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Abstract

The article shows a dichotomy between even rhythms and chaotic
rhythms from a mathematical point of view. The main purpose of
this article is to acquaint the reader with some mathematical struc-
tures inside rhythm; it should help music composers and performers
to make them aware of the idea that mathematics can simplify com-
plex visions.

1 Introduction

It is known that rhythms, built in such a way that their accents are dis-
tributed over pulses in the most possible uniform way, cover the greatest
part of rhythms in Western music and they are related to the concepts of
order and periodicity [6]; now the next developing point would be that of
creating a geometric structure modelling chaos. To reach that purpose, we
propose the identification of the perfect mathematical structure - which is
a difference set - with a chaotic rhythm. We provide some examples from
music literature in which we are sure that music composers were actually
looking for patterns that give the idea of chaos and disorder.

A composer could be more conscious about choosing an appropriate rhyth-
mical pattern - or a specific subset of notes - according to his musical ideas if
he knows which mathematical structure can be used. On the other hand, a
performer could recognize mathematical aspects mainly in rhythms, chang-
ing his interpretation’s view according to the rhythm’s features.
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Figure 1: The rhythm R = {0, 2, 3, 5}7 where pulses are regularly set on
the circumference of a circle clockwise, and beats are red colored.

2 Euclidean rhythms

A rhythm is a set of accents or beats, selected from a set of pulses. The
pulses are evenly distributed over time in the greatest part of cases. To this
end, addictive groups Zn can describe this set of rhythmic pulses. Let us
consider for instance Z7 = {0, 1, 2, 3, 4, 5, 6}, then we can make a selection
of some of the elements of this group and get a rhythm, called R; a concrete
example is the following (Figure 1):

R = {0, 2, 3, 5}7.

We use R(n, k) to denote a rhythm of k beats selected from n regularly
spaced pulses. We write R = {a1, a2, ..., ak}n to denote the rhythm for
which the beats occur at the time pulses a1, a2, ..., ak. It is known that the
greatest part of rhythms inside the World music are the ones built such
that they are distributed in the most possible uniform way as shown in [5]
[6]. Obviously uniform distributions are easy to perform if the number n is
a multiple of k. We get a more complex situation when we try to distribute
k accents on n pulses when n and k are relative prime numbers. The
problem can be seen also from a pure geometric point of view: we would
like to maximize the area of a polygon inscribed on the circumference of
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a circle where its vertices are the beats of the rhythm selected from the
n distributed uniformly on the circumference of a circle. To this end, it
is possible to get such a rhythm using some interesting algorithms. Let
us start by considering the euclidean algorithm. This algorithm, purely
recursive, is simplified as follows. The reader may think of k elements as
ones and the remaining n−k ones as zeroes. As an example, we set n = 13
and k = 5, and begin with the string [1111100000000]. We distribute
the eight zeroes on the right of the five ones so that the lengths of the
substrings of zeros differ at most 1. Thus, the substrings have lenghts
2,2,2,1,1 and we insert them in decreasing size. The resulting string is
[100] [100] [100] [10] [10] and the two new elements are [100] and [10].

We insert the two [10] elements as equally as possible to the right of the
three [100] elements yielding the string [[100][10]] [[100][10]] [100]. We
now have the two elements [[100][10]] and [100]. The algorithm concludes
by inserting the single element [100] to the right of the first [100][10] yielding
the string [1001010010010].

Figure 2: The euclidean algorithm for n = 13 and k = 5.
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A euclidean rhythm is a rhythm obtained with the euclidean algorithm de-
scribed above, or a rotation of it. A rotation of a rhythm R={a1, a2, ..., ak}n
is

R1 = {a1 + r, a2 + r, ..., ak + r}n
where r ∈ Zn. In a euclidean rhythm, it can be proved that the polygon
obtained considering its beats as the vertices on the circumference of a circle
is one of the polygons with maximal area possible, where n and k are fixed.

Figure 3: The euclidean rhythm R = {0, 3, 5, 8, 11}13 described as the string
[1001010010010]. The area of the polygon is the greatest area possible for
a polygon with 5 vertices, distributed in 13 possible places on the circum-
ference of a circle. Equivalently the sum of all

(
k
2

)
=
(
5
2

)
possible chordal

distances between vertices is maximal, up to rotation.

Godfried Toussaint’s work (see [6]) states clearly that euclidean rhythms
are the most common rhythmic pattern of the World music, providing an
exhaustive number of examples.
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3 Erdös-deep rhythms

If we place n points uniformly around the circumference of a circle and
cyclically label them clockwise with the elements of Zn, then for two points
ai, aj ∈ Zn, we define the chordal distance between them to be the value
of {ai − aj , aj − ai} belonging to {0, 1, 2, ..., n2 }. We use δ(ai, aj) to denote
the chordal distance between ai and aj .

Let R be a rhythm with n pulses and k beats. We represent the n pulses by
uniformly distributing the elements of Zn on the circumference of a circle
in clockwise order 0, 1, ..., n−1. The k beats are represented as a k-element
subset {a1, a2, ..., ak} of Zn. For each pair of elements ai, aj in R, we know
that δ(ai, aj) ∈ Zn. The multiplicity of a chordal distance δ in R is the
number of distinct pairs in R whose chordal distance is δ.

A rhythm R(n, k) is called an Erdös deep rhythm if for every multiplicity
1, 2, ..., k − 1 there exists a chordal distance with that multiplicity. For
instance, the reader may check the rhythm E = {0, 2, 3, 4}6: there is a
couple of points at chordal distance 3, two couples at chordal distance 1
and three couples at chordal distance 2. More details are present in [5].

Figure 4: The rhythm E = {0, 2, 3, 4}6 represented on the circumference of
a circle. One may check that for all numbers from 1, 2, 3 = 4 − 1 = k − 1
there exists a chordal distance with that exact multiplicity.
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It is possible to characterize Erdös-deep rhythms. A theorem states that a
rhythm R(n, k) is Erdös-deep if and only if E = {0, 2, 3, 4}6 or a rotation
of

Dn,k,m = {im mod n | i = 0, ..., k − 1}n,
where k ≤ bn2 c, 1 ≤ m ≤ bn2 c, and m and n are relatively prime, [1]. For
instance, let us take the rhythm R = D12,5,5 which means that we have
n = 12 pulses, k = 5 beats, and parameter m = 5 is relatively prime with
12. The rhythm D becomes: D12,5,5 = {5 · i mod 12 | i = 0, 1, 2, 3, 4} =
{0, 5, 10, 3, 8}12.

Figure 5: A rotation of the rhythm D12,5,5: for all multiplicities 1,2,3,4,
there exists a chordal distance 2,3,4,5 with a specific multiplicity. This is
euclidean too: the reader may check it, exploiting the euclidean algorithm
and starting from the string [111110000000].

The example of Figure 5 opens a new perspective in music because it defines
not only a rhythm, but it could represent a major scale in a tempered system
with 12 semitones. The reader could just consider white and black keys of
the piano in order to recognize the pattern of Figure 5. Therefore we can
say that a major scale is identified with a specific Erdös-deep rhythm.

There is a connection between Erdös-deep rhythms and euclidean ones: a
rhythm Rn,k with its beats distributed over the pulses in the most possible
uniform way is Erdös-deep if and only if n and k are relatively prime.
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4 Chaotic rhythms

We ask ourselves what happens if we change the condition on the mul-
tiplicity of chordal distances of a rhythm, changing it in a sort of dual
perspective. While an Erdös-deep rhythm has a specific chordal distance
for all multiplicities, now we will study a family of rhythms in which every
distinct chordal distance has a same multiplicity λ. To this purpose, let us
give two useful definitions.

1) Let G be a group. A subset S of G is called a difference set if the
multiset

{gh−1 : g, h ∈ S}
contains every non-identity element of G precisely λ times.

2) An almost difference set has the same definition as a difference set,
with a difference that some differences have multiplicity λ and some
others have multiplicity λ + 1; more details on this definition in [3].
A rhythm generated by a difference set up to rotation, or its comple-
ment, is said to be chaotic rhythm.

Some famous difference sets are the so-called Paley difference sets [2]. A
Paley difference set is a set on a Galois field Fq:

P = {x2|x ∈ Fq \ {0}} q ≡ 3 (mod 4)

A method to generate a Paley difference set is the following: consider tri-
angular numbers modulo a prime number q such that q ≡ 3 (mod 4); the
set of elements calculated is the complement of the Paley difference set
with the same parameters. On the contrary, if q ≡ 1 (mod 4), we get
the complement of an almost difference set. Summarizing let us consider
Rn = {Sj | j = 0, ..., n}, where

Sj =

{ ∑j
i=1 i (mod n), if j ∈ [1, n]

0, if j = 0
.

Then n is an odd prime number if and only if |Rn| = dn2 e. The reader
should know that counting triangular numbers is related to counting squares
modulo n. To count squares modulo n, one may read [4]. The rhythm is a
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(n, n+1
2 , λ) Paley difference set or a (n, n+1

2 , λ, n−1
4 ) almost Paley difference

set - the last parameter indicates how many differences have multiplicity
λ. Consider F = F (7, 3, 2): triangular numbers modulo 7 are 0,1,3,6. The
reader can check that the complement - the set with elements 2,4,5 - is a
Paley difference set.

Figure 6: The chaotic rhythm with n = 7, k = 4, λ = 2. The multiplicity
is λ = 2 for all chordal distances: a sort of "dual definition" compared with
Erdös-deep rhythms.

We provide here concrete examples from music literature: in the first bar
of the third movement - Precipitato - of the Sonata n.7 opus 83 by Sergey
Prokofiev there are two complementary chaotic rhythms. Indeed, the two
hands of the pianist have to perform two Paley difference sets: we can
highlight a correspondence between the eight notes of the score of Figure
7 and the points on the circumference - the ones of Figure 6 - moving
counterclockwise. What the audience perceives is a rhythmic pattern where
beats are difficult to be foreseen: this perfectly combines with the purpose
of Prokofiev’s music who wanted to recreate the violent bombing on the
city of St. Petersburg during the battle of Stalingrad (1942-1943). Almost
difference sets are also used by György Ligeti in his famous Etudes for
piano. On the contrary euclidean rhythms are the most common rhythms
of music, from classical music to World music - the reader can just check
the table of Greek ancient rhythms discovering that the greatest part of
them are euclidean up to rotation. In Toussaint’s article, there is a huge
list of euclidean rhythms from World music.
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Figure 7: S. Prokofiev, Piano Sonata n. 7 op.83, Precipitato - first bar.

To conclude, we have studied two opposite classes of rhythms: the Erdös-
deep rhythms which are connected to a concept of order, of recursion; and
the Difference set rhythms which are connected to the concept of chaos and
disorder, having opposite geometric properties from the other class. These
concepts of order and disorder are defined from a human perception point
of view. Nowadays we still do not know why human perception tends to
connect Erdös deep rhythms with the concept of order, and difference set
rhythms with the concept of chaos.
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