
BULLETIN of The Volume 90
October 2020

INSTITUTE of
COMBINATORICS and its
APPLICATIONS
Editors-in-Chief:

Marco Buratti, Donald Kreher, Ortrud Oellermann, Tran van Trung

Boca Raton, FL, U.S.A. ISSN: 2689-0674 (Online)
ISSN: 1183-1278 (Print)

Peg solitaire on banana trees

Jan-Hendrik de Wiljes∗1 and Martin Kreh2

1Freie Universität Berlin, Berlin, Germany
jandewiljes@mi.fu-berlin.de
2University of Hildesheim, Hildesheim, Germany
kreh@imai.uni-hildesheim.de

Abstract

In 2011, Beeler and Hoilman generalized the game of peg solitaire
to arbitrary connected graphs. Since then peg solitaire has been con-
sidered on quite a few classes of graphs, but an important problem,
the classification of solvable trees, remains open. In this article we
consider peg solitaire on a class of trees with diameter 6, the ba-
nana trees. We will determine their solitaire number and their fool’s
solitaire number. Further, we introduce the graph invariant ms(G),
which is the minimal number of edges one needs to add to G to make
it solvable.

1 Introduction

In [3], Beeler and Hoilman introduced the game of peg solitaire on graphs
as a generalization of the classical peg solitaire game:

Given a connected, undirected graph G = (V,E), we can put pegs in the
vertices of G. Given three vertices u, v, w with pegs in u and v and a hole
in w (i.e., the vertex w does not contain a peg) such that uv, vw ∈ E, we
can jump with the peg from u over v into w, removing the peg in v (see
Figure 1). This jump will be denoted as u · ~v · w.

∗Corresponding author.
Key words and phrases: peg solitaire, fool’s solitaire, banana tree graph
AMS (MOS) Subject Classifications: 05C57, 05C05, 91A43

BULLETIN OF THE ICA
Volume 90 (2020), 63–86

Received: 10 September 2019
Accepted: 20 August 2020

63

u v w u v w u v w

Figure 1: A jump in peg solitaire.

In general, we begin with a starting state S ⊂ V of vertices that are empty
(i.e., without pegs). A terminal state T ⊂ V is a set of vertices that have
pegs at the end of the game such that no more jumps are possible. A
terminal state T is associated to a starting state S, if T can be obtained
from S by a series of jumps. We will always assume that the starting state
S consists of a single vertex.

The goal of the original game is to remove all pegs but one. This is not
possible for all graphs. Therefore, we use the following notions. A graph G
is called

• solvable, if there is some v ∈ V such that the starting state S = {v}
has an associated terminal state consisting of a single vertex.

• k-solvable, if there is some v ∈ V such that the starting state S = {v}
has an associated terminal state consisting of k vertices.

• strictly k-solvable, if G is k-solvable but not l-solvable for any l < k.
In that case G has solitaire number Ps(G) = k.

Peg solitaire has been considered for quite a few classes of graphs, including
paths, complete graphs, stars, double stars and caterpillars (for more results
and variants see [1–5,7, 8, 10,11]).

It remains an open problem to characterize all solvable trees. To this end,
we will consider peg solitaire on a class of trees with diameter 6.

In [9], Chen, Lu and Yeh defined the following special class of trees: Given
n stars K1,k+1, we construct a graph, denoted by Bn,k and called banana
tree1, by introducing a new vertex r which is connected by an edge to
exactly one leaf of each star (see Figure 2 for B4,7).

It is convenient to give the different types of vertices names. Therefore,
we call any vertex of degree 1 a leaf, each original star centre a plant,
the new vertex r root and each (original) leaf, that has been connected

1Note that our notation slightly differs from the one used by Chen, Lu and Yeh.

de Wiljes and Kreh

64

Figure 2: The banana tree B4,7.

with r a trunk. We will also call a connected collection of a trunk, a
plant, and k leafs shrub (i.e., a shrub is a set of vertices), see Figure 3.
After ordering the shrubs in a certain order, denote the i-th shrub as Si,
the trunk of Si as ti, the plant of Si as pi and the leafs of Si as `i,j for
i = 1, 2, . . . , n, j = 1, 2, . . . , k.

trunk

root

plant

leafs shrub

Figure 3: The banana tree B3,4 with root, trunks, plants, leafs, and shrubs.

In this article we investigate peg solitaire on banana trees. We begin with
solvability and the peg solitaire number in Section 2. In Section 3 we
introduce a new graph invariant, namely the minimal number of edges that
have to be added to a graph to make it solvable. We consider fool’s solitaire
on banana trees in Section 4 and give some related open questions in Section
5.

2 Solvability and the solitaire number of ba-
nana trees

For most parameter combinations banana trees are not solvable. Therefore,
we will determine Ps(Bn,k), starting with some special (partially known)

Peg solitaire

65

cases before investigating the general case (n ≥ 3 and k ≥ 2).

Proposition 2.1. We have

(i) Ps(B1,0) = Ps(B1,1) = 1.

(ii) Ps(B1,k) = k − 1 for k ≥ 2.

(iii) Ps(B2,0) = Ps(B2,1) = 2.

(iv) Ps(Bn,0) = 1 for n > 2.

Proof. (i) Let Pi denote the path graph on i vertices. Then we have
B1,0 = P3, B1,1 = P4 and the statement follows from [3, Theorem
2.3].

(ii) Let DS(L,R) denote the double star with L resp. R pendant vertices.
Then we have B1,k = DS(1, k) and the result follows from [4, Theorem
3.1].

(iii) This follows from B2,0 = P5, B2,1 = P7 and [3, Theorem 2.3].

(iv) Let K1,n(c; a1, . . . , an) denote the star graph K1,n with c pendant
vertices adjacent to the star centre and ai pendant vertices adjacent
to the arms. Then Bn,0 = K1,n(0; 1, . . . , 1) and [7, Theorem 3.2] yield
Ps(Bn,0) = 1.

For most of the results in this and the next section we will apply the concept
of packages and purges, first applied to the generalisation of peg solitaire
to graphs in [6]. These objects are useful for inductive arguments and to
reduce notation in proofs. A package P is a set of vertices together with a
particular configuration of pegs and holes and a subset C(P) of P , called
the catalyst, such that a sequence of jumps exists that removes all pegs
outside of C(P) and returns C(P) to its original configuration (if it was
changed at all by the jump process). This elimination process is called a
P -purge. Displaying a package P is usually done by giving the subgraph
induced by P , while the catalyst is highlighted using a box (see for example
Figure 4). Below each such drawing, we specify the necessary jumps.

Proposition 2.2. We have

(i) Ps(B2,2) = 3.

de Wiljes and Kreh

66

(ii) Ps(B2,k) = 2k − 2 for k ≥ 3.

(iii) Ps(Bn,1) = dn2 e for n ≥ 3.

Proof. For proving (i) and (ii), we distinguish four starting states and give
the jump sequences (which are mostly unique up to symmetry).

• Hole in r. After p1 · ~t1 · r, t2 · ~r · t1, `2,1 · ~p2 · t2 no more jumps are
possible.

• Hole in p1. The sequence r ·~t1 ·p1, `1,1 ·~p1 ·t1, p2 ·~t2 ·r, r ·~t1 ·p1, `1,2 ·~p1 ·t1
shows the 3-solvability for k = 2, since no more jumps are possible.

• Hole in `1,1. There exist two possibilities, `1,2 · ~p1 · `1,1, after which
we basically have the same situation as if we started with a hole in
p1 (with the last jump possible if and only if k ≥ 3, which will be
`1,3 ·~p1 ·t1), and t1 ·~p1 ·`1,1. The second option will not yield a solution
since after t2 · ~r · t1, `2,1 · ~p2 · t2 we cannot jump any more.

• Hole in t1. We start with `1,1 ·~p1 ·t1, r·~t1 ·p1, `1,2 ·~p1 ·t1, p2 ·~t2 ·r, r·~t1 ·p1.
If k = 2, no more jumps are possible. For k ≥ 3 we have one more
jump, namely `1,3 · ~p1 · t1, showing (2k − 2)-solvability for k ≥ 3.

The alternative first jump t2 · ~r · t1 is not better since after p1 · ~t1 ·
r, `2,1 · ~p2 · t2, r · ~t2 · p2, `2,2 · ~p2 · t2 no more jumps are possible.

Since all cases have been considered, the statements follow.

Case (iii) considers generalised stars (diameter 6), hence Proposition 2.1
(iv) immediately gives us Ps(Bn,k) ≤ n + 1. To obtain a better bound,
we use the crutch purge (see Figures 4 and 5, where the crutch package is
highlighted and only pegs in the crutch package are shown).

x3

x7

x1 x2 x4 x5 x6

Figure 4: Crutch package. The corresponding purge is given by x1 · ~x2 ·
x3, x4 · ~x3 · x2, x6 · ~x5 · x4, x7 · ~x4 · x3, x2 · ~x3 · x4.

We start with a hole in t1. For i = 1, 2, . . . , bn−12 c, we carry out the crutch
purge to eliminate S2i−1 completely and S2i as well as S2i+1 partially,

Peg solitaire

67

Figure 5: The banana tree B5,1 with the crutch package highlighted.

leaving pegs in `2i,1, p2i+1 and `2i+1,1 (and certainly in r). We will arrive
at one of the following two situations:

• If n is even, we have pegs in `i,1 for i ∈ {2, 4, . . . , n − 2}, in r, pn−1,
`n−1,1, tn, pn, and in `n,1, and holes elsewhere. Now the jump se-
quence `n−1,1 ·~pn−1 · tn−1, tn−1 ·~r · tn−2, pn ·~tn ·r, r ·~tn−2 ·pn−2, `n−2,1 ·
~pn−2 · tn−2 eliminates 5 pegs resulting in a terminal state containing
n
2 pegs.

• If n is odd, we have pegs in `i,1 for i ∈ {2, 4, . . . , n−1}, in r, pn, and in
`n,1, and holes elsewhere. Now the jump sequence `n,1 ·~pn ·tn, r ·~tn ·pn
eliminates 2 pegs resulting in a terminal state containing n+1

2 pegs.

To show that equality holds, we take a closer look at the jumps necessary
to remove a peg from a leaf. The only possible jump is `i,1 · ~pi · ti. This
is only possible if ti is empty and pi contains a peg. For the first shrub
this may hold from the beginning, for any other shrub, to achieve this, we
need to empty the trunk. Since in the i-th shrub there is a peg in the leaf,
the only possibility to do this is via ti · ~r · tj . So if we do these two jumps,
the i-th leaf and the root are emptied. To empty the next leaf, we have to
do the analogous jumps in another shrub, which requires us to jump with
a peg into the root first. This is only possible with the jump pm · ~tm · r
for some m. Hence, from now on, to empty a leaf, we have to empty two
trunks first. Inductively we see, that we can remove at most 1 + n−1

2 pegs
from leafs if n is odd and 1 + n

2 pegs from leafs if n is even. Moreover,
the last jump will not end in a leaf, hence there is at least one peg left in
a vertex that is not a leaf. Thus the process of eliminating pegs with the
crutch purge is best possible and indeed we have Ps(Bn,1) = dn2 e.

For k ≥ 2 we can use the idea of Proposition 2.2 (iii) to obtain the following
upper bound on Ps(Bn,k) (observe that we can eliminate one more peg from
a leaf because we have a peg in pn in the terminal state).

de Wiljes and Kreh

68

Corollary 2.3. For positive integers n, k with k ≥ 2 we have

Ps(Bn,k) ≤ n(k − 1) +
⌊n

2

⌋
.

For n ≥ 2 and (n, k) /∈ {(2, 2), (3, 2), (5, 2), (3, 3)}, we can do better (which
can be shown with the following two results).

Proposition 2.4. For integers n, k with k > n ≥ 3 we have Ps(Bn,k) ≤
n(k − 1).

Proof. Starting with a hole in `1,1, the jump sequence `1,2 · ~p1 · `1,1, r · ~t1 ·
p1, `1,1 · ~p1 · t1 eliminates 3 pegs from S1 ∪ {r}.

x2 x4x1 x3 x5 x6

Figure 6: Wand package. The corresponding purge is x6 · ~x5 · x4, x4 · ~x3 ·
x2, x1 · ~x2 · x3.

Figure 7: The banana tree B3,4 with the wand package highlighted.

Repeatedly using the wand purge, where the two holes are in p1 and r and
the two adjacent vertices with pegs correspond to ti and pi for some i ≥ 2,
we can eliminate a peg from a leaf of S1 per shrub Si for i = 2, 3, . . . , n.
After that no more jumps are possible and we are left with pegs in `1,j
for j = n + 2, n + 3, . . . , k, in t1, and in `i,j for i = 2, 3, . . . , n and j =
1, 2, . . . , k.

Using the idea from Proposition 2.4 repeatedly, we obtain the following
upper bound for the general case.

Theorem 2.5. For integers n, k with n ≥ 3 and k ≥ 2 we have

Ps(Bn,k) ≤ n(k − 1) +

⌈
n+ 2

k + 1

⌉
− 1.

Peg solitaire

69

Proof. The case k > n is dealt with in Proposition 2.4, hence we assume

k ≤ n from now on. Define q =
⌊
n+2
k+1

⌋
,S0 = {Sj : 1 ≤ j ≤ k − 1} and

Si := {Sj : i(k+ 1)− 1 ≤ j ≤ (i+ 1)(k+ 1)− 2)} for i = 1, 2, . . . , q− 1 (see
Figure 8).

S0 S1

Figure 8: The banana tree B7,3 with the sets S0 and S1 and the terminal
state.

We use Proposition 2.4 on S0∪{r} with a starting hole in `1,1 which yields,
after the first jumps `1,2 · ~p1 · `1,1, r · ~t1 · p1, `1,1 · ~p1 · t1 and repeated wand
purges, the intermediate state having pegs in all Sj for j ≥ k and in t1 as
well as in `i,j for i = 2, 3, . . . , k − 1 and j = 1, 2, . . . , k.

Executing the jumps pk ·~tk ·r and t1 ·~r · tk we have a similar peg position as
before, but this time in S1 ∪ {r}, where holes are exactly in r and pk (but
not in any leafs as before). We can now use k wand purges to eliminate all
pegs in leafs from Sk.

Iterating this process for i = 2, 3, . . . , q − 1 results in a state with pegs in
all leafs of Sj for j ≤ q(k + 1) − 2 with j /∈ {1, k, 2k + 1, 3k + 2, . . . , (q −
1)(k + 1) − 1}. Further, there are pegs in t(q−1)(k+1)−1 and in all vertices
of Sj for j ≥ q(k + 1)− 1.

If q(k + 1)− 2 = n (this being the case if and only if n+ 2 is a multiple of
k + 1), no more jumps are possible.

Otherwise we execute the jumps pq(k+1)−1 ·~tq(k+1)−1 · r and t(q−1)(k+1)−1 ·
~r · tq(k+1)−1. From Sq(k+1)−1 we can now remove n− q(k+ 1) + 1 pegs from
leafs using the wand purge together with the remaining full shrubs. This
yields a total number of

k(k − 2)︸ ︷︷ ︸
leafs in S0

+ (q − 1)k2︸ ︷︷ ︸
leafs in
S1,...,Sq−1

+ 1︸︷︷︸
tq(k+1)−1

+ k − (n− q(k + 1) + 1)︸ ︷︷ ︸
leafs in Sq(k+1)−1

+ k(n− q(k + 1) + 1)︸ ︷︷ ︸
leafs in Sq(k+1),...,Sn

pegs in our terminal state, which simplifies to the quantity in the statement.

de Wiljes and Kreh

70

We will show equality shortly, but first we give a lower bound which already
demonstrates one of the major ingredients of the proof and, further, settles
the case n < k.

Proposition 2.6. For k ≥ 2 we have Ps(Bn,k) ≥ n(k − 1).

Proof. We show that we can remove at most n + 1 pegs from leafs. To
remove a peg from a leaf, we need to perform the jump `i,j · ~pi · ti. If this
has been done once for the i-th shrub (if it is possible, i.e., if ti is emptied
first), the plant pi is empty. To fill pi we have to jump r ·~ti · pi. After this
has been done once, we need to jump with a peg in the root first before we
can jump again in a plant. This is only possible with the jump pj · ~tj · r.
But this would remove a peg from the plant of another shrub. Hence each
time after the first time that we try to jump with a peg in r, one more plant
is emptied and cannot be used to empty an adjacent leaf. Hence at most
n+ 1 leafs can be emptied. Thus the number of remaining pegs in leafs is
at least nk − (n+ 1) = n(k − 1)− 1. Since there also has to be a peg (the
one from the leaf last emptied) in a non leaf, the statement follows.

This means, that the bound in Proposition 2.4 is in fact an equality, i.e.,
we have the following corollary.

Corollary 2.7. For integers n, k with k > n ≥ 3 we have Ps(Bn,k) =
n(k − 1).

To settle the case n ≥ k, we need additional ideas and auxiliary results,
starting with the following lemma.

Lemma 2.8. For positive integers n, k with n ≥ 3 a terminal state with
Ps(Bn,k) pegs and empty root exists.

Proof. We choose an optimal solution process and, if necessary, modify it to
get the desired terminal state. Suppose pi ·~ti ·r was the last jump (for some
i ∈ [n], where [n] = {1, 2, . . . , n}). Then neither of the trunks contains a
peg in the final case. We distinguish four cases.

• If the second to last jump was r · ~tj · pj (for some j ∈ [n]), we could
instead jump tj ·~r · th, pi ·~ti · r, th ·~r · ti for some i 6= h 6= j. This yields
a state with less than Ps(Bn,k) pegs, contradicting the definition of
the peg solitaire number.

Peg solitaire

71

• The second to last jump was of the form `j,h · ~pj · `j,h′ or `j,h · ~pj · tj
for some j ∈ [n] and h, h′ ∈ [k]. These situations cannot occur, since
instead the jumps pi · ~ti · r, `j,h · ~pj · tj , r · ~tj · pj would be possible,
yielding a contradiction.

• The second to last jump was of the form tj ·~r · tj′ for some j, j′ ∈ [n].
Then j′ 6= i is impossible since tj′ · ~r · tj would be possible in the
terminal state. Therefore, we have j′ = i, implying that ti is empty
before the second to last jump. At most one leaf in the shrub Si
contains a peg in the terminal state. Otherwise, we would have pegs
in `i,h and `i,h′ for some h, h′ ∈ [k]. Instead of the last two jumps we
could perform `i,h · ~pi · ti, r ·~ti ·pi, `i,h′ · ~pi · ti, yielding a contradiction.
So let `i,h be empty in the terminal state. Instead of pi · ~ti · r we
perform the last jump ti · ~pi · `i,h, which yields the desired terminal
state.

• The second to last jump was tj · ~pj · `j,h for some j ∈ [n] and h ∈ [k],
which implies that all leafs in Sj are empty. Otherwise, exchanging
the last two jumps by pi ·~ti ·r, tj ·~r·ti, `j,h′ ·~pj ·tj for some h′ ∈ [k] yields
a contradiction. For the same reason, none of the leafs in Si contain
a peg. Note that it is impossible to have only pegs in all plants and
trunks since every non-starting configuration contains at least two
adjacent vertices with holes. Hence, moving backwards through the
previous jumps, one of them has to be of the form as considered in
the first three cases, yielding the desired solution process (probably
after first jumping tj · ~pj · `j,h to obtain an empty trunk).

If, instead, the root is filled by pi · ~ti · r followed by the final jumps which
only use vertices from shrubs, we can proceed as before. Therefore, the
root is empty in the modified terminal state.

We are ready to prove the previously mentioned lower bound.

Theorem 2.9. For integers n, k with n ≥ k ≥ 3 we have

Ps(Bn,k) ≥ n(k − 1) +

⌈
n+ 2

k + 1

⌉
− 1.

Proof. Although we have (up to automorphism) four starting holes, after
one or two jumps (again up to automorphism) only one of the following
three configurations can occur (cf. Figure 9).

de Wiljes and Kreh

72

(C1) Holes in exactly p1, r and t2. This is reached after the jumps p1 · ~t1 ·
r, t2 · ~r · t1 (starting hole r) or after the jumps t1 · ~p1 · `1,1, t2 · ~r · t1
(starting hole `1,1).

(C2) Holes in exactly `1,1, t1 and r. This is reached after the jumps `1,1 ·
~p1 ·t1, r ·~t1 ·p1 (starting hole t1) or after the jumps `1,2 ·~p1 ·`1,1, r ·~t1 ·p1
(starting hole `1,1).

(C3) Holes in exactly t1 and r. This is reached after the jump t1 · ~r · t2
(starting hole t2) or after the jump r · ~t1 · p1 (starting hole p1).

full shrubs full shrubs full shrubs

Figure 9: The configurations C1, C2, C3 (in that order).

Consider a sequence of jumps which leads to an optimal solution, i.e. its
terminal state contains Ps(Bn,k) vertices, none of which lies in the root,

which is possible due to Lemma 2.8. If we denote by IJ
(j)
i a particular

sequence of (so called inner) jumps, taking place only inside shrubs without
using the root, by FRi a jump filling the root, and by ERi a jump emptying
the root, this (optimal solution) sequence can (for some positive integer m)
be written as

IJ
(1)
1 ,FR1, IJ

(2)
1 ,ER1, IJ

(1)
2 ,FR2, IJ

(2)
2 ,ER2, . . . , IJ

(1)
m ,FRm, IJ

(2)
m ,ERm, IJ

(1)
m+1.

Since every jump in IJ
(2)
i empties a plant, none of them can happen inside

the shrub which was used to fill the root in FRi. Therefore, we can exchange
these jumps to obtain a (reordered) optimal solution process

IJ1,FR1,ER1, IJ2,FR2,ER2, . . . , IJm,FRm,ERm, IJm+1,

where IJi is the sequence of jumps in IJ
(1)
i followed by those in IJ

(2)
i (note

that IJi might be empty). We summarize some basic facts:

• The jumps in IJi only remove pegs from plants (and transfer pegs
between leafs or trunks inside shrubs). Further, only these jumps can
empty leafs. Emptying a leaf decreases the number of pegs in plants
by 1.

Peg solitaire

73

• The jump FRi transfers a peg from a plant to the root and removes
a peg from a trunk.

• The jump ERi either fills a plant and removes a peg from a trunk or
removes a peg from the root and transfers a peg from one trunk to
another trunk.

To empty a leaf, we need to perform the jump `i,j · ~pi · ti, hence requiring
a peg in a plant. The sequence of jumps FRi and ERi either removes a
peg from a plant or transfers a peg from one plant to another (we call
the second of these combinations of fill-root-jump and empty-root-jump a
plant-transfer-jump). Hence, the number of pegs in plants counted after
ERi decreases (with growing i) monotonically. Therefore, the number of
times we can empty a leaf is bounded by n, the number of pegs in plants.

For the jump `i,j · ~pi · ti to be possible, we need a peg in pi and a hole in ti.
Call such a configuration a p-configuration and the corresponding shrub a p-
shrub (if the hole and the peg are reversed, we use the terms t-configuration
and t-shrub). Each of the three above mentioned configurations C1–C3
contains exactly one p-shrub and at most one t-shrub. A shrub is called
accessible if it is a p-shrub or a t-shrub.

Only in current p-shrubs leafs can be emptied immediately (meaning using
inner jumps). This can happen at most k times for each shrub.2 Hence, at
some point, we need to use a jump having the root as its middle vertex, i.e.
a jump ERq = tj ·~r · ti for some i, j, q, if we want to obtain a new accessible
shrub. It is important to note that such an empty-root-jump together with
the previous fill-root-jump removes a peg from a plant without removing a
peg from a leaf. Therefore, for every one of these jumps, one less leaf can
be emptied. We distinguish four (distinct) cases for the jump ERq.

(ER(1)
q) pi and pj are empty. Then the number of p-shrubs and the number

of t-shrubs does not change and we obtain exactly one t-shrub
which was not accessible before ERq.

(ER(2)
q) pi contains a peg and pj is empty. In this case, we remove a p-shrub

and a t-shrub but do not get a new accessible shrub.

2Note that, certainly, a peg may be transferred to a leaf of this shrub if all leafs are
empty. Since this is only possible via two fill-root-jumps and two empty-root-jumps and
the removal of a peg in a plant (to fill the leaf), this will not happen in an optimal
solution.

de Wiljes and Kreh

74

(ER(3)
q) pi and pj contain a peg. Then the number of p-shrubs and the

number of t-shrubs does not change and we obtain exactly one
p-shrub which was not accessible before ERq.

(ER(4)
q) pi is empty and pj contains a peg. In this case, we obtain a new

p- and a new t-shrub without removing shrubs of these types.

Note that at most two new accessible shrubs are generated by ERq, which

is the case exactly for ER(4)
q . Hence, the above mentioned fact, that only k

pegs can be removed from leafs in a certain shrub, implies that (on average)

we need at least one jump of type ER(1)
q ,ER(2)

q or ER(3)
q for every k plant-

transfer-jumps or one jump of type ER(4)
q for every 2k plant-transfer-jumps.

First, we demonstrate the idea in the case that N4 = 0, where N4 is the
number of jumps of type ER(4)

q . Consider configuration C2. This contains
only one accessible shrub, which has k− 1 pegs in leafs. During the solving
process, at most k−1 of these leafs can be emptied. For all other shrubs, it
is possible to empty k leafs, but first they need to be made accessible, both
of which pegs in plants are needed for. Hence, in the best case, meaning
emptying as many leafs as possible, the number of plants can be written as

n = k − 1︸ ︷︷ ︸
empty pegs in accessible

shrub of SP2

+(1︸︷︷︸
make

accessible

+ k︸︷︷︸
empty
leafs

) ·N ′ + x︸︷︷︸
some

more jumps

, (1)

where N ′ = n−k+1−x
k+1 , for some 0 ≤ x ≤ k, and, if x > 0, “some more

jumps” means we use at best one peg from a plant to make a shrub acces-
sible and x − 1 pegs from plants to empty leafs. We cannot use N ′ +

⌈
x
k

⌉

plants to empty leafs (because they are used to make shrubs accessible),
hence Equation (1) implies that at most

k − 1 +N ′k + x−
⌈x
k

⌉
= k − 1 +

n− k + 1− x
k + 1

k + x−
⌈x
k

⌉
(2)

leafs can be emptied beginning with configuration C2. Note that one leaf
was already empty at the start. Further, the peg which was in the leaf
last emptied cannot be eliminated completely in the sense that it might be
removed but then the peg used to remove it is still there in the end (or the
one used to remove this and so on). Combining Equations (1) and (2) and

Peg solitaire

75

these two facts, we get that the terminal state contains at least

nk−
(
k − 1 +

n− k + 1− x
k + 1

k + x−
⌈x
k

⌉)
−1 + 1︸ ︷︷ ︸
two facts

=
nk2 + 1− k − x

k + 1
+
⌈x
k

⌉

= n(k − 1) +
n+ 2

k + 1
− 1 +

⌈x
k

⌉
− x

k + 1

≥ n(k − 1) +
n+ 2

k + 1
− 1

pegs, thus settling this case. The other two starting configurations (C1 and
C3) can be dealt with in the same way.

The case N4 > 0 is slightly more tricky but can be related to the previous
one. We, additionally, consider the number of accessible shrubs.3 For every
such shrub in the terminal state, we have a non removable peg. Note that,

in the solution process, this number only increases if ER
(4)
q is performed and

decreases4 for ER
(2)
q , both times by 2. Therefore, for every jump ER

(4)
q ,

we either have 2 pegs in accessible shrubs in the terminal state or some

ER
(2)
q had been performed. In the latter case (which is better than the

first), one peg from a plant has to be used for ER
(2)
q , which cannot empty a

leaf, and, further, this jump does not produce new accessible shrubs. This

means that the ratio of pegs in plants (in the sense one jump of type ER
(i)
q

for every k plant-transfer-jumps) used for removing pegs is not better (and
in general worse5) than in the case N4 = 0. This concludes the proof.

Combining Theorems 2.5 and 2.9, we obtain the following result.

Corollary 2.10. For integers n, k with n ≥ k ≥ 3 we have

Ps(Bn,k) = n(k − 1) +

⌈
n+ 2

k + 1

⌉
− 1.

Concerning the solvability of banana trees, we (by combing most of the
previous results) conclude

3We could be more precise and consider it as a function of time, but it does not seem
necessary to overcomplicate the notation in order to present the idea.

4It should be mentioned that also an inner jump `i,j1 · ~pi · `i,j2 can decrease the
number of accessible shrubs (only!) by 1, but since this jump removes a peg from a plant
without emptying a leaf, it cannot be a jump in an optimal solution.

5In particular if there are more jumps ER
(4)
q than ER

(2)
q .

de Wiljes and Kreh

76

Corollary 2.11. Bn,k is solvable if and only if k = 0 and n 6= 2 or k = 1
and n = 1 or k = 2 and n = 1.

3 Making banana trees solvable via append-
ing edges

Among other things, the solitaire number is influenced by the number of
edges in a graph G in the sense that Ps(H) ≤ Ps(G) for every supergraph
H of G on the same vertex set. Therefore it appears to be natural to ask
for the smallest number of edges, denoted by ms(G), we have to add to a
graph G to make it solvable.6 Note that ms(G) = 0 holds if and only if
G is solvable. Every complete graph is solvable, therefore ms(G) exists for
every graph G. Further, for |V (G)| ≥ 3, we have ms(G) ≤ Ps(G)− 1, since
by successively connecting two vertices in a terminal state by an edge one
can reduce the number of pegs by (at least) 1 in each step.

We will determine upper bounds for ms(Bn,k), starting (again) with some
small cases.

Proposition 3.1. We have

(i) ms(B1,0) = ms(B1,1) = 0.

(ii) ms(B2,0) = ms(B2,1) = 1.

(iii) ms(Bn,0) = 0 for n > 2.

Proof. The statements immediately follow from Proposition 2.1.

Proposition 3.2. We have ms(Bn,1) ≤ dn−14 e for n ≥ 3.

Proof. We use the idea from the proof of Proposition 2.2 (iii). Recall that
the terminal state contains `i,1 for i ∈ {2, 4, . . . , 2dn−42 e} and (depending
on the parity of n) `n,1, tn−2 if n is even and `n−1,1, pn if n is odd. Since
we are not able to remove the pegs in this configuration without using too
many extra edges, we will remove them in pairs as described below:

6The idea of adding edges to reduce the solitaire number is not new. In [1] Beeler
and Gray investigated related extremal questions. They constructed graphs with the
property that adding any (non existing) edge will decrease the solitaire number, calling
these graphs edge-critical.

Peg solitaire

77

For i = 1, 2, . . . , bn−14 c we add edges p4i−2p4i, start with a hole in t1 and do
2i crutch purges (using the shrubs S1, S2, S3, then S3, S4, S5, and so on).
After each odd (meaning the 1st, 3rd,. . .) crutch purge we have a hole in
p4i−2 and can jump `4i,1 · ~p4i · p4i−2, `4i−2,1 · ~p4i−2 · p4i to eliminate exactly
the pegs in `4i−2,1 and `4i,1. After the last crutch purge the configuration
depends on the remainder of n modulo 4:

• If n ≡ 0 mod 4, we are left with pegs in r, tn−2, tn−1, tn and pj , `j,1
for j ∈ {n− 3, n− 2, n− 1, n}. This configuration can be solved after
adding the edge pn−2pn (using a crutch purge, involving Sn−3, Sn−2
and Sn−1, and some other jumps).

• If n ≡ 1 mod 4, we are left with pegs in r, pn, `n,1. This configuration
is solvable.

• If n ≡ 2 mod 4, we are left with pegs in r, tn and pj , `j,1 for j ∈
{n−1, n}. This configuration (not being solvable since it corresponds
to P7) can be solved after adding the edge tn−1`n−1,1.

• If n ≡ 3 mod 4, we are left with pegs in r, tn−1, tn and pj , `j,1 for
j ∈ {n − 2, n − 1, n}. This configuration can be solved after adding
the edge tn−1`n−1,1 (using a crutch purge and some other jumps).

In the last three cases we added one edge and none in the first, resulting in
a total of dn−14 e edges.

In the following we will use more drawings of packages to help understand-
ing arguments in the proofs. We use dotted lines for added edges to distin-
guish them from existing ones, which are displayed as solid lines.

To prove the upcoming proposition, we use the following result from [1].

Lemma 3.3 ([1, Corollary 2.2]). A graph G is not solvable if it contains a
vertex which is adjacent to at least 1

2 |V (G)| leafs.

Proposition 3.4. Let k ≥ 4. We have ms(B1,k) =
⌈
k
4

⌉
if k or k + 1 is a

multiple of 4 and ms(B1,k) =
⌈
k
4

⌉
− 1 otherwise.

Proof. First we show that we need to add at least
⌈
k
4

⌉
resp.

⌈
k
4

⌉
− 1 edges.

When adding an edge, at most two of the k leafs which are adjacent to p1

de Wiljes and Kreh

78

become non leafs. Lemma 3.3 implies that it is necessary to add at least x
edges such that

k − 2x <
1

2
(k + 3)

holds to obtain a solvable graph. Distinguishing the four different residues
of k modulo 4 yields the desired lower bound.

Now we verify the upper bound
⌈
k
4

⌉
if k or k+1 is a multiple of 4. Starting

with a hole in t1 and jumping `1,1 ·~p1 · t1, r ·~t1 ·p1, `1,2 ·~p1 · t1, we arrive at a

configuration where we can carry out the jumps t1 · ~̀1,3 · p1 and `1,4 · ~p1 · t1
(if k ≥ 4) after adding the edge `1,3t1. This proves the statement for k ≤ 4.

For k ≥ 5 we perform the timbrel purge exactly
(
bk4 c − 1

)
-times from the

current state after adding the edges `1,4i−3`1,4i−2 for i = 2, 3, . . . , bk4 c.

x1

y

x6

x3

x4

x5

x2

Figure 10: Timbrel package (idea from [4] for the windmill variant). The
corresponding purge is given by x5 · ~x4 · y, x2 · ~y · x6, x1 · ~x6 · y, x3 · ~y · x1.

After the last timbrel purge we are done if k is a multiple of 4. Otherwise
we need to add the edge `1,k−1`1,k to obtain a solvable graph (and state).

Finally, let neither k nor k + 1 be a multiple of 4 and let d ∈ {1, 2} be
the remainder of k modulo 4. Again we start with a hole in t1 and we add
the edges `1,4i−3`1,4i−2 for i = 1, 2, . . . , dk4 e − 1. First jump `1,k · ~p1 · t1.
The vertices p1 and `1,i, i = 1, . . . , k − d induce a subgraph isomorphic to
a windmill variant. Peg solitaire on these graphs has been studied in [4].
Using the elimination process given there, we can reduce this subgraph such
that we have pegs in `1,1, `1,2, `1,3 and `1,4 (and `1,k−1 if d = 2) and holes
elsewhere (note that there are still pegs in t1 and r). The subgraph induced
by r, t1, p1 and `1,i for i ∈ [1, 4] and additionally i = k − 1 if d = 2 (this
subgraph contains the last remaining pegs) is solvable.

Proposition 3.5. For every positive integer n we have

ms(Bn,2) ≤
⌊n

2

⌋
.

Peg solitaire

79

Proof. Start with a hole in t1. For odd n add edges `2i,1`2i+1,1 for i =
1, 2, . . . , n−12 and jump `1,1 · ~p1 · t1, r · ~t1 · p1, `1,2 · ~p1 · t1. Next iterate the
following process:

• Execute jumps p2i · ~t2i · r, t2i−1 · ~r · t2i.

• Do a bull purge on S2i ∪ S2i+1 ∪ {r} (including the new edge).

For even n add edges `2i−1,1`2i,1 for i = 1, 2, . . . , n2 and jump t2 · ~r · t1, p1 ·
~t1 · r, `2,1 · ~p2 · t2, r · ~t2 · p2, `2,2 · ~p2 · `2,1, `2,1 · ~̀1,1 · p1, `1,2 · ~p1 · t1. The
iteration process is similar, just use shrubs S2i−1 and S2i instead of S2i and
S2i+1.

x9

x7

x8

x5 x6

x2x1 x3 x4

Figure 11: Bull package. The corresponding purge is given by x3 ·~x2 ·x5, x1 ·
~x5 · x2, x4 · ~x6 · x3, x2 · ~x3 · x6, x6 · ~x8 · x9, x7 · ~x9 · x8.

Theorem 3.6. For positive integers n, k with n ≥ 2 and k ≥ 3 we have

ms(Bn,k) ≤
⌈n

2

⌉
+ 1.

Proof. For even n we add the edges p2i−1p2i for i = 1, 2, . . . , n2 , start with
a hole in r, and use the reindeer purge iteratively exactly n−2

2 times. We
add another edge, namely tn−1pn, and remove all but one peg from Sn−1
and Sn.

For odd n we add edges p2i−1p2i for i = 1, 2, . . . , n−12 and use the rein-
deer purge exactly n−3

2 times. Then we add another two edges, namely
pn−1pn, pnpn−2, and use the triblade purge.

Remark. It seems reasonable to assume that every shrub needs to contain
at least one vertex of a “new” edge to make the graph solvable. Hence, we
believe that our results are best possible.

de Wiljes and Kreh

80

a

b

c d

e f

x4

x3

x2

x1

y1

y2

y3

y4

Figure 12: Reindeer package. The corresponding purge is given by e·~c·b, y1 ·
~f ·e, x1 ·~e·f, y2 · ~f ·e, x2 ·~e·f, y3 · ~f ·e, x3 ·~e·f, y4 · ~f ·e, x4 ·~e·f, a·~b·c, f · ~d·b, c·~b·a.
Jumps 2-8 form a double star purge and can be executed for any number
of xi and yi (as long as there are equally many).

c

a

b d

e g

f

x4

x3

x2

x1

z1

z2

z3

z4

y1

y2 y3

y4

Figure 13: Triblade package. The corresponding purge is given by e · ~b ·
a, z1 · ~g · e, y1 · ~f · g, x1 · ~e · f, z2 · ~g · e, y2 · ~f · g, x2 · ~e · f, z3 · ~g · e, y3 · ~f · g, x3 ·
~e · f, z4 · ~g · e, y4 · ~f · g, x4 · ~e · f, c · ~a · b, f · ~g · e, e ·~b · a, d · ~a · c. Jumps 2-12
form in a sense a triple star purge and can be executed for any number of
xi, yi and zi (as long as there are equally many).

Beeler and Gray [1] asked how much edge addition can improve the solv-
ability of a graph. They stated this problem in an extremal setting where
the insertion of an arbitrary edge was considered. We are able to provide
an answer to the related question “Can the difference of the two solvability
numbers when adding an (arbitrary) edge be bounded by a constant (for
every graph)?”: From Proposition 2.2 and Theorem 3.6 we immediately
get that adding at most 2 edges to B2,k reduces the solvability number
by 2k − 1. Therefore, for arbitrary k we find a graph on 2k + 5 vertices

Peg solitaire

81

where edge addition reduces the solvability number by at least k. Hence,
Ps(G ∪ e)− Ps(G) can be arbitrarily large.

4 Fool’s solitaire number of banana trees

The fool’s solitaire number Fs(G) of a graph G is defined as the maximal
cardinality of an associated terminal state when starting with a starting
state that consists of exactly one hole. This means, the fool’s solitaire
number is the number of pegs left when playing as bad as possible.

For some graphs there are results on fool’s solitaire, cf. [2, 4, 5, 7]. In par-
ticular, Beeler and Rodriguez [5] showed that Fs(G) ≤ α(G) for any graph
G, where α(G) denotes the independence number of G. If further for any
maximal independent set A the set V \A is an independent set with at least
two vertices, we have in fact that Fs(G) ≤ α(G)− 1.

For some time it was believed that Fs(G) always ranges between α(G)− 1
and α(G) but nowadays many counterexamples are known. For example,
Beeler and Walvoort [7] showed that for certain trees of diameter four, the

ratio Fs(G)
α(G) is asymptotically 5

6 and that 5
6 is a lower bound for the ratio

Fs(G)
α(G) for all trees of diameter four.

We will show that banana trees yield another class of graphs where Fs(G) <

α(G) − 1 and give a subclass of banana trees where the ratio Fs(G)
α(G) is

asymptotically 3
4 .

We will start with some small cases.

Proposition 4.1. We have

(i) Fs(B1,0) = Fs(B1,1) = Fs(B2,0) = 2 and Fs(B2,1) = 3.

(ii) Fs(B1,k) = k + 1 for k ≥ 2.

(iii) Fs(Bn,0) = n for n ≥ 3.

Proof. (i) This follows from B1,0 = P3, B1,1 = P4, B2,0 = P5, B2,1 = P7,
and [5, Proposition 3.2] resp. [5, Theorem 3.4].

de Wiljes and Kreh

82

(ii) We have B1,k = DS(1, k) and the result follows from [4, Theorem
4.2].

(iii) We have Bn,0 = K1,n(0; 1, . . . , 1), hence [7, Theorem 4.1] gives us

Fs(Bn,0) = n−
⌊
n−2bn2 c+1

3

⌋
= n.

Now consider banana trees with n, k ≥ 2. In the following results we will
use the independence number of Bn,k, so we will determine this first.

Proposition 4.2. We have α(Bn,k) =

{
n(k + 1), k ≥ 1,

n+ 1, k = 0.

Proof. For k ≥ 1 a maximal independent set of Bn,k is given by the set of
leafs together with the set of trunks, which has cardinality nk+n = n(k+1).
If k = 0, a maximal independent set is given by the set of plants together
with the root, which has cardinality n+ 1.

Proposition 4.3. For banana trees B2,k with k ≥ 1 we have

Fs(B2,k) = α(B2,k)− 1.

Proof. The banana tree B2,k is the caterpillar P5(k, 0, 0, 0, k) (i.e., a path
with 5 vertices, where at both end vertices k vertices have been appended).
Now [2, Theorem 8] yields Fs(B2,k) = 2k + b 52c − 1 = 2k + 1 = α(B2,k) −
1.

For n ≥ 3 we will use the duality principle developed in [3] in the form
given in [5, Corollary 1.2]. For this, we define the dual of a configuration T
to be the configuration T ′ that has pegs in the vertices where T has holes
and vice versa.

Proposition 4.4 (Duality Principle [5, Corollary 1.2]). On a graph G,
there exists some vertex s ∈ V (G) such that, when S = {s}, there exists
some series of jumps that will yield T as a terminal state if and only if the
dual T ′ of T is solvable.

Theorem 4.5. For banana trees Bn,k with n ≥ 3 and k ≥ 1 we have

Fs(Bn,k) = α(Bn,k)−
⌈n

2

⌉
.

Peg solitaire

83

Proof. We use the duality principle. If T is a terminal state with maximal
cardinality, then its dual T ′ is a starting state such that T ′ contains the
complement of a maximal independent set of Bn,k, has minimal cardinality
and is solvable. Hence we are looking for a set T ′ with these properties. We
show that T ′ can be the set consisting of all plants and the root, together
with

⌈
n
2

⌉
leafs (from different shrubs).

The maximal independent set of Bn,k is the set of leafs and trunks with
cardinality n+nk. Its dual is the set of plants together with the root. This
is not solvable, hence we have to add pegs in some leafs or trunks. We want
to show that we can solve the graph by adding exactly one peg in the leafs
of dn2 e shrubs and that any smaller number of pegs added will not suffice.

First, add dn2 e pegs as described above in `i,1 for odd i. Then the last shrub
will have a peg added if n is odd and will have no peg added if n is even.
We begin with the following sequence of jumps:

`1,1 · ~p1 · t1, t1 · ~r · t2, p2 · ~t2 · r.
This empties the first two shrubs and leaves the remaining shrubs and the
root unchanged. Hence we can inductively empty every forthcoming pair
of shrubs. If n is even, only one peg in the root remains and we are done.
If n is odd, we conclude with the jumps

`n,1 · ~pn · tn, r · ~tn · pn
and we are done.

It remains to show that we cannot solve the graph when adding less than
dn2 e pegs to the complement of the maximal independent set. To this end,
add less than dn2 e pegs. Note that for any shrub that has no peg added, we
need to move a peg in the trunk to empty the shrub. To do this, we must
jump from another trunk (with a peg in it) over the root into the trunk.
Therefore, another trunk has to have a peg in it, either by adding a peg
there or by adding a peg in a leaf and jumping from the leaf over a plant
into the trunk. In each case, we had to add one peg to empty the shrub
that has no pegs added and this leaves the root and every other shrub that
has had no pegs added unchanged. Thus, for each peg added we can empty
at most one shrub that has no pegs added. But if we add less than dn2 e
pegs, the number of pegs added is less than the number of shrubs that had
no pegs added. Thus the graph remains unsolvable. Hence we need dn2 e
pegs implying that the fool’s solitaire number is α(Bn,k)−

⌈
n
2

⌉
.

In view of the preceding results we can summarize as follows.

de Wiljes and Kreh

84

Corollary 4.6. We have

Fs(Bn,k) =

α(Bn,k), n = 1,

α(Bn,k)− 1, n ≥ 2, k = 0,

α(Bn,k)−
⌈
n
2

⌉
, n ≥ 2, k ≥ 1.

This means, that for k ≥ 1, n ≥ 2, the ratio Fs(G)
α(G) is asymptotically

α(G)−n
2

α(G) = 2k+1
2k+2 . If k = 2, this gives the same asymptotic as in [7], whereas

for k = 1 we even get the asymptotic 3
4 .

5 Future Work

In Section 2 we provided the solvability number of banana trees. It would be
nice to also have confirmation for the corresponding conjectures in Section
3, which we believe to be true. Moreover, since the number ms(G) is
introduced here, this number should be determined for other graph classes.

It still remains an open problem to characterise solvable trees. Here we
studied special trees with diameter 6. Since there are general results about
trees with diameter 4 (cf. [7]), one could try to characterise the solvable
trees with diameter 6. To get closer to such a characterisation one could
examine generalised banana trees: Let Bn,k1,k2,...,kn denote the banana
tree with n shrubs containing k1, k2, . . . , kn leafs respectively. Most results
about generalised banana trees should be obtainable via the same methods
we presented here.

Another very interesting family of problems emerges when defining Ps(G),
ms(G), Fs(G) depending on the starting hole in the following sense: Let
Ps(G, v) be the smallest number of pegs in a terminal state when starting
with a hole in v ∈ V . How large can |Ps(G, u) − Ps(G, v)| become for
u, v ∈ V ? Similar questions can be asked for the corresponding definitions
of ms(G, v) and Fs(G, v).

Peg solitaire

85

Acknowledgements

Some of the ideas and conjectures of this article emerged in a seminar held
at the University of Hildesheim in 2019. The authors thank all participants
for their input.

References

[1] R.A. Beeler and A.D. Gray, Extremal results for peg solitaire on
graphs, Bull. Inst. Combin. Appl., 77 (2016), 30–42.

[2] R.A. Beeler, H. Green, and R.T. Harper, Peg solitaire on caterpillars,
Integers, 17 (2017), Art. G1.

[3] R.A. Beeler and D.P. Hoilman, Peg solitaire on graphs, Discrete Math.,
311(20) (2011), 2198–2202.

[4] R.A. Beeler and D.P. Hoilman, Peg solitaire on the windmill and the
double star graphs, Australas. J. Combin., 52 (2012), 127–134.

[5] R.A. Beeler and T.K. Rodriguez, Fool’s solitaire on graphs, Involve,
5(4) (2012), 473–480.

[6] R.A. Beeler and C.A. Walvoort, Packages and purges for peg solitaire
on graphs, Congr. Numer., 218 (2013), 33–42.

[7] R.A. Beeler and C.A. Walvoort, Peg solitaire on trees with diameter
four, Australas. J. Combin., 63(3) (2015), 321–332.

[8] G.I. Bell, Solving triangular peg solitaire, J. Integer Seq., 11 (2008),
Article 08.4.8.

[9] W.C. Chen, H.I. Lu, and Y.N. Yeh, Operations of interlaced trees and
graceful trees, Southeast Asian Bull. Math., 21(4) (1997), 337–348.

[10] J. Engbers and C. Stocker, Reversible peg solitaire on graphs, Discrete
Math., 338(11) (2015), 2014–2019.

[11] S. Loeb and J. Wise, Fools solitaire on joins and Cartesian products
of graphs, Discrete Math., 338(3) (2015), 66–71.

de Wiljes and Kreh

86

