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Abstract

By almost partitioned difference family (APDF) we mean a difference
family in an additive group G whose blocks partition G \ {0}. It was
shown by the second author that every Frobenius group with abelian ker-
nel G of odd order v and complement A of odd order & gives rise to a dis-
joint (v, k, #51) difference family in G. In this note we observe that it also
leads to a (v, K, \)-APDF in G with K = [s(v71)/(29)  4(v=1/(2D)] apq
A = (s+t—2)/2 for every pair (s, t) of distinct orders of a non-trivial sub-
group of A. As an application, we show that there are infinitely many values
of v for which there exists an APDF of order v whose block-sizes are the
elements of any prescribed set S of consecutive odd integers.
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1 Preliminaries

We recall that a difference family in an additive group G is a collection F of
subsets (blocks) of G whose list of differences AF (the multiset of all differences
2 — y with (z,y) and ordered pair of distinct elements lying in the same block)
covers every non-zero element of G a constant number A of times. If K is the
multiset of the block-sizes and G has order v, one usually speaks of a (v, K, \)-
DF in G. A difference family is said to be disjoint (DDF) if its blocks are mutually
disjoint and, in particular, it is partitioned (PDF) if its blocks partition G. For
the multiset K we will use exponential notation. By writing (v, k, \)-DF it is
understood that all elements of K are equal to k, i.e., K = [k™] with n necessarily

equal to QEZ:B )

It is evident that every disjoint difference family can be extended to a partitioned
difference family by adding, if necessary, blocks of size 1. As an example, it is
easy checkable that {{0,1,3,5},{2,8,9}} is a (10, [3,4],2)-DDF in Z¢. This
DDF can be obviously extended to a (10, [13, 3, 4], 2)-PDF by adding the blocks
of size one {4}, {6} and {7}.

The literature on difference families is huge (see, e.g., [1] or [7]). The partitioned
ones have been introduced in [8] and subsequently they have been defined in a
different but equivalent way under the name of zero difference balanced functions.
Unfortunately, as pointed out in [4, 5], this led to some confusion to the point that
several authors, using the new terminology, reproduced in a quite convoluted way
results on difference families which were already known for a long time. Some
relevant constructions for PDFs can be found in [3, 6, 10].

It is convenient to give the following new definition.

Definition 1.1. An almost partitioned difference family (APDF) is a difference
family in an additive group G whose blocks partition G \ {0}.

It is obvious that an APDF is completely equivalent to a PDF having one block
equal to the singleton {0}. Indeed we are adopting the above artificial definition
just in order to simplify several statements concerning PDFs with this property.

Let GG and A be the kernel and the complement of a Frobenius group. This means
that A is a group of automorphisms of the group G acting semiregularly on the
non-identity elements of G: for a € A and g € G \ {0} we have a(g) = g if
and only if @ = idg. Using the terminology of some nearring theorists we say
that (G, A) is a Ferrero pair [9]. Of course we could also call it a Frobenius pair.
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Speaking of a (v, k)-FP we will mean a Ferrero pair (G, A) with G and A of
orders v and k, respectively. Luckily, the acronym FP could stand both for Ferrero
pair and Frobenius pair.

The following results have been proved in [2].

Theorem 1.2. Assume that (G, A) is a (v, k)-FP. Then we have:
(i) the set F of all A-orbitson G \ {0} is a (v, k, k — 1)-DDF;
(ii) if vk is odd and G is abelian, then F is splittable into two (v, k, £51)-DDFs.

If v = 1 (mod k) is a prime power, then a (v, k)-FP is given by the pair (G, A)
where G is the additive group of I, (the finite field of order v), and where A is
generated by the map o : « € F, — ra € F,, with r a fixed primitive k-th root
of unity in IF,,. In this special case the result given by Theorem 1.2 can be already
found in [11].

In terms of APDFs Theorem 1.2(i) gives a (v,[k"],k — 1)-APDF when-
ever we have a (kn 4+ 1,k)-FP, and Theorem 1.2(ii) gives a
(v,[1%", k"], 5-1)-APDF whenever we have an abelian (2kn + 1,k)-FP
with k£ odd.

2 A new series of APDFs

Now we show that in the same hypotheses of Theorem 1.2(ii) we can obtain
APDFs whose multiset of all the block-sizes is of the form

[s(v-1/(29) 4(0=1)/(21))

for suitable divisors s and ¢ of k.

Theorem 2.1. Let (G, A) be a (v, k)-FP with G abelian and vk odd, and let s, t
be the orders of two subgroups of A. Then there exists a

(U, [S(U—l)/(Qs), t(U—l)/(Qt)]’ S+572)-APDF

in G which is splittable into a (v, s, *5*)-DDF and a (v, t, 151 )-DDF.

Proof. First recall that the proof of Theorem 1.2(ii) relies on the fact that G
abelian and vk odd imply that if O is an A-orbit on G \ {0}, then —O is an
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A-orbit (distinct from Q) as well. This implies that the set F of all the A-orbits on
G\ {0} can be partitioned into opposite sets F* and F~ = —F*. Let G* and
G~ be the set of all elements of G covered by the A-orbits belonging to F* and
F~, respectively.

Let S be a subgroup of A and let s be its order. It is obvious that (G, S) is a (v, $)-
FP, hence the set 7(.5) of all the S-orbits on G \ {0} is a (v, s,s — 1)-DDF by
Theorem 1.2(i). Every S-orbit is clearly contained in an A-orbit, hence it is con-
tained in G* or G~. Denote by F(S)" and F(S)~ the set of all S-orbits con-
tained in G* and G, respectively. Note, in particular, that F(A)* = FT and
F(A)~ =F~.

For what said above on the A-orbits, if O € F(S)T, then —O € F(S)~. Thus,
considering that two opposite sets clearly have the same lists of differences, we
deduce that the lists of differences of F(S)™ and F(S)~ coincide. This implies
that AF(S) is two times AF(S)T because F(S) is disjoint union of F(S)*
and F(S)~. On the other hand AF(S) is s — 1 times G \ {0} because F(S) is a
(v, s,5—1)-DF in G. It necessarily follows that AF(S) " is 251 times G\ {0}, ..,
both F(S)™ and F(S)~ are (v, s, 51)-DDFs in G. We conclude that for every
subgroup S of A there exists a (v, s, 55+)-DDF, that is F(S)™, whose blocks

partition G, and a (v, s, 551 )-DDF, that is F(S)~, whose blocks partition G~

Now assume that s and ¢ are orders of non-trivial subgroups of A, say S and 7,
respectively. In view of what we established in the above paragraph,

-1
F(S)Tisa(v,s, ST)—DDF whose blocks partition G
and

t—1
F(T)" isa(v,t, T)-DDF whose blocks partition G~ .
Then it is obvious that
F(S)" U F(T) isa(v,K,\)-APDFin G
with K = [s(v=1/(2s) (v=1)/(2D] and \ = =2, O

Of course the above theorem is interesting only in the case that s and ¢ are distinct.
Indeed for s = t we fall back to Theorem 1.2(ii).

Corollary 2.2. If s and t are divisors of an odd integer k, then there exists a
(’U, [S(v—l)/(25)7 15('1)—1)/(215)]7 S-‘r;—Q )-APDF
in a group G of order v in each of the following cases:
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(1) G is abelian and all the prime factors of |G| are congruent to 1 (mod 2k);

(2) G is the additive group of Fy, x---xF, andg¢; =1 (mod 2k)for1l <i <mn.

Proof. Inboth cases (1) and (2) there exists a (v, k)-FP (G, A) with A abelian (see
Corollary 3.3 and Corollary 3.5 in [2]). Then the assertion immediately follows
from Theorem 2.1 and the fact that in an abelian group the inverse of Lagrange’s
theorem holds. O]

By way of illustration, in the next example we determine the APDFs
in Zg; obtainable via Theorem 2.1 and not covered by Theorem 1.2,
that are a (61, [3!°,5%], 3)-APDF, a (61, [3!°,15], 8)-APDF, and a
(61, [5%,152], 9)-APDF.

Example 2.3. By abuse of notation, let us identify the automorphism group of Ze1
with its multiplicative group Z§,. Let A be the subgroup of Z§, of order 15 that is

A=1{1,12,22,20,57,13,34,42,16,9,47, 15, 58,25, 56 }.

Of course (G, A) is a (61,15)-FP. The set of A-orbits on Ze1 \ {0} is F =
{A,—A,2A, —2A}. Thus, keeping the same notation as in the proof of Theorem
2.1, we can take

Ft=F(A)T ={A,24}, F~ =F(A)~ = {594,604}

Let S be the subgroup of A of order 3 that is S = {1,13,47} and let T be the
subgroup of A order 5, that is T = {1,9,20,58,34}. The set of all the S-orbits
contained in Zg; = A U 2A is

F(9)T ={89,25,95,125,165, 185,225, 245, 325, 445}
and hence
F(S)” ={175,295,375,395,43S5, 455,495, 525,595, 605} .
The set of all the T-orbits contained in 7, is
F(T)" ={T,2T,12T,13T, 24T, 26T}
and hence
F(T)~ = {35T, 37T, 48T, 49T, 59T, 60T’}

The APDF's obtainable by Theorem 2.1 are the following:

F(S)T U F(T)" isa (61, [3'°,5°%, 3)-APDF;

F(S)t U F(A) isa (61, [3'°,15%], 8)-APDF;

F(T)" U F(A) " isa (61, [5° 15], 9)-APDF.
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3 A composition construction

As application of the result seen in the previous section, we give a constructive
proof of the existence of an APDF whose block-sizes are precisely the elements
of any prescribed set of consecutive integers.

Theorem 3.1. For any set S of consecutive odd integers, there are infinitely many

values of v for which there exists a (v, K, \)-APDF where the underlying set of
. __ min S+max S—2

K is S and \ = "o ==,

Proof. Let k be the least common multiple of all integers in S and let p be one of
the infinitely many primes congruent to 1 (mod 2k). Set § = (@] and consider
the covering of .S consisting of the ¢ pairs (s, to), - - ., (S5—1, ts—1) defined by

$;i=minS+2¢ and ¢ =maxS—2¢ for0<i<§—1.

By definition of k, each s; and each ¢; is a divisor of k. Also note that we have
Lﬂ = A for each i. Thus, by Corollary 2.2, for 0 < ¢ < § — 1 there exists a

(p, Ki, \)-APDF with K; = [sP~1)/(2s0) 4p=1)/(2t:))

Now let n > 2, set [n], := p::ll, and consider the set {V4, ..., V[n]p} of all
1-dimensional subspaces of the vector space V' := Zp. Of course (V;,+) is a
group isomorphic to Z,, for each 7. Thus, for what we said above, there exists a
(p, Kj, A\)-APDF in V; for every possible pair (¢,j) with ¢ € I := {1,...,[n],}
and j € J := {0,1,...,0 — 1}. Take a surjective map f : I — J (which
exists because [n], is obviously greater than d) and, for every ¢ € I, let F; be
a (p, K¢(;), A)-APDF in V;. This means that AF; is A times V; \ {0}. It is then

evident that F := U Fiisa(Zy, K,\)-APDF with K = |J;c; K (). Consider-

i€l
ing that f is surjective and that the pairs (s;,t;) cover S, it is also clear that the
underlying set of K is .S. O

Even though constructive, the above proof is not very practical. Indeed, as shown
in the following examples, it leads to values of v which are generally huge.

Example 3.2. Let S = {3,5,7}. Keeping the notation used in Theorem 3.1, we
have k = 105 and the first prime congruent to 1 mod 2k is p = 211. Thus the
first value of v for which our composition construction works with this set S is
2112 = 44521. To be precise, the construction gives a

(2112, [335a, 542(212—&)7 715(1]7 4)—APDF

in 7.3, for every possible a in the range [1,211].
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Example 3.3. Ler S = {3,5,7,9,11,13,15}. Here, we have k = 45045 and the
first prime congruent to 1 mod 2k is p = 180181. So, the first value of v for which
our construction works with this S is p?> = 32,465,192, 761. The construction
gives a

(18018127 [330030(1’ 5180181}7 71287067 920020d’ 118190(;, 1369301)7 1560060,}7 8)-APDF

in 7340151 for every possible ordered partition [a,b, ¢, d) of p + 1.
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