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Abstract

There are ten bipartite cubic graphs of order n ≤ 12. For each such
graph G we give necessary and sufficient conditions for the existence
of decompositions of Kn and of Km,n into copies of G.

1 Introduction

A decomposition of a graph H is a set ∆ = {G1, G2, . . . , Gt} of subgraphs
of H such that each edge of H appears in exactly one Gi. If each Gi in ∆
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Figure 1: The bipartite cubic graphs of order 6 or 8.

is isomorphic to a given graph G, then ∆ is called a G-decomposition of H
and the copies of G in ∆ are called G-blocks. A G-decomposition of H is
also known as an (H,G)-design, and a (Kn, G)-design is often known as a
G-design of order n.

Given a graph G, a classic problem in combinatorics is to find necessary
and sufficient conditions on n for the existence of a (Kn, G)-design. This
is known as the spectrum problem for G. It has been investigated and
settled for numerous classes of simple graphs (see [2] and [7] for summaries
and the website maintained by Bryant and McCourt [9] for more up-to-
date results). If in particular G is bipartite, it is also of interest to find
necessary and sufficient conditions for the existence of (Km,n, G)-designs.
For compactness, let us call this the bispectrum problem for G.

Let Fk be the set of bipartite cubic graphs of order k, for even k ≥ 6. Then
|F6| = 1, |F8| = 1, |F10| = 2 and |F12| = 6 (see Figures 1–3 and [16]).

We consider the bispectrum and spectrum problems for each G ∈ Fk with
k ≤ 12. The bispectrum problem has been settled for each G ∈ Fk with
k ≤ 8; we extend this to each G ∈ F10 ∪F12. Again, the spectrum problem
has been settled for each G ∈ Fk with k ≤ 10; we extend this to each
G ∈ F12.

2 Known results

The original spectrum problem, for K3 = C3, was posed by Woolhouse
[20] and settled by Kirkman in 1847 [13]. The spectra for K4 and K5

were determined by Hanani a little more than a century later [12]. Various
authors investigated the spectrum for cycles Cn, n ≥ 4; this was fully
settled by Alspach and Gavlas [6], and by Šajna [17] in the early 2000s.
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Figure 2: The two bipartite cubic graphs of order 10.

Thus the case of connected 2-regular graphs is settled. The connected
3-regular (that is, cubic) graphs are the next challenge, and our knowledge
in this case remains limited to specific instances.

Let us review known results for cubic graphs. The number of connected
cubic graphs of each order is sequence A002851 in OEIS [18]. The two
cubic graphs of order 6 are K3,3 ∈ F6 and the 3-prism D3 = C3 ×K2. The
spectrum for K3,3 was established by Guy and Beineke [11]; for D3 the
spectrum was determined by Carter [10]. For both cubic graphs of order 6
the spectrum is {

n ≥ 10 : n ≡ 1 (mod 9)
}
.

The spectrum for the 3-cube Q3 = D4 = C4 × K2 ∈ F8 was found by
Maheo [14]; for the other four cubic graphs of order 8 the spectrum was
determined by three of the present authors [5]. For all five cubic graphs of
order 8, the spectrum is

{
n ≥ 17 : n ≡ 1, 16 (mod 24)

}
.

There are 19 connected cubic graphs of order 10. Among these graphs,
spectrum results were found for the Petersen graph by Adams and Bryant
[1], for the 5-prism D5 and the Möbius 5-ladder M5 ∈ F10 by Meszka,
Nedela, Rosa and Skoviera [15], and for three others by Adams et al. [3].
More recently four of the present authors [4] have shown that the spectrum
for each connected cubic graph of order 10 is

{
n ≥ 16 : n ≡ 1, 10 (mod 15)

}
∪X,

where X = ∅ for five specified graphs and X = {10} for the other 14.
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Figure 3: The six bipartite cubic graphs of order 12.
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For the bispectrum problem, clearly K3,3 ∈ F6 has bispectrum

{
(m,n) : m,n ≥ 3; m ≡ n ≡ 0 (mod 3)

}
.

For the 3-cube Q3 ∈ F8 the bispectrum has been shown [8] to be

{
(m,n) : m,n ≥ 6; m ≡ n ≡ 0 (mod 3); mn ≡ 0 (mod 4)

}
.

3 Decompositions of
complete bipartite graphs

We use the standard interval notation [a, b] for the set {n ∈ Z : a ≤ n ≤ b}.
For the graphs Gi ∈ Fk with i ∈ [3, 10] labeled as in Figures 2 and 3, we
shall use the notation Gi = Gi(v1, v2, . . . , vk). For instance, the vertex set
V and edge set E of the graph G3(0, 6, 1, 7, 2, 8, 3, 9, 4, 10) are

V = {0, 6, 1, 7, 2, 8, 3, 9, 4, 10} = [0, 4] ∪ [6, 10],

E =
{
{0, 6}, {6, 1}, {1, 7}, {7, 2}, {2, 8}, {8, 3}, {3, 9}, {9, 4}, {4, 10},

{10, 0}, {0, 8}, {6, 3}, {1, 9}, {7, 4}, {2, 10}
}
.

We now specify decompositions of K6,15 and K9,15 for each G ∈ F10.

Decompositions of K6,15

Let V (K6,15) = [0, 5] ∪ [6, 20] with the implied vertex partition and let

∆3 = {G3(0, 6, 1, 7, 2, 8, 3, 9, 4, 10), G3(0, 7, 3, 11, 1, 12, 5, 13, 2, 14),

G3(0, 9, 2, 12, 3, 15, 5, 6, 4, 16), G3(0, 11, 4, 15, 1, 17, 5, 18, 2, 19),

G3(0, 13, 4, 14, 3, 18, 1, 8, 5, 20), G3(1, 10, 3, 17, 2, 16, 5, 19, 4, 20)},
∆4 = {G4(0, 6, 1, 7, 2, 8, 3, 9, 4, 10), G4(0, 7, 4, 11, 1, 12, 2, 13, 5, 14),

G4(0, 9, 1, 14, 2, 15, 3, 6, 5, 16), G4(0, 11, 3, 16, 2, 17, 4, 18, 5, 19),

G4(1, 8, 4, 13, 0, 18, 3, 20, 5, 15), G4(1, 19, 2, 10, 3, 17, 5, 12, 4, 20)}.

For i ∈ {3, 4}, a Gi-decomposition of K6,15 consists of the Gi-blocks in ∆i.
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Decompositions of K9,15

Let V (K9,15) = [0, 8] ∪ [9, 23] with the implied vertex partition and let

∆3 = {G3(0, 9, 1, 10, 2, 11, 3, 12, 4, 13), G3(0, 10, 3, 13, 1, 14, 5, 15, 6, 16),

G3(0, 12, 2, 9, 4, 15, 7, 14, 6, 17), G3(0, 18, 1, 11, 4, 19, 2, 15, 8, 20),

G3(0, 21, 1, 17, 2, 22, 3, 19, 5, 23), G3(1, 20, 3, 14, 8, 22, 7, 16, 4, 23),

G3(2, 16, 8, 10, 6, 20, 5, 9, 7, 21), G3(3, 17, 8, 12, 6, 23, 7, 13, 5, 18),

G3(4, 18, 7, 11, 5, 21, 8, 19, 6, 22)},
∆4 = {G4(0, 9, 1, 10, 2, 11, 3, 12, 4, 13), G4(0, 10, 4, 11, 1, 12, 5, 14, 6, 15),

G4(0, 14, 2, 9, 3, 16, 5, 13, 7, 17), G4(0, 18, 1, 15, 2, 19, 3, 20, 4, 21),

G4(0, 20, 1, 16, 2, 22, 6, 13, 8, 23), G4(2, 18, 5, 20, 6, 23, 7, 9, 8, 21),

G4(3, 18, 6, 19, 4, 14, 8, 16, 7, 21), G4(5, 10, 7, 22, 3, 23, 4, 17, 8, 15),

G4(6, 11, 7, 19, 1, 17, 5, 22, 8, 12)}.
For i ∈ {3, 4}, a Gi-decomposition of K9,15 consists of the Gi-blocks in ∆i.

Bispectrum for order 10

We now have the starter decompositions needed to establish the bispectrum
for graphs in F10.

Theorem 3.1. The bispectrum of each G ∈ F10 is
{

(m,n) : m,n ≥ 6; m ≡ n ≡ 0 (mod 3); mn ≡ 0 (mod 5)
}
.

Proof. To establish necessity, suppose there is a (Km,n, G)-design for G ∈
F10. The “local condition” is that the vertex degrees of Km,n must be
multiples of the vertex degrees of G, so m ≡ n ≡ 0 (mod 3). The “global
conditions” are that the size of Km,n must be a multiple of the size of G,
and the partite sets of Km,n must be large enough to accommodate the
partite sets of G. This requires 15 | mn and m,n ≥ 5. These conditions
consolidate to restricting (m,n) to the set

{
(m,n) : m,n ≥ 6; m ≡ n ≡ 0

(mod 3); mn ≡ 0 (mod 5)
}

.

Now we prove sufficiency. Without loss of generality, assume n≡ 0 (mod 15).

First suppose m is even, so m ≡ 0 (mod 6). Then m = 6x, n = 15y where
x, y are positive integers, and xy edge-disjoint copies of the (K6,15, G)-
design produce a (K6x,15y, G)-design.
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Now suppose m is odd, so m ≡ 3 (mod 6). Then m = 6x+3, n = 15y where
x, y are positive integers. Then y edge-disjoint copies of the (K9,15, G)-
design and (x− 1)y edge-disjoint copies of the (K6,15, G)-design produce a
(K6x+3,15y, G)-design.

Decompositions of K6,6

Let V (K6,6) = [0, 5] ∪ [6, 11] with the implied vertex partition and let

∆5 = {G5(0, 6, 1, 7, 2, 8, 3, 9, 4, 10, 5, 11), G5(0, 9, 2, 11, 1, 10, 3, 6, 4, 8, 5, 7)},
∆6 = {G6(0, 6, 1, 7, 2, 8, 9, 3, 10, 11, 4, 5), G6(0, 10, 2, 9, 1, 11, 7, 3, 6, 8, 4, 5)},
∆7 = {G7(0, 6, 1, 7, 2, 8, 9, 3, 10, 4, 11, 5), G7(0, 10, 2, 9, 1, 11, 7, 5, 6, 4, 8, 3)},
∆8 = {G8(0, 6, 1, 7, 2, 8, 9, 3, 10, 4, 11, 5), G8(0, 10, 2, 9, 1, 11, 7, 4, 6, 3, 8, 5)},
∆9 = {G9(0, 6, 1, 7, 2, 8, 3, 9, 10, 4, 11, 5), G9(0, 8, 1, 9, 2, 6, 3, 7, 11, 4, 10, 5)},

∆10 = {G10(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11), G10(0, 1, 2, 3, 4, 5, 9, 10, 11, 6, 7, 8)}.

For i ∈ [5, 10], a Gi-decomposition of K6,6 consists of the Gi-blocks in ∆i.

Decompositions of K9,6

Let V (K9,6) = [0, 8] ∪ [9, 14] with the implied vertex partition and let

∆5 = {G5(0, 9, 1, 10, 2, 11, 3, 12, 4, 13, 5, 14), G5(0, 10, 3, 9, 4, 14, 6, 13, 7, 11, 8, 12),

G5(1, 13, 5, 12, 2, 9, 6, 10, 7, 14, 8, 11)},
∆6 = {G6(9, 0, 10, 1, 11, 2, 3, 12, 4, 5, 13, 14), G6(9, 4, 11, 3, 10, 5, 6, 12, 7, 8, 13, 14),

G6(9, 7, 10, 6, 11, 8, 1, 12, 2, 0, 13, 14)},
∆7 = {G7(0, 9, 1, 10, 2, 11, 12, 3, 13, 4, 14, 5), G7(0, 10, 6, 9, 2, 13, 14, 3, 11, 7, 12, 8),

G7(1, 11, 8, 10, 7, 14, 12, 4, 9, 5, 13, 6)},
∆8 = {G8(0, 9, 1, 10, 2, 11, 12, 3, 13, 4, 14, 5), G8(0, 10, 3, 11, 4, 13, 14, 6, 12, 7, 9, 8),

G8(1, 12, 2, 9, 5, 14, 11, 7, 13, 8, 10, 6)},
∆9 = {G9(0, 9, 1, 10, 2, 11, 3, 12, 13, 4, 14, 5), G9(0, 11, 1, 12, 6, 9, 3, 10, 14, 7, 13, 8),

G9(2, 9, 5, 10, 6, 11, 4, 12, 13, 7, 14, 8)},
∆10 = {G10(0, 1, 2, 3, 4, 5, 9, 10, 11, 12, 13, 14),

G10(6, 7, 8, 0, 1, 2, 9, 10, 11, 12, 13, 14),

G10(3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14)}.

For i ∈ [5, 10], a Gi-decomposition of K9,6 consists of the Gi-blocks in ∆i.
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Bispectrum for order 12

We now have the starter decompositions needed to establish the bispectrum
for graphs in F12.

Theorem 3.2. The bispectrum of each G ∈ F12 is

{
(m,n) : m,n ≥ 6; m ≡ n ≡ 0 (mod 3); mn ≡ 0 (mod 2)

}
.

Proof. To establish necessity, suppose there is a (Km,n, G)-design for G ∈
F12. The “local condition” is that the vertex degrees of Km,n must be
multiples of the vertex degrees of G, so m ≡ n ≡ 0 (mod 3). The “global
conditions” are that the size of Km,n must be a multiple of the size of G
and that the partite sets of Km,n must be large enough to accommodate
the partite sets of G. This requires 18 | mn and m,n ≥ 6. These conditions
consolidate to restricting (m,n) to the set

{
(m,n) : m,n ≥ 6; m ≡ n ≡ 0

(mod 3); mn ≡ 0 (mod 2)
}

.

Now we prove sufficiency. Without loss of generality, assume n is even, so
n ≡ 0 (mod 6).

First suppose m is even, so m ≡ 0 (mod 6), too. Then m = 6x, n = 6y
where x, y are positive integers, and xy edge-disjoint copies of the (K6,6, G)-
design produce a (K6x,6y, G)-design.

Now suppose m is odd, so m ≡ 3 (mod 6). Then m = 6x+3, n = 6y where
x, y are positive integers. Then y edge-disjoint copies of the (K9,6, G)-
design and (x − 1)y edge-disjoint copies of the (K6,6, G)-design produce a
(K6x+3,6y, G)-design.

For t ≥ 2, a complete t-partite graph K decomposes into
(
t
2

)
edge-disjoint

complete bipartite graphs with partite sets that coincide with pairs of par-
tite sets of K. Hence Theorem 3.2 implies the following corollary.

Corollary 3.3. Let G ∈ F12 and let K be a complete multipartite graph.
If the order of each partite set of K is a multiple of 3 that is at least 6
and if at most one of the partite sets has odd order, then K admits a G-
decomposition.
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4 Decompositions of complete graphs

For any G ∈ F12 the existence of a (Kn, G)-design requires the “local
condition” (i) that the vertex degrees of Kn must be a multiple of the
vertex degrees of G, along with the “global conditions” (ii) that the size
of Kn must be a multiple of the size of G and (iii) that the order of Kn

must be at least the order of G. These conditions respectively require that
3 | n− 1, 18 |

(
n
2

)
and n ≥ 12. Then 9 | n− 1 and either 4 | n or 4 | n− 1,

which consolidate to

{
n ≥ 28 : n ≡ 1, 28 (mod 36)

}
.

In 2012 two of the present authors [19] proved the following.

Theorem 4.1. For each G ∈ F12 there is a (Kn, G)-design whenever n ≡ 1
(mod 36), n ≥ 37.

It remains to settle the case for n ≡ 28 (mod 36), n ≥ 28. As in the
previous section, we first determine starter decompositions.

Decompositions of K28

Let K28 be the complete graph on the vertex set V = Z7×Z4. For brevity
we shall write rs for (r, s) ∈ Z7 × Z4.

∆5 = {G5(00, 10, 30, 60, 01, 20, 11, 31, 21, 02, 32, 41),

G5(00, 21, 32, 40, 02, 20, 62, 22, 03, 13, 23, 53),

G5(00, 43, 42, 01, 32, 03, 41, 62, 13, 63, 51, 23)},
∆6 = {G6(00, 10, 30, 60, 01, 21, 31, 40, 11, 41, 02, 22),

G6(00, 02, 10, 32, 50, 03, 42, 21, 23, 13, 61, 12),

G6(00, 43, 61, 33, 23, 53, 63, 12, 01, 52, 13, 32)},
∆7 = {G7(00, 10, 30, 60, 01, 21, 31, 61, 02, 51, 32, 22),

G7(00, 01, 30, 12, 10, 22, 32, 61, 03, 20, 13, 02),

G7(00, 13, 11, 03, 02, 23, 33, 43, 63, 31, 53, 62)},
∆8 = {G8(00, 10, 30, 60, 01, 21, 31, 11, 02, 41, 12, 52),

G8(00, 41, 50, 02, 10, 12, 32, 01, 03, 42, 13, 23),

G8(00, 52, 01, 23, 30, 43, 33, 53, 63, 51, 13, 12)},
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∆9 = {G9(00, 10, 30, 60, 01, 20, 11, 21, 31, 02, 12, 22),

G9(00, 01, 30, 02, 40, 62, 11, 03, 13, 31, 63, 12),

G9(00, 43, 01, 22, 52, 23, 42, 53, 63, 61, 13, 33)},
∆10 = {G10(00, 10, 20, 40, 50, 60, 30, 01, 31, 02, 32, 03),

G10(00, 01, 21, 11, 31, 12, 41, 02, 03, 22, 43, 53),

G10(00, 62, 03, 31, 02, 12, 43, 53, 63, 41, 52, 23)}.
The bijection θ : V → V such that θ(r, s) = (r + 1, s) is a period-7 au-
tomorphism on K28. Each of the starter sets ∆i, i ∈ [5, 10], has three
edge-disjoint copies of Gi ∈ F12 with the property that the set

∆∗i =
⋃

t∈Z7

θt(∆i)

comprises 21 edge-disjoint copies of Gi and is a (K28, Gi)-design.

Spectrum for order 12

The starter decompositions let us now settle the spectrum for graphs in F12.

Theorem 4.2. For each G ∈ F12 there is a (Kn, G)-design whenever n ≡
28 (mod 36), n ≥ 28.

Proof. When G = Gi and n = 28, a suitable decomposition is provided
by ∆∗i . Now suppose n = 36x + 28 for some integer x ≥ 1. Partition
the vertex set of K36x+28 into a singleton V∞, a subset V0 of cardinality
27, and x subsets Vj , j ∈ [1, x] each of cardinality 36. Evidently K36x+28

has a decomposition into a complete subgraph H0
∼= K28 on the vertex set

V0 ∪ V∞, a complete subgraph Hj
∼= K37 on the vertex set Vj ∪ V∞, for

each j ∈ [1, x], and a complete multipartite graph H∞ ∼= K27,36,...,36 with
partite sets Vj , j ∈ [0, x].

Now ∆∗i is a (H0, Gi)-design. By Theorem 4.1, there are (Hj , Gi)-designs for
each j ∈ [1, x]. Finally, Corollary 3.3 ensures the existence of an (H∞, Gi)-
design. Together these constitute a (K36x+28, G)-design.

Combining Theorems 4.1 and 4.2 with the necessary conditions established
at the beginning of this section, we have the following spectrum.

Theorem 4.3. The spectrum of each G ∈ F12 is
{
n ≥ 28 : n ≡ 1, 28 (mod 36)

}
.
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