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Abstract

We find the asymptotic behavior of the Steiner k-diameter of the
n-cube if k is large. Our main contribution is the lower bound, which
utilizes the probabilistic method.

1 Introduction

For a connected graph G of order at least 2 and S ⊆ V (G), the Steiner
distance d(S) among the vertices of S is the minimum size among all con-
nected subgraphs whose vertex sets contain S. Necessarily, such a min-
imum subgraph must be a tree and such a tree is called a Steiner tree.
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The Steiner distance was introduced by G. Chartrand, O.R. Oellermann,
S. Tian and H.B. Zou [2], and it has turned into a well-studied parameter
of graphs. Tao Jiang, Zevi Miller, and Dan Pritikin [6] studied how large
the Steiner distance of k vertices can be in the n-dimensional hypercube Qn
as n → ∞, while Zevi Miller and Dan Pritikin [5] gave near tight bounds
for the Steiner distance of a layer, i.e. vertices with the same number of
1’s, in the n-dimensional hypercube Qn as n→∞. For a given 2 ≤ k ≤ n,
the Steiner k-diameter of the n-cube, sdiamk(Qn), is the maximum Steiner
distance among all k subsets of V (Qn).

In this note we give natural upper bounds for the Steiner distance of a
large vertex set in the hypercube. It turns out that even the second order
term in this estimate is close to tight. With these bounds, we determine
sdiamk(Qn) asymptotically for large k.

2 Upper bound

For the upper bound, we utilize connected dominating sets of Qn. A set
S ⊂ V (Qn) is a dominating set of Qn if every vertex of Qn is either an
element of S or has a neighbor in S. The minimum size of all dominating
sets is called the domination number of Qn and is denoted γ(Qn). The
connected domination number, denoted by γc(Qn), is minimum size of all
connected dominating sets.

In 1988, Kabatyanskii and Panchenko [4] showed

lim
n→∞

γ(Qn)

2n/n
= 1.

In an upcoming paper, Griggs [3] utilizes this result to show that

lim
n→∞

γc(Qn)

2n/n
= 1.

We use this last result to develop an upper bound for the Steiner diameter
of subsets of V (Qn).

Lemma 1. Suppose that S ⊂ V (Qn). Then,

d(S) ≤ |S|+ 2n

n
(1 + o(1)).
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Proof. Begin with a spanning tree of a minimum connected dominating set
of Qn. Add edges as needed to connect each element of S to this tree. The
resulting subgraph spans S and contains at most |S| + γc(Qn) − 1 edges.
Using [3], we then have that d(S) ≤ |S|+ 2n

n (1 + o(1)).

3 Lower bound

To bound the Steiner distance of large vertex subsets of Qn from below,
we partition the vertices of the hypercube into two sets. Identifying each
vertex of Qn into a binary string of length n, we let vertices with an even
number of 1’s make up the set of even vertices and denote this set by En.
Similarly, we let the vertices with an odd number of 1’s make up the set of
odd vertices and denote this set by On. We refer to changing the value of
the ith entry of a binary string v = v0 · · · vi · · · vn as “flipping” the ith entry
of v. Given an entry vi, we let v̄i = 1− vi. That is, v̄i is the flipped value
of vi. For the proof of Theorem 2, we use probabilistic methods similar to
those found in [1].

Theorem 2. If S ⊂ En with |S| ≥ 2, then

d(S) ≥ |S|+ |S|
2

n2n
− (n+ 1)

2
.

Proof. Suppose that S ⊂ En. Let S′ be a subset of the odd vertices which is
the image of S under some automorphism of Qn. That is, S ⊂ En, S′ ⊂ On,
and S′ = γ(S) for some γ ∈ Aut(Qn). To show that such a subset S′ exists,
consider the set of all vertices in S with the first entry flipped. Since S′ is
the image of S under the automorphism γ, we have that d(S) = d(S′).

Now suppose that λ1 and λ2 are automorphisms of Qn which preserve the
parity of their inputs. Then, λ1(S) ⊂ En and λ2(S′) ⊂ On. Since λ1 and
λ2 are automorphisms, we have that d(λ1(S)) = d(λ2(S′)) = d(S).

We now bound d(λ1(S)∪λ2(S′)) above and below in terms of |S| and d(S).
For the lower bound, note that λ1(S) and λ2(S′) are disjoint. Hence, we
have the naive bound

2|S| − 1 ≤ d(λ1(S) ∪ λ2(S′)). (1)

For the upper bound, suppose that λ1(T ) and λ2(T ′) are Steiner trees
of λ1(S) and λ2(S′) in Qn, respectively. Denote the respective edge sets
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of the Steiner trees by E(λ1(T )) and E(λ2(T ′)). Using no more than n
edges (Since diam(Qn) = n), we may connect λ1(T ) and λ2(T ′) to form a
subgraph of Qn which contains λ1(S) ∪ λ2(S′). Hence,

d(λ1(S) ∪ λ2(S′)) ≤ |E(λ1(T )) ∪ E(λ2(T ′))|+ n. (2)

Linking inequalities (1) and (2) together and applying the principle of in-
clusion and exclusion, we have

2|S| − 1 ≤ |E(λ1(T )) ∪ E(λ2(T ′))|+ n

= |E(λ1(T ))|+ |E(λ2(T ′))| − |E(λ1(T )) ∩ E(λ2(T ′))|+ n

= 2d(S)− |E(λ1(T )) ∩ E(λ2(T ′))|+ n,

which implies that

2d(S)− |E(λ1(T )) ∩ E(λ2(T ′))| ≥ 2|S| − (n+ 1). (3)

Let Γ = 〈α, βi,j : 1 ≤ 0 < j ≤ n − 1〉 be the subgroup of the group of
automorphisms of Qn generated by the automorphisms

α :v0v1 · · · vn−1 7→ v1 · · · vn−1v0
βi,j :v0v1 · · · vi · · · vj · · · vn−1 7→ v0v1 · · · v̄i · · · v̄j · · · vn−1.

In words, α shifts each entry of its input to the left by 1 (modulo n), while
βi,j flips only the values of the ith and jth entries of its input. Note that
each element of Γ preserves the parity of its input. We now verify the
following claim:

Claim: For any two edges e1, e2 ∈ E(Qn), there exists a unique element
of λ ∈ Γ such that λ(e1) = e2.

Proof. Suppose that e1 = ab and e2 = uv where a and u are even vertices
while b and v are odd vertices. Without loss of generality, we may assume
that a = 0, the vertex of all zeros. This implies that the string b contains a
single 1. We shall first prove existence of an automorphism λ ∈ Γ mapping
e1 to e2.

Since u ∈ En, using a composition of automorphisms of the form βi,j we
may map uv to 0v̂, where v̂ has a single 1. Then, using some power of the
automorphism α, we may then map the edge 0v̂ to the edge 0b = e1. Let
λ be the composition of these automorphisms in Γ.

To show that this automorphism is unique, we show that |Γ| = n2n−1.
Since α ◦ βij = βi−1,j−1 ◦ α (where the indexes are taken modulo n), any
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λ ∈ Γ can be described as first applying an appropriate power of α and
then flipping an even number of digits. As we have n choices for the power
of α and 2n−1 choices for the subset of digits we flip, we conclude that
|Γ| = n2n−1.

Since Qn has n2n−1 edges, any λ ∈ Γ maps the edge 0b to an edge in such
a way that 0 is mapped the edge’s vertex in En, and all edges of Qn will be
the image of 0b under some λ ∈ Γ, the claim follows.

We now consider the experiment of selecting elements λ1, λ2 ∈ Γ indepen-
dently with uniform probability, and applying them to T and T ′, respec-
tively. Consider the random variable X = |E(λ1(T ))∩E(λ2(T ′))|. For the
expected value of X, E(X), we have that

max
λ1,λ2

{|E(λ1(T ) ∩ λ2(T ′))|} ≥ E(X).

Using our claim, we observe that

E(X) =
∑

f∈E(Qn)

P [(f ∈ E(λ1(T ))) and (f ∈ E(λ2(T ′)))]

=
∑

f∈E(Qn)

|E(λ1(T ))|
n2n−1

· |E(λ2(T ′))|
n2n−1

=
|E(λ1(T ))|2
n2n−1

=
d(S)2

n2n−1
,

which implies

max
λ1,λ2

{|E(λ1(T )) ∩ E(λ2(T ′))|} ≥ d(S)2

n2n−1
.

Using λ1 and λ2 which achieve this maximum and applying inequality (3),
we see that

2d(S)− d(S)2

n2n−1
≥ 2|S| − (n+ 1).

Using the above inequality, we now bound d(S) from below. Since |S| ≥ 2
and S ⊂ En, we have that n ≥ 2. Hence, d(S) = |S| + x for some x ≥ 0.
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So,

2(|S|+ x)− (|S|+ x)2

n2n−1
≥ 2|S| − (n+ 1)

2|S|+ 2x− |S|
2 + 2|S|x+ x2

n2n−1
≥ 2|S| − (n+ 1)

2x− 2|S|x
n2n−1

+ 2|S| − |S|
2 + x2

n2n−1
≥ 2|S| − (n+ 1)

2x

(
1− |S|

n2n−1

)
≥ |S|

2 + x2

n2n−1
− (n+ 1)

x ≥ |S|
2

n2n
− (n+ 1)

2
,

and the result is proven.

Remark: In the above theorem, we assumed |S| ≥ 2. If |S| = 1, we have
that d(S) = 0.

With these results in hand, we can determine the asymptotic growth of
sdiamk(Qn) for large k. In particular, we can determine the first and
second order terms if k = Ω(2n), while we can determine the first order
term if 2n/n = o(k).

Corollary 3. If k = k(n) is regarded as a function n, then

1. if k = Ω(2n), then sdiamk(Qn) = k + Θ(2n/n), and

2. if 2n/n = o(k), then lim
n→∞

sdiamk(Qn)
k = 1.

Proof. If k ≤ 2n−1, let S ⊂ V (Qn) be a subset of the even vertices of size
k. If k > 2n−1, let S contain all even vertices and choose the remaining
odd vertices randomly. Applying the bounds determined in Lemma 1 and
Theorem 2, we see that

k +
k2

n2n
− n+ 1

2
≤ d(S) ≤ sdiamk(Qn) ≤ k +

2n

n
(1 + o(1)).

If k = Ω(2n), then sdiamk(Qn) is bounded above and below by k+Θ(2n/n).
More precisely, we have that k+c1(2n/n) ≤ sdiamk(Qn) ≤ k+c2(2n/n) for
some positive constants c1 and c2. On the other hand, if only 2n/n = o(k),

we have sdiamk(Qn) = k(1 + o(1)), giving limn→∞
sdiamk(Qn)

k = 1.
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