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into bi-cyclic graphs with eight edges
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University of Minnesota Duluth, Duluth, U.S.A.
dalibor@d.umn.edu and leex9065@d.umn.edu

Abstract: We show that each of the 35 non-isomorphic bi-cyclic graphs
with eight edges decomposes the complete graphKn whenever the necessary
conditions are satisfied.

1 Introduction

A decomposition of the complete graph Kn is a collection of mutually
edge disjoint subgraphs D = {G1, G2, . . . , Gs} such that every edge of Kn

appears in exactly one graphGi ∈ D. If each subgraphGr is isomorphic to a
given graph G, then we say that the collection D forms a G-decomposition
of Kn, or a G-design. When s = n, the decomposition is cyclic if there
exists an ordering (x1, x2, . . . , xn) of the vertices of Kn and an isomorphism
φ : V (Gj)→ V (Gj+1), such that for every j = 1, 2, . . . , n, we have φ(xi) =
xi+1 for each i = 1, 2, . . . , n. The subscripts are taken modulo n. Similarly,
the decomposition is 1-rotational if there exists an ordering (x1, x2, . . . , xn)
of the vertices of Kn and an isomorphisms φ : V (Gj)→ V (Gj+1) such that
for every j = 1, 2, . . . , n−1 we have φ(xi) = xi+1 for each i = 1, 2, . . . , n−1
where the subscripts here are taken modulo n− 1 and φ(xn) = xn.

A finite graph G with no loops or multiple edges is called bi-cyclic if it
contains exactly two cycles. It can be also viewed as a forest with exactly
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two edges added such that once we add the first one and create a cycle, the
second one shares at most one vertex with that cycle. In the following sec-
tions we present the necessary and sufficient conditions for decompositions
of complete graphs into bi-cyclic graphs with eight edges and prove that
each of them decomposes the complete graph Kn whenever the necessary
conditions are satisfied.

We will use standard decomposition methods based on ρ-labelings, intro-
duced by Rosa [13] and later modified by other authors.

2 Related results

There has been a significant activity recently in the area of decompositions
of complete graphs into graphs with eight edges.

This section will summarize what is known about classification of graphs
where |(E(G)| = 8 that form decompositions of complete graphs.

Graphs with five vertices and eight edges were examined by Colbourn, Ge,
and Ling [4]. There are only two non-isomorphic graphs with five vertices
and eight edges, shown in Figure 1.

G20 G21

Figure 1: Connected graphs with 8 edges and 5 vertices

Colbourn, Ge and Ling proved the following results for the graphs G5,1 and
G5,2.

Theorem 2.1 (Colbourn, Ge, Ling 2008). There exists a decomposition of
Kn into G20 if and only if n ≡ 0 (mod 16) except possibly when n = 32 or
n = 48.

Theorem 2.2 (Colbourn, Ge, Ling 2008). There exists a decomposition
of Kn into G21 if and only if n ≡ 0, 1 (mod 16) except when n = 16 and
possibly when n = 48.
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Kang, Yuan, and Liu researched graphs with six vertices and eight edges
in 2005 [12]. There are 22 non-isomorphic graphs of this type, and they
proved the following theorem with respect to decompositions of complete
graphs.

Theorem 2.3 (Kang, Yuan, Liu 2005). Let G be a connected graph with six
vertices and eight edges. Then G forms a decomposition of Kn if and only
if n ≡ 0, 1 (mod 16) and n ≥ 16 with two possible exceptions for n = 32.

The two missing cases were settled by Forbes and Griggs in 2018 [10]. The
graphs are shown in Figure 2.

M1 M2

Figure 2: Graphs M1 and M2

Theorem 2.4 (Forbes, Griggs 2018). Graphs M1 and M2 shown in Fig-
ure 2 form a decomposition of K32.

Therefore, the following theorem holds.

Theorem 2.5 (Kang, Yuan, Liu 2005, Forbes, Griggs 2018). Let G be a
connected graph with six vertices and eight edges. Then G forms a decom-
position of Kn if and only if n ≡ 0, 1 (mod 16) and n ≥ 16.

We were unable to find any results on graphs with eight edges and seven
vertices. Therefore, we study the connected ones along with other related
graphs in the following sections.

For graphs with eight edges and eight vertices, Kang and Zhang [14] deter-
mined the spectrum completely for the four graphs shown in Figure 3.

Theorem 2.6 (Kang, Zhang 2015). Let Gi be a connected graph with eight
vertices and eight edges shown in Figure 3. Then Gi forms a decomposition
of Kn if and only if n ≡ 0, 1 (mod 16) and n ≥ 16.
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G1 G2 G3 G4

Figure 3: Graphs G1, G2, G3, G4 by Kang and Zhang

Bipartite connected unicyclic graphs with eight edges and eight vertices
other than C8 were studied by Fahnenstiel and Froncek in [7]; C8 decom-
positions exist if and only if n ≡ 1 (mod 16) as proved by Rosa [13].

Theorem 2.7 (Fahnenstiel, Froncek 2019). Let G be a connected bipartite
unicyclic graph with eight vertices and eight edges other than C8. Then
there exists a G-decomposition of Kn if and only if n ≡ 0, 1 (mod 16) and
n ≥ 16.

The disconnected case was recently completely settled by Freyberg and
Tran [9].

Theorem 2.8 (Freyberg, Tran 2019). Let G be a bipartite disconnected
unicyclic graph with eight edges. Then there exists a G-decomposition of
Kn if and only if n ≡ 0, 1 (mod 16) and n ≥ 16.

Connected unicyclic graphs with eight edges and eight vertices with pen-
tagon were studied by Froncek and Kingston [11]; they have shown that
each of the ten non-isomorphic connected unicyclic graphs with eight edges
containing a pentagon decomposes the complete graph Kn whenever the
necessary conditions are satisfied.

Theorem 2.9 (Froncek, Kingston 2019). Let G be a connected unicyclic
graph with eight vertices and eight edges where the unique cycle is a pen-
tagon. Then there exists a G-decomposition of Kn if and only if n ≡ 0, 1
(mod 16) and n ≥ 16.

The disconnected case for unicyclic graphs with pentagon was completely
solved by by Freyberg and Froncek [8]. They also fully solved the case of
unicyclic graphs with a triangle or heptagon, both connected and discon-
nected.
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Theorem 2.10 (Freyberg, Froncek 2019). Let G be a disconnected uni-
cyclic graph with eight vertices and eight edges where the unique cycle is a
pentagon. Then there exists a G-decomposition of Kn if and only if n ≡ 0, 1
(mod 16) and n ≥ 16.

Theorem 2.11 (Freyberg, Froncek 2019). Let G be a unicyclic graph with
eight vertices and eight edges where the unique cycle is a triangle or hep-
tagon. Then there exists a G-decomposition of Kn if and only if n ≡ 0, 1
(mod 16) and n ≥ 16.

Therefore, the class of unicyclic graphs with eight edges is completely
solved.

Theorem 2.12. Let G be a unicyclic graph with eight edges. Then there ex-
ists a G-decomposition of Kn if and only if G 6∼= C8 and n ≡ 0, 1 (mod 16),
or G ∼= C8 and n ≡ 1 (mod 16).

As a natural next step, we further investigate graphs with exactly two cycles
and eight edges.

3 Tools and methods

Our tools are graph labelings arising from the ρ-labeling, first defined by
Rosa [13], who called it a ρ-valuation.

Definition 3.1. Let G be a graph with n edges. A ρ-labeling of G is an
injection f : V (G)→ {0, 1, . . . , 2n} inducing the length function ` : E(G)→
{1, 2, . . . , n} defined as

`(uv) = min{|f(u)− f(v)|, 2n+ 1− |f(u)− f(v)|}

with the property that

{`(uv)|uv ∈ E(G)} = {1, 2, . . . , n} .

A more restrictive yet well studied is the graceful labeling, also introduced
by Rosa in [13] and called originally a β-valuation.

Definition 3.2. Let G be a graph. A graceful labeling of G is a ρ-labeling
such that 0 ≤ f(u) ≤ n for every vertex u ∈ V (G) and `(uv) = |f(u)−f(v)|
for every edge uv ∈ E(G).
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Rosa [13] proved that if a graph G with n edges has one of the above
labelings, then a G-decomposition of the complete graph K2n+1 exists.

Theorem 3.3 (Rosa 1967). A cyclic decomposition of the complete graph
K2n+1 into subgraphs isomorphic to a given graph G with n edges exists if
and only if there exists a ρ-labeling of the graph G.

In some cases, more restrictive modifications of the above labelings allow
decompositions of bigger complete graphs, in particular, K2nk+1 for any
positive integer k. The following labeling was also introduced by Rosa [13].

Definition 3.4. An α-labeling is a graceful labeling with the additional
property that there exists an integer λ such that for each edge uv either
f(u) ≤ λ < f(v) or f(v) ≤ λ < f(u).

An α-labeled graph must be bipartite, and when V1 and V2 is a partition
of the vertex set V (G) of the graph G, then without loss of generality if
u ∈ V1, then f(u) ≤ λ and if v ∈ V2, then f(v) > λ.

Rosa also proved the following [13]:

Theorem 3.5 (Rosa 1967). If a graph G with n edges has an α-labeling,
then there exists a decomposition of the complete graph K2nk+1 into sub-
graphs isomorphic to G for any positive integer k.

Bunge, Chantasartrassmee, El-Zanati, and Vanden Eynden [3] found a more
restrictive version of ρ-labeling, which is similar to α-labeling in the sense
that it allows decompositions of bigger complete graphs into certain tripar-
tite graphs.

Definition 3.6. Let G be a tripartite graph with n edges having the vertex
tripartition {A,B,C}. A ρ-tripartite labeling of G is a one-to-one function
h : V (G)→ {0, 1, 2, . . . , 2n} that satisfies

(r1) h is a ρ-labeling of G.

(r2) If av ∈ E(G) with a ∈ A, then h(a) < h(v).

(r3) If e = bc ∈ E(G) with b ∈ B and c ∈ C, then there exists an edge e′ =
b′c′ with b′ ∈ B and c′ ∈ C such that |h(c)−h(b)|+|h(c′)−h(b′)| = 2n.

(r4) If b ∈ B and c ∈ C, then |h(b)− h(c)| 6= 2n.
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Note that e and e′ in (r3) need not be distinct.

They proved the following.

Theorem 3.7 (Bunge, Chantasartrassmee, El-Zanati, Vanden Eynden
2013). If a tripartite graph G with n edges has a ρ-tripartite labeling, then
there exists a cyclic G-decomposition of K2nk+1 for every positive integer
k.

The above labelings enable isomorphic decompositions of complete graphs
of odd order, but similar methods exist for complete graphs of even order
under certain circumstances. It is well known that certain ρ-labeled graphs
can form isomorphic decompositions of K2nk (see, e.g., [6]):

Theorem 3.8. Let G be a graph with n edges and let v be a vertex of
degree one in G. If G− v has a ρ-labeling, then there exists a 1-rotational
G-decomposition of K2n.

Theorem 3.8 is based on the following idea. We pick a vertex x2n in K2n

and decompose K2n − x2n cyclically into 2n− 1 copies of the graph G− v.
Then we identify v with x2n to obtain a decomposition of K2n by adding
back the pendant edge uv, where u is the only neighbor of v in G.. Because
the vertex u is each copy of G− v projected onto a different vertex xi, i =
1, 2, . . . , 2n− 1, the edge uv is projected onto different edges xix2n in K2n.
The length of uv is denoted by ∞.

The labeling used in the above theorem can be formally defined as follows.

Definition 3.9. Let G be a graph with n edges and edge uv where deg(v) =
1. A 1-rotational ρ-labeling ofG consists of an injective function f : V (G)→
{0, 1, 2, . . . , 2n− 2,∞} such that f(w) =∞ that induces a length function
` : E(G)→ {1, 2, . . . , n− 1,∞} which is defined as

`(xy) = min{|f(x)− f(y)|, 2n− 1− |f(x)− f(y)|}

for x, y 6= v and
`(uv) =∞

with the property that

{`(xv) : xv ∈ E(G)} = {1, 2, . . . , n− 1,∞}.

A generalization of the above method for tripartite graphs was found by
Bunge [2].
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Definition 3.10. Let G be a tripartite graph with n edges, vertex triparti-
tion {A,B,C}, and edge uw where deg(w) = 1. A 1-rotational ρ-tripartite
labeling of the graph G is a 1-rotational ρ-labeling that satisfies the follow-
ing:

(t1) f(w) =∞,

(t2) f(a) < f(v) for all av ∈ E(G) \ {uw} with a ∈ A, and

(t3) for every edge bc ∈ E(G) with b ∈ B and c ∈ C there exists an edge
e′ = b′c′ with b ∈ B and c ∈ C such that |h(c)−h(b)|+|h(c′)−h(b′)| =
2n.

Bunge [2] proved the following theorem, which is another important tool in
our decompositions.

Theorem 3.11 (Bunge 2018). If a tripartite graph G with n edges has a
1-rotational ρ-tripartite labeling, then there exists a cyclic G-decomposition
of K2nk for each positive integer k.

4 Catalog

First we provide a catalog of all bi-cyclic graphs with eight edges. By
Hi(j, k; l) we denote the i-th type of a connected graph containing cycles Cj

and Ck joined by a path with l edges, and by Di(j, k; l) a disconnected graph
with the same parameters. When the cycles belong to different components,
we deonte the graph by Di(j, k;−).

.

H1(5, 3; 0) D1(5, 3;−) H1(4, 4; 0) D1(4, 4;−)

H1(4, 3; 0) H2(4, 3; 0) H3(4, 3; 0) H4(4, 3; 0)
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D1(4, 3; 0) D1(4, 3;−) D2(4, 3;−) D3(4, 3;−)

H1(4, 3; 1) H1(3, 3; 0) H2(3, 3; 0) H3(3, 3; 0)

H4(3, 3; 0) H5(3, 3; 0) H6(3, 3; 0) H7(3, 3; 0)

D1(3, 3; 0) D2(3, 3; 0) D3(3, 3; 0) D4(3, 3; 0)

D1(3, 3;−) D2(3, 3;−) D3(3, 3;−) D4(3, 3;−)
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D5(3, 3;−) D6(3, 3;−) D7(3, 3;−) H1(3, 3; 2)

H1(3, 3; 1) H2(3, 3; 1) D1(3, 3; 1)

5 Labelings and main result

We first observe that because the graphs H1(5, 3; 0), D1(5, 3;−), H1(4, 4; 0)
and D1(4, 4;−) have all vertices of even degrees, they cannot decompose
K16n, since its vertices have an odd degree.

Observation 5.1. The graphs

H1(5, 3; 0), D1(5, 3;−), H1(4, 4; 0) and D1(4, 4;−)

do not decompose K16n for any n.

Although the graphs H1(4, 3; 1) and H1(3, 3; 2) do not admit a 1-rotational
ρ-tripartite labeling, they still decompose K16n, as shown by El-Zanati [5].

Theorem 5.2 (El-Zanati 2018). There exists a decomposition of K16n into
graphs H1(4, 3; 1) and H1(3, 3; 2) for every positive integer n.

Now we present labelings for the graphs where the labelings exist. In the
left column, we show a ρ-tripartite labeling for decompositions of K16n+1,
in the right one a 1-rotational ρ-tripartite labeling for decompositions of
K16n.
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Our main result now follows directly from Observation 5.1, Theorem 5.2
and the above labelings.

Theorem 5.3. A bi-cyclic graph G with eight edges decomposes the com-
plete graph Kn if and only if

• there is a vertex of an odd degree and n ≡ 0, 1 (mod 16), or

• all vertices have even degrees and n ≡ 1 (mod 16).

48



References

[1] A. Blinco, S. El-Zanati, C. Vanden Eynden, On the cyclic decomposi-
tion of complete graphs into almost-bipartite graphs, Discrete Math.
284(1–3) (2004), 71–81.

[2] R. Bunge, On 1-rotational decompositions of complete graphs into
tripartite graphs, Opuscula Math. 39(5) (2019), 623–643.

[3] R. Bunge, A. Chantasartrassmee, S. El-Zanati, C. Vanden Eynden,
On cyclic decompositions of complete graphs into tripartite graphs J.
Graph Theory 72 (2013), 90–111.

[4] C. Colbourn, G. Ge, A. Ling, Graph designs for the eight-edge five-
vertex graphs, Discrete Math. 309 (2009), 6440–6445.

[5] S. El-Zanati, personal communication.

[6] S. El-Zanati, C. Vanden Eynden, On Rosa-type labelings and cyclic
graph decompositions, Math. Slovaca 59(1) (2009), 1–18.

[7] J. Fahnenstiel, D. Froncek, Decomposition of complete graphs into con-
nected bipartite unicyclic graphs with eight edges, Electron. J. Graph
Theory Appl. (EJGTA) 9(2) (2019), 325–250.

[8] B. Freyberg, D. Froncek, Decomposition of complete graphs into uni-
cyclic graphs with eight edges, accepted.

[9] B. Freyberg, N. Tran, Decomposition of complete graphs into bipartite
unicyclic graphs with eight edges, accepted.

[10] A. Forbes, T. Griggs, Completing the design spectra for graphs with
six vertices and eight edges, Australas. J. Combin., 70 (2018), 386–389.

[11] D. Froncek, O. Kingston, Decomposition of complete graphs into con-
nected unicyclic graphs with eight edges and pentagon, Indonesian J.
Combin. 3(1) (2019), 24–33.

[12] Q. Kang, L. Yuan, S. Liu, Graph designs for all graphs with six vertices
and eight edges, Acta Math. Appl. Sin. (Engl. Ser.), 21(3) (2005),
469–484.

[13] A. Rosa, On certain valuations of the vertices of a graph, Theory of
Graphs (Intl. Symp. Rome 1966), Gordon and Breach, Dunod, Paris,
1967, 349–355.

[14] Y. Zhang, Q. Kang, Decompositions of Kv into four kinds of graphs
with eight vertices and eight edges, J. Combin. Math. Combin. Com-
put. 94 (2015), 157–165.

49


