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Abstract. The conjecture posed by Buratti, Horak and Rosa states that
a (multiset) list L of v — 1 positive integers not exceeding |v/2] is the list
of edge-lengths of a suitable Hamiltonian path of the complete graph with
vertex-set {0,1,...,v—1} if and only if for every divisor d of v, the number
of multiples of d appearing in L is at most v —d. A list L is called realizable
if there exists such Hamiltonian path P of the complete graph with |L|+ 1
vertices whose edge-lengths is the given list L. If the initial and the final
vertices in P are 0 and v — 1, respectively, then P is called perfect.

In this note, we show some properties of some perfect linear realizations.
Also, we present a new operation over well-known linear realizations. For
example, we give a linear realizations of the lists {1¢, 2, 4¢}, where a,c > 1
and b > 3 integers, {1%,2°,42¢, 8} for alla,d > 1, b > 3 and ¢ > 2 integers,
and {1¢,2° 4¢84} for all a,d > 1, b > 3 and ¢ > 8 integers.

1 Introduction

Throughout the paper, K, will denote the complete graph on p vertices,
labeled by the integers of the set {0,1,...,p—1}. For the basic terminology
on graphs we refer to [1] and for basic facts about the Buratti-Horak-Rosa
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conjecture we refer to [10]. The length of the edge xy, where z,y € V(K))
is given by

U(z,y) = min{ly — z|,p — |y — 2|}.
Given a path P = (xg,21,...,2), the list of edge-lengths of P is the
list ¢(P) of the lengths (taken with their respective multiplicities) of all the
edges of P. Hence, if a list L consists of ay 1s, as 2s, ..., a; ts, then we write

t
L={1%,2%, ..t} and |L| = a;. Theset Uy = {i:a; >0} C Lis
i=1

called the underlying set of L.

The following conjecture was proposed in a private communication by Bu-
ratti to Rosa in 2007:

Conjecture 1.1 (M. Buratti). For any prime p = 2n+ 1 and any list L
of 2n positive integers not exceeding n, there exists a Hamiltonian path P
of K,, with ¢(P) = L.

Talking with Professor Buratti, the origin of this problem comes from the
study of dihedral Hamiltonian cycle decompositions of the cocktail party
graph (see comments before Corollary 3.19 in [2]).

Buratti’s conjecture is almost trivially true in the case when |Uz| = 1. On
the other hand, the case of exactly two distinct edge-lengths has been solved
independently by Dinitz and Janiszewski [4] and Horak and Rosa [5]. Using
a computer, Meszka has verified the validity of Buratti’s conjecture for all
primes < 23. Monopoli [6] showed that the conjecture is true when all the
elements of the list L appear exactly twice.

In [5] Horak and Rosa proposed a generalization of Buratti’s conjecture,
which has been restated in an easier way in [9] as follows:

Conjecture 1.2 (P. Horak and A. Rosa). Let L be a list of v — 1 positive
integers not exceeding |v/2|. Then there exists a Hamiltonian path P of
K, such that £(P) = L if and only if the following condition holds:

for any divisor d of v, the number of multiples of d
appearing in L does not exceed v — d.

The case of exactly three distinct edge-lengths has been solved when the
underlying set is Ur, = {1, 2,3} in [3], when Uy is one of the sets

{1,2,5},{1,3,5},{2,3,5}
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in [9], and when Uy, = {1,3,4} or Ur = {2,3,4} in [8]. In [10] the authors
give a complete solution when Up, = {1,2,t}, where ¢ € {4, 6,8}, and when
L={17 Qb,tc} with ¢ > 4 an even integer and a+b >t — 1. The case with
four distinct edge-lengths for which the conjecture has been shown to be
true is when Uy, = {1,2,3,4} or Uy, = {1,2,3,5}, see [6] and [10]. Recently,
Ollis et al. [8] proved some partial results in which Uy, = {z,y,z + y},
Up =11,2,4,...,2z} and Uy, = {1,2,4,...,2z,2z + 1}; many other lists
were considered, see [8].

A cyclic realization of a list L with v — 1 elements each from the set
{1,2,...,]v/2]} is a Hamiltonian path P of K, such that the multiset
of edge-lengths of P equals L. Hence, it is clear that the Conjecture 1.2
can be formulated as follow: every such a list L has a cyclic realization if
and only if condition (1,1) is satisfied.

Example 1. The path P =(0,1,2,3,6,4,5,7) is a cyclic realization of the
list L = {1422 3}.

A linear realization of a list L with v — 1 positive integers not exceeding
v — 1 is a Hamiltonian path P = (xg,1,...,2,—1) of K, such that L =
{|lz; = xi31] : 4 =0,...,v — 2}. The linear realization is standard if xqg =0
(see [8]). In this note we assume that any realization P of a given list L
is standard. On the other hand, if z,1 = v — 1, the (standard) linear
realization is called perfect (see [3]).

Example 2. The path P = (0,2,4,6,5,3,1,7) is a perfect linear realization
of the list L = {11,25 6}.

Remark 1. From the definitions presented before, it is not hard to see
that any linear realization of a list L can be viewed as a cyclic realization
of a list L (not necessarily of the same list); however if all the elements
in the list are less than or equal to L‘Ll;rlj, then every linear realization
of L is also a cyclic realization of the same list L. For example, the path
P = (0,5,7,8,6,4,3,1,2) is a linear realization of the list L = {13,2% 5}
and a cyclic realization of the list L = {13,244}

In this note, we show some properties of some perfect linear realizations.
Also, we present a new operation over well-known linear realizations and
we give several examples.
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2 Some perfect linear realizations

Let P = (xg,21,...,2y-1) and P’ = (yo,¥1,---,Yw—1) be two paths (in
general) such that V(P)NV(P') = 0. If z,_; and yo are adjacent, then we
can generate the path:

P+ Pl = ($0,$1, sy Lu—15,Y0, Y15 - - - 7yw—1)~
The path P + P’ is also well-defined if z,_1 = yo, in this case
P+ Pl = (1;0,3517 ey Ly—15Y1y - - - ?yw—l)-

Theorem 2.1 ([3]). Let P be a perfect linear realization of a list L and P’
be a linear realization of the list L'. Then there exists a linear realization
P" of the list LUL’'. Furthermore, if P’ is also perfect, then P" is perfect.

Remark 2. Let P = (xg = 0,21,...,2y—1 = v — 1) be a perfect linear
realization of a list L. Applying the previous theorem to the perfect linear
realization (0,1,...,A) of {14}, P = P+ (v — L,v,...,v =1+ A) is a
perfect linear realizations of L U {14}, for all A > 0 integer, see [3].

Let P = (zg,21,-..,Zy—1) be a path. For every k € Z integer, let 7 : Z —
Z given by mi(x) = x + k. Hence, if P = (xg = 0,21,...,2,—1) is a linear
realization of a list L, then P’ = (0,1,..., A)+ 74 (P) is a linear realization
of the list L U {14}.

Let P = (xg,%1,...,Zy—1) be a path. For each j € {1,2,...,v — 1}, the
path P is called j-partitionable it P = P; + P5, where

V(P]) = {.CE(),QZl,...,Z‘j} = {071,7]}
and z; = j. A path P is called partitionable if P is j-partitionable for some
je{l,2,...,v—1}

Example 3. The path P = (0,1,2,5,3,4,6) is j-partitionable for j €
{1,2,6}. On the other hand, the path P’ = (0,1,2,5,3,4,6,7,8) is j-
partitionable for j € {1,2,6,7,8}. In particular, both paths are perfect.

Let P be a j-partitionable, for some j > 0. Then P is weakly j-partitionable
if P is also (j + 1)-partitionable; otherwise the path is called strong.

Lemma 2.2 ([10]). Let P = (zg,Z1,...,Ty—1) be a linear realization of a
list L. If there existsi € {0,1,...,v—2} such that {z;, z;y1} = {v—2,v—1},
then P = (zg,...,Zi, Uy Tit1,...,Tu—1) 1S a linear realization of L U {2}.
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Corollary 2.3 ([10]). Let P = (xg, 21, ...,%y—1) be a linear realization of a
list L. If there exists i € {0,1,...,v—2} such that {x;, x;+1} = {v—2,v-1},
then the list L' = LU{2°} admits a linear realization, for any positive integer

b.

Lemma 2.4. If a list L admits a weakly j-partitionable linear realization,

for some j € {1,...,|L|—2}, then the list L\{1} admits a linear realization.
Proof. Let P = (zg,x1,...,%,—1) be a weakly j-partitionable linear real-
ization of a list L, for some j € {1,...,|L| — 2}. Since the path is weakly

j-partitionable, then j and j 4+ 1 are adjacent in P and 1 € L. Therefore,
the path
Pl = (.730, “ee ,xj,ﬂ_l(xj+2), PN ,7T_1(.23U_1))

is a linear realization of L\ {1}. O
Proposition 2.5. If a list L admits a perfect weakly i-partitionable linear

realization, for alli € {i1,... ik}, then L = L; U---UL; UL,_1 where L;
admits a perfect strong linear realization for all i € {iy,...,ix} U{v —1}.

Proof. Let P = (xg,21,...,2,—1) be a perfect weakly i-partitionable linear
realization of a list L, where i € {i1,... it} and i1 < iy < --- < ;. Hence

P = ($07...,$i1) + ($i1+17"' ,jSz) +...+ (l‘ik+1,...,$v,1).

Setting i = 0, ipy1 = v — 1 and P;; = (x4, ,41,...,24,), for all j €
{1,...,k}, then P = P;, + P;, +---+ P, ,. Since P is perfect and parti-
tionable,

Piuﬂ-—(ivil +1)(13iz)7 s ’ﬂ-—(wik+1)(Pik+1)

are perfect strong linear realizations of L;,, Li,, ..., L;,_, , respectively,
where L;; C L, forall j€ {1,...,k+1}and L =L; U---UL;,,
(by Theorem 2.1). O

Lemma 2.6 ([10]). If a list L = {19,292 ... %} admits a linear realiza-
tion, then a; +i— 1 <|L| for alli=1,...,t.

Proposition 2.7. If a list L = {1%,2° t°} admits a perfect linear realiza-
tion, then b+ (t — 1)c is even.

Proof. The proof is obtained straightforwardly of proof given by Proposi-
tion 3.1 in [3]. O
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In particular of Lemma 2.6, if a list L = {1¢,2° ¢°} admits a linear realiza-
tion, then a +b >t — 1.

Remark 3. If P = (zo,1,...,x) is a perfect linear realization of Ly =
{19,2% t} with a + b =t, then either x; =t or x;_; = 1.

Proposition 2.8. There exist a perfect linear realization of the list Ly =
{1,2¢=1 ¢}, for all t > 3 integer.

Proof. 1t is very easy to see that the following paths are perfect linear
realizations of L.

0,2,4,. t—1,t—3,...,1,t+1)if t > 4 is even.

)
0,2,4,...,t—1,6,t—2,...,1,t+ 1) if £ > 3 is odd.
0,t,t —2,...,2,1,3,...,t—1,t+1)if t > 4 is even.
)

= (
(
(
(

0,t,t—2,...,1,2,4,...,t —1,t + 1) if t > 3 is odd.

O

Example 4. The paths Py = (0,2,4,3,1,5) and B = (0,4,2,1,3,5) are
perfect linear realizations of the list Ly = {1,23,4}.

Theorem 2.9. Let a +b =1t > 3 with a,b > 1 integers. The list Ly =
{12,2% ¢} admits a perfect linear realization if and only if (a,b) = (1,t—1),
in which the paths P; and P; are the unique perfect linear realization of the
list Lt.

Proof. Suppose that ¢ > 4 is an even integer (the proof for ¢ > 3 odd
is completely analogous). Let P = (zg,x1,...,2++1) be a perfect linear
realization of L;. By Remark 3 either z; = 1 or z; = ¢t. Without loss of
generality assume that z; = 1, which implies that z; = 2, which implies
that x;_1 = 3, which implies that x5 = 4, which implies that x;_ = 5, and
so on until Tryg=1—3 and re =t Which implies that Teyg =t—1
Hence, we have that P = P, The proof to the case x1 =t is analogous to
the proof presented before. O
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3 Even-odd applications over paths

If P = (zg,21,...,%y—1) is a standard linear realization of a list L, then
this path is called (z1,x,_1)-realization of L. Let P* be the sub-path of
P without initial vertex, that is P* = P\ {z¢}. Hence, P* is a (non-
standard) linear realization of the list L\ {x1}. The reverse of P, rev(P) =
(Ty—1,Ty—2,...,%0), is also a liner realization of L, see [8]. The even-
application of P, E(P), is defined by the path

E(P) - (21’0, 2$1, SERE) 2Iv—1).

This application satisfies that £(E(P)) = 2L. Finally, the odd-application
of P, O(P), is defined by the path:

O(P)= (221 — 1,220 —1,...,2zy_1 — 1)
and the odd reverse-application of P, OR(P), is defined as the path
OR(P) = (22y_1 — 1,229_5 — 1,..., 2z, — 1).
These applications satisfy £(O(P)) = ¢(OR(P)) = 2L \ {2x1}.

We define two operations over a linear realization P of a list L, called even-
odd extension, EO(P), and even-odd reverse extension of P, EOR(P), as
follow:

EO(P) = E(P) + O(P) and EOR(P) = E(P) + OR(P).

The even-odd extension of P is a linear realization of the list

On the other hand, the even-odd reverse extension of P is a linear realiza-
tion of the list
(2L U 2L\ {221}) U{1}.

To the next, we are going to construct some linear realization from well-
known linear realizations.

Example 5. As we have already seen, P = (0,1, ...,k) is a (perfect) linear
realization of the list {1¥}. On the other hand, E(P) = (0,2,4,...,2k) and
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O(P) = (1,3,...,2k — 1). Hence, {(E(P)) = {2*} and ¢£(O(P)) = {2+~ 1},
It follows that the even-odd reverse extension of P:

EOR(P)=(0,2,4,...,2k,2k— 1,2k —3,...,3,1)
is a linear realization of the list {1,2%*=1}. Notice that the new path is a
(2,1)-realization.
Example 6. Let k > 1 be an integer, and take

P.=(0,2,...,2k, 2k — 1,2k — 3,...,1),
Pl =(0,2,...,2k2k+ 1,2k —1,...,1).

It is easy to see that Py is a (2,1)-realization of {1,2?*=1} (see Example 5)
and P is (2,1)-realization of {1,22k}. Hence, the even-application of Pj,
and P} are

E(Py) = (0,4,...,4k, 4k — 2,4k — 6,...,2),

E(P)) = (0,4,...,4k 4k + 2,4k — 2,...,2),

satisfying ((E(Py)) = {2,4%*71} and ((E(P})) = {2,42*}, respectively. The
odd-application of Py and P, are

OP,) = (3,7,..., 4k — 1,4k — 3,4k — 7,..., 1),
OP)) = (3,7,...,4k — 1,4k + 1,4k — 3,...,1),

satisfying £(O(Py)) = {2,422} and £(O(P})) = {2,4%¢~1}, respectively.

Hence, the even-odd extension of Py and Py, EO(Py;) and EO(P}), are
(4,1)-realization of the lists {1,2% 4*=3} and {1,22,4* =1} respectively.
Also, the even-odd reverse extension of Py, and P}, EOR(Py) and EOR(P)),
are (4, 3)-realization of the same lists.

Lemma 3.1 ([10], Lemma 9). Let P = (zo,1,...,Zy—1) be a standard
linear realization of a list L. If x,_1 = 1, then the list L' = L U {2°} is
linear realizable, for any b > 2 integer.

By Remark 2, Example 6 and Lemma 3.1, we have the following result,
which is a particular case of Proposition 20 in [10]:

Corollary 3.2. There are linear realizations of the lists {1¢,22,4%¢=1} and
{12,20 42¢=1 " for all positive integers a, b, c such that b > 4.

Theorem 3.3 ([3]). Ifa > 2 and b > 0 are integers, then the list {1¢,3%}
admits a linear realization. Also, this realization can be assumed to be

perfect when b# 1 (mod 3).
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Corollary 3.4. Let P = (xg,%1,...,24—1) be a linear realization of a
list L, where the vertices v — 1,v — 2 are adjacent. If EO(P) is a linear
realization of Lgo and EOR(P) is a linear realization of Lrog, then the
lists Lo U {4} and Lgor U {4} are linear realizable.

Proof. The proof is completely analogous to the proof of Lemma 7 of [10].
Since the vertices v — 1,v — 2 are adjacent in P, the vertices 2v — 3,2v — 5
are adjacent in O(P) (and in OR(P)), and the vertices 2v — 2,2v — 4 are
adjacent in F(P). Hence, the new vertex 2v — 1 can be added between
2v —3,2v — 5. So, there is a linear realization of Lgo U{4} or Lrpor U {4}.
Else, if we also add the vertex 2v between 2v — 2 ans 2v — 4, we obtain a
linear realization of Lro U {42} and of Lgogr U {4%}. O

Corollary 3.5. Let P = (xg,21,...,24—1) be a linear realization of a
list L, where the vertices v — 1,v — 2 are adjacent. If EO(P) is a linear
realization of Lgo and EOR(P) is a linear realization of Lrog, then the
lists Lpo U {4°} and Lror U {4°} are linear realizable, for any positive
integer b.

By Remark 2, Example 6, Corollary 3.5 and Lemma 3.1, we have the fol-
lowing;:

Corollary 3.6. There are linear realizations of the lists {1%,2% 4°} and
{1228 4¢}, for all positive integers a, b, c such that b > 4.

Corollary 3.7. Let P = (xg,21,...,%y—1) be a standard linear realization

of a list L, where x,_1 = 1. There exists a linear realization of 2L U 2L U
{17 42b71}‘

Proof. Following the proof of Lemma 9 of [10], there exists a (2, 1)-realiza-
tion P’ of L U {2°}. Then EO(P’') and EOR(P') are linear realizations of
2LU2L U {1,421, O

Proposition 3.8. There exists a standard linear realization of the list
{12,2% 4¢}, for all positive integers a, b, c where b > 3.

Proof. Let k > 2 be an integer. Consider the path P, of Example 5,
obtained by applying the even-odd reverse extension of the perfect linear
realization I}, = {0,1,2,...,k} of the list {1*}: P, = FOR(I}). Then, we
can write P, = P}fo + rev(P,go), where

PE = E(Ix) =(0,2,...,2k) and Py = O(I) = (1,3,...,2k — 1).
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So, €(P,50) = {2*} and E(Pkoo) = {2F=1}. Now, let ¢ be a positive integer.
For all j =1,...,t, we construct a path PEJ by adding the vertex 2k + 2j
between the consecutlve vertices 2k + 2(j — 2),2k + 2(j — 1) of the path
P,wfl. Then, E(P,fj) = {2k 47}, Similarly, forall j = 1,...,t, we construct
a path P,g ; by adding the vertex 2k+2j—1 between the consecutive vertices
2k+2j—5,2k+2j —3 of the path ngil. In this case, E(P,Sj) = {2k-1 47},
Hence, the path Py = P,ft + rev(P,gt) is a (2, 1)-realization of the list
{1,22k=1 42t} Now, the path

PEy 4 rev(P2y) = (0,2,4,...,2k,2k — 1,2k + 1,2k — 3,2k — 5,...,1)

is a (2, 1)-realization of the list {1,22*~1 4}. Finally, for any positive integer
t, the path P,ft + PP ’ip1 18 a (2, 1)-realization of the list {1, 22k—1 g2t+1}
Hence, there is a (2, 1)-realization of {1,2%*%1 4¥} for all positive integers
x,y. Finally, by Remark 2, Lemma 3.1, Corollary 3.6 and Corollary 3.7,
there is a linear realization of {1“,2b,4c}, for all positive integers a,b,c
where b > 3. L]

Example 7. For instance, taking t = 2 and k = 3, we have
Py =1(0,2,4,6), P4y =(0,2,4,8,6), Piy=(0,2,4,8,10,6),

P9y =(1,3,5), P9y =(1,3,7,5),P9,=(1,3,7,9,5).

Hence, P35 = (0,2,4,8,10,6,5,9,7,3,1) is a (2, 1)-realization of {1,2°, 4%},
PE +rev(Ps) =(0,2,4,6,5,7,3,1) is a (2,1)-realization of {1,2°,4}, and
P, = (0,2,4,8,10,6,5,9,11,7,3,1) is a (2,1)-realization of {1,2°,4%}.
Furthermore, Pi% + rev(PfQ) = (0,2,4,8,10,6,7,11,9,5,3,1) is a (2,1)-
realization of {1,25,4*}, PP, = rev(PJ) = (0,2,4,8,7,5,3,1) is a (2,1)-
realization of {1,2° 4}, and P33+P42 =(0,2,4,8,12,10,6,7,11,9,5,3,1)
is a (2, 1)-realization of {1,25, 4%}.

Proposition 3.9. There exists a standard linear realization of the list
{12,20 422 84Y " for all positive integers a,b,c,d where b > 3 and ¢ > 2.
Moreover, there exists a standard linear realization of the list {1¢,2° 4¢ 81}
for all positive integers a,b, c,d such that a > 2, b > 3 and ¢ > 4.

Proof. Let Q = P4 = (0,2,6,8,4,3,7,5,1) be a (2,1)-linear realization of
{1,23,4} (see Proposition 3.8). Let Q% = (2,6), Q° = (4,8), Q' = (3,7)
and @* = (1,5). So,

Q= (0)+ Q%+ rev(Q°) + Q' + rev(Q?).
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Let [ > 3 be an integer and ¢ € {0,1, 2,3}, we construct the path Q41 , by
adding the vertex 41 — i to the path Q;;, where Q% = Q' for i = 0,1,2, 3,
as follow:

o If i = 3, we add the vertex 4] — 3 between the vertices 4( — 1) — 3
and 4(I — 2) — 3 to the path Q7. Hence,

Qi+13=(0) + Q7 +rev(QY) + QF + Tev(QfH).

o If i = 2, then Q7,, = Q}, | + 1 (since Q* = Q* + 1), we are adding
the vertex 41 — 2 between the vertices 4(l — 1) — 2 and 4(l — 2) — 2 of
the path Q7. Hence,

Ql+172 = (O) + Q12+1 + 7"6’()(@?) + Qll + TGU(Q?+1).

e If i = 1, we add the vertex 4] — 1 between the vertices 4(1 — 1) — 1
and 4(I — 2) — 1 to the path Q;. Hence,

Qir11 = (0) + Q) +rev(Q)) + Qfyy +rev(Q7y ).

o If i =0, then QY = Q}, + 1 (since Q° = Q" + 1), we are adding
the vertex 41 between the vertices 4(1 — 1) and 4(I — 2) of the path
Q?. Hence,

Qur10 = (0) + QF 1 +rev(Qy) + Qlyy + rev(Q7 ).

So, U(Qj,,) = {4,8'}, for i = 0,1,2,3. Therefore, the path Q41 is a
(2, 1)-realization of {1,23 4% 84=8=%} proving that there exists a (2,1)-
realization of {1, 23,44, 8!}, for all positive integer t. Proceeding as the same
way as before taking @@ = P; o5, (see Proposition 3.8), for k > 1 integer, we
can prove that there is a (2, 1)-realization of the list {1,23,4% 8%}, for all
positive integers k, s.

Now, let Q = (0,2,6,10,8,4,5,9,11,7,3,1) be a (2, 1)-linear realization of
{1,24,45}. If Q2 = (2,6), Q° = (4,8), Q' = (5,9) and Q3 = (3,7), we have

Q = (0) + Q* + (10) + rev(Q°) + Q' + (11) + rev(Q®) + (1).
As the same way as before, we can construct a (2,1)-linear realization of
the list {1,2%,46 8%}, for s > 1 integer. Moreover, if we take ) = P2/,2k+1

(see Proposition 3.8), for k > 1 integer, we can prove that there is a (2,1)-
realization of the list {1,2%, 4*+2 8%} for all positive integers k, s.
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7,3,1) be a (2, 1)-linear realiza-

On the other hand, let @ = (0,2,6,8,4,5,9,
(2,6), QO = (4,8), Ql = (5,9) and QS =(3,7),

tion of {1,2%,4%}. Let Q2 =
we have

Q= (0) +Q* +rev(Q”) + Q" + rev(Q?) + (1).
Let I > 3 be an integer and i € {0,1,2,3}, we construct the path Q1
by adding the vertex (41 — 3) + 4 to the path Q;;, where Q% = Q' for
1=20,1,2,3, as follow:

o If i =0, we add the vertex (4] — 2) between the vertices 4(I —2) — 2
and 4(I — 3) — 2 to the path Q7. Hence,

Qir1,0 = (0) + Q2 y +rev(QY) + Qf + rev(Q}).
o If i =1, then Q},, = Q7,; + 1 (since Q* = Q* + 1). Hence,
Qir11 = (0) + QF 1 +rev(Q)) + Qf +rev(Q}y ).

e If i = 2, we add the vertex 4] — 1 between the vertices 4(1 — 1) — 1
and 4(I — 2) — 1 to the path Q;. Hence,

Qit1,2=(0) + QZQH +rev(QY) + Ql1+1 + TGU(Q?+1)~

e If i = 3, then Q?—s-l = QllH +1 (since Q° = Q° + 1), we are adding
the vertex 4l between the vertices 4(1 — 1) and 4(I — 2) of the path
QY. Hence,

Qiy1,3 = (0) + Qz2+1 +rev(QFy ) + Qlyy + rev(Q?H).

So, we can construct a (2,1)-linear realization of the list {1,2% 4% 8"},
for t > 1 integer. Moreover, if we take Q = P} .. (see Proposition 3.8),
for k > 1 integer, we can prove that there is a (2,1)-realization of the
list {1,2% 4% 8%}, for all positive integers k,s. Finally, taking the path
Q = Py ak+1 (see Proposition 3.8) and all ideas presented before, we can
construct a (2, 1)-linear realization of the list {1,23, 4%%+2 8%} for all posi-
tive integers k, s. By Remark 2 and Lemma 3.1, there is a linear realization
of {1%,2% 42¢ 84} for all positive integers a,b,c,d such that b > 3 and
¢ > 2. Moreover, By Remark 2, Corollary 3.7 and Lemma 3.1 there exists
a linear realization of {1%,2° 4¢ 89} for all positive integers a, b, c,d such
that a > 2,0 >3 and ¢ > 4. O]

Proposition 3.10. There are linear realizations of the lists
{la7 24, 407 66d+1}, {la, 25’ 46, 66d72} and {1(17 21)7 4(;7 66d72}’

for all positive integer a,b,c,d such that b > 7.
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Proof. Let k > 1 be an integer. The path
Qr=1(0,3,...,3k+3,3k+2,3k—1,...,2,1,4,...,3k + 1),

is a realization of the list {12, 3%**1}. Then, the even-odd reverse extension
of Qr, FOR(Qy), is a linear realization of the list {1, 2%, 65*+1}. By Remark
2 and Corollary 3.5, there exists a linear realization of {1%,2%,4¢ 65%+1} for
all positive integer a, c.

On the other hand, the path
Qr=1(0,1,4,...,3k+1,3k+2,3k—1,...,2,3,6,...,3k),

is a linear realization of the list {13,3%%~1}. Then, the even-odd reverse ex-
tension of Qx, EOR(Q4), is a (2, 1)-linear realization of the list {1, 2%, 6652},
Using Remark 2, Corollary 3.5 and Lemma 3.1, there are linear realizations
of the lists {1¢,2% 4¢ 6582} and {1¢,2°, 4¢ 6°%=2} for all positive integer
a, b, c such that b > 7. O

Let P = (xo,21,...,%,—1) be a linear realization of a list L, and let P’ =
(Y0,Y1,---,Yuv—1) be a standard linear realization of the list L', such that
|L| = |L'|. The even-odd extension of P and P’, denoted by EO(P, P’), is
defined as follow:

EO(P,P") = E(P)+ O(P)

= (220,221, ...,20y—1,2y1 — 1,2ys — 1,..., 2y, — 1);
the even-odd reverse extension of P and P’, denoted by EO(P, P’), is de-
fined as follow:

EOR(P,P') = E(P) + OR(P")

= (2.2307 2331, ey 2xv_1, 2yv—1 — 1, va_g — 17 ey 2y1 — 1)
The even-odd extension of P and P’ is a linear realization of the list
(2L U2L'\ {2y1}) U {|2(xy—1 — y1) + 1|}, while the even-odd reverse ex-
tension of P and P’ is a linear realization of the list (2L U 2L\ {2y1}) U

{12(zy=1 — yo—1) + 1]}. In particular, if P" = P, then EO(P, P) = EO(P)
and EOR(P, P) = EOR(P).

To the next, we are going to construct some linear realization from well-
known linear realizations.

Example 8. Let a > 2 and b > 1 integers. Let P = (xg,21,...,Zqtp) be
a linear realization of the list {1¢,3%}, and let Q = (0,1,2,...,a +b) be a
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linear realization of the list {19}, If P is a perfect linear realization, then
the even-odd reverse extension of P and QQ, EOR(P,Q), is a (standard)
linear realization of the list {1,229~ 6%}, Also, if xqrp = 1, then the
even-odd extension of P and Q, EO(P,Q), is a linear realization of the
same list.

Example 9. Let k = 2s and h = 3s + 1, where s > 1 is an integer.
Let P, = (0,1,...,h) be a linear realization of the list {1"}. By Ezample
5, the even-odd reverse extension of Pn, EOR(Py), is a (2,1)-realization
of the list {1,22h=1}. If B, = EOR(Py,), then the even-odd extension of
Py, and Qy, (see Proposition 3.10), EO(Ph, Qk), is (2,1)- realization of the
list {1,2%,420=1 63%}; that is, the even-odd extension of ]538+1 and Qo
is a (2,1)-realization of the list {1,2% 4551 655} By Remark 2, Corol-
lary 3.5 and Lemma 3.1 there are linear realizations of {1¢,2% 4¢ 654} and
{12,2% 4¢ 6%} for all positive integers a, b, c,d such that b >4 and ¢ > 7.

4 k-extension of linear realizations

In this section, we are going to generalize the even-odd extension given in
Section 3 for well-known linear realizations.

Let P = (29 = 0,21,...,%,-1) be a (standard) linear realization of a list
L. For each i € {1,2,...,k — 1}, the i-application of P is defined by the
path

Pk,i = (kIl — i, ]{3132 — i, ey kl‘q,_l — Z)

So, U(Pyi) = kL \ {kx1}. We define the k-extension of P, denoted by
Ey(P), as follow:

Ey(P)=Pyo+ Pea+-+ Pri—1,
where P, o = kP = (0,kx1,...,kx,_1). Notice that
lkzy — (i 4+ 1) — (kzy—1 — )| = |k(z1 — Zp—1) — 1]
Hence, the k-extension of P is a linear realization of the list
(ELUKL\ {kz1} UKL\ {kaz1} U--- UkL\ {kz1})U{|k(z1—z,_1)—1|*"1}.

Corollary 4.1. Let P = (xg,21,...,%y-1) be a standard linear realization
of L, where the vertices v—1 and v —2 are adjacent. If Ey(P) is the linear
realization of Ly, then the list Lj, U {(2k)®} admits a linear realization for
any positive integer b.
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Proof. Note that the vertices k(v —1) —i, k(v —2) —i are adjacent in Ey(P)
forall i =0,...,k — 1. Then, one can proceed as the proof of Lemma 7 of
[10]. O
Example 10. Let P = (0,1,...,s) be a linear realization of the list {1°}.
For each i = {1,2} (in this case k = 3), the i-application of P is given by
the path
Pyi=(3-1—4,3-2—1,...,3-s—1),
which satisfies that £(Ps ;) = {3°"'}. Hence, the 5-extension of P:
E5(P) = (0,3,6,...,35,2,5,...,3s — 1,1,4,...,35s — 2)

is a linear realization of the list {3372, (3s—2)%}. By Remark 2 and Corol-
lary 4.1 there exists a linear realization of the list {1%,3%572 6% (3s —2)?}
for all positive integer a, b, s.

Proposition 4.2. There are linear realizations of the lists {1¢,2% 33 6¢}
and {19,2°,33 6°}, for all positive integers a,b,c such that b > 4.

Proof. Let s > 1 be an integer. Consider the linear realizations Py and P/
of the lists {1,22571} and {1,22%}, respectively, given in Example 6:

P, =(0,2,...,25,25s — 1,25 — 3,...,1),
Pl =(0,2,...,25,2s +1,2s — 1,...,1).

For each i = {1,2} (in this case k = 3), the i-realization of P,, and P, are:

Poi=(3-2—4,...,3-2s—0,3-(2s—1) —4,3- (2s —3) —i,...,3-1—1),
Pli=(3-2—4,...,3-2s—0,3-(2s+1) 4,3 (2s = 1) —4,...,3- 1 — 1),

respectively. So, £(P,;) = {3,672} and ((P,;) = {3,6**'}. There-
fore, the 3-extensions of Py, E3(Ps), and P!, E3(P.), are (6, 1)-realization
of the lists {22,33,6%°7°} and {22,33,65572}, respectively. By Remark
2, Corollary 4.1 and Lemma 3.1, there are linear realizations of the lists
{1%,22,3% 6°} and {1%,2% 33,6°}, for all positive integers a, b, c such that
b> 4. O

For each i € {0,1,2,...,k — 1} let Q; = (0 = 0,251,...,Tip—1) be
k (standard) linear realizations of the list L;, such that |L;| = |L;|, for
every 0 < i < j < k—1. A k-extension of Qo,Q1,-..,Qk_1, denoted by

Ei( go, fl,...,QZil),is defined as follow:
To AT T T T T
Ep(Qo®, Q1Y+ @t ) = Qo + Qi+ + @l
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where either QkTZZ = Qg if Qle = Q; or Qfg =rev(Qp,) if Qle = Qre, for
alli=0,1,...,k—1, and where Qp; = (kx;1 — i, kxi2—1,...,kT;p_1—1),
for all i = 1, ey k — 1, and Qk)o = (O,kl’o)l, .. .,k’l‘o)vfl). SO, Z(Qk,ﬁ =
kL \{kxz; 1}, foralli=1,...,k—1, and 4(Qx,0) = kLo.

. Te 1y - .
A k-extension of Qo, Q1, ..., Qx—1, Ei( OTO, 1T1, ..., @Q."7"), is a linear re-
alization of the list

(kLo U ]{iLl \ {k‘$171} U kLQ \ {]41.%‘2,1} u---u kLk_l \ {kx(k,l)’l}) U R,

where R = Uf:_OQ |k(2(i41),p — Ti,q) — 1|, where either p = 1 if Q;Trﬁl =Qit+1
01rp:v—1ileTf11 = Q%Y andq:v—lifQiTi =Q;orqg=1Iif

Q' =qQrev, foralli=0,1,...,k—2.

Proposition 4.3. For all k > 2 an even integer and s a positive integer,
there exists a linear realization of the list

{1F=1 kR (2k)F, .. ((s — DE)R, (sk)}.

Proof. Let C = Cy = (xg,1,...,xs) with x9; = i and x9;41 = s — 1, for
alli € {0,1,...,[s/2]}, be the well-known Walecki linear realization of the
list {1,2,...,s}, see [8] (page 3). The following k-extension of C':

Ek(C, Crev’ RN C, Crev) = Ck70 + rev(Ck,l) + -+ Ck-,k72 + ?"G'U(Ck’kfl),
is a linear realization of the list {1¥=1 k¥ (2k)*, ... ((s — Dk)k, (sk)}. O

Corollary 4.4. For i = 0,1,....k, let Q; = (Ti0,Ti1,---,Tiv—1) b a
standard linear realization of L;, where the vertices v — 1 and v — 2 are
adjacent for all i. If Ex(QE°, Q1. .., f’i’ll) is a (standard) linear real-
ization of L, then the list L U {(2k)®} is linear realizable, for any positive
integer b.

Proof. See proof of Corollary 4.1. O

Proposition 4.5. Let k > 2 be an integer, then there exists a linear real-
ization of the list
{19,2° KFEZDHL (28)°)

for all integers a,b,c,t such that a > k —1 and t,b > 2.
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Proof. Let I = I; = {0,1,...,t} be the linear realization of the list {1'},
where t > 2 is a positive integer. The following k-extension of I:

Ep(L, 17", ... 1,I") = Iy o +rev(Ipq) + -+ Iy o + rev(I p—1),

is a (k, 1)-realization of {1¥~1 k*(¢*=1)+1} By Remark 2, Corollary 4.4 and
Lemma 3.1, there exists a linear realization of the list

{1(1’ 2b7 k,k(t—l)+17 (Qk)c},
for all integers a, b, ¢ such that a > k—1 and b > 2. O

Proposition 4.6. There exists a linear realization of the lists {1¢,4% 8¢},
for all positive integers a, b, c such that a > 3 and ¢ > 1.

Proof. Let s > 1 be an integer. Consider the linear realizations Py of the list
{1,2%71} (given in Example 6): Py = (0,2,...,28,25 — 1,25 — 3,...,1).
The following 4-extension E,(Ps, P7¢, Ps, PI®”) is a linear extension of
{13,4% 8%5=7}. By Remark 2 and Corollary 4.4 there exists a linear real-
ization of the lists {1%,4% 8¢}, for all positive integers a, b, ¢ such that a > 3
and ¢ > 1. O
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