l − 2)− 1 to the path Q1

l . Hence,

Ql+1,1 = (0) +Q2
l+1 + rev(Q0

l ) +Q1
l+1 + rev(Q3

l+1).

• If i = 0, then Q0
l+1 = Q1

l+1 + 1 (since Q0 = Q0 + 1), we are adding
the vertex 4l between the vertices 4(l − 1) and 4(l − 2) of the path
Q0

l . Hence,

Ql+1,0 = (0) +Q2
l+1 + rev(Q0

l+1) +Q1
l+1 + rev(Q3

l+1).

So, `(Qi
l+1) = {4, 8i}, for i = 0, 1, 2, 3. Therefore, the path Ql+1,i is a

(2, 1)-realization of {1, 23, 44, 84l−8−i}, proving that there exists a (2, 1)-
realization of {1, 23, 44, 8t}, for all positive integer t. Proceeding as the same
way as before taking Q = P2,2k (see Proposition 3.8), for k ≥ 1 integer, we
can prove that there is a (2, 1)-realization of the list {1, 23, 44k, 8s}, for all
positive integers k, s.

Now, let Q̂ = (0, 2, 6, 10, 8, 4, 5, 9, 11, 7, 3, 1) be a (2, 1)-linear realization of
{1, 24, 46}. If Q̂2 = (2, 6), Q̂0 = (4, 8), Q̂1 = (5, 9) and Q̂3 = (3, 7), we have

Q̂ = (0) + Q̂2 + (10) + rev(Q̂0) + Q̂1 + (11) + rev(Q̂3) + (1).

As the same way as before, we can construct a (2, 1)-linear realization of
the list {1, 24, 46, 8s}, for s ≥ 1 integer. Moreover, if we take Q̂ = P ′2,2k+1

(see Proposition 3.8), for k ≥ 1 integer, we can prove that there is a (2, 1)-
realization of the list {1, 24, 44k+2, 8s}, for all positive integers k, s.
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On the other hand, let Q = (0, 2, 6, 8, 4, 5, 9, 7, 3, 1) be a (2, 1)-linear realiza-
tion of {1, 24, 44}. Let Q2 = (2, 6), Q0 = (4, 8), Q1 = (5, 9) and Q3 = (3, 7),
we have

Q = (0) +Q2 + rev(Q0) +Q1 + rev(Q3) + (1).

Let l ≥ 3 be an integer and i ∈ {0, 1, 2, 3}, we construct the path Ql+1,i

by adding the vertex (4l − 3) + i to the path Ql,i, where Qi
3 = Qi for

i = 0, 1, 2, 3, as follow:

• If i = 0, we add the vertex (4l − 2) between the vertices 4(l − 2)− 2
and 4(l − 3)− 2 to the path Q2

l . Hence,

Ql+1,0 = (0) +Q2
l+1 + rev(Q0

l ) +Q1
l + rev(Q3

l ).

• If i = 1, then Q3
l+1 = Q2

l+1 + 1 (since Q2 = Q3 + 1). Hence,

Ql+1,1 = (0) +Q2
l+1 + rev(Q0

l ) +Q1
l + rev(Q3

l+1).

• If i = 2, we add the vertex 4l − 1 between the vertices 4(l − 1) − 1
and 4(l − 2)− 1 to the path Q1

l . Hence,

Ql+1,2 = (0) +Q2
l+1 + rev(Q0

l ) +Q1
l+1 + rev(Q3

l+1).

• If i = 3, then Q0
l+1 = Q1

l+1 + 1 (since Q0 = Q0 + 1), we are adding
the vertex 4l between the vertices 4(l − 1) and 4(l − 2) of the path
Q0

l . Hence,

Ql+1,3 = (0) +Q2
l+1 + rev(Q0

l+1) +Q1
l+1 + rev(Q3

l+1).

So, we can construct a (2, 1)-linear realization of the list {1, 24, 44, 8t},
for t ≥ 1 integer. Moreover, if we take Q̂ = P ′2,2k (see Proposition 3.8),
for k ≥ 1 integer, we can prove that there is a (2, 1)-realization of the
list {1, 24, 44k, 8s}, for all positive integers k, s. Finally, taking the path
Q̂ = P2,2k+1 (see Proposition 3.8) and all ideas presented before, we can
construct a (2, 1)-linear realization of the list {1, 23, 44k+2, 8s}, for all posi-
tive integers k, s. By Remark 2 and Lemma 3.1, there is a linear realization
of {1a, 2b, 42c, 8d}, for all positive integers a, b, c, d such that b ≥ 3 and
c ≥ 2. Moreover, By Remark 2, Corollary 3.7 and Lemma 3.1 there exists
a linear realization of {1a, 2b, 4c, 8d}, for all positive integers a, b, c, d such
that a ≥ 2, b ≥ 3 and c ≥ 4.

Proposition 3.10. There are linear realizations of the lists

{1a, 24, 4c, 66d+1}, {1a, 25, 4c, 66d−2} and {1a, 2b, 4c, 66d−2},
for all positive integer a, b, c, d such that b ≥ 7.
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Proof. Let k ≥ 1 be an integer. The path

Qk = (0, 3, . . . , 3k + 3, 3k + 2, 3k − 1, . . . , 2, 1, 4, . . . , 3k + 1),

is a realization of the list {12, 33k+1}. Then, the even-odd reverse extension
of Qk, EOR(Qk), is a linear realization of the list {1, 24, 66k+1}. By Remark
2 and Corollary 3.5, there exists a linear realization of {1a, 24, 4c, 66k+1} for
all positive integer a, c.

On the other hand, the path

Q̂k = (0, 1, 4, . . . , 3k + 1, 3k + 2, 3k − 1, . . . , 2, 3, 6, . . . , 3k),

is a linear realization of the list {13, 33k−1}. Then, the even-odd reverse ex-
tension of Q̂k, EOR(Q̂k), is a (2, 1)-linear realization of the list {1, 25, 66k−2}.
Using Remark 2, Corollary 3.5 and Lemma 3.1, there are linear realizations
of the lists {1a, 25, 4c, 66k−2} and {1a, 2b, 4c, 66k−2}, for all positive integer
a, b, c such that b ≥ 7.

Let P = (x0, x1, . . . , xv−1) be a linear realization of a list L, and let P ′ =
(y0, y1, . . . , yv−1) be a standard linear realization of the list L′, such that
|L| = |L′|. The even-odd extension of P and P ′, denoted by EO(P, P ′), is
defined as follow:

EO(P, P ′) = E(P ) +O(P ′)

= (2x0, 2x1, . . . , 2xv−1, 2y1 − 1, 2y2 − 1, . . . , 2yv−1 − 1);

the even-odd reverse extension of P and P ′, denoted by EO(P, P ′), is de-
fined as follow:

EOR(P, P ′) = E(P ) +OR(P ′)

= (2x0, 2x1, . . . , 2xv−1, 2yv−1 − 1, 2yv−2 − 1, . . . , 2y1 − 1).

The even-odd extension of P and P ′ is a linear realization of the list
(2L ∪ 2L′ \ {2y1}) ∪ {|2(xv−1 − y1) + 1|}, while the even-odd reverse ex-
tension of P and P ′ is a linear realization of the list (2L ∪ 2L′ \ {2y1}) ∪
{|2(xv−1 − yv−1) + 1|}. In particular, if P ′ = P , then EO(P, P ) = EO(P )
and EOR(P, P ) = EOR(P ).

To the next, we are going to construct some linear realization from well-
known linear realizations.

Example 8. Let a ≥ 2 and b ≥ 1 integers. Let P = (x0, x1, . . . , xa+b) be
a linear realization of the list {1a, 3b}, and let Q = (0, 1, 2, . . . , a + b) be a
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linear realization of the list {1a+b}. If P is a perfect linear realization, then
the even-odd reverse extension of P and Q, EOR(P,Q), is a (standard)
linear realization of the list {1, 22a+b−1, 6b}. Also, if xa+b = 1, then the
even-odd extension of P and Q, EO(P,Q), is a linear realization of the
same list.

Example 9. Let k = 2s and h = 3s + 1, where s ≥ 1 is an integer.
Let Ph = (0, 1, . . . , h) be a linear realization of the list {1h}. By Example
5, the even-odd reverse extension of Ph, EOR(Ph), is a (2, 1)-realization
of the list {1, 22h−1}. If P̂h = EOR(Ph), then the even-odd extension of
P̂h and Q̂k (see Proposition 3.10), EO(P̂h, Q̂k), is (2, 1)- realization of the
list {1, 22, 42h−1, 63k}; that is, the even-odd extension of P̂3s+1 and Q̂2s

is a (2, 1)-realization of the list {1, 22, 46s+1, 66s}. By Remark 2, Corol-
lary 3.5 and Lemma 3.1 there are linear realizations of {1a, 22, 4c, 66d} and
{1a, 2b, 4c, 66d} for all positive integers a, b, c, d such that b ≥ 4 and c ≥ 7.

4 k-extension of linear realizations

In this section, we are going to generalize the even-odd extension given in
Section 3 for well-known linear realizations.

Let P = (x0 = 0, x1, . . . , xv−1) be a (standard) linear realization of a list
L. For each i ∈ {1, 2, . . . , k − 1}, the i-application of P is defined by the
path

Pk,i = (kx1 − i, kx2 − i, . . . , kxv−1 − i).
So, `(Pk,i) = kL \ {kx1}. We define the k-extension of P , denoted by
Ek(P ), as follow:

Ek(P ) = Pk,0 + Pk,1 + · · ·+ Pk,k−1,

where Pk,0 = kP = (0, kx1, . . . , kxv−1). Notice that

|kx1 − (i+ 1)− (kxv−1 − i)| = |k(x1 − xv−1)− 1|.

Hence, the k-extension of P is a linear realization of the list

(kL ∪ kL \ {kx1} ∪ kL \ {kx1} ∪ · · · ∪ kL \ {kx1})∪{|k(x1−xv−1)−1|k−1}.

Corollary 4.1. Let P = (x0, x1, . . . , xv−1) be a standard linear realization
of L, where the vertices v− 1 and v− 2 are adjacent. If Ek(P ) is the linear
realization of Lk, then the list Lk ∪ {(2k)b} admits a linear realization for
any positive integer b.
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Proof. Note that the vertices k(v−1)− i, k(v−2)− i are adjacent in Ek(P )
for all i = 0, . . . , k − 1. Then, one can proceed as the proof of Lemma 7 of
[10].

Example 10. Let P = (0, 1, . . . , s) be a linear realization of the list {1s}.
For each i = {1, 2} (in this case k = 3), the i-application of P is given by
the path

P3,i = (3 · 1− i, 3 · 2− i, . . . , 3 · s− i),
which satisfies that `(P3,i) = {3s−1}. Hence, the 3-extension of P :

E3(P ) = (0, 3, 6, . . . , 3s, 2, 5, . . . , 3s− 1, 1, 4, . . . , 3s− 2)

is a linear realization of the list {33s−2, (3s−2)2}. By Remark 2 and Corol-
lary 4.1 there exists a linear realization of the list {1a, 33s−2, 6b, (3s− 2)2}
for all positive integer a, b, s.

Proposition 4.2. There are linear realizations of the lists {1a, 22, 33, 6c}
and {1a, 2b, 33, 6c}, for all positive integers a, b, c such that b ≥ 4.

Proof. Let s ≥ 1 be an integer. Consider the linear realizations Ps and P ′s
of the lists {1, 22s−1} and {1, 22s}, respectively, given in Example 6:

Ps = (0, 2, . . . , 2s, 2s− 1, 2s− 3, . . . , 1),

P ′s = (0, 2, . . . , 2s, 2s+ 1, 2s− 1, . . . , 1).

For each i = {1, 2} (in this case k = 3), the i-realization of Ps, and P ′s are:

Ps,i = (3 · 2− i, . . . , 3 · 2s− i, 3 · (2s− 1)− i, 3 · (2s− 3)− i, . . . , 3 · 1− i),
P ′s,i = (3 · 2− i, . . . , 3 · 2s− i, 3 · (2s+ 1)− i, 3 · (2s− 1)− i, . . . , 3 · 1− i),

respectively. So, `(Ps,i) = {3, 62s−2} and `(P ′s,i) = {3, 62s−1}. There-
fore, the 3-extensions of Ps, E3(Ps), and P ′s, E3(P ′s), are (6, 1)-realization
of the lists {22, 33, 66s−5} and {22, 33, 66s−2}, respectively. By Remark
2, Corollary 4.1 and Lemma 3.1, there are linear realizations of the lists
{1a, 22, 33, 6c} and {1a, 2b, 33, 6c}, for all positive integers a, b, c such that
b ≥ 4.

For each i ∈ {0, 1, 2, . . . , k − 1} let Qi = (xi,0 = 0, xi,1, . . . , xi,v−1) be
k (standard) linear realizations of the list Li, such that |Li| = |Lj |, for
every 0 ≤ i < j ≤ k − 1. A k-extension of Q0, Q1, . . . , Qk−1, denoted by
Ek(QT0

0 , QT1
1 , . . . , QTk

k−1), is defined as follow:

Ek(QT0
0 , QT1

1 , . . . , QTk

k−1) = QT0

k,0 +QT1

k,1 + · · ·+QTk

k,k−1,
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where either QTi

k,i = Qk,i if QTi
i = Qi or QTi

k,i = rev(Qk,i) if QTi
i = Qrev

i , for
all i = 0, 1, . . . , k−1, and where Qk,i = (kxi,1− i, kxi,2− i, . . . , kxi,v−1− i),
for all i = 1, . . . , k − 1, and Qk,0 = (0, kx0,1, . . . , kx0,v−1). So, `(Qk,i) =
kLi \ {kxi,1}, for all i = 1, . . . , k − 1, and `(Qk,0) = kL0.

A k-extension of Q0, Q1, . . . , Qk−1, Ek(QT0
0 , QT1

1 , . . . , Q
Tk−1

k−1 ), is a linear re-
alization of the list

(
kL0 ∪ kL1 \ {kx1,1} ∪ kL2 \ {kx2,1} ∪ · · · ∪ kLk−1 \ {kx(k−1),1}

)
∪R,

where R =
⋃k−2

i=0 |k(x(i+1),p−xi,q)− 1|, where either p = 1 if Q
Ti+1

i+1 = Qi+1

or p = v − 1 if Q
Ti+1

i+1 = Qrev
i+1, and q = v − 1 if QTi

i = Qi or q = 1 if

QTi
i = Qrev

i , for all i = 0, 1, . . . , k − 2.

Proposition 4.3. For all k ≥ 2 an even integer and s a positive integer,
there exists a linear realization of the list

{1k−1, kk, (2k)k, . . . , ((s− 1)k)k, (sk)}.

Proof. Let C = Cs = (x0, x1, . . . , xs) with x2i = i and x2i+1 = s − i, for
all i ∈ {0, 1, . . . , bs/2c}, be the well-known Walecki linear realization of the
list {1, 2, . . . , s}, see [8] (page 3). The following k-extension of C:

Ek(C,Crev, . . . , C, Crev) = Ck,0 + rev(Ck,1) + · · ·+ Ck,k−2 + rev(Ck,k−1),

is a linear realization of the list {1k−1, kk, (2k)k, . . . , ((s− 1)k)k, (sk)}.

Corollary 4.4. For i = 0, 1, . . . , k, let Qi = (xi,0, xi,1, . . . , xi,v−1) be a
standard linear realization of Li, where the vertices v − 1 and v − 2 are

adjacent for all i. If Ek(QT0
0 , QT1

1 , . . . , Q
Tk−1

k−1 ) is a (standard) linear real-

ization of L, then the list L ∪ {(2k)b} is linear realizable, for any positive
integer b.

Proof. See proof of Corollary 4.1.

Proposition 4.5. Let k ≥ 2 be an integer, then there exists a linear real-
ization of the list

{1a, 2b, kk(t−1)+1, (2k)c}
for all integers a, b, c, t such that a ≥ k − 1 and t, b ≥ 2.
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Proof. Let I = It = {0, 1, . . . , t} be the linear realization of the list {1t},
where t ≥ 2 is a positive integer. The following k-extension of I:

Ek(I, Irev, . . . , I, Irev) = Ik,0 + rev(Ik,1) + · · ·+ Ik,k−2 + rev(Ik,k−1),

is a (k, 1)-realization of {1k−1, kk(t−1)+1}. By Remark 2, Corollary 4.4 and
Lemma 3.1, there exists a linear realization of the list

{1a, 2b, kk(t−1)+1, (2k)c},

for all integers a, b, c such that a ≥ k − 1 and b ≥ 2.

Proposition 4.6. There exists a linear realization of the lists {1a, 44, 8c},
for all positive integers a, b, c such that a ≥ 3 and c ≥ 1.

Proof. Let s ≥ 1 be an integer. Consider the linear realizations Ps of the list
{1, 22s−1} (given in Example 6): Ps = (0, 2, . . . , 2s, 2s − 1, 2s − 3, . . . , 1).
The following 4-extension E4(Ps, P

rev
s , Ps, P

rev
s ) is a linear extension of

{13, 44, 88s−7}. By Remark 2 and Corollary 4.4 there exists a linear real-
ization of the lists {1a, 44, 8c}, for all positive integers a, b, c such that a ≥ 3
and c ≥ 1.
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