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Abstract: Let the edges of the complete graph Kn be coloured red or
blue, and let G be a graph with n ≥ |V (G)|. Then ot(n,G) is defined to be
the minimum integer, if it exists, such that any colouring of Kn with at least
ot(n,G) edges of each colour, contains a copy of G with r red edges and b
blue edges for any r, b ≥ 0 with r + b = e(G). If ot(n,G) exists for every
sufficiently large n, we say that G is omnitonal. Omnitonal graphs were in-
troduced by Caro, Hansberg and Montejano [arXiv:1810.12375,2019]. Now
let G1, G2 be two copies of G with their edges coloured red or blue. If
there is a colour-preserving isomorphism from G1 to G2 we say that the 2-
colourings of G are equivalent. Now we define tot(n,G) to be the minimum
integer, if it exists, such that any colouring of Kn with at least tot(n,G)
edges of each colour, contains all non-quivalent colourings of G with r red
edges and b blue edges for any r, b ≥ 0 with r+b = e(G). If tot(n,G) exists
for every sufficiently large n, we say that G is totally-omnitonal.

In this note we show that the only totally-omnitonal graphs are stars or
star forests namely a forest all of whose components are stars.

1 Introduction

By a 2-colouring of the complete graphKn we mean a function f : E(Kn)→
{red, blue}. The set of edges of Kn coloured red or blue is denoted by R
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or B, respectively. For short we also denote by R, B the subgraphs of Kn

induced by these edge sets. If G is a subgraphs of such a 2-coloured Kn

with r red edges b blue edges we say that Kn contains an (r, b)-coloured
copy of G. We recall the definition of omnitonal graphs from [2]. For a
given graph G, ot(n,G) is defined to be the minimum integer, if it exists,
such that any 2-colouring of Kn, n ≥ |V (G)|, with min{|R|, |B|} > ot(n,G)
contains an (r, b)-coloured copy of G for any r ≥ 0 and b ≥ 0 such that
r + b = e(G), where e(G) = |E(G)|. If ot(n,G) exists for every sufficiently
large n, we say that G is omnitonal.

We now define totally-omnitonal graphs . Let G1, G2 be two (r, b)-coloured
copies of G. Then if there is a colour preserving isomorphism φ : G1 → G2,
we say that the two colourings G1 and G2 of G are equivalent. Otherwise
the colourings are said to be non-equivalent. Now, for a given graph G,
tot(n,G) is defined to be the minimum integer, if it exists, such that any
2-colouring of E(Kn) with min{|R|, |B|} > tot(n,G) contains every non-
equivalent (r, b)-coloured copy of G for any r ≥ 0 and b ≥ 0 such that
r + b = e(G). If tot(n,G) exists for every sufficiently large n, we say that
G is totally-omnitonal.

For other graph-theoterical terms we refer the reader to West [4]. We just
recall that a star, denoted by K1,p is the graph consisting of one vertex
joined to each of p other vertices. Therefore K2 is the star K1,1.

The main aim of this note is to show that a graph G is totally-omnitonal
if and only if it is a star or a star forest, namely a forest all of whose
components are stars.

In several places in this note we shall make use of the following result, which
is part of Theorem 4.1 in [2].

Theorem A. Let n and k be positive integers such that n ≥ 4k. Then

ot(n,K1,k) =

{
b( (k−1

2 )nc, for k ≤ 3,

(k − 2)n− k2

2 + 3
2k − 1, for k ≥ 4.
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2 Results

2.1 A canonical colouring for Kn

In this subsection we define a canonical colouring of the edges of Kn which
is essential to the proof of our results. Let A be a subset of V (Kn) such

that 2 ≤ |A| < n− 1, and let B be V (Kn)− A. Colour red all
(|A|

2

)
edges

joining vertices in A and colour blue all the remaining
(|B|

2

)
+ |A| · |B| edges

of Kn. We observe that in such a colouring of Kn, there is no path P4

with a red − blue − red colouring, that is, a colouring of the edges of P4

such that the middle edge is coloured blue and the pendant edges are both
coloured red. Also, there is no colouring of K3 with two red and one blue
edges. In order to use such a 2-colouring of Kn to show that P4 and K3

are not totally-omnitonal we shall need to show, for reasons which shall
become clear below, that there is such a colouring for an infinite sequence
of complete graphs in which the number of red edges is equal to the number
of blue edges.

For this to hold, suppose |A| = r. We shall now use an argument employed
in [3]. For the number of red edges to be equal to the number of blue edges,
we require that

r(r − 1)

2
=
n(n− 1)

4
,

that is,
2(r2 − r) = n2 − n.

But this is equivalent to

(2n− 1)2 − 2(2r − 1)2 = −1,

and, if we let y and x be, respectively, the two odd integers 2n − 1 and
2r − 1, we obtain,

y2 − 2x2 = −1.

But this is Pell’s equation which is known to have an infinite number of
solutions for x and y [1].

So we define a canonical colouring of Kn, if it exists, to be a colouring in
which the edges of a subclique are coloured red, while all the other edges
are coloured blue, and the number of red edges is equal to the number of
blue edges. We therefore have the following result from [3].

Theorem 2.1. There is an infinite sequence of complete graphs Kn for
which a canonical colouring exists.
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2.2 P4 and K3 are not totally-omnitonal

Suppose that P4 (or K3) is totally-omnitonal. Therefore there exists an
integer t(n) = tot(n, P4) (or t(n) = tot(n,K3)), such that any 2-colouring
of Kn with min{|R|, |B|} > t(n) contains an red − blue − red colouring
of P4 (or, a (2, 1)-colouring of K3) for n sufficiently large. Note that t(n)
must be less than n(n− 1)/4. However, we have seen that for any N there
is a Kn with n > N which has a canonical colouring. In this colouring,
|R| = |B| = n(n − 1)/4, and Kn does not contain an red − blue − red
colouring of P4 (nor, a (2, 1)-colouring of K3). We have therefore proved
the following.

Lemma 2.2. Both P4 and K3 are not totally-omnitonal.

We now use this lemma to characterise connected omnitonal graphs.

Theorem 2.3. Let G be a connected graph on at least three vertices which
is not a star. Then G is not totally-omnitonal.

Proof. IfG is not a star orK3 which we already proved to be non-omnitonal,
then it is well-known that it must have a pair of independent edges. Let
e1, e2 be the closest pair of independent edges. They must therefore be
joined by an edge e3. Now colour e3 blue and all the other edges of G red.

This is a specific (e(G)1, 1)-colouring of G, but as we have shown in Lemma
2.2, for infinitely many values of n there is a canonical colouring of Kn which
does not contain this colouring of G due to the specific colouring of the P4

subgraph of G. Therefore G cannot be totally-omnitonal.

However we do have the following.

Lemma 2.4. Stars are totally-omnitonal.

Proof. It is known from Theorem A in [2] stated above, that K1,p is omni-
tonal. Therefore there is a number ot(n,K1,p) such that, for any positive
integers r, b with r + b = p, and for all n sufficiently large, if E(Kn) is
two-coloured with min{|R|, |B|} > ot(n,K1,p), then it contains an (r, b)-
coloured copy of K1,p. However, by the symmetry of the edges of K1,p, any
two (r, b)-coloured copies of K1,p with r + b = p are equivalent. Therefore
K1,p is totally-omnitonal with tot(n,K1,p) = ot(n,K1,p).
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From all the above we can conclude the following.

Corollary 2.5. A connected graph G is totally-omnitonal if and only if it
is a star.

2.2.1 Disconnected totally-omnitonal graphs

And so we come to our main theorem. By a star-forest we shall mean a
graph all of whose connected components are stars.

Theorem 2.6. A graph G is totally omnitonal if and only if it is a star
forest.

Proof. If G is connected then we are done since we have already shown that
the only connected totally-omnitonal graphs are stars. Therefore suppose
G is disconnected.

If even one component of G is not totally-omnitonal, then G is not totally-
omnitonal. Therefore if even one component of G is not a star then G is
not totally-omnitonal. This is because:

1. If there is a K3 component then we colour E(K3) with one blue edge
and two red edges, and all the other edges of G are coloured red. This
is a specific (e(G) − 1, 1)-coloured pattern of G, which requires that
K3 will be coloured in a (2, 1)-colouring, which is impossible as we
have shown in Lemma 2.2.

2. If there is no K3 but there is a component which is not a star, then
this component must contain P4, and we colour the middle edge of
this P4 blue and all the other edges of G red. This is a specific
(e(G)− 1, 1)coloured pattern of G, but we have shown the canonical
coloring cannot contain any red − blue − red coloured P4, hence all
components must be stars.

Conversely, suppose each component of G is totally-omnitonal, that is, each
component is a star. We need to show that G is totally-omnitonal.

We know from Theorem A that ot(n,K1,k) < (k − 1)n for n ≥ 4k. Let
G = ∪K1,pj

forj = 1, . . . , q and p1 ≥ p2 ≥ . . . ≥ pq.
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Let n ≥ 4(p1 + p2 + . . . + pq + q − 1) then we claim that tot(n,G) <
M(p1, . . . , pq, n) := (p1 +p2 + ..pq + q−2)n. We have to show first that the
conditions on n and M are feasible for every q ≥ 1, namely that for n ≥
4(p1+p2+. . .+pq+q−1) a colouring with min{|R|, |B|} ≥M(p1, . . . , pq, n)
exists. Hence we have to show that 2(p1 + . . .+ pq + q− 2)n ≤ n(n− 1)/2.
But this is equivalent to 4(p1+. . .+pq+q−2) = 4(p1+. . .+pq+q−1)−4 ≤
n−4 < n−1. Hence the condition is satisfied with n ≥ 4(p1+. . .+pq+q−1)
and M(p1, . . . , pq, n) as defined above.

We now prove the theorem by induction on q. For q = 1 the result is true
by Theorem A. Assume result is true for q − 1 components and assume G
has q components.

Let f be any colouring of the edges of G. We wish to show that in any
2-colouring g : E(Kn)→ {red, blue} with min{|R|, |B|} ≥ (p1 + . . .+ pq +
q − 2)n there is a copy of G on which g restricted to the edges of G is
equivalent to the colouring f of G.

We have already shown above that such a colouring g for Kn exists for
n ≥ 4(p1 +p2 + . . .+pq +q−1). So suppose n ≥ 4(p1 +p2 + . . .+pq +q−1).
Let G∗ = G\K1,pq

. Since p1 ≥ pq, n > 4pq and min{|R|, |B|} > n(pq − 1),
it follows from Theorem A that there is a copy of K1,pq

which is precisely
f -coloured, namely the colouring of K1,pq is equivalent to the colouring
induced by f .

Remove the vertices of this f -coloured K1,pq
from V (Kn) and remove the

edges incident with at least one vertex of V (K1,pq
). We are left with n∗

vertices where n∗ = n− (pq + 1) ≥ 4(p1 + . . .+ pq−1 + pq + q − 1)− (pq +
1) > 4(p1 + . . . + pq−1 + q − 2) and with min{|R|, |B|} ≥ (p1 + . . . + pq +
q2)n−

(
pq+1

2

)
− (pq + 1)(npq − 1) > (p1 + . . .+ pq + q − 2)n− n(pq + 1) =

(p1 + . . .+ pq−1 + q − 3)n > (p1 + . . .+ pq−1 + q − 3)n∗.

So the conditions for q1 components are satisfied.

Therefore by the induction hypothesis, Kn∗ contains an f -coloured copy of
G∗ which together with the deleted f -coloured copy of K1,pq

, giving the
required f -coloured copy of G in E(Kn).

The bounds we have proved can now be stated as a corollary.

Corollary 2.7. Let G be a star-forest with components K1,p1∪K1,p2∪ . . .∪
K1,pq with p1 ≥ p2 ≥ . . . ≥ pq. Then, for n ≥ 4(p1 + . . . + pq + q − 1),
any 2-colouring of E(Kn) with min{|R|, |B|} > (p1 + . . . + pq + q − 2)n
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contains every non-equivalent (r, b)-coloured copy of G, for any r, b ≥ 0
and r + b = e(G).
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