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Abstract

Let k ≥ 2 and ` be positive integers. For a digraph D, a set J ⊆
V (D) is said to be a (k, `)-kernel of D if for all x, y ∈ J, dD(x, y) ≥ k
and for every z ∈ V (D)\J, there exists w ∈ J such that dD(z, w) ≤ `.
In this paper, we give a necessary and sufficient condition for the
existence of a (k, `)-kernel in Pm + e, where Pm is a directed path on
m vertices and e is any arc with both ends in Pm.

1 Introduction

For notation and terminology, in general, we follow [1]. Let D denote a
finite digraph with vertex set V (D) and arc set A(D).

For x, y ∈ V (D), distance from x to y in D, denoted by dD(x, y), is the
number of arcs in a shortest directed path from x to y in D.
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For X,Y ⊆ V (D), dD(X,Y ) = min{dD(x, y) : x ∈ X, y ∈ Y }. When X =
{x}, denote dD({x}, Y ) by dD(x, Y ). Similar notation holds for Y = {y}.

Let k ≥ 2 and ` be positive integers. For a set J ⊆ V (D), J is k-independent
if for every x, y ∈ J, dD(x, y) ≥ k; J is `-absorbent if for every z ∈ V (D)\J,
there exists w ∈ J such that dD(z, w) ≤ `; J is a (k, `)-kernel of D if J is
both k-independent and `-absorbent in D. A k-kernel is a (k, k− 1)-kernel.
From the definition of (k, `)-kernel, it follows that, for 2 ≤ k0 ≤ k and
` ≤ `0, every (k, `)-kernel of D is a (k0, `0)-kernel of D.

The concept of kernel was introduced by von Neumann and Morgenstern
(see [13]) as an abstract generalization of the concept of solution for cooper-
ative games. Further, the study of kernels acquired its own significance due
to its application in combinatorial games and Mathematical Logic. Gener-
alizing the concept of kernels, Borowiecki and Kwaśnik (see [10]) introduced
(k, `)-kernels. A wide range of contributions are being made to the study
of (k, `)-kernels.

In [4], Galeana-Sánchez concentrated on the presence of (k, `)-kernels in di-
graphs with symmetric pair of arcs. The behavior of (k, `)-kernels in differ-
ent products of digraphs were investigated by several authors like Kwaśnik,
Szumny, W loch and W loch (see [10], [11], [12] and [14]). Their results
included computing the number of (k, `)-kernels in the respective product
graphs. For additional results on (k, `)-kernels, see [7]. Among the study on
(k, `)-kernels, a greater attention is to the study of k-kernels (see [5], [6] and
[8]). In 1973, Chvátal (see [3]) had proved that the problem of determining
whether a digraph admits a kernel or not is NP-complete. Later, in 2014,
it is proved in [6] that the problem of determining whether a digraph has
a k-kernel, k ≥ 3, is also NP-complete.

Let Pm and Cm denote, respectively, a directed path and a directed cycle on
m vertices. In [9], the authors provided a necessary and sufficient condition
for Pm and Cm to have a (k, `)-kernel.

Theorem 1.1. ([9]) For m ≥ k, Pm has a (k, `)-kernel if, and only if,
k ≤ ` + 1.

Theorem 1.2. ([9]) Let Cm be given with m = nk + r and n ≥ 1. Then
Cm has a (k, `)-kernel if, and only if, k ≤ ` + 1 and r ≤ n(` + 1− k).

In Section 2, we characterize the existence of (k, `)-kernels in the digraph
Pm + e, where e is any arc with both ends in Pm. In the way, Theorem 1.2
becomes a corollary.

(k, `)-kernels

105



2 (k, `)-kernels in Pm + e

Let Pm : x1x2x3 . . . xm be a directed path on m vertices. Let D = Pm + e,
where e is an arc with both ends in Pm. Given positive integers k and
`, where 2 ≤ k ≤ m, in Theorems 2.1 and 2.5, we give a necessary and
sufficient condition for the existence of a (k, `)-kernel in D = Pm + e.

2.1 Unicyclic Pm + e

Let D = Pm + xbxa, where 1 ≤ a < b ≤ m. Based on the conditions
obtained, the statement gets split into six cases.

Theorem 2.1. Let D = Pm +xbxa, where 1 ≤ a < b ≤ m. For 2 ≤ k ≤ m,
let a − 1 = t1k + q1, b − a + 1 = nk + r and m − b = t2k + q2, where
t1, n, t2 ≥ 0 and 0 ≤ q1, r, q2 < k.

I. If any one of the following conditions hold:

(i) n ≥ 1 and r = 0;

(ii) n ≥ 1, r ≥ 1, q2 ≥ 1 and r + q2 ≤ k;

(iii) n = t1 = t2 = 0, q2 ≥ 1 and r + q2 ≤ k < q1 + r + q2;

(iv) n = t1 = 0 and t2 ≥ 1;

(v) n = 0 and t1 ≥ 1;

then D has a (k, `)-kernel if, and only if, k ≤ ` + 1.

II. Let n ≥ 1, r ≥ 1 and q2 = 0. Then D has a (k, `)-kernel if, and only
if, k ≤ ` + 1 and r ≤ (n + t2)(` + 1− k).

III. Let n ≥ 1 and r + q2 > k. Then D has a (k, `)- kernel if, and only if,
k ≤ ` + 1 and r + q2 ≤ (n + t2)(` + 1− k) + ` + 1.

IV. Let n = t1 = t2 = 0, q2 ≥ 1 and q1 + r + q2 ≤ k. Then D has a (k, `)-
kernel if, and only if, q1 + r + q2 ≤ ` + 1.

V. Let n = t1 = t2 = q2 = 0. Then D has a (k, `)- kernel if, and only if,
max{q1 + 1, r} ≤ ` + 1.

VI. Let n = t1 = t2 = 0 and r + q2 > k. Then D has a (k, `)- kernel if,
and only if, max{q1 + 1, r, q2} ≤ ` + 1.
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n = 0

n ≥ 1

t1 ≥ 1 I(v)

t1 = 0

r ≥ 1

r = 0 I(i)

t2 = 0

t2 ≥ 1 I(iv)

r+q2 > k III

r+q2 ≤ k & q2 ≥ 1 I(ii)

q2 = 0 II

q2 ≥ 1

q2 = 0 V

r+q2 > k VI

r+q2 ≤ k < q1+r+q2 I(iii)

q1+r+q2 ≤ k IV

Figure 1.

Proof. Figure 1 shows that the cases are exhaustive. In the proof, the
following facts are used often:

F1. If k > ` + 1, then D has no (k, `)-kernel J with |J | ≥ 2.

Suppose that D has a (k, `)-kernel J with |J | ≥ 2. Then choose two ver-
tices xi, xj ∈ J, i < j, with xc /∈ J for i < c < j. Consider dD(xi+1, J).
If dD(xi+1, J) = dD(xi+1, xj), then dD(xi+1, J) = dD(xi, xj) − 1 ≥
k − 1. Otherwise, dD(xi+1, J) = dD(xi+1, xt) for some t 6= j; then
b ∈ {i + 1, i + 2, . . . , j − 2} and the shortest path from xi+1 to xt is
xi+1xi+2 . . . xbxaxa+1 . . . xt; and so dD(xi+1, J) = dD(xi, xt) − 1 ≥
k − 1. Hence, in both the possibilities, dD(xi+1, J) ≥ k − 1 > `, a
contradiction to the `-absorbency of J.
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F2. If k > ` + 1 and D has a (k, `)-kernel J, then b = m and J = {xi},
i ∈ {a, a + 1, . . . ,m− 1}.

By F1, |J | = 1. If J = {xm}, then dD(x1, xm) = m − 1 ≥ k − 1 > `,
a contradiction to the `-absorbency of J. Hence J = {xi}, i 6= m. If i ∈
{1, 2, . . . , a− 1}, then, no xj , where j ∈ {a, a + 1, . . . ,m}, is `-absorbed by
J. Therefore, i ∈ {a, a + 1, . . . ,m − 1}. If b 6= m, then dD(xm, J) = ∞, a
contradiction. So b = m.

Proof of I(i). n ≥ 1 and r = 0. (Then b− a + 1 = nk.)

First, assume k ≤ ` + 1. We consider two cases.

Case A. q2 = 0. (Then (t1 + n + t2)k + q1 = m.)

Let J0 = {xk+q1 , x2k+q1 , x3k+q1 , . . . , x(t1+n+t2)k+q1} and let

J =

{
J0 if q1 = 0,
J0 ∪ {xq1} if q1 ≥ 1.

As k−1 ≤ `, J is `-absorbent. As t1k+q1 = a−1, (t1+1)k+q1 = a−1+k
and (t1 +n)k+ q1 = b, we have: for k-independence, it is enough to check
that dD(xb, xa−1+k) ≥ k. This inequality is true, since dD(xb, xa−1+k) =
1 + dD(xa, xa−1+k) = 1 + k − 1 = k.

Case B. q2 ≥ 1. (Then (t1 + n + t2)k + q1 + q2 = m.)

Let J0 = {xq1+q2 , xk+q1+q2 , x2k+q1+q2 , . . . , x(t1+n+t2)k+q1+q2} and let

J =

{
J0 if q1 + q2 ≤ k,
J0 ∪ {xq1+q2−k} if q1 + q2 > k.

As k − 1 ≤ `, J is `-absorbent. We see that

(t1 − 1)k + q1 + q2 = a− 1− k + q2 ≤ a− 2,

t1k + q1 + q2 = a− 1 + q2 ≥ a,

(t1 + n− 1)k + q1 + q2 = b− k + q2 ≤ b− 1,

and

(t1 + n)k + q1 + q2 = b + q2 ≥ b + 1.

Therefore, for k-independence, it is enough to check that

dD(xb−k+q2 , xa−1+q2) ≥ k.

Lakshmi and Sindhu
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This inequality holds true, because

dD(xb−k+q2 , xa−1+q2) = dD(xb−k+q2 , xb) + 1 + dD(xa, xa−1+q2)

= k − q2 + 1 + q2 − 1 = k.

Conversely, assume that D has a (k, `)-kernel J. Suppose k > `+1. Then,
by F2, b = m and J = {xi}, i ∈ {a, a+ 1, . . . ,m− 1}. Considering xi+1 ∈
V (D)\J, we have dD(xi+1, xi) = nk − 1 ≥ k − 1 > `, a contradiction.

Proof of I(ii). n ≥ 1, r ≥ 1, q2 ≥ 1 and r + q2 ≤ k.

First, assume k ≤ ` + 1. Clearly, q1 + r + q2 ≤ 2k − 1. Let

J0 = {xq1+r+q2 , xk+q1+r+q2 , x2k+q1+r+q2 , . . . , x(t1+n+t2)k+q1+r+q2}

and let

J =

{
J0 if q1 + r + q2 ≤ k,
J0 ∪ {xq1+r+q2−k} if q1 + r + q2 > k.

Since k−1 ≤ `, J is `-absorbent. As (t1−1)k+q1+r+q2 = a−1−k+r+q2 ≤
a− 1, t1k+ q1 + r+ q2 = a− 1 + r+ q2 ≥ a+ 1, (t1 +n− 1)k+ q1 + r+ q2 =
b−k+q2 ≤ b−1 and (t1 +n)k+q1 +r+q2 = b+q2 ≥ b+1, we have: for k-
independence, it is enough to check that dD(xb−k+q2 , xa−1+r+q2) ≥ k. The
inequality holds true, because dD(xb−k+q2 , xa−1+r+q2) = dD(xb−k+q2 , xb)+
1 + dD(xa, xa−1+r+q2) = k − q2 + 1 + r + q2 − 1 = k + r > k.

Conversely, assume that D has a (k, `)-kernel J. Suppose k > ` + 1. Then,
by F2, b = m. So q2 = 0, a contradiction.

Proof of I(iii). n = t1 = t2 = 0, q2 ≥ 1 and r + q2 ≤ k < q1 + r + q2.
(Then q1 ≥ 1 and m = q1 + r + q2 < 2k.)

First, assume k ≤ ` + 1. Let J = {xq1+r+q2−k, xq1+r+q2}. Since k − 1 ≤ `,
J is `-absorbent. As n = 0, J is k-independent.

Conversely, assume that D has a (k, `)-kernel J. Suppose k > ` + 1. Then,
by F2, b = m. So q2 = 0, a contradiction.

Proof of I(iv). n = t1 = 0 and t2 ≥ 1.

First, assume k ≤ ` + 1. Let

J0 = {xq1+r+q2 , xk+q1+r+q2 , x2k+q1+r+q2 , . . . , xt2k+q1+r+q2}

and let

J =





J0 if q1 + r + q2 ≤ k,
J0 ∪ {xq1+r+q2−k} if k < q1 + r + q2 ≤ 2k,
J0 ∪ {xq1+r+q2−2k, xq1+r+q2−k} if q1 + r + q2 > 2k.

(k, `)-kernels
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As n = 0, J is k-independent and as k − 1 ≤ `, J is `-absorbent.

Conversely, assume that D has a (k, `)-kernel J. Suppose k > ` + 1. Then,
by F2, b = m. So t2 = 0, a contradiction.

Proof of I(v). n = 0 and t1 ≥ 1.

First, assume k ≤ ` + 1. Let

J0 = {xq1+r+q2 , xk+q1+r+q2 , x2k+q1+r+q2 , . . . , x(t1+t2)k+q1+r+q2}
and let

J =





J0 if q1 + r + q2 ≤ k,
J0 ∪ {xq1+r+q2−k} if k < q1 + r + q2 ≤ 2k,
J0 ∪ {xq1+r+q2−2k, xq1+r+q2−k} if q1 + r + q2 > 2k.

As n = 0, J is k-independent and as k − 1 ≤ `, J is `-absorbent.

Conversely, assume that D has a (k, `)-kernel J. Suppose k > ` + 1. Then,
by F2, b = m and J = {xi}, i ∈ {a, a + 1, . . . ,m − 1}. As t1 ≥ 1, a 6= 1.
Considering x1 ∈ V (D)\J, dD(x1, J) = dD(x1, xi) = i − 1 ≥ a − 1 =
t1k + q1 ≥ k > ` + 1, a contradiction.

Proof of II. n ≥ 1, r ≥ 1 and q2 = 0.

First, assume k ≤ `+ 1 and r ≤ (n+ t2)(`+ 1− k). So (n+ t2)k + r ≤ (n+
t2)(`+1). There exists a non-negative integer s such that r = (n+ t2)s+w,
where 0 ≤ w < n + t2. Clearly, s ≤ ` + 1− k. We consider two cases.

Case A. w = 0. (Then s ≥ 1.)

Let

J0 = {xk+q1 , x2k+q1 , x3k+q1 , . . . , xt1k+q1 , xt1k+(k+s)+q1 ,

xt1k+2(k+s)+q1 , . . . , xt1k+(n+t2)(k+s)+q1}
and let

J =

{
J0 if q1 = 0,
J0 ∪ {xq1} if q1 ≥ 1.

Clearly, xa−1 ∈ J and t1k + (k + s) + q1 ≥ a + 2. Also,

dD(xa, xt1k+(k+s)+q1) = dD(xt1k+q1+1, xt1k+(k+s)+q1) = k + s− 1 ≥ k.

This implies if the shortest path from a vertex of J reaches xt1k+(k+s)+q1

using the arc xbxa, then, the length of the shortest path is at least k.
This, along with the definition of J, imply that J is k-independent. As
k + s− 1 ≤ `, J is `-absorbent.
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Case B. w ≥ 1.

Clearly, s ≤ `− k. (Otherwise, s = `+ 1− k, then (n+ t2)(`+ 1− k) ≥ r
= (n + t2)s + w ≥ (n + t2) (` + 1− k) + 1, a contradiction.) Let

J0 = {xk+q1 , x2k+q1 , x3k+q1 , . . . , xt1k+q1 , xt1k+(k+s)+q1+1,

xt1k+2(k+s)+q1+2, . . . , xt1k+w(k+s)+q1+w, xt1k+(w+1)(k+s)+q1+w,

xt1k+(w+2)(k+s)+q1+w, . . . , xt1k+(n+t2)(k+s)+q1+w}

and let

J =

{
J0 if q1 = 0,
J0 ∪ {xq1} if q1 ≥ 1.

Clearly, xa−1 ∈ J and t1k + (k + s) + q1 + 1 = a + (k + s) ≥ a + 2. Also,
dD(xa, xt1k+(k+s)+q1+1) = dD(xt1k+q1+1, xt1k+(k+s)+q1+1) = k + s ≥ k.
By a similar reason in Case A, J is k-independent. As k + s ≤ `, J is
`-absorbent.

Conversely, assume that D has a (k, `)-kernel J. We consider two cases.

Case a. |J | = 1.

Suppose k > ` + 1. By F2, b = m and J = {xi}, where i ∈ {a, a +
1, . . . ,m − 1}. Therefore, t2 = 0. Considering xi+1 ∈ V (D)\J, we have
dD(xi+1, xi) = nk+ r− 1 ≥ k− 1 > `, a contradiction. Hence k ≤ `+ 1.

Suppose r > (n+t2)(`+1−k). Then (n+t2)k+r−1 ≥ (n+t2)(`+1). If
J = {xm}, then dD(x1, xm) = m−1 = (t1 +n+ t2)k+q1 +r−1 ≥ t1k+
(n+ t2)(`+1)+q1 > `, a contradiction. Thus b = m. If J = {xi}, where
i ∈ {1, 2, . . . , a − 1}, then dD(xa, J) = ∞, a contradiction. Therefore,
J = {xi}, i ∈ {a, a + 1, . . . ,m − 1}. But dD(xi+1, xi) = nk + r − 1≥
nk+ (n+ t2)(`+ 1−k)=n(`+ 1) + t2(`+ 1−k) ≥ `+ 1, a contradiction.
Hence r ≤ (n + t2)(` + 1− k).

Case b. |J | ≥ 2.

By F1, k ≤ ` + 1. Next, we show that r ≤ (n + t2)(` + 1− k).

Let i1 be the least integer such that a ≤ i1 ≤ m and xi1 ∈ J. Let
J0 = J ∩ {xa, xa+1, . . . , xm} = {xi1 , xi2 , . . . , xiq}, where, one of the
three possibilities occur: b < i1 or ip ≤ b < ip+1 for some p or iq ≤ b.

First, assume b < i1. Now,

dD(xa, J) = dD(xa, xi1) ≥ 1 + dD(xa, xb)

= 1 + b− a = nk + r.

(k, `)-kernels
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If r > (n + t2)(` + 1− k), then

dD(xa, J) ≥ nk + r

> nk + (n + t2)(` + 1− k)

= n(` + 1) + t2(` + 1− k) > `,

a contradiction. Hence r ≤ (n + t2)(` + 1− k).

Next, assume ip ≤ b < ip+1. This implies m > b and therefore, t2 ≥ 1.
Also, iq = m. If dD(xij , xij+1) ≥ ` + 2 for some j ∈ {1, 2, . . . , p −
1, p+ 1, p+ 2, . . . , q−1}, then dD(xij+1, J) = dD(xij+1, xij+1

) ≥ `+ 1, a
contradiction. Hence, for every j ∈ {1, 2, . . . , p−1, p+1, p+2, . . . , q−1},
dD(xij , xij+1

) ≤ `+ 1. Since dD(xij , xij+1
) ≥ k, for j = 1, 2, 3, . . . , p− 1,

and dD(xip , xi1) ≥ k, we have pk ≤ nk + r and so p ≤ n. We consider
two cases.

• dD(xip , xi1) ≤ ` + 1 : Then nk + r ≤ p(` + 1) ≤ n(` + 1); i.e. r ≤
n(` + 1− k). So r ≤ (n + t2)(` + 1− k).

• dD(xip , xi1) ≥ ` + 2 : Note that dD(xa, xi1) ≤ `. If

dD(xip , xip+1) ≥ ` + 2,

then dD(xip+1, J) ≥ ` + 1, a contradiction. Therefore,

dD(xip , xip+1) ≤ ` + 1.

Consequently, (n + t2)k + r − 1 = dD(xa, xm) ≤ (q − 1)(` + 1) + `.
This implies that (n + t2)k + r ≤ q(` + 1).

Observe that q ≤ n + t2. (Otherwise, q > n + t2. As p ≤ n, q >
n + t2 implies that q − p − 1 ≥ t2. Thus dD(xb, xm) = dD(xb, xip+1) +
dD(xip+1 , xip+2) + · · · + dD(xiq−1 , xm) ≥ 1 + (q − p − 1)k ≥ 1 + t2k, a
contradiction to that dD(xb, xm) = m− b = t2k.)

Hence (n + t2)k + r ≤ q(` + 1) ≤ (n + t2)(` + 1) and therefore, r ≤
(n + t2)(` + 1− k).

Lastly, assume iq ≤ b. Then b = m. (Otherwise, by the definition of
iq, dD(xm, J) = ∞, a contradiction.) If dD(xij , xij+1) ≥ ` + 2 for some
j ∈ {1, 2, . . . , q − 1}, then dD(xij+1, J) = dD(xij+1, xij+1) ≥ ` + 1, a
contradiction. Hence, for every j ∈ {1, 2, . . . , q − 1}, dD(xij , xij+1

) ≤
` + 1. Now, if dD(xiq , xi1) ≥ ` + 2, then

dD(xiq+1, J) = dD(xiq+1, xi1) ≥ ` + 1,

a contradiction. Therefore, dD(xiq , xi1) ≤ ` + 1. This implies nk +
r ≤ q(` + 1). Since dD(xij , xij+1

) ≥ k, for j = 1, 2, 3, . . . , q − 1, and
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dD(xiq , xi1) ≥ k, we have qk ≤ nk + r and so q ≤ n. Thus nk + r ≤
n(` + 1); i.e. r ≤ n(` + 1− k). So r ≤ (n + t2)(` + 1− k).

Proof of III. n ≥ 1 and r + q2 > k. (Then r, q2 ≥ 2.)

First, assume k ≤ `+ 1 and r+ q2−k ≤ (n+ t2 + 1)(`+ 1−k). There exists
a non-negative integer s such that r + q2 − k = (n + t2 + 1)s + w, where
0 ≤ w < n + t2 + 1. Clearly, s ≤ ` + 1− k. We consider two cases.

Case A. w = 0. (Then s ≥ 1.)

Let

J0 = {xk+q1 , x2k+q1 , x3k+q1 , . . . , xt1k+q1 , xt1k+(k+s)+q1 ,

xt1k+2(k+s)+q1 , . . . , xt1k+(n+t2+1)(k+s)+q1}
and let

J =

{
J0 if q1 = 0,
J0 ∪ {xq1} if q1 ≥ 1.

Clearly, xa−1 ∈ J and t1k + (k + s) + q1 ≥ a + 2. Also,

dD(xa, xt1k+(k+s)+q1) = dD(xt1k+q1+1, xt1k+(k+s)+q1) = k + s− 1 ≥ k.

By a similar reason in Case A of II, J is k-independent and `-absorbent.

Case B. w ≥ 1.

Clearly, s ≤ `− k. (Otherwise, s = ` + 1− k, then (n + t2 + 1)(` + 1− k)
≥ r+q2−k = (n+t2+1)s+w ≥ (n+t2+1)(`+1−k)+1, a contradiction.)

Let

J0 = {xk+q1 , x2k+q1 , x3k+q1 , . . . , xt1k+q1 ,

xt1k+k+s+q1+1, xt1k+2(k+s)+q1+2,

. . . , xt1k+w(k+s)+q1+w, xt1k+(w+1)(k+s)+q1+w,

xt1k+(w+2)(k+s)+q1+w, . . . , xt1k+(n+t2+1)(k+s)+q1+w}

and let

J =

{
J0 if q1 = 0,
J0 ∪ {xq1} if q1 ≥ 1.

Clearly, xa−1 ∈ J and t1k + (k + s) + q1 + 1 = a + (k + s) ≥ a + 2. Also,
dD(xa, xt1k+(k+s)+q1+1) = dD(xa, xa+(k+s)) = k + s ≥ k. By a similar
reason in Case B of II, J is k-independent and `-absorbent.

Conversely, assume that D has a (k, `)-kernel J. We consider two cases.
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Case a. |J | = 1.

Suppose J = {xi}, i 6= m. As q2 ≥ 2, b 6= m and therefore, dD(xm, J) =
∞, a contradiction. Thus J = {xm}. By F2, k ≤ `+1. Also, r+q2−k ≤
(n+ t2 +1)(`+1−k); otherwise, r+q2 > (n+ t2 +1)(`+1−k)+k, then
dD(x1, xm) = m− 1 = (t1 +n+ t2)k + q1 + r + q2− 1 ≥ (t1 +n+ t2)k +
q1+(n+t2+1)(`+1−k)+k = t1k+(n+t2+1)(`+1)+q1 ≥ 2(`+1) > `,
a contradiction.

Case b. |J | ≥ 2.

By F1, k ≤ `+1. Next, we show that r+ q2−k ≤ (n+ t2 +1)(`+1−k);
i.e. r + q2 ≤ (n + t2)(` + 1− k) + ` + 1.

Let i1 be the least integer such that a ≤ i1 ≤ m and xi1 ∈ J. Let
J0 = J ∩ {xa, xa+1, . . . , xm} = {xi1 , xi2 , . . . , xiq}. Clearly, iq = m. Note
that either b < i1 or ip ≤ b < ip+1 for some p.

First, assume b < i1. Now,

dD(xa, J) = dD(xa, xi1) ≥ 1 + dD(xa, xb) = b− a + 1 = nk + r.

If r > (n + t2)(` + 1− k) + ` + 1− q2, then

dD(xa, J) > nk + (n + t2 + 1)(` + 1− k) + k − q2

≥ n(` + 1) + (t2 + 1)(` + 1− k) + 1

≥ ` + 2,

a contradiction. Therefore, r + q2 ≤ (n + t2)(` + 1− k) + ` + 1.

Next, assume ip ≤ b < ip+1. If dD(xij , xij+1) ≥ ` + 2 for some j ∈
{1, 2, . . . , p− 1, p + 1, p + 2, . . . , q − 1}, then

dD(xij+1, J) = dD(xij+1, xij+1
) ≥ ` + 1,

a contradiction. Hence, for every j ∈ {1, 2, . . . , p−1, p+1, p+2, . . . , q−1},
dD(xij , xij+1

) ≤ `+ 1. Since dD(xij , xij+1
) ≥ k, for j = 1, 2, 3, . . . , p− 1,

and dD(xip , xi1) ≥ k, we have, pk ≤ nk + r and so p ≤ n. We consider
two cases.

• dD(xip , xi1) ≤ `+1 : Then nk+r ≤ p(`+1). Thus r ≤ p(`+1−n) ≤
n(` + 1 − k) ≤ (n + t2)(` + 1 − k). We know that q2 ≤ k − 1 ≤
` < ` + 1. Therefore, combining both the inequalities, we have
r + q2 < (n + t2)(` + 1− k) + ` + 1.

• dD(xip , xi1) ≥ ` + 2 : If dD(xip , xip+1) ≥ ` + 2, then, dD(xip+1, J) ≥
` + 1, a contradiction. Thus dD(xip , xip+1

) ≤ ` + 1. Note that
dD(xa, xi1) ≤ `. Now, (n+ t2)k+r+q2−1 = m−a = dD(xa, xm) ≤
(q − 1)(` + 1) + ` and thus (n + t2)k + r + q2 ≤ q(` + 1).
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Observe that q ≤ n + t2 + 1. (Otherwise, q > n + t2 + 1. As p ≤ n,
q − p − 1 ≥ q − n − 1 ≥ t2 + 1. Thus dD(xb, xm) = dD(xb, xip+1) +
dD(xip+1

, xip+2
) + · · ·+ dD(xiq−1

, xm) ≥ 1 + (q− p− 1)k ≥ 1 + (t2 + 1)k,
a contradiction to that dD(xb, xm) = m− b = t2k + q2 < (t2 + 1)k.)

Hence (n + t2)k + r + q2 ≤ q(` + 1) ≤ (n + t2 + 1)(` + 1) and therefore,
r + q2 ≤ (n + t2)(` + 1− k) + ` + 1.

Proof of IV. n = t1 = t2 = 0, q2 ≥ 1 and q1 + r + q2 ≤ k.

Then m = q1 + r + q2 and so m = k.

First, assume m ≤ ` + 1. Let J = {xm}. Clearly, J is k-independent. As
dD(x1, xm) = m− 1 ≤ `, J is `-absorbent.

Conversely, assume that D has a (k, `)-kernel J. Suppose m > ` + 1. As
m = k, |J | = 1. Clearly, J = {xm}. But dD(x1, xm) = m − 1 > `, a
contradiction.

Proof of V. n = t1 = t2 = q2 = 0. (Then m = b = q1 + r ≤ 2k − 2.)

First, assume max{q1 + 1, r} ≤ ` + 1. Let J = {xa}. As |J | = 1, J is k-
independent. If q1 +1 ≤ r, then r ≤ `+1; as dD(xa+1, J) = dD(xa+1, xa) =
r − 1 ≤ ` and dD(x1, J) = dD(x1, xa) = a − 1 = q1 ≤ r − 1 ≤ `, J is `-
absorbent. If q1 + 1 > r, then q1 ≤ `; as dD(xa+1, J) = dD(xa+1, xa) =
r − 1 < q1 ≤ ` and dD(x1, J) = dD(x1, xa) = a − 1 = q1 ≤ `, J is
`-absorbent.

Conversely, assume that D has a (k, `)-kernel J. Suppose max{q1 + 1, r} ≥
`+2. As k ≥ max{q1+1, r} ≥ `+2, by F2, b = m and J = {xi}, i ∈ {a, a+
1, . . . ,m − 1}. If max{q1 + 1, r} = r, then dD(xi+1, J) = dD(xi+1, xi) =
r− 1 ≥ `+ 1, a contradiction. If max{q1 + 1, r} = q1 + 1, then dD(x1, J) =
dD(x1, xi) = i− 1 ≥ a− 1 = q1 ≥ ` + 1, a contradiction.

Proof of VI. n = t1 = t2 = 0 and r + q2 > k. (Then r, q2 ≥ 2.)

First, assume max{q1 + 1, r, q2} ≤ ` + 1. We consider two cases.

Case A. q1 = k − 1.

Then max{q1 + 1, r, q2} = q1 + 1 = k. Let

J = {xq1+r+q2−2k, xq1+r+q2−k, xq1+r+q2}.

As n = 0, J is k-independent and as k ≤ ` + 1, J is `-absorbent.

Case B. q1 ≤ k − 2.

Let J = {xa, xm}. As dD(xa, xm) = m − a = r + q2 − 1 ≥ k + 1, J
is k-independent. We see that dD(x1, xa) = a − 1 = q1 ≤ max{q1 +
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1, r, q2} − 1 ≤ `, dD(xa+1, xa) = r − 1 ≤ max{q1 + 1, r, q2} − 1 ≤ ` and
dD(xb+1, xm) = m− b− 1 = q2 − 1 ≤ max{q1 + 1, r, q2} − 1 ≤ `. Thus J
is `-absorbent.

Conversely, assume that D has a (k, `)-kernel J. Suppose max{q1 + 1,
r, q2} > ` + 1. Then k > ` + 1. By F2, b = m. So q2 = 0, a contradiction.

This completes the proof.

Theorem 1.2 is a corollary to Theorem 2.1.

Corollary 2.2. Let D = Pm+xbxa, where 1 ≤ a < b ≤ m. For 2 ≤ k ≤ m,
let a−1 = t1k+q1, b−a+1 = nk+r and m−b = t2k+q2, where t1, n, t2 ≥ 0
and 0 ≤ q1, r, q2 < k. Then, D has a k-kernel if, and only if, none of the
following conditions hold:

• n ≥ 1, r ≥ 1 and q2 = 0;

• n ≥ 1 and r + q2 > k.

Proof. Assume that there exists a k-kernel in either of the cases. Putting
` = k−1 in II and III of Theorem 2.1, we have r ≤ (n+t2)(k−1+1+k) = 0
and r + q2 ≤ (n + t2 + 1)(k− 1 + 1 + k) + k− 1 + 1 = k, a contradiction to
the respective hypothesis.

Converse part directly holds from the proof of Theorem 2.1.

The above corollary adds an additional family to the existing classes of
digraphs with k-kernels.

2.2 Acyclic Pm + e

Let D = Pm + xaxb, where 1 ≤ a < b ≤ m. Here, D is a digraph with
no directed cycle. A well-known theorem of Richardson on the existence of
kernel is Theorem 2.3.

Lakshmi and Sindhu

116



Theorem 2.3. Every digraph without directed cycles has a (2, 1)-kernel.

In [2], Bród, W loch and W loch have proved the following result on k-kernels
as a generalized form of Theorem 2.3.

Theorem 2.4. ([2]) A digraph without directed cycles has a k-kernel, for
k ≥ 2.

We make use of the above theorem for the “if” part of our result.

Theorem 2.5. Let D = Pm + xaxb, where 1 ≤ a < b ≤ m and a + 1 6= b.
For 2 ≤ k ≤ m, D has a (k, `)-kernel if, and only if, k ≤ ` + 1.

Proof. By Theorem 2.4, D has a k-kernel. Therefore, for every ` ≥ k − 1,
D has a (k, `)-kernel.

Conversely, assume that D has a (k, `)-kernel J. Then xm ∈ J. Suppose
k > `+1. If J = {xm}, then dD(x1, xm) = m−1 ≥ k−1 > `, a contradiction.
Thus |J | ≥ 2. Choose two vertices xi, xj ∈ J, i < j, with xc /∈ J for i < c <
j. If dD(xi+1, J) = dD(xi+1, xj), then dD(xi+1, J) = dD(xi, xj)−1 ≥ k−1.
Otherwise, dD(xi+1, J) = dD(xi+1, xt) for some t 6= j; then i+1 ≤ a < b ≤ t
and the shortest path from xi+1 to xt is xi+1xi+2 . . . xaxbxb+1 . . . xt; thus
dD(xi+1, J) = dD(xi, xt) − 1 ≥ k − 1. Hence, in both the possibilities,
dD(xi+1, J) ≥ k − 1 > `, a contradiction.

This completes the proof.
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