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Abstract

By almost partitioned difference family (APDF) we mean a difference
family in an additive group G whose blocks partition G \ {0}. It was
shown by the second author that every Frobenius group with abelian ker-
nel G of odd order v and complement A of odd order k gives rise to a dis-
joint (v, k, k−1

2
) difference family in G. In this note we observe that it also

leads to a (v,K, λ)-APDF in G with K = [s(v−1)/(2s), t(v−1)/(2t)] and
λ = (s+ t− 2)/2 for every pair (s, t) of distinct orders of a non-trivial sub-
group of A. As an application, we show that there are infinitely many values
of v for which there exists an APDF of order v whose block-sizes are the
elements of any prescribed set S of consecutive odd integers.
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1 Preliminaries

We recall that a difference family in an additive group G is a collection F of
subsets (blocks) of G whose list of differences ∆F (the multiset of all differences
x − y with (x, y) and ordered pair of distinct elements lying in the same block)
covers every non-zero element of G a constant number λ of times. If K is the
multiset of the block-sizes and G has order v, one usually speaks of a (v,K, λ)-
DF inG. A difference family is said to be disjoint (DDF) if its blocks are mutually
disjoint and, in particular, it is partitioned (PDF) if its blocks partition G. For
the multiset K we will use exponential notation. By writing (v, k, λ)-DF it is
understood that all elements ofK are equal to k, i.e.,K = [kn] with n necessarily
equal to λ(v−1)

k(k−1) .

It is evident that every disjoint difference family can be extended to a partitioned
difference family by adding, if necessary, blocks of size 1. As an example, it is
easy checkable that {{0, 1, 3, 5}, {2, 8, 9}} is a (10, [3, 4], 2)-DDF in Z10. This
DDF can be obviously extended to a (10, [13, 3, 4], 2)-PDF by adding the blocks
of size one {4}, {6} and {7}.

The literature on difference families is huge (see, e.g., [1] or [7]). The partitioned
ones have been introduced in [8] and subsequently they have been defined in a
different but equivalent way under the name of zero difference balanced functions.
Unfortunately, as pointed out in [4, 5], this led to some confusion to the point that
several authors, using the new terminology, reproduced in a quite convoluted way
results on difference families which were already known for a long time. Some
relevant constructions for PDFs can be found in [3, 6, 10].

It is convenient to give the following new definition.

Definition 1.1. An almost partitioned difference family (APDF) is a difference
family in an additive group G whose blocks partition G \ {0}.

It is obvious that an APDF is completely equivalent to a PDF having one block
equal to the singleton {0}. Indeed we are adopting the above artificial definition
just in order to simplify several statements concerning PDFs with this property.

Let G and A be the kernel and the complement of a Frobenius group. This means
that A is a group of automorphisms of the group G acting semiregularly on the
non-identity elements of G: for α ∈ A and g ∈ G \ {0} we have α(g) = g if
and only if α = idG. Using the terminology of some nearring theorists we say
that (G,A) is a Ferrero pair [9]. Of course we could also call it a Frobenius pair.
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Speaking of a (v, k)-FP we will mean a Ferrero pair (G,A) with G and A of
orders v and k, respectively. Luckily, the acronym FP could stand both for Ferrero
pair and Frobenius pair.

The following results have been proved in [2].

Theorem 1.2. Assume that (G,A) is a (v, k)-FP. Then we have:
(i) the set F of all A-orbits on G \ {0} is a (v, k, k − 1)-DDF;
(ii) if vk is odd and G is abelian, then F is splittable into two (v, k, k−12 )-DDFs.

If v ≡ 1 (mod k) is a prime power, then a (v, k)-FP is given by the pair (G,A)
where G is the additive group of Fv (the finite field of order v), and where A is
generated by the map α : x ∈ Fv −→ rx ∈ Fv with r a fixed primitive k-th root
of unity in Fv . In this special case the result given by Theorem 1.2 can be already
found in [11].

In terms of APDFs Theorem 1.2(i) gives a (v, [kn], k − 1)-APDF when-
ever we have a (kn + 1, k)-FP, and Theorem 1.2(ii) gives a
(v, [1kn, kn], k−12 )-APDF whenever we have an abelian (2kn + 1, k)-FP
with k odd.

2 A new series of APDFs

Now we show that in the same hypotheses of Theorem 1.2(ii) we can obtain
APDFs whose multiset of all the block-sizes is of the form

[s(v−1)/(2s), t(v−1)/(2t)]

for suitable divisors s and t of k.

Theorem 2.1. Let (G,A) be a (v, k)-FP with G abelian and vk odd, and let s, t
be the orders of two subgroups of A. Then there exists a

(v, [s(v−1)/(2s), t(v−1)/(2t)], s+t−22 )-APDF

in G which is splittable into a (v, s, s−12 )-DDF and a (v, t, t−12 )-DDF.

Proof. First recall that the proof of Theorem 1.2(ii) relies on the fact that G
abelian and vk odd imply that if O is an A-orbit on G \ {0}, then −O is an
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A-orbit (distinct fromO) as well. This implies that the set F of all theA-orbits on
G \ {0} can be partitioned into opposite sets F+ and F− = −F+. Let G+ and
G− be the set of all elements of G covered by the A-orbits belonging to F+ and
F−, respectively.

Let S be a subgroup ofA and let s be its order. It is obvious that (G,S) is a (v, s)-
FP, hence the set F(S) of all the S-orbits on G \ {0} is a (v, s, s − 1)-DDF by
Theorem 1.2(i). Every S-orbit is clearly contained in an A-orbit, hence it is con-
tained in G+ or G−. Denote by F(S)+ and F(S)− the set of all S-orbits con-
tained in G+ and G−, respectively. Note, in particular, that F(A)+ = F+ and
F(A)− = F−.

For what said above on the A-orbits, if O ∈ F(S)+, then −O ∈ F(S)−. Thus,
considering that two opposite sets clearly have the same lists of differences, we
deduce that the lists of differences of F(S)+ and F(S)− coincide. This implies
that ∆F(S) is two times ∆F(S)+ because F(S) is disjoint union of F(S)+

and F(S)−. On the other hand ∆F(S) is s− 1 times G \ {0} because F(S) is a
(v, s, s−1)-DF inG. It necessarily follows that ∆F(S)+ is s−12 timesG\{0}, i.e.,
both F(S)+ and F(S)− are (v, s, s−12 )-DDFs in G. We conclude that for every
subgroup S of A there exists a (v, s, s−12 )-DDF, that is F(S)+, whose blocks
partition G+, and a (v, s, s−12 )-DDF, that is F(S)−, whose blocks partition G−.

Now assume that s and t are orders of non-trivial subgroups of A, say S and T ,
respectively. In view of what we established in the above paragraph,

F(S)+ is a (v, s,
s− 1

2
)-DDF whose blocks partition G+

and

F(T )− is a (v, t,
t− 1

2
)-DDF whose blocks partition G−.

Then it is obvious that

F(S)+ ∪ F(T )− is a (v,K, λ)-APDF in G

with K = [s(v−1)/(2s), t(v−1)/(2t)] and λ = s+t−2
2 .

Of course the above theorem is interesting only in the case that s and t are distinct.
Indeed for s = t we fall back to Theorem 1.2(ii).

Corollary 2.2. If s and t are divisors of an odd integer k, then there exists a

(v, [s(v−1)/(2s), t(v−1)/(2t)], s+t−22 )-APDF

in a group G of order v in each of the following cases:
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(1) G is abelian and all the prime factors of |G| are congruent to 1 (mod 2k);

(2)G is the additive group of Fq1×· · ·×Fqn and qi ≡ 1 (mod 2k) for 1 ≤ i ≤ n.

Proof. In both cases (1) and (2) there exists a (v, k)-FP (G,A) withA abelian (see
Corollary 3.3 and Corollary 3.5 in [2]). Then the assertion immediately follows
from Theorem 2.1 and the fact that in an abelian group the inverse of Lagrange’s
theorem holds.

By way of illustration, in the next example we determine the APDFs
in Z61 obtainable via Theorem 2.1 and not covered by Theorem 1.2,
that are a (61, [310, 56], 3)-APDF, a (61, [310, 152], 8)-APDF, and a
(61, [56, 152], 9)-APDF.

Example 2.3. By abuse of notation, let us identify the automorphism group of Z61

with its multiplicative group Z∗61. Let A be the subgroup of Z∗61 of order 15 that is

A = {1, 12, 22, 20, 57, 13, 34, 42, 16, 9, 47, 15, 58, 25, 56}.
Of course (G,A) is a (61, 15)-FP. The set of A-orbits on Z61 \ {0} is F =
{A,−A, 2A,−2A}. Thus, keeping the same notation as in the proof of Theorem
2.1, we can take

F+ = F(A)+ = {A, 2A}, F− = F(A)− = {59A, 60A}.
Let S be the subgroup of A of order 3 that is S = {1, 13, 47} and let T be the
subgroup of A order 5, that is T = {1, 9, 20, 58, 34}. The set of all the S-orbits
contained in Z+

61 = A ∪ 2A is

F(S)+ = {S, 2S, 9S, 12S, 16S, 18S, 22S, 24S, 32S, 44S}
and hence

F(S)− = {17S, 29S, 37S, 39S, 43S, 45S, 49S, 52S, 59S, 60S}.
The set of all the T -orbits contained in Z+

61 is

F(T )+ = {T, 2T, 12T, 13T, 24T, 26T}
and hence

F(T )− = {35T, 37T, 48T, 49T, 59T, 60T}.

The APDFs obtainable by Theorem 2.1 are the following:

F(S)+ ∪ F(T )− is a (61, [310, 56], 3)-APDF;

F(S)+ ∪ F(A)− is a (61, [310, 152], 8)-APDF;

F(T )+ ∪ F(A)− is a (61, [56, 152], 9)-APDF.
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3 A composition construction

As application of the result seen in the previous section, we give a constructive
proof of the existence of an APDF whose block-sizes are precisely the elements
of any prescribed set of consecutive integers.

Theorem 3.1. For any set S of consecutive odd integers, there are infinitely many
values of v for which there exists a (v,K, λ)-APDF where the underlying set of
K is S and λ = minS+maxS−2

2 .

Proof. Let k be the least common multiple of all integers in S and let p be one of
the infinitely many primes congruent to 1 (mod 2k). Set δ = d |S|2 e and consider
the covering of S consisting of the δ pairs (s0, t0), . . . , (sδ−1, tδ−1) defined by

si = minS + 2i and ti = maxS − 2i for 0 ≤ i ≤ δ − 1.

By definition of k, each si and each ti is a divisor of k. Also note that we have
si+ti−2

2 = λ for each i. Thus, by Corollary 2.2, for 0 ≤ i ≤ δ − 1 there exists a
(p,Ki, λ)-APDF with Ki = [s

(p−1)/(2si)
i , t

(p−1)/(2ti)
i ].

Now let n ≥ 2, set [n]p := pn−1
p−1 , and consider the set {V1, ..., V[n]p} of all

1-dimensional subspaces of the vector space V := Znp . Of course (Vi,+) is a
group isomorphic to Zp for each i. Thus, for what we said above, there exists a
(p,Kj , λ)-APDF in Vi for every possible pair (i, j) with i ∈ I := {1, . . . , [n]p}
and j ∈ J := {0, 1, . . . , δ − 1}. Take a surjective map f : I −→ J (which
exists because [n]p is obviously greater than δ) and, for every i ∈ I , let Fi be
a (p,Kf(i), λ)-APDF in Vi. This means that ∆Fi is λ times Vi \ {0}. It is then
evident that F :=

⋃

i∈I
Fi is a (Znp ,K, λ)-APDF with K =

⋃
i∈I Kf(i). Consider-

ing that f is surjective and that the pairs (si, ti) cover S, it is also clear that the
underlying set of K is S.

Even though constructive, the above proof is not very practical. Indeed, as shown
in the following examples, it leads to values of v which are generally huge.

Example 3.2. Let S = {3, 5, 7}. Keeping the notation used in Theorem 3.1, we
have k = 105 and the first prime congruent to 1 mod 2k is p = 211. Thus the
first value of v for which our composition construction works with this set S is
2112 = 44521. To be precise, the construction gives a

(2112, [335a, 542(212−a), 715a], 4)-APDF

in Z2
211 for every possible a in the range [1, 211].
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Example 3.3. Let S = {3, 5, 7, 9, 11, 13, 15}. Here, we have k = 45045 and the
first prime congruent to 1 mod 2k is p = 180181. So, the first value of v for which
our construction works with this S is p2 = 32, 465, 192, 761. The construction
gives a

(1801812, [330030a, 518018b, 712870c, 920020d, 118190c, 136930b, 156006a], 8)-APDF

in Z2
180181 for every possible ordered partition [a, b, c, d] of p+ 1.
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