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Abstract

Let k£ > 2 and ¢ be positive integers. For a digraph D, a set J C
V(D) is said to be a (k, £)-kernel of D if for all z,y € J, dp(z,y) > k
and for every z € V(D)\J, there exists w € J such that dp(z,w) < £.
In this paper, we give a necessary and sufficient condition for the
existence of a (k, £)-kernel in P, 4+ e, where P,, is a directed path on
m vertices and e is any arc with both ends in P,,.

1 Introduction

For notation and terminology, in general, we follow [1]. Let D denote a
finite digraph with vertex set V(D) and arc set A(D).

For z,y € V(D), distance from z to y in D, denoted by dp(z,y), is the
number of arcs in a shortest directed path from z to y in D.
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(k, £)-KERNELS

For X, Y CV(D), dp(X,Y) = min{dp(z,y) : x € X, y € Y}. When X =
{z}, denote dp({z},Y) by dp(z,Y). Similar notation holds for ¥ = {y}.

Let k > 2 and £ be positive integers. For aset J C V (D), J is k-independent
if for every x,y € J, dp(x,y) > k; J is £-absorbent if for every z € V(D)\J,
there exists w € J such that dp(z,w) < ¢; J is a (k,{)-kernel of D if J is
both k-independent and f-absorbent in D. A k-kernelis a (k, k — 1)-kernel.
From the definition of (k,¢)-kernel, it follows that, for 2 < ky < k and
¢ < ly, every (k,{)-kernel of D is a (ko, £o)-kernel of D.

The concept of kernel was introduced by von Neumann and Morgenstern
(see [13]) as an abstract generalization of the concept of solution for cooper-
ative games. Further, the study of kernels acquired its own significance due
to its application in combinatorial games and Mathematical Logic. Gener-
alizing the concept of kernels, Borowiecki and Kwasnik (see [10]) introduced
(k, £)-kernels. A wide range of contributions are being made to the study
of (k,¢)-kernels.

In [4], Galeana-Sanchez concentrated on the presence of (k, £)-kernels in di-
graphs with symmetric pair of arcs. The behavior of (k, £)-kernels in differ-
ent products of digraphs were investigated by several authors like Kwasnik,
Szumny, Wioch and Wloch (see [10], [11], [12] and [14]). Their results
included computing the number of (k, ¢)-kernels in the respective product
graphs. For additional results on (k, £)-kernels, see [7]. Among the study on
(k,¢)-kernels, a greater attention is to the study of k-kernels (see [5], [6] and
[8]). In 1973, Chvétal (see [3]) had proved that the problem of determining
whether a digraph admits a kernel or not is NP-complete. Later, in 2014,
it is proved in [6] that the problem of determining whether a digraph has
a k-kernel, k > 3, is also N'P-complete.

Let P, and C,, denote, respectively, a directed path and a directed cycle on
m vertices. In [9], the authors provided a necessary and sufficient condition
for P,, and Cy, to have a (k, £)-kernel.

Theorem 1.1. ([9]) For m > k, P, has a (k,£)-kernel if, and only if,
E<{+1

Theorem 1.2. ([9]) Let Cy, be given with m = nk +r and n > 1. Then
Cm has a (k,£)-kernel if, and only if, k < {41 andr <n(l+1-k).

In Section 2, we characterize the existence of (k,£)-kernels in the digraph
P, + e, where e is any arc with both ends in P,,. In the way, Theorem 1.2
becomes a corollary.
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2 (k,f)-kernels in P,, + e

Let P,, : x1x273 ... %, be a directed path on m vertices. Let D = P, + e,
where e is an arc with both ends in P,,. Given positive integers k and
£, where 2 < k < m, in Theorems 2.1 and 2.5, we give a necessary and
sufficient condition for the existence of a (k,¢)-kernel in D = P,,, +e.

2.1 Unicyclic P,, + e

Let D = P,, + xpx,, where 1 < a < b < m. Based on the conditions
obtained, the statement gets split into six cases.

Theorem 2.1. Let D = P, + xpx,, where 1 <a < b<m. For2 <k <m,
leta—1=tik+qg,b—a+1=mnk+r and m —b = tok + g2, where
ty,n,ts >0 and 0 < q1,71,q2 < k.

1. If any one of the following conditions hold:
(i) n>1 and r = 0;
(i)n>1l,r>1,¢>1andr+q <k;
(iii) n=t1 =to =0, >1andr+qg2 <k <q+7r+q;
(iv) n=1t1 =0 and t3 > 1;
(v) n=0and t; > 1;
then D has a (k,)-kernel if, and only if, k <+ 1.

II. Letn>1,r>1 and g = 0. Then D has a (k,0)-kernel if, and only
if, k<l+1andr < (n+t)({+1—k).

III. Letn>1 and r+qo > k. Then D has a (k,0)- kernel if, and only if,
k<l{+landr+gq <(n+t)({+1—k)+{+1.

IV. Letn=t1 =t2=0,q2 > 1 and g1 + r + q2 < k. Then D has a (k,{)-
kernel if, and only if, g1 + 7+ g2 < £+ 1.

V. Letn=1t; =ty =qo2 =0. Then D has a (k,?)- kernel if, and only if,
max{q + 1,7} <L+ 1.

VI. Let n =t =ty =0 and v + g2 > k. Then D has a (k,{)- kernel if,
and only if, max{q; + 1,r,¢o} < £+ 1.
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r =0 I(i)
n>1 - g2 = 0 1II
r>14 r+qg2 < k & g2 > 1 I(ii)

r4qs > k 111

tz Z 1 I(iV)

- &, = 0- g2=0V

- t2 =0 q1+r+q2z < k IV
q2 > 14 r4+q2 < k < q1+r+q2 1(iii)

r+q2 > k VI

- tl Z 1 I(V)
Figure 1.

Proof. Figure 1 shows that the cases are exhaustive. In the proof, the
following facts are used often:

F1. If £ > ¢+ 1, then D has no (k, ¢)-kernel J with |J| > 2.

Suppose that D has a (k, £)-kernel J with |J| > 2. Then choose two ver-
tices z;,x; € J, i < j, with z. ¢ J for i < ¢ < j. Consider dp(z;1,J).
If dD(l‘H_l,J) = dD(xi_H,xj), then dD(l‘H_l,J) = dD(xi,xj) -1 Z
k — 1. Otherwise, dp(xiy1,J) = dp(xiy1, ;) for some ¢ # j; then
be{i+1,i4+2,...,5—2} and the shortest path from x;11 to z; is
Tit1Tit2 -« TpTaTat1 - T¢; and so dp(xip1,J) = dp(as,xe) — 1 >
k — 1. Hence, in both the possibilities, dp(x;11,J) > k-1 > ¢, a
contradiction to the f-absorbency of J.
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F2. If k > ¢+ 1 and D has a (k,()-kernel J, then b = m and J = {x;},
i€{a,a+1,...,m—1}.

By F1, |J| = 1. If J = {2}, then dp(z1,2m) = m—-1> k-1 > ¢,
a contradiction to the ¢-absorbency of J. Hence J = {z;}, ¢ # m. If i €
{1,2,...,a — 1}, then, no x;, where j € {a,a+1,...,m}, is L-absorbed by
J. Therefore, i € {a,a +1,...,m — 1}. If b # m, then dp(z.,,J) = o0, a
contradiction. So b = m.

Proof of I(i). n>1and r =0. (Then b —a + 1 = nk.)

First, assume k < ¢ + 1. We consider two cases.

Case A. ¢ =0. (Then (tl +n+t2)k+ Q= m)

Let Jyp = {Ik+q1 s L2k4-q1 5 L3k4q1y - - - 7I(t1+n+t2)k:+q1} and let
J = Jo if q1 = 0,
| oU{zg,} ifq>1

Ask—1<{, Jis t-absorbent. Astik+q1 =a—1, (t1+1)k4+q =a—1+k
and (t1 +n)k+ ¢ = b, we have: for k-independence, it is enough to check
that dp(xp, Tqa—1+k) > k. This inequality is true, since dp(xp, Ta—14%) =
1+ dD(zayxa—1+k) =1+k—-1=k.

Case B. g2 > 1. (Then (t1 + n+t2)k +¢1 + g2 = m.)

Let Jo = {qu +q2> Lh+q1+q2> V2k+q1 442> - - - 7x(t1+n+t2)k+q1+q2} and let
J— Jo if g1 +q2 <k,
JoU{$q1+q2_k} if q1 +q2 > k.

As k—1</{, Jis f-absorbent. We see that

t1—Dk+qg+@p=a—-1-k+gp<a-—2,
thk+g+@p=a—1+q¢ >aq,
ti+n—1Dk+qa+q@p=b—k+qg <b—-1,

and

ti+n)k+qa+q=b+q¢p>b+1

Therefore, for k-independence, it is enough to check that

Adp(Th—ktqss Ta—14g5) > k-
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This inequality holds true, because
dD(To—k+gs Ta—1+g2) = AD(To—k+go5 Tv) + 1+ dD(Ta, Ta—1+4¢,)
=k—-q@+1+q@p—-1=Ek

Conversely, assume that D has a (k, £)-kernel J. Suppose k > £+ 1. Then,
by F2, b =m and J = {z;}, i € {a,a+1,...,m —1}. Considering ;1 €
V(D)\J, we have dp(z;+1,2;) =nk —1 >k — 1> ¢, a contradiction.
Proof of I(ii). n>1,7r>1,¢g2 > 1 and r + ¢2 < k.
First, assume k < £+ 1. Clearly, g1 +7 + ¢ < 2k — 1. Let

Jo = {xQ1+T+q27 Lhtqi+r+q2) L2k+q1+r+q2) - - - »x(t1+n+t2)k+q1+r+qz}
and let
g4 Jo ifqr+r+gq <k
JoU{Zgi4rtq-k} i qr+7r+q2>k

Since k—1 < ¢, J is f-absorbent. As (t;1—1)k+q1+r+q2 = a—1—k+r+qs <
a—Ltik+q+r+e=a—-1+r+q@>at+l, (Li+n—-Dk+q+r+q =
b—k+qg <b—1land (t1+n)k+q +r+q =b+g2 > b+1, we have: for k-
independence, it is enough to check that dp(Zp—k+qs» Ta—1+r+¢.) = k. The
inequality holds true, because dp(Tp—k+qgys Ta—14r+qg2) = AD(To—ktqss Tv) +

1+dD(£Ea,Ia_1+r+q2) =k—q@+l+r+qep—-1=k+r>k.

Conversely, assume that D has a (k, ¢)-kernel J. Suppose k > ¢ + 1. Then,
by F2, b = m. So g2 = 0, a contradiction.

Proof of I(iii). n =t; =t2 =0, g2 > land r+ g2 < k < ¢1 +r + ¢o.
(Then g1 > 1and m=q1 + 1+ ¢2 < 2k.)

First, assume k < £+ 1. Let J = {Zg, 4riqo—k> Tq1+r+qs }- Since k —1 < ¢,
J is f-absorbent. As n =0, J is k-independent.

Conversely, assume that D has a (k, £)-kernel J. Suppose k > £ + 1. Then,
by F2, b = m. So g2 = 0, a contradiction.

Proof of I(iv). n =t =0 and t5 > 1.
First, assume k < £+ 1. Let

Jo = {xq1+r+q2’ Lhtq1+r+q2) L2k+q1+r+q25 -+ - 7xt2k+lh+7’+qz}
and let
Jo if g1 +r+q <k,
J = JoU{Iq1+T+q2_k} itk <q+7+q <2k,

Jo ULz triqn—2k: Tgr4riqe—k} i1 +7+q2 > 2k
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Asn =0, J is k-independent and as k — 1 < ¢, J is ¢-absorbent.

Conversely, assume that D has a (k, £)-kernel J. Suppose k > ¢ 4 1. Then,
by F2, b = m. So t5 = 0, a contradiction.

Proof of I(v). n =0 and ¢; > 1.
First, assume £ < ¢+ 1. Let

Jo = {Zqi 41442, Thtqi+r+as T2htqitrdass - - - Tty +t2)htar+r+az §
and let
Jo ifqr+r+gq <k
J=19q JoU{zg+rte—k} itk <q+r+q <2k,

Jo U {xq1+r+q272k7 xq1+r+quk} if g1 +1r+q2 > 2k.
Asn =0, J is k-independent and as k — 1 < ¢, J is f-absorbent.

Conversely, assume that D has a (k, ¢)-kernel J. Suppose k > ¢ + 1. Then,
by F2, b=m and J = {z;}, i € {a,a+1,...,m—1}. Ast; > 1, a # 1.
Considering z; € V(D)\J, dp(z1,J) = dp(z1,2;) =i —1 > a—-1 =
tik +¢q1 > k > ¢+ 1, a contradiction.

Proof of II. n>1,r > 1 and ¢ = 0.

First, assume k < /+1land r < (n+t2)({+1—k). So (n+ta)k+7r < (n+
t2)(£41). There exists a non-negative integer s such that r = (n+1t2)s+w,
where 0 < w < n + to. Clearly, s < £+ 1 — k. We consider two cases.

Case A. w=0. (Then s > 1.)

Let
Jo = {$k+q1 y L2k+q1) L3k+q1r - - - Ltik+qrr Lty k4 (k+s)+q1»
Tty k+2(k4s)+qur-- $t1k+(n+t2)(k+s)+q1}
and let
J— { Jo if g1 =0,
JoU{zg} ifq >1.

Clearly, z,—1 € J and t1k + (k+ s) + ¢1 > a + 2. Also,

dD(xaa$t1k+(k+s)+q1) = dp(Tt,k+q,+1, $t1k+(k+s)+q1) =k+s—1>k.

This implies if the shortest path from a vertex of J reaches @,y (k4s)4+q
using the arc xpx,, then, the length of the shortest path is at least k.
This, along with the definition of J, imply that J is k-independent. As
k+s—1</, Jis f-absorbent.
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Case B. w > 1.

Clearly, s < £ — k. (Otherwise, s = £+ 1 —k, then (n+¢)({+1—k) >r
=(n+t)s+w>(n+t) ({+1—k)+ 1, a contradiction.) Let

Jo = {xk-‘rth » L2k4q15> L3k4q1s - - - > Ltrk+qis Tty k+(k+s)+q1+1>
Tty k42(k4s)+qr+2 - - - Lty k+w(k+s)+qr+wr Lty k4 (w+1) (k+s)+q1+w>

Lty k4-(w42) (k+8)+q1+ws « - - 7xt1k+(n+t2)(k+s)+q1+w}
and let

J— Jo ifq1:O,
T\ JoU{xg} ifq > L.

Clearly, x4—1 € Jand t1k+ (k+s)+qg+1=a+ (k+s) > a+ 2. Also,

Ap(Ta, e ki (kts)+q1+1) = AD(Tt1ktqu415 Ty bt (hts)+au+1) = kb + 8 > k.
By a similar reason in Case A, J is k-independent. As k+ s < ¢, J is

f-absorbent.

Conversely, assume that D has a (k, £)-kernel J. We consider two cases.

Case a. |J|=1.

Suppose k > ¢+ 1. By F2, b = m and J = {z;}, where i € {a,a +
1,...,m — 1}. Therefore, to = 0. Considering ;11 € V(D)\J, we have
dp(zit1,z;) =nk+r—1>k—1> ¢, a contradiction. Hence k < £+ 1.
Suppose r > (n+t2)({+1—k). Then (n+ta)k+r—1> (n+t2)(€+1). If
J={zm}, then dp(z1,zm) =m—1= (1 +n+ta)k+q +r—1> t1k+
(n+t2)({+1)+q1 > ¢, a contradiction. Thus b = m. If J = {x;}, where
1€ {1,2,...,a — 1}, then dp(x,, J) = oo, a contradiction. Therefore,
J=Ax;}, i € {a,a+1,...,m —1}. But dp(xjy1,2:) = nk +r — 1>
nk+(n+t)(l+1—k)=n({+1)+t2(+1—k) > £+1, a contradiction.
Hence r < (n+t2)({ +1— k).

Case b. |J| > 2.
By F1, k < £+ 1. Next, we show that » < (n+t2)({ + 1 — k).

Let ¢; be the least integer such that a < i3 < m and z;, € J. Let
Jo = JNA{za,Tat1,- - Tm} = {Ti, Tiy, ..., 24, }, Where, one of the
three possibilities occur: b < 4y or ¢, < b < ipy1 for some p or iy < b.

First, assume b < 1. Now,

dp(zq,J) =dp(xa,2s,) > 1+ dp(2a,2p)
=14+b—a=nk+r.
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Ifr>(n+t2)({+1—k), then

dp(ze,J) > nk+r
>nk+ (n+t)(+1—k)
=n(l+1)+t(+1—k)> 1,

a contradiction. Hence r < (n+t2)(¢ + 1 — k).

Next, assume i, < b < ip41. This implies m > b and therefore, 2 > 1.
Also, ig = m. If dp(x;,,2;,,,) > £+ 2 for some j € {1,2,...,p —
Lp+1,p+2,...,9— 1}7 then dD(-rirH; J) = dD(xin,xiHl) >/l+1,a
contradiction. Hence, for every j € {1,2,...,p—1,p+1,p+2,...,q—1},
dD(azij,:z:in) < /{+1. Since dD(xij,xin) >k, forj=1,2,3,...,p—1,
and dp(w;,, 2 ) > k, we have pk < nk +r and so p < n. We consider
two cases.

o dp(wi,,x;;) <L+ 1:Then nk+r < p(l +1) < n(l+1); ie 7 <
n(l+1—k).Sor<(n+t)(l+1—k).
e dp(z;,,x;;) > £+ 2: Note that dp (x4, ) < L. If
dD(xipaxip_H) >0+ 2,
then dp(z,41,J) > £+ 1, a contradiction. Therefore,
dD(xip,xipH) </+1.
Consequently, (n +t2)k+r —1=dp(xg,zm) < (¢g—1){+1)+ L.
This implies that (n +t2)k + 7 < q(£+1).

Observe that ¢ < n + ty. (Otherwise, ¢ > n+t2. Asp < n, ¢ >
n + ty implies that ¢ — p — 1 > t3. Thus dp(zp, ¥m) = dp(2p, T4,,,) +
dp(Ti,,,,%i, )+ +dp(@i,_\,Tm) > 14+ (@—p— 1)k > 1+ 12k, a
contradiction to that dp(xp, ) =m — b = tak.)

Hence (n+to)k+r < g+ 1) < (n+t3)(¢ + 1) and therefore, r <
(n+ta)(l+1—k).

Lastly, assume i, < b. Then b = m. (Otherwise, by the definition of
iq, dp(Tm,J) = 0o, a contradiction.) If dp(zs;, s, ,) > £+ 2 for some
je{1,2,...,q — 1}, then dD($z‘j+1;J) = dD(l'ij+1,iUij+1) >0+1,a
contradiction. Hence, for every j € {1,2,...,q — 1}, dp(w;;,z;,,) <
¢+ 1. Now, if dp(w;,,2;,) > £+ 2, then

dp(zi,+1,J) = dp(wi,41,75,) > L+ 1,
a contradiction. Therefore, dD(ziq,xil) < ¢+ 1. This implies nk +

r < q({+1). Since dp(zs;,;,,) > k, for j = 1,2,3,...,¢ — 1, and
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dp(xi,,xs) > k, we have ¢k < nk + r and so ¢ < n. Thus nk +r <
n(l+1);ie. r<n(l+1—k). Sor<(n+t2)({+1—k).
Proof of IIl. n > 1 and r + g2 > k. (Then r, g2 > 2.)

First, assume k < {+1 and r+¢2 —k < (n+t2+1)(¢+1—k). There exists
a non-negative integer s such that r + g2 — k = (n + t2 + 1)s + w, where
0 <w<n+ty+ 1. Clearly, s < £+ 1 — k. We consider two cases.

Case A. w=0. (Then s > 1.)

Let
Jo = {$k+q17$2k+q17$3k+q17 s Tty ktqry Lty k4-(k+s)+q1o
Tty k42(k+s)+q1s - - axt1k+(n+t2+1)(k+s)+q1}
and let
J— { Jo if g1 =0,
JoU{zg} ifg >1.

Clearly, ,—1 € J and t1k + (kK + s) + q1 > a + 2. Also,

Ap(Ta, Teykt (hts)+ar) = AD(Ttiktqu+1, Ttyht (hts)+q) =k +5 =1 > k.
By a similar reason in Case A of II, J is k-independent and ¢-absorbent.
Case B. w > 1.

Clearly, s < ¢ — k. (Otherwise, s =+ 1—k, then (n+t2+1)({+1—k)
>r4+qg—k = (n+ta+1)s+w > (n+ta+1)({+1—k)+1, a contradiction.)

Let

Jo = {xk-‘rth y L2k+q1s L3k+qry -+ -y Lt1k+qrs
Ltrk+k+s+q1+1 Tty k+2(k+s)+q1+2»

s Ty ktw(k+s)+qi+wsr Loy k+(w+1) (k48)+q1 +wo

Tty koot (w+2) (kt-8)+a1 +ws - Tty b (ntta+ 1) (kts)+qa +w |
and let
g1 Jo if g1 =0,
- J()U{qu} ifql Z].

Clearly, 2,1 € Jand t1k+ (k+s)+ ¢ +1=a+ (k+s) > a+ 2. Also,
dD(xa,xt1k+(k+s)+ql+1) = dD(xa,l'a+(k+s)) =k + s 2 k. By a similar
reason in Case B of II, J is k-independent and ¢-absorbent.

Conversely, assume that D has a (k, £)-kernel J. We consider two cases.
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Case a. |J|=1.

Suppose J = {z;}, i # m. As g2 > 2, b # m and therefore, dp(z,,J) =
00, a contradiction. Thus J = {z,,}. By F2, k < {+1. Also, r+¢q2—k <
(n+ta+1)({+1—k); otherwise, r+¢q2 > (n+t2+1)(¢+1—k)+k, then
dp(z1,2m)=m—1=(t1+n+t)k+qa+r+gp—1>(t1+n+t)k+
q+nt+to+1)(l+1=k)+k = tik+(n+ta+1)(0+1)+q1 > 2(L+1) > 4,
a contradiction.

Case b. |J| > 2.

By F1, k < £+ 1. Next, we show that r+¢a —k < (n+ta+1)({+1—k);
e rd+g<(ntt)l+1—Fk) +L+1.

Let i; be the least integer such that a < ¢; < m and z;, € J. Let
Jo=J N {xq,Taq1,. . T} = {24y, Tiy, ..., 34, }. Clearly, iy = m. Note
that either b < ¢; or i), < b < ip4; for some p.

First, assume b < ;. Now,
dp(a,J) =dp(xe,xi,) > 1+dp(ze,2p) =b—a+1=nk+r.
Ifr>Mnm+t))(l+1—-k)++1—qo, then
dD(l‘a,J) >nk+(n+t2+1)(€+lfk)+qu2

>n(l+1)+(t+1)(l+1—-Fk)+1

>0+ 2,
a contradiction. Therefore, r + qo < (n+t2)({ +1—k) + £+ 1.
Next, assume i), < b < ipyq. If dD(xijwiHl) > £+ 2 for some j €
{1,2,...,p—1L,p+1,p+2,...,q— 1}, then

dp(zi;41,J) = dp(Ti;41, 245y, ) 2 L+ 1,

a contradiction. Hence, for every j € {1,2,...,p—1,p+1,p+2,...,¢g—1},
dp(xi,, ;) <L+1. Since dp(xi,,2;,,,) >k, for j =1,2,3,...,p—1,

and dp(z;,,2;,) > k, we have, pk < nk + 7 and so p < n. We consider
two cases.

e dp(wi,,x;;) <L+1:Then nk+r < p(l+1). Thus r < p(f+1-n) <
nl+1—k) < (n+t))(+1—k). We know that ¢o < k-1 <
¢ < ¢+ 1. Therefore, combining both the inequalities, we have
r+q<(n+t)(l+1—k)+0+1.

. dD(mipaxh) >0+2:1If dD(xip,l‘ierl) > {+ 2, then, dD(l‘ip+1,J) >
¢ + 1, a contradiction. Thus dp(z;,,7:,,,) < £+ 1. Note that
dp(ze,xi) < L. Now, (n+t)k+r+qg—1=m—a=dp(ze, Tm) <
(g—1)(¢+1)+ ¢ and thus (n+t2)k + 7+ g2 < q(f +1).

114



(k, £)-KERNELS

Observe that ¢ < n 4ty + 1. (Otherwise, ¢ > n+ta + 1. As p < n,
q—p—12>qg—n—12>ty+ 1. Thus dp(zp,2m) = dp(zp,2i,,,) +
dp(Ti, s Tipn) +o -+ dp(Tiy_yTm) 2 14+ (q—p—1)k > 14 (t2 + 1)k,
a contradiction to that dp(xp, ) =m — b =tk + g2 < (t2 + 1)k.)

Hence (n+to)k+r+qs < q(l+1) < (n+ty+1)(¢+ 1) and therefore,
T+ < (n+t)(l+1—k) +L+1

Proof of IV. n=t; =t2=0,¢g2 > 1l and ¢ + r+ q2 < k.

Then m = ¢ + 7+ g2 and so m = k.

First, assume m < ¢+ 1. Let J = {z,,}. Clearly, J is k-independent. As
dp(z1,zm) =m —1<{, Jis -absorbent.

Conversely, assume that D has a (k,¢)-kernel J. Suppose m > ¢+ 1. As
m =k, |J| = 1. Clearly, J = {z,}. But dp(z1,2m) = m—1 > £, a
contradiction.

Proofof V. n=t; =ta =¢2=0. (Then m=b=q; +r <2k —2.)

First, assume max{q; + 1,7} < £+ 1. Let J = {z,}. As |[J| =1, J is k-
independent. If g1 +1 < 7, thenr < £+ 1; as dp(zat1,J) = dp(Tat1,Za) =
r—1<{and dp(z1,J) =dp(z1,24) =a—1=¢q <r—1<4¥ Jis ¢-
absorbent. If ¢y +1 > r, then ¢; < ¢; as dp(xg41,J) = dp(Tat1,Ta) =
r—1< ¢ < /{and dp(x1,J) = dp(x1,24) = a—1 = q < £, J is
f-absorbent.

Conversely, assume that D has a (k, £)-kernel J. Suppose max{q; + 1,7} >
0+2. Ask > max{q1+1,7} > £+2,by F2,b=mand J = {x;}, i € {a,a+
1,....,m— 1}. If max{q1 + 1,’/‘} = r, then dD(xi+17J) = dD($i+1;37i) =
r—12> {41, a contradiction. If max{q; + 1,7} = ¢1 + 1, then dp(z1,J) =
dp(z1,2;)=1—1>a—1=¢q; > ¢+ 1, a contradiction.

Proof of VI. n=1t; =ty =0and r+ g2 > k. (Then r,¢q2 > 2.)

First, assume max{q; + 1,7,¢2} < ¢+ 1. We consider two cases.

Case A. ¢t = k—1.
Then max{q; + 1,7,¢2} = ¢1 + 1 = k. Let

J = {$Q1+T+qz—2k’ Lgr+r+qz2—ks xq1+r+q2}~
Asn =0, J is k-independent and as k < ¢+ 1, J is f-absorbent.

Case B. ¢; <k —2.

Let J = {xq,zm}. As dp(za,z2m) =m—a=7r+qg —-1>k+1,J
is k-independent. We see that dp(z1,2,) = a — 1 = ¢ < max{q; +
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1,7",(]2} -1 S 67 dD(anrlvxa) =r—1 S maX{Ql + ].,T,QQ} -1 S ¢ and
dp(@ps1,Zm) =m—b—1=¢g — 1 <max{q +1,7,¢2} — 1 < ¢. Thus J
is f-absorbent.

Conversely, assume that D has a (k,¢)-kernel J. Suppose max{q; + 1,
r,qa} >+ 1. Then k > ¢+ 1. By F2, b = m. So g2 = 0, a contradiction.

This completes the proof. O

Theorem 1.2 is a corollary to Theorem 2.1.

Corollary 2.2. Let D = P, +xpxy, wherel < a <b < m. For2 <k <m,
leta—1=t1k+q1, b—a+1=nk+r and m—b = tak+qo, wherety,n,to > 0
and 0 < q1,7,q2 < k. Then, D has a k-kernel if, and only if, none of the
following conditions hold:

en>1,r>1andqg =0;

en>1andr+q > k.

Proof. Assume that there exists a k-kernel in either of the cases. Putting
¢ = k—1inII and IIT of Theorem 2.1, we have r < (n+t2)(k—1+1+k) =0
andr+qg < (n+ta+1)(k—1+14+k)+k—1+4+1=k, a contradiction to
the respective hypothesis.

Converse part directly holds from the proof of Theorem 2.1. O

The above corollary adds an additional family to the existing classes of
digraphs with k-kernels.

2.2 Acyclic P,, +e

Let D = P,, + x,2p, where 1 < a < b < m. Here, D is a digraph with
no directed cycle. A well-known theorem of Richardson on the existence of
kernel is Theorem 2.3.
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Theorem 2.3. Every digraph without directed cycles has a (2,1)-kernel.

In [2], Bréd, Wloch and Wloch have proved the following result on k-kernels
as a generalized form of Theorem 2.3.

Theorem 2.4. ([2]) A digraph without directed cycles has a k-kernel, for
k> 2.

We make use of the above theorem for the “if” part of our result.

Theorem 2.5. Let D = P, + zq4xp, where 1 <a <b<m and a+1#b.
For2 <k <m, D has a (k,£)-kernel if, and only if, k <+ 1.

Proof. By Theorem 2.4, D has a k-kernel. Therefore, for every £ > k — 1,
D has a (k, ¢)-kernel.

Conversely, assume that D has a (k,¢)-kernel J. Then z,, € J. Suppose
k> 0+1.1fJ = {zn}, thendp(z1,2m) = m—1 > k—1 > £, a contradiction.
Thus |J| > 2. Choose two vertices x;,z; € J, ¢ < j, with z. ¢ J fori < ¢ <
j. If dD($i+1, J) = dD(xi+1,xj)7 then dD(l'iJrh J) = dD(LUZ',LUj) -1 Z k—1.
Otherwise, dp (211, J) = dp(zit1, x¢) for some t # j;theni+1 <a<b<t
and the shortest path from x;41 to z; is ;41249 ... Tq@pTpt1 - . - T¢; thus
dp(zit1,J) = dp(x;, ) —1 > k — 1. Hence, in both the possibilities,
dp(zit1,J) >k —1 > £, a contradiction.

This completes the proof. O
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