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Terry A. McKee

Wright State University, Dayton, Ohio USA
terry.mckee@wright.edu

Abstract: A graph G is distance-hereditary if the distance between
vertices in connected induced subgraphs always equals the distance between
them in G; equivalently, G contains no induced cycle of length 5 or more
and no induced house, domino, or gem subgraph.

Define G to be strongly distance-hereditary if G is distance-hereditary and
G2 is strongly chordal. Although this definition seems completely unmo-
tivated, it parallels a couple of ways in which strongly chordal graphs are
the natural strengthening of chordal graphs; for instance, being distance-
hereditary is characterized by the k = 1 case of a ∀k ≥ 1 characterization
of being strongly distance-hereditary. Moreover, there is an induced forbid-
den subgraph characterization of a distance-hereditary graph being strongly
distance-hereditary.

1 Introduction and definitions

A graph G is distance-hereditary if, in every connected induced subgraph
G′ of G, the distance between vertices in G′ equals their distance in G; see
[2, 4, 8]. Proposition 1.1 will give three basic characterizations, where (1) is
from [8], and (2) and (3) are from [2] (also see [1]). In characterization (1),
chords ab and cd are crossing chords of a cycle C if the four vertices come
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in the order a, c, b, d around C. In (2), the house, domino, and gem graphs
are defined in Figure 1. In (3), a pendant vertex is a vertex of degree 1, and
twin vertices are vertices that have exactly the same neighbors (whether or
not they are adjacent to each other).
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Figure 1: The forbidden subgraphs, along with Cn with n ≥ 5, for being
distance-hereditary: left to right, the house, domino, and gem.

Proposition 1.1. Each of the following is equivalent to a graph G being
distance-hereditary :

(1) Every cycle of length 5 or more in G has crossing chords.

(2) G has no induced subgraph isomorphic to Cn with n ≥ 5 or to a house,
domino, or gem graph.

(3) Every induced subgraph of G contains either a pendant vertex or twin
vertices.

The present paper’s discussion of distance-hereditary and strongly distance-
hereditary graphs requires a quick review of chordal and strongly chordal
graphs. A graph is called chordal if every cycle with length 4 or more has a
chord. A graph is strongly chordal if it is chordal and contains no induced
n-sun subgraph with n ≥ 3, where an n-sun is a chordal graph whose vertex
set is partitioned into n vertices w1, . . . , wn that, in that order, form a cycle
(possibly with chords) together with n independent vertices u1, . . . , un that
each have degree 2 such that each ui is adjacent to wi and wi−1 (calculating
subscripts modulo n). See [4, 14] for other characterizations and the history
of chordal and strongly chordal graphs. In spite of distance-hereditary
graphs and chordal graphs being quite different from each other, they will
play partially analogous roles several times in this paper.

Define a graph to be strongly distance-hereditary if it is distance-hereditary
and its square is strongly chordal, where the square G2 of a graph G is
the graph with vertex set V (G) such that two vertices are adjacent in
G2 if and only if they are distance at most 2 apart in G. Although this
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definition of strongly distance-hereditary seems totally unmotivated at this
moment, one goal of this paper is to provide motivation. For now, note
that every strongly distance-hereditary graph is automatically distance-
hereditary, and that every ptolemaic graph is strongly distance-hereditary
(where ptolemaic graphs are the graphs that are both chordal and distance-
hereditary; ptolemaic graphs are strongly chordal, and so their squares
are also strongly chordal, see [4]). Finally, the square of every distance-
hereditary graph is chordal by [1] (but the squares of C5 and the house and
gem graphs are chordal without those graphs being distance-hereditary).
Other ways to strengthen distance-hereditary graphs are discussed in [13].

As in [4], define C(G) to be the set of all inclusion-maximal complete induced
subgraphs of G, and define CC(G) to be the set of all inclusion-maximal
connected induced subgraphs ofG that have no induced P4 subgraphs. Note
that Pn denotes the graph that consists of a chordless path of order n, and so
has length n−1. Thus C(G) is, equivalently, the set of all inclusion-maximal
connected induced subgraphs of G that have no induced P3 subgraphs. The
CC(G) notation comes from the graphs without induced P4 subgraphs being
commonly called cographs, see [6], and so CC(G) is defined using connected
cographs in the same way that C(G) uses complete graphs.

2 Intersection graph motivation

This section sketches the original motivation for the notion of strongly
distance-hereditary graphs from [10]; details will not be needed in the re-
mainder of the present paper.

For any graph G and family F(G) = {S1, . . . , Sn} of subsets of V (G), the
intersection graph Ω(F(G)) has vertex set F(G) with two vertices adjacent
in Ω(F(G)) if and only if the corresponding subsets Si, Sj ∈ F have Si ∩
Sj 6= ∅. An F(G)-tree for G is a spanning subtree T of Ω(F(G)) such
that, for each v ∈ V (G), the vertices of T that contain v induce a subtree
of T . One of the best known characterizations of being chordal is that G
is chordal if and only if G has a C(G) tree; see [4, 14]. Proposition 2.1 is
from [15] (also see [3]).

Proposition 2.1. A graph G is distance-hereditary if and only if G has a
CC(G) tree.
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If G has an F(G) tree T , then the intersection graph Ω(F ′(G)) makes sense
where F ′(G) = {Si∩Sj : SiSj ∈ E(T )}. If G also has an F ′(G) tree T ′, then
repeat this to define F ′′(G) = {Si ∩ Sj : SiSj ∈ E(T ′)} with the possible
existence of an F ′′(G) tree T ′′, and so on. If all such T, T ′, T ′′, . . . , T (i) exist
until E(T (i)) = ∅, then call T a strong F(G) tree for G. (See [14] for an
alternative, but equivalent definition.) One result in [11] is that a chordal
graph is strongly chordal if and only if it has a strong C(G) tree. The
strongly distance-hereditary analog in Theorem 2.2 is from [10].

Theorem 2.2. A graph G is strongly distance-hereditary if and only if G
has a strong CC(G) tree.

3 Forbidden subgraph characterization

Theorem 3.1. A graph G is strongly distance-hereditary if and only if G
is distance-hereditary and G2 contains no induced 3-sun subgraph.

Proof. Suppose G is distance-hereditary, and so by [1] all even powers of G
are chordal. The “only if” direction follows directly from the definitions of
strongly distance-hereditary and strongly chordal. The “if” direction will
also follow from those definitions, after the proof in the following paragraph
that G2 cannot contain an induced n-sun with n ≥ 4 (this is also proved
in [1]).

Suppose G2 contains an induced n-sun with n ≥ 4 (arguing by contradic-
tion), with vertices u1, . . . , un and w1, . . . , wn as in the definition of n-sun.
Thus the distance between ui and uj in G2 is 2 if |i − j| = 1 and is 3 or
more if |i − j| > 1. Therefore, the distance between ui and uj in G4 is 1
if |i− j| = 1 and is 2 or more if |i− j| > 1. But means that u1, . . . , un, in
that order, form a chordless n-cycle in G4, contradicting that G4 is chordal
by [1].

Because squares of distance-hereditary graphs are chordal and because
chordal graphs without induced 3-sun subgraphs have been characterized in
various ways, there are several alternative statements for Theorem 3.1. One
of those, using the minimum radius property from [5], is that G is strongly
distance-hereditary if and only if G is distance-hereditary and G2 satisfies
rad(H) = ddiam(H)/2e for all of its connected induced subgraphs H. Simi-
larly, one could use G being distance-hereditary and G2 being “hereditarily
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clique-Helly” as in [16] (also see [12]). But we really want a forbidden sub-
graph characterization in terms of G, not G2, extending condition (2) of
Proposition 1.1. Theorem 3.2 will do this.

Reference [10] wrongly claimed to characterize strongly distance-hereditary
graphs by being distance-hereditary and forbidding a single order-7 induced
subgraph (namely, H7 in Figure 2, which is also the unique forbidden sub-
graph for certain distance-hereditary graphs studied in [7]). The proof
in [10] was wrong, and [10, Thm. 3] and [10, Cor. 2] are false (but in spite
of that, [10, Cor. 1] remains true; indeed, it is the conjunction of Theo-
rems 2.2 and 3.1 above). Theorem 3.2 below corrects the characterization,
now using the two forbidden subgraphs shown in Figure 2. Theorem 3.2
will be used in section 4 and will be proved in section 5.
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Figure 2: The two forbidden induced subgraphs for a distance-hereditary
graph to be strongly distance-hereditary.

Theorem 3.2. A graph is strongly distance-hereditary if and only if it is
distance-hereditary with neither of the graphs H7 and H9 in Figure 2 as an
induced subgraph.

4 Cycle-based motivation

For any subgraph H of G—typically H will be an edge, a path of length 2, or
a triangle of G—define strC(H) to be the number of members of C(G) that
contain H. In Figure 2, for example, C(H7) = E(H7), and C(H9) consists
of the eight triangles and the three pendant edges; thus strC(H) = 1 in H9

when H is a pendant edge, while strC(H) = 2 for the other edges. Note that
strC(H) ≥ 1 always holds automatically when H is an edge or a triangle.
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For any subgraph H of G, define strCC(H) to be the number of members
of CC(G) that contain H. In Figure 2, for example, CC(H7) consists of the
three K1,3 subgraphs induced by the closed neighborhoods N [w1], N [w3],
N [z1], along with theK2,2 4-cycle induced by the non-pendant vertices; thus
each pendant edge xy has strCC(xy) = 1, strCC(w1w2) = strCC(w2w3) = 2,
and strCC(w1z1) = strCC(w3z1) = 3 in H7. Similarly, CC(H9) consists of the
three subgraphs induced by the closed neighborhoods N [zi], along with the
K2,2,2 octahedron induced by the non-pendant vertices; thus each pendant
edge has strCC(uizi) = 1, each strCC(wiwj) = 2, each strCC(wizj) = 3,
and each strCC(zizj) = 4 in H9. Note that strCC(H) ≥ 1 always holds
automatically when H is an edge, a path of length 2, or a triangle.

Recall that G is chordal if and only if every cycle either has a chord or is
a triangle. This corresponds to the k = 1 instance of the characterization
of strongly chordal in [9], which states that G is strongly chordal if and
only if, for every k ≥ 1 and every cycle C all of whose edges xhxh+1 have
strC(xhxh+1) ≥ k, either C has a chord xixj with strC(xixj) ≥ k or C is a
triangle with strC(C) ≥ k. As an added observation, this characterization is
equivalent, see [12], toG being chordal and, for every induced subgraphH of
G and every cycle C of H all of whose edges xhxh+1 have strC(xhxh+1) ≥ 2
in H, either C has a chord xixj with strC(xixj) ≥ 2 in H or is a triangle
with strC(C) ≥ 2 in H.

Theorem 4.1 [respectively, Theorem 4.3] below will be a characterization
of [strongly] distance-hereditary graphs that mimics the chord-and-triangle
characterization of [strongly] chordal graphs stated in the preceding para-
graph. They will illustrate a simple sense in which being a strongly distance-
hereditary graph strengthens being a distance-hereditary graph: namely,
the characterization of distance-hereditary in Theorem 4.1 will correspond
to the k = 1 instance of the ∀k ≥ 1 characterization of strongly distance-
hereditary in Theorem 4.3 (the strCC statements there hold automatically
when k = 1). The choice of a suitable distance-hereditary characterization
for Theorem 4.1 is not obvious, however, and it seemingly cannot be simply
in terms of cycles and chords. (This is in spite of condition (2) of Propo-
sition 1.1, since H7 in Figure 2 is not strongly distance-hereditary and has
only one cycle, a 4-cycle.) The characterization chosen for Theorem 4.1
involves, instead, adjacent edges of a cycle, reflecting that such edges of G
lead to edges of G2.
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Theorem 4.1. A graph is distance-hereditary if and only if every two ad-
jacent edges that are in a cycle are in a cycle of length 3 or 4.

Proof. For the “only if” direction, suppose G is a distance-hereditary graph,
and suppose cycle C of G contains edges ab and bc where C has minimum
length n ≥ 5 among all such cycles; thus ab and bc are not in a length 3 or 4
cycle (arguing by contradiction). But then a and c are a distance 2 apart
in G and distance at least 3 apart in G − b (by the minimality of n ≥ 5),
contradicting that G is distance-hereditary.

For the “if” direction, if G is not distance-hereditary, then by Proposi-
tion 1.1, G contains an induced subgraph H that is either Cn with n ≥ 5 or
the house, domino, or gem graph. Let a, b, c be three consecutive vertices
around the cycle if H = Cn or be those vertices as labeled in Figure 1. But
then the adjacent edges ab and bc are in a unique cycle, and that cycle has
length 5 or more.

Lemma 4.2. If H is a subgraph of a distance-hereditary graph G, then
strCC(H) in G equals strC(H) in G2.

Proof. If H is a distance-hereditary graph, then H has no induced P4 sub-
graph if and only if every connected subgraph of H has diameter at most 2;
see [6, 17]. Therefore, H is a connected induced subgraph of G that has no
induced P4 subgraph if and only if V (H) induces a complete subgraph of
G2. The lemma then follows from the definitions of C(G) and CC(G) and of
strC(H) and strCC(H).

Theorem 4.3. A graph is strongly distance-hereditary if and only if, for
every k ≥ 1, every two adjacent edges ab and bc that are in a cycle are in
a cycle C of length 3 or 4 such that :

(1) If E(C) = {ab, bc, ac} and each xy ∈ E(C) has strCC(xy) ≥ k, then
strCC(C) ≥ k.

(2) If E(C) = {ab, bc, cd, ad}, each xy ∈ E(C) has strCC(xy) ≥ k, and the
subpath π = a, b, c of C has strCC(π) ≥ k, then the subpath π′ = a, d, c
of C has strCC(π′) ≥ k.

Proof. For the “only if” direction, suppose that G is strongly distance-
hereditary, k ≥ 1, and adjacent edges ab and bc are in a cycle. Theorem 4.1
ensures that ab and bc are in a cycle C of length 3 or 4.
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For (1), suppose E(C) = {ab, bc, ac} and each xy ∈ E(C) has strCC(xy) ≥
k in G. By Lemma 4.2, each xy ∈ E(C) has strC(xy) ≥ k in G2, so
strC(C) ≥ k in G2 (since G2 is strongly chordal, using the characterization
strongly chordal from [9] stated in the third paragraph of this section). By
Lemma 4.2, strCC(C) ≥ k in G, and so (1) holds.

For (2), suppose E(C) = {ab, bc, cd, ad}, each xy ∈ E(C) has strCC(xy) ≥ k
in G, and π = a, b, c has strCC(π) ≥ k in G. By Lemma 4.2, each xy ∈ E(C)
has strC(xy) ≥ k in G2 and strC(π) ≥ k in G2. Since ac ∈ E(G2), the
triangle abc of G2 also has strC(abc) ≥ k in G2. Thus the edge ac of G2

has strC(ac) ≥ k in G2, so the triangle adc of G2 has strC(adc) ≥ k in G2

(again since G2 is strongly chordal, using [9]), and so strC(π′) ≥ k in G2.
By Lemma 4.2, strCC(π′) ≥ k in G, and so (2) holds.

For the “if” direction, suppose graph G is not strongly distance-hereditary.
If G is not even distance-hereditary, then by Theorem 4.1 there will be
adjacent edges that are in a cycle, but not a cycle of length 3 or 4. Hence
suppose G is distance-hereditary and so, by Theorem 3.2, either H7 or H9

in Figure 2 is an induced subgraph of G. Every two edges that are in a
cycle of H7 or H9 are in a cycle of length 3 or 4. For H7, if a = w1,
b = z1, c = w3, d = w2, π = w1, z1, w3, and C is the 4-cycle induced by
the non-pendant vertices, then each xy ∈ E(C) has strCC(xy) ≥ k = 2 and
strCC(π) = 2, but strCC(π′) = 1; thus (2) would fail. For H9, if a = w1,
b = w2, c = w3, and C is the triangle w1w2w3, then each xy ∈ E(C) has
strCC(xy) = k = 2, but strCC(C) = 1; thus (1) would fail.

As an added observation, since conditions (1) and (2) fail when k = 2 in
the “if” direction, the proof of Theorem 4.3 also shows that G is strongly
distance-hereditary if and only if G is distance-hereditary and, for every
induced subgraph H of G, every two adjacent edges ab and bc that are in
a cycle of H are in a cycle C of H of length 3 or 4 such that the k = 2
instances of conditions (1) and (2) of Theorem 4.3 hold in H.

5 Proving theorem 3.2

For every graph G and S ⊆ V (G), let G[S] denote the subgraph of G that
is induced by S. Thus G[S]2 is the square of the subgraph of G induced
by S, and G2[S] is the subgraph of G2 induced by S. Taking G = C5 and
S ⊂ V (G) with |S| = 4 gives an example with G[S]2 6∼= G2[S].
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Lemma 5.1. If G is a distance-hereditary graph, S ⊆ V (G), and G[S] is
connected, then G[S]2 ∼= G2[S].

Proof. Suppose G is distance-hereditary, a, b ∈ S ⊆ V (G), and H = G[S]
is connected. The definition of H2 ensures that dH2(a, b) = 1 if and only if
1 ≤ dH(a, b) ≤ 2. Since H is a connected induced subgraph of G and G is
distance-hereditary, dH(a, b) = dG(a, b). That equality and the definition
of G2 ensure that 1 ≤ dH(a, b) ≤ 2 if and only if dG2(a, b) = 1. Therefore,
G[S]2 = H2 ∼= G2[S].

We now prove Theorem 3.2: A graph is strongly distance-hereditary if and
only if it is distance-hereditary with neither of the graphs H7 and H9 in
Figure 2 as an induced subgraph.

The “only if” direction follows immediately from H2
7 and H2

9 both be-
ing distance-hereditary, having the form shown in Figure 3, and not be-
ing strongly chordal (since the non-zi vertices induce a 3-sun). Therefore,
no graph that contains an induced H7 or H9 subgraph can be strongly
distance-hereditary.
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Figure 3: The subgraph G∗ of G2, where Z represents the set {z1, . . . , zt}
and each zi is adjacent to all the other t+ 5 vertices.

For the “if” direction, suppose G is distance-hereditary, so G2 is chordal
by [1], and yet G2 is not strongly chordal (arguing that H7 or H9 is an
induced subgraph of G). Moreover, suppose G is a minimal such graph in
that, for every proper subgraph G′ of G, the distance-hereditary graph G′

has (G′)2 strongly chordal.
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The chordal, but not strongly chordal, graph G2 will contain an induced
subgraph—call it G∗—by Theorem 3.8 of [1] that consists of a 3-sun to-
gether with t ≥ 1 vertices z1, . . . , zt that are all the vertices that are adja-
cent in G2 to all the vertices of the 3-sun. Say the 3-sun consists of inde-
pendent degree-2 vertices u1, u1, u2 and pairwise-adjacent degree-4 vertices
w1, w2, w3, with each ui adjacent to wi and wi−1 (calculating subscripts
modulo 3 in this proof). Since G∗ is chordal and uiwi+1 is not a chord of
any 4-cycle induced by {ui, wi+1, zj , zk}, every two vertices zj and zk must
be adjacent in G∗, and so {w1, w2, w3, z1, . . . , zt} induces a Kt+3 subgraph
of G∗. The existence of z1 ensures that diam(G∗) = 2.

Let S = {u1, u2, u3, w1, w2, w3, z1, . . . , zt}, so G∗ = G2[S], and let H =
G[S].

Claim 1: H is connected. Suppose instead that H is not connected (ar-
guing by contradiction), with distinct components H ′ and H ′′ where (say)
z1 ∈ V (H ′). By the definition of G∗ in G2 and since H = G[S] = G[V (G∗)],
there exist r ≥ 1 vertices x1, . . . , xr ∈ V (G)− S such that each xi is adja-
cent in G to at least one vertex in each of H ′ and H ′′ (in order to create
H ′-to-H ′′ edges, since G∗ is connected). If r = 1, then z1 ∈ V (H ′) being
adjacent in G2 to every vertex in S implies that x1z1 ∈ E(G), and so x1
is distance 1 or 2 in G from each vertex of H ′ and x1 is adjacent in G to
each vertex of H ′′; thus x1 will be adjacent in G2 to every ui and wi, which
makes x1 = zi for some i (contradicting x1 6∈ S). Thus, r 6= 1. Similarly, if
every two xi, xj ∈ {x1, . . . , xr} have exactly the same neighbors in H ′, then
each xiz1 ∈ E(G), so each xi is again adjacent in G2 to all the vertices of
G∗, and so each xi = zj for some j (again contradicting xi, xj 6∈ S). Thus,
without loss of generality, say x1 and x2 have different neighborhoods in H ′.

Let x′1, x
′
2 ∈ V (H ′) be neighbors in G of x1 and x2, respectively, but x1x

′
2 6∈

E(G) (so x′1 6= x′2) such that dH′(x′1, x
′
2) is minimum; also let x′′1 , x

′′
2 ∈

N(H ′′) be neighbors in G of x1 and x2, respectively, such that dH′′(x′′1 , x
′′
2)

is minimum (possibly x′′1 = x′′2). The edges x1x
′
1, x1x

′′
1 , x2x

′
2, x2x

′′
2 and

minimum-length x′1-to-x′2 and x′′1 -to-x′′2 paths in, respectively, H ′ and H ′′

combine with the possible edges x1x2 and x′1x2 to form either an induced
cycle of length 5 or more or an induced house, domino, or gem of G. (For in-
stance, if x1x2, x′1x

′
2 ∈ E(G) and x′′1 = x′′2 , then {x1, x′1, x′′1 , x2, x′2} induces

a gem or house in G, depending on whether or not x′1x2 ∈ E(H).) But
inducing such a subgraph would contradict G being distance-hereditary.
Therefore, H = G[S] is connected.
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Claim 2: G∗ ∼= H2. This follows from Claim 1 and Lemma 5.1.

Claim 3: H has no twin vertices. Since G∗ = G2[S] has no twin vertices
except for the adjacent twins in {z1, . . . , zt}, the graph H = G[S] has no
twins except possibly among {z1, . . . , zt}. But if zi and zj are twins in H,
then G∗− zj ∼= (H − zj)2 and G− zj would contradict the minimality of G
(from the first paragraph of the proof).

Claim 4: No wi or zi is a pendant vertex of H. The following are the
only possibilities (up to permuting subscripts): If w1 is on the unique edge
u1w1 in H, then u2w1 ∈ E(H2) − E(H) would require u1u2 ∈ E(H),
contradicting that u1u2 6∈ E(H2). If w1 is on the unique edge w1w2 in H,
then u1w1 ∈ E(H2) − E(H) would require u1w2 ∈ E(H), contradicting
that u1w2 6∈ E(H2). If w1 is on the unique edge w1z1 in H, then u1w1,
u2w1 ∈ E(H2)−E(H) would require u1z1, u2z1 ∈ E(H), contradicting that
u1u2 6∈ E(H2). If z1 is on the unique edge u1z1 in H, then u2z1 ∈ E(H2)−
E(H) would require u1u2 ∈ E(H), contradicting that u1u2 6∈ E(H2). If z1
is on the unique edge w1z1 in H, then u1z1, u2z1 ∈ E(H2)− E(H) would
require u1w1, u2w1 ∈ E(H), contradicting that u1u2 6∈ E(H2). Finally, if
z1 is on the unique edge z1z2 in H, then u1z1, u2z1 ∈ E(H2)−E(H) would
require u1z2, u2z2 ∈ E(H), contradicting that u1u2 6∈ E(H2).

Claim 5: Either each ui is a pendant vertex of H or H contains a proper
induced subgraph that is isomorphic to H7 or H9. By Theorem 2.4 of [1],
the distance-hereditary graph H, which has no twins by Claim 3, must
therefore have at least two pendant vertices; moreover, the only possible
pendant vertices are u1, u2, u3 by Claim 4.

Suppose instead that (say) u1 is not a pendant vertex of H (and so both u2
and u3 are pendant vertices of H). Since u1u2, u1u3, u1w2 6∈ E(H2), vertex
u1 must be adjacent in H to at least two of w1, w3, z1, . . . , zt. Therefore,
(up to permuting subscripts) there are only the following three possible
cases for edges to be incident with u1; each leads to either a contradiction
or to H properly containing an induced H7 or H9 subgraph.

Case 1: u1w1, u1z1 ∈ E(H). Thus u2w1, u2z1 6∈ E(H) since u1u2 6∈ E(H2),
and w1w2, w2z1 6∈ E(H) since u1w2 6∈ E(H2), and u3z1 6∈ E(H) since
u1u3 6∈ E(H2). Since u2w1 ∈ E(H2)−E(H) is in only the triangles u2w1w2,
u2w1z1, u2w1zi with i > 1 of G∗ and w1w2, u2z1 6∈ E(H), there exists
(say) z2 such that w1z2, u2z2 ∈ E(H) (to make u2w1 ∈ E(H2)). Since
u2z1 ∈ E(H2) − E(H) and u2z2 is the unique edge of H that is incident
with the pendant vertex u2, edge z1z2 ∈ E(H). Similarly, u2w2 ∈ E(H2)
−E(H) and w2z2 ∈ E(H). Thus, u1z2, u3z2, w3z2 6∈ E(H) since u1w2,
u3w1, u2w3 6∈ E(H2).
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Since u3w2 ∈ E(H2) is in only the triangles u3w2w3, u3w2z1, u3w2z2,
u3w3zj with j ≥ 3 of G∗, since u3w3 ∈ E(H2) is in only the triangles
u3w2w3, u3w3z1, u3w3z2, u3w3zj of G∗, since u3z1 ∈ E(H2) − E(H) is
in only the triangles u3w2z1, u3w3z1, u3z1z2, and u3z1zj of G∗, and since
u3z2 ∈ E(H2) − E(H) is in only the triangles u3w2z2, u3w3z2, u3z1z2,
u3z2zj of G∗, therefore u3 being a pendant vertex of H implies there exists
(say) z3 such that u3z3, w2z3, w3z3, z1z3, z2z3 ∈ E(H). Thus u1z3, w1z3 6∈
E(H) since u1u3, u3w1 6∈ E(H2). But then {u1, w1, z1, z2, z3} would induce
either a gem or a house in H (depending on whether or not w1z1 ∈ E(H)),
contradicting Proposition 1.1.

Case 2: u1w1, u1w3 ∈ E(H), with each u1zi 6∈ E(H). Thus w1w2, w2w3 6∈
E(H) since u1w2 6∈ E(H2), and u2w1, u3w3 6∈ E(H) since u1u2, u1u3 6∈
E(H2). Since u2w1 ∈ E(H2) − E(H) is in only the triangles u2w1w2 and
u2w1zi of G∗ and w1w2 6∈ E(H), there exists (say) z1 such that w1z1,
u2z1 ∈ E(H). Thus u3z1, w3z1 6∈ E(H) since u3w1, u2w3 6∈ E(H2). By
a symmetric argument, there exists (say) z2 such that u3z2, w3z2 ∈ E(H)
(using that z1 6= z2 since u3w1 6∈ E(H2)), and so u2z2, w1z2 6∈ E(H).

Since u2z1 is the unique edge of H that is incident with the pendant ver-
tex u2, edge u2w2 ∈ E(H2) − E(H) and w2z1 ∈ E(H). A symmetric
argument shows w2z2 ∈ E(H). But then the 6-cycle C that has vertices
u1, w1, z1, w2, z2, w3, in that order, could only possibly have chords w1w3 or
z1z2; thus C would have no crossing chords, contradicting Proposition 1.1.

Case 3: u1z1, u1z2 ∈ E(H), with u1w1, u1w3 6∈ E(H). Since u1u2, u1u3,
u1w2 6∈ E(H2), none of u2, u3, w2 can be adjacent to z1 or z2 in H. Since u2
and u3 are pendant vertices of H, edges u2w1, u2w2 are not both in E(H)
and u3w2, u3w3 are not both in E(H). Also, u2w2, u3w2 are not both in
E(H) since u2u3 6∈ E(H2). Therefore, (up to permuting subscripts) there
are only the following five possible subcases for the unique edges incident
with u2 and u3.

Subcase 3.1: u2w1, u3w2 ∈ E(H) and u2w2, u3w3 6∈ E(H). But u3z1 ∈
E(H2) − E(H) and w2z1 6∈ E(H) would then contradict u3w2 being the
unique edge of H that is incident with u3.

Subcase 3.2: u3w2, u2z3 ∈ E(H) and u2w1, u2w2, u3w3 6∈ E(H). But
u3z1 ∈ E(H2) − E(H) and w2z1 6∈ E(H) would again contradict u3w2

being the unique edge of H that is incident with u3.
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Subcase 3.3: u2w1, u3z3 ∈ E(H) and u2w2, u3w2, u3w3 6∈ E(H). Thus
u2z3 6∈ E(H) since u2u3 6∈ E(H2). But then u2z3 ∈ E(H2) − E(H) and
w1z3 6∈ E(H) would then contradict u2w1 being the unique edge of H that
is incident with u2.

Subcase 3.4: u2w1, u3w3 ∈ E(H) and u2w2, u3w2 6∈ E(H). Since u3w2 ∈
E(H2) − E(H) is in only the triangles u3w2w3 and u3w2zi with i ≥ 1 of
G∗, since u3z1 ∈ E(H2) − E(H) is in only the triangles u3w2z1, u3w3z1,
u3z1zi with i ≥ 2 in G∗, and since u3w3 is the unique edge of H that is
incident with u3, edges w2w3 and w3z1 ∈ E(H). Similarly, w1w2, w1z1 ∈
E(H). Moreover, w1w3 6∈ E(H), since u2w1 ∈ E(H) and u2w3 6∈ E(H2).
Therefore, the subgraph of H that is induced by {u1, u2, u3, w1, w2, w3, z1}
is H7, contradicting the minimality of G (from the first paragraph of the
proof).

Subcase 3.5: u2z3, u3z4 ∈ E(H) and u2w1, u2w2, u3w2, u3w3 6∈ E(H) (and
z3 6= z4 since u2u3 6∈ E(H2)). Thus w1z4, w3z3 6∈ E(H) since u3w1, u2w3 6∈
E(H2), and u2z4, u3z3 6∈ E(H) since u2u3 6∈ E(H2). Since u2w1, u2w2,
u2z1, u2z2, u2z4,∈ E(H2)−E(H) and u2z3 is the unique edge of H incident
with u2, edges w1z3, w2z3, z1z3, z2z3, z3z4 ∈ E(H). Similarly, w2z4, w3z4,
z1z4, z2z4 ∈ E(H). Since w2z3, w2z4 ∈ E(H) and u1w2 6∈ E(H2), edges
u1z3, u1z4 6∈ E(H).

Since u1w1 ∈ E(H2)− E(H) is in only the triangles u1w1w3, u1w1zi with
i ≥ 1 of G∗ and u1w3 6∈ E(H), there must be some zi adjacent to both
u1 and w1 in H (thus i 6∈ {3, 4}). If i 6= 1, then the 5-cycle C that
has vertices w1, z3, z1, u1, zi, in that order, would by Proposition 1.1 have
crossing chords w1z1 and z3zi (since u1w1, u1z3 6∈ E(H)), and so z1 is
adjacent to both u1 and w1 in H. Thus, whether or not i = 1, edge
w1z1 ∈ E(H). Similarly, w1z2, w3z1, w3z2 ∈ E(H).

The 5-cycle C ′ that has vertices w1, z3, z4, w3, z1, in that order, has chords
z1z3 and z1z4, but neither w1z4 nor w3z3, and C ′ has crossing chords by
Proposition 1.1, so w1w3 ∈ E(H). Moreover, w1w2 ∈ E(H) (to prevent
{w1, w2, z2, z3, z4} from inducing a gem) and w2w3 ∈ E(H) (similarly).
Therefore, the subgraph of H that is induced by {u1, u2, u3, w1, w2, w3, z1,
z3, z4} is H9, contradicting the minimality of G.

This concludes the (sub)case argument for Claim 5. In the remainder of
the proof, suppose that all of u1, u2, u3 are pendant vertices of H. Note
that u1u2, u2u3, u1u3 6∈ E(H2) implies no two of u1, u2, u3 can be adjacent
to the same vertex.
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If uiwi, ui+1wi+1 ∈ E(H), then ui+1wi ∈ E(H2) − E(H) being in only
the triangles ui+1wiwi+1 and ui+1wizj of G∗ would contradict either that
wiwi+1 6∈ E(H) (since uiwi+1 6∈ E(H2)) or that ui+1wi+1 is the unique
edge of H that is incident with the pendant vertex ui+1 of H. If, instead,
uiwi, ui+1z1, ui+2z2 ∈ E(H) (where z1 6= z2 since ui+1ui+2 6∈ E(H2)), then
wiz2 6∈ E(H) (since ui+2wi 6∈ E(H2)) and uiwi being the unique edge of
H incident with ui would imply that the distance between ui and z2 in H
is at least 3 (contradicting that uiz2 ∈ E(H2). Therefore (up to permuting
subscripts), either u1z1, u2w1, u3w3 ∈ E(H) or u1z1, u2v2, u3z3 ∈ E(H).

First suppose u1z1, u2w1, u3w3 ∈ E(H). Edges w1w3, w2z1 6∈ E(H) since
u3w1, u1w2 6∈ E(H2). Since u1w1 ∈ E(H2)−E(H) and u1z1 is the unique
edge of H incident with u1, edge w1z1 ∈ E(H). Similarly, w3z1 ∈ E(H).
Since u2w2 ∈ E(H2) − E(H) and u2w1 is the unique edge of H incident
with u2, edge w1w2 ∈ E(H). Similarly, w2w3 ∈ E(H). Therefore, the
induced subgraph H[{u1, u2, u3, w1, w2, w3, z1}] = H7.

For the remaining possibility, suppose u1z1, u2z2, u3z3 ∈ E(H). Edges
u1z2, u1z3, w2z1 6∈ E(H) since u1u2, u1u3, u1w2 6∈ E(H2). Similarly, the
edges u2z1, u1z3, w3z2, u3z1, u3z2, w1z3 6∈ E(H). Since u1w1 ∈ E(H2) −
E(H) and u1z1 is the unique edge of H incident with u1, edge w1z1 ∈ E(H).
Similarly, w1z2, w2z2, w2z3, w3z1, w3z3 ∈ E(H). By Proposition 1.1, all
the chords wiwj and zizj (remembering that w1z3, w2z1, w3z2 6∈ E(H2)) of
the 6-cycle that has vertices z1, w1, z2, w2, z3, w3, in that order, must exist.
Therefore, the induced subgraph H[{u1, u2, u3, w1, w2, w3, z1, z2, z3}] = H9.

This concludes the proof of Theorem 3.2.
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