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Abstract: If X is any nonempty set on n ≥ 2 elements we define the
set graph Gn to be the graph whose vertices are the 2n − 2 proper subsets
of X with two vertices adjacent if and only if their underlying sets are
disjoint. We discuss some properties of Gn. In particular we find its clique
partition number and its product dimension. We also give bounds for its
representation number.

We use standard graph theory terminology as given in [13].

A family of subsets S1, S2, . . . of a set S gives a graph in a natural way if we
use these sets as vertices and let SiSj for i 6= j be an edge if and only if the
corresponding subsets have a nonempty intersection. In [12], Marczewski
has established the converse, i.e. for any graph G there is a set S, such that
a family of its subsets defines G according to the above description. Erdős,
Goodman and Posa in [1] have remarked that one may replace the idea of a
nonempty intersection with disjointness of the subsets since the same would
then imply Marczewski’s theorem for G. They have then determined the
minimum number of elements in the set S for an arbitrary G. The same
problem for a given G can be studied from the viewpoint of intersection
number of a graph (see [13]), or coprime index of a graph (see [5]). Hence
the graph whose vertices are subsets of an n-set with two vertices adjacent
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if and only if they are disjoint is naturally of interest. We find it convenient
to exclude the n-set and the empty set from the vertices of this graph.
In the terminology of [7] this graph is the complement of the intersection
graph on 2[n] \ {[n], ∅}.
Definition 1. Let X be any nonempty set on n ≥ 2 elements. We define
the set graph G(X) = Gn to be the graph whose vertices are the 2n − 2
proper subsets of X and whose two vertices are adjacent if and only if their
underlying sets are disjoint.

IfX1 andX2 are two sets with the same cardinality n, then any bijection be-
tween X1 and X2 induces a graph isomorphism between the corresponding
set graphs G(X1) and G(X2). Hence we are justified in using the notation
Gn (defined up to isomorphism). Figure 1 gives examples of G2, G3, and
G4. Here for G2 we take X = {1, 2}, for G3 we take X = {3, 5, 7}, and for
G4 we take X = {5, 7, 11, 13}. The labelling of the vertices for G3 and G4
can be used in coprime labelling mentioned below and also in connection
with their representation numbers. Gn also arises in the following way. Re-
cently Katre, Yahyaei and Arumugam have defined the concept of coprime
index of a graph in [5]. They showed that for any simple graph G, one can
label its vertices with distinct integers ≥ 2 in such a way that two vertices
are adjacent if and only if the corresponding integers are relatively prime.
For example, for G3 and G4, the products of the primes in the labellings
in Figure 1 give a coprime labelling. The coprime index of G, denoted by
µ(G), is then defined as the least number of primes using which such a
labelling can be made. Given a graph the obvious problem is then to find
its coprime index. Let us now consider the converse situation which we
interpret as follows. Fix n primes p1, . . . , pn. Consider the graph whose
vertices are the proper divisors of m = p1 · · · pn and two vertices are joined
by an edge precisely when the vertices are coprime. Clearly, this corre-
sponds with the situation when X = {p1, . . . , pn} above and the graph in
question is precisely Gn. We see easily that µ(Gn) = n.

Gn is also studied in ring theory where it is isomorphic to the zero divisor
graph of a finite Boolean ring [14]. A zero divisor graph of a finite Boolean
ring has nonzero zero-divisors as its vertices, with two vertices u, v adjacent
if and only if u · v = 0. This connection also justifies our rejecting X and
∅ as vertices of Gn.

The graph Gn is related to the Kneser graph, which consists of k-subsets of
an n-set as vertices, and where two vertices are adjacent if and only if they
are disjoint. One way to generalize the notion of a Kneser graph would be
to allow the subsets to be of a variable size taken from some finite set K.
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Under this scheme, the Kneser graph is obtained when K = {k}, and Gn
is obtained when K = {1, . . . , n − 1}. Other types of well known graphs
related to Gn are the Johnson graphs and Odd graphs. For n = 3, the
graph Gn is also known as the net graph.

In view of the above, it is reasonable to study the graph Gn. In this paper
we discuss properties of Gn such as its clique partition number, product
dimension and representation number.
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1 Some basic results

In this section we collect some basic results related to Gn which are implic-
itly available in the literature. For convenience, for subsets A, B of a set,
we define A−B = {x ∈ A : x /∈ B}.
Lemma 1.1. Let |X| = n and Gn = G(X). For any ∅ 6= v $ X, deg(v) =
2n−|v|−1. Gn has 1

2 (3n−2n+1 + 1) edges and the degree sequence of Gn is

( 1, . . . , 1︸ ︷︷ ︸(
n
1
)
times

, 3, . . . , 3︸ ︷︷ ︸(
n
2
)
times

, . . . , 2n−1 − 1, . . . , 2n−1 − 1︸ ︷︷ ︸(
n
n−1
)
times

).

Furthermore, Gn is connected and the diameter of Gn is 3 for n ≥ 3.

Proof. If v is a vertex having k elements then the remaining n−k elements
form 2n−k − 1 nonempty subsets, each of which are adjacent to v. Since
no other vertex is adjacent to v, deg(v) = 2n−k − 1. Also since k-element
subsets are

(
n
k

)
in number, for 1 ≤ k ≤ n − 1, so by the handshaking

lemma the total number of edges is 1
2
∑

deg(v) = 1
2
∑n−1
k=1

(
n
k

)
(2n−k − 1) =

1
2 (3n − 2n+1 + 1). Next note that for each 1 ≤ k ≤ n − 1 there are

(
n
k

)

vertices having k elements and these constitute all of the vertices of Gn. So
precisely

(
n
k

)
vertices have degree 2n−k − 1. The result follows.

To prove that Gn is connected, note that if u, v are two nonadjacent vertices
of Gn and u ⊂ v then (u,X − v, v) is a path. If neither is contained in the
other then (u, v − u, u − v, v) is a path. For n ≥ 3, this also shows that
diam(Gn) = 3.

Lemma 1.2. The graph Gn has chromatic number χ(Gn) = n and clique
number ω(Gn) = n.

Proof. Note that since Kn is a subgraph of Gn, so n = χ(Kn) ≤ χ(Gn).
For the reverse inequality, first let X = {x1, . . . , xn}. Now, color all ver-
tices containing x1 by color 1 and then for each 2 ≤ i ≤ n color all ver-
tices containing xi but not containing x1, . . . , xi−1, by color i. This proves
χ(Gn) ≤ n.

Now note that Kn is the subgraph induced by the vertices {x1}, . . . , {xn}
in Gn. We claim that Kn+1 is not a subgraph of Gn. Suppose otherwise
that Kn+1 was a subgraph induced by the vertices v1, . . . , vn+1. Let yi ∈ vi.
Now since vi are mutually disjoint so yi are n+ 1 distinct elements, which
is absurd.
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We now recall the definitions of independence number, vertex cover number,
matching number and edge cover number of a graph. Let G be a graph.
The independence number of G, denoted by α(G), is the size of the largest
independent set of G, where by an independent set we mean a set of vertices
which are mutually not adjacent to each other. The vertex cover number
of G, denoted by τ(G), is the size of the smallest set of vertices of G
such that every edge is incident on at least one vertex in that set. The
matching number of G, denoted by ν(G), is the size of the largest matching
of G, where by a matching we mean a set of edges which mutually have no
common vertices. Finally, the edge cover number of G, denoted by %(G),
is the size of the smallest set of edges of G such that every vertex belongs
to at least one edge in that set.

Lemma 1.3. α(Gn) = τ(Gn) = ν(Gn) = %(Gn) = 2n−1 − 1.

Proof. We first show α(Gn) = 2n−1 − 1 which is actually a well known
result in the theory of set intersecting families. Clearly any independent
set I cannot exceed 2n−1−1 in size since both a subset and its complement
cannot simultaneously be in I. On the other hand, if X = {x1, . . . , xn},
the family of all those subsets of X which contain x1, excluding X, is an
independent set of 2n−1− 1 vertices in Gn. Now to show τ(Gn) = 2n−1− 1
note that for any graph G, we have α(G) + τ(G) = |V (G)|.

Next consider ν(Gn). The set of edges {xxc : ∅ 6= x ( X} is a matching
consisting of 2n−1 − 1 edges in Gn. If there existed a matching with 2n−1

edges then this would have implied that Gn had 2n vertices, an absurdity.
So ν(Gn) = 2n−1 − 1. Finally, note that for any graph G without isolated
vertices, we have ν(G) + %(G) = |V (G)| by Gallai’s theorem [13].

Now we define the notion of a reduced graph. For a vertex v of a graph G,
the open neighborhood of v is the set N(v) = {w ∈ V (G) : vw ∈ E(G)}.
A graph G is reduced if no two vertices of G have the same open neighbor-
hoods. For example, the path graph P4 = (v1, v2, v3, v4) is a reduced graph
whereas the path graph P3 = (v1, v2, v3) is not.

Lemma 1.4. Gn is a reduced graph.

Proof. Let u, v be distinct vertices. If u∩v = ∅ then they are in each other’s
open neighborhoods and the result is clear. If u ∩ v 6= ∅ then, without loss
of generality, there exists some x ∈ u such that x 6∈ v. Then {x} ∈ N(v)
and {x} 6∈ N(u).
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Finally, we also have the following result.

Lemma 1.5. Gn is an induced subgraph of Gn+1.

Proof. Let |X| = n + 1. Then X yields Gn+1. Let x ∈ X. The graph
induced by all proper subsets of X − {x} is Gn.

2 Clique partition number of Gn

The definition of clique partition number is given below.

Definition 2. Let G be a simple graph where G 6= Kn. A clique partition
of G is a partition P = {S1, . . . , Sk} of E(G) such that each element Si of
P induces a clique in G. We let cp(G) denote the minimum of {|P| : P is a
clique partition of G}, and refer to it as the clique partition number of G.
A clique partition for which this minimum is achieved is called a minimum
clique partition. We define cp(Kn) as 0.

We require a result given by R. Rees in his doctoral dissertation to obtain
the clique partition number of Gn [11] (see also Theorem 2.1.7 of [8]).

Proposition 2.1. Let G be any graph and let I be an independent set of
G. Suppose H is the graph obtained by removing all the vertices in I from
G and the edges incident to them. Further let G\H be the graph obtained
by deleting the edges but not the vertices of H from G. Then for every
integer f > 0,

cp(G) ≥ 2(f |E(G \H)| − |E(H)|)
f2 + f

with equality if and only if G admits a clique partition in which every clique
has either f + 1 or f + 2 vertices and has a vertex in I.

Theorem 2.2. cp(Gn) = 1
2 (3n−1 − 1).

Proof. Let X = {x1, . . . , xn} as usual and I be the independent set given
by the set of all those subsets of X which contain xn, excluding X. It is
easy to see, as in Lemma 1.3, that this is an independent set containing
2n−1 − 1 vertices. If H is the graph obtained by removing all the vertices
in I from G and also the edges incident to them, then H is isomorphic
to the graph Gn−1 together with an isolated vertex {x1, . . . , xn−1}. So,
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|E(H)| = 1
2 (3n−1 − 2n + 1) and |E(G \ H)| = 3n−1 − 2n−1. Hence using

Rees’ bound for f = 1 we get cp(Gn) ≥ 1
2 (3n−1 − 1).

We now show that there exists a clique partition of Gn in 1
2 (3n−1− 2n + 1)

triangles and 2n−1 − 1 edges. This is easy to see if n = 2. For n ≥ 2 for
each edge uv of Gn−1 (here Gn−1 = G({x1, . . . , xn−1}) is considered as an
induced subgraph of Gn) we consider the triangle 〈u, v,X − (u∪ v)〉 in Gn.
This yields 1

2 (3n−1 − 2n + 1) triangles.

We claim that none of these triangles share an edge. Suppose otherwise
and let two distinct triangles 〈u, v,X − (u ∪ v)〉 and 〈v, w,X − (v ∪ w)〉
share an edge, where u, v, w are vertices in Gn−1. Clearly, we must have
u, v, w distinct. Now the edge uv does not coincide with vw since u 6= w
and with 〈w,X − (v ∪ w)〉 as u 6= v 6= w. Also, uv doesn’t coincide with
〈v,X − (v ∪ w)〉 as otherwise u = X − (v ∪ w) which is not possible as
xn ∈ X − (v ∪ w) but xn 6∈ u. Next note that 〈v,X − (v ∪ w)〉 cannot
coincide with 〈v,X − (u∪ v)〉 as X − (u∪ v) 6= X − (v∪w). All other cases
are similar. There remain 2n−1 − 1 edges required to complete the clique
partition. Hence we have cp(Gn) ≤ 1

2 (3n−1 − 1) and the result follows.

Note that our clique partition also meets the requirements for equality to
prevail in Rees’ bound for f = 1.

It may be interesting to obtain cp(Gn) as well. To understand the reason
for this we first recall the following definitions.

Definition 3. Let F be a family of sets (allowing sets in F to be repeated).
The intersection graph of F is the graph whose vertices are the sets in F
and two vertices are adjacent if and only if the corresponding sets have
a nonempty intersection. The intersection number of G is the smallest
positive integer θ′(G) such that there exists a representation of this type
for which the union of F has θ′(G) elements [4]. The intersection number
coincides with the minimum number of complete subgraphs needed to cover
E(G) and so coincides with the clique cover number cc(G) ([1],[13]).

Note that by definition, Gn is the intersection graph of the subsets of the
n-set X (excluding φ,X) and this is optimal in the sense that they yield the
intersection number. In other words, the clique cover number cc(Gn) = n.
To prove this let Ci, for any i, 1 ≤ i ≤ n, denote the clique induced in Gn
by all the vertices containing xi. Then {Ci : 1 ≤ i ≤ n} is a clique cover
of Gn. Also any clique cover of Gn contains at least n cliques because the
vertices {x1}, . . . , {xn} will belong to distinct cliques.
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Now, a clique partition is clearly a special type of a clique cover and hence
it will be of interest to determine cp(Gn). Obviously as cc(G) ≤ cp(G) for
any graph G, we have cp(Gn) ≥ n.

3 Dimension of Gn

We first recall the definition of tensor product of graphs.

Definition 4. Let G,H be two graphs. The tensor product G ⊗ H of G
and H is the graph determined by the following two rules:

1. The vertices of G⊗H are the elements of V (G)× V (H).

2. The edges of G⊗H are characterized by the following rule:
(u1, v1)(u2, v2) ∈ E(G ⊗ H) if and only if u1u2 ∈ E(G) and v1v2 ∈
E(H).

It can be shown that the tensor product is associative. If {Gi : i ∈ I} is a
family of graphs, we denote their tensor product as

⊗
i∈I Gi.

Next recall the definition of dimension of a graph as given by Nešetřil and
Rödl in 1977.

Definition 5. Let G be any graph and let I be the multiset of minimum
cardinality such that G can be embedded in

⊗
i∈I Ki. Then the dimension

of G (also called as the product dimension of G), denoted by pdimG, is
defined as |I|.

An equivalent definition of dimension may be given as follows: Let G be a
graph. For any positive integer n, we define an encoding of G in Nn as an
injection l : V (G)→ Nn where

1. uv ∈ E(G) implies l(u) and l(v) differ in all coordinates;

2. uv 6∈ E(G) implies l(u) and l(v) agree in at least one coordinate.

Here Nn denote the Cartesian product of the set of positive integers with
itself n times. The dimension of G is the least positive integer pdimG such
that an encoding of G in NpdimG exists.
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It has been proved in [10] that the dimension of every graph is a well
defined positive integer. We will next obtain pdimGn. Clearly pdimG2 =
pdimK2 = 1.

We require the following result from [6].

Proposition 3.1. Let G be a graph and u1, . . . , uk ∈ V (G) be distinct
vertices such that for some vertices v1, . . . , vk ∈ V (G), which are not
necessarily distinct, uivi ∈ E(G) and uivj 6∈ E(G) for i < j. Then
pdimG ≥ dlog2 ke.

Our main theorem in this section is the following.

Theorem 3.2. pdimG2 = 1 and pdimGn = n if n ≥ 3.

Proof. The result is trivial for G2 and hence let n ≥ 3 in what follows. We
first establish the lower bound.

Let X = {1, 2, . . . , n}. Now define n−1 vectorsMj of length
(
n
j

)
as follows.

For any j, where 1 ≤ j ≤ n − 1, consider all j-subsets of X and consider
each of them as a j-tuple by ordering its elements according to the usual
integer ordering. The successive entries of Mj are now obtained by the
lexicographic ordering of these j-tuples. For example, if n = 5, the vector
M2 is given by:
(
(1, 2) (1, 3) (1, 4) (1, 5) (2, 3) (2, 4) (2, 5) (3, 4) (3, 5) (4, 5)

)

Now we choose 2n − 2 distinct vertices ui as follows. Consider Mn−k−1
for each k, where k = 0, 1, . . . , n − 2. Starting with k = 0, for each such
Mn−k−1, choose ui’s successively from its consecutive entries (under the
natural correspondence of such an entry with a subset), and after this
increase k by 1. Now let vi = uci = X−ui. We shall show that ui, vj satisfy
the conditions of Proposition 3.1. It is clear that each uivi is an edge and
we need only establish that there is no edge between ui and vj where i < j.

Consider any two vertices ui and vj where i < j. If ui is coming from
some Mα+β and uj from some Mα and, ui ∩ vj = ∅ are disjoint, then their
union has at least n + 1 elements, which is impossible. So we will confine
our attention to the case when ui and uj are coming from the same Mα.
In this case since uj will contain at least one element not in ui, so vj will
contain at least one element in ui, following which they are not adjacent.
So the ui, vj satisfy the requisite conditions of the mentioned Proposition
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3.1. We can therefore conclude that pdimGn ≥ log2(2n − 2) > n − 1 (as
n ≥ 3).

We now turn to the upper bound. Consider each vertex of X as a string
of 0’s and 1’s where the ith coordinate is 1 if and only if xi is in the
corresponding subset. We consider this string as a number in the binary
base and replace each 0 in the string by the decimal base equivalent of
the number +1. This modified string is the encoding of the particular
vertex. For example, if n = 5, the vertex {x1, x3} corresponds to the string
(1, 0, 1, 0, 0) and is encoded as (1, 21, 1, 21, 21). Note that since there is no
string consisting entirely of 0’s so each 0 is converted into a number which
is at least 2.

Now if two subsets u, v were adjacent, then they will differ in each coordi-
nate. The coordinates of u which were 1 would differ from the corresponding
coordinates of v which would be all at least 2. The coordinates of u which
were 0 for u but 1 for v, would all become at least 2 and hence would differ
from the corresponding coordinates for v. The coordinates which are 0 for
both u and v would differ since as u 6= v, their strings are different, following
which the numbers expressed in the binary base coming from their strings
are different, following which the corresponding decimal base equivalents of
those numbers are different. Finally, if u, v are not adjacent then they will
have at least one 1 in the same coordinate after encoding.

Thus we have a valid encoding in n coordinates, and so pdimGn ≤ n.

4 Representation number

For a finite graph G, with vertices v1, . . . , vn, a representation of G modulo
m is a set {a1, . . . , an} of distinct, non-negative integers, 0 ≤ ai < m
satisfying gcd(ai − aj ,m) = 1 if and only if vi is adjacent to vj . The
representation number of G, denoted by Rep(G), is the smallest m such
that G has a representation modulo m. It has been proved in [2] that
Rep(G) is well defined.

We wish to establish an estimate for Rep(Gn). Clearly Rep (G2) = 2 since
we may take a1 = 0, a2 = 1.
The general lower bound follows directly from the following result from [3].
In this section, p1 = 2, p2 = 3, . . . denotes the sequence of primes in the
natural order.
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Proposition 4.1. If G is a reduced graph then Rep(G) ≥ pipi+1 · · · pi+d−1,
where pi is any prime satisfying pi ≥ χ(G) and d = pdimG.
Corollary 4.2. Let n ≥ 3 and pi be the smallest prime ≥ n. Then,

Rep(Gn) ≥ pipi+1 · · · pi+n−1.

Proof. Note that it has already been proved in Lemma 1.4 that Gn is a
reduced graph and in Lemma 1.2, Theorem 3.2 that χ(Gn) = pdim(Gn) =
n. Now apply Proposition 4.1.

From a general upper bound for all graphs (Theorem 3, [9]) we get

Rep(Gn) ≤ pipi+1 · · · pi+2n−3

where pi is the smallest prime ≥ 2n − 3. We improve this result for Gn in
the following theorem.
Theorem 4.3. Let n ≥ 3 and pk be the smallest prime ≥ 2n − 1. Then,

Rep(Gn) ≤ pkpk+1 · · · pk+n−1.

Proof. Let X = {x1, . . . , xn}. Consider each vertex u of X as a string of 0’s
and 1’s where the jth coordinate is 1 if and only if xj is in the corresponding
subset. In other words, identify u with the n-tuple having jth coordinate
χu(xj), where χu is the characteristic function with respect to u. Also let û
be the decimal value of the string identified with u considered as a number
in the binary base. Now a representation of Gn can be obtained by encoding
any vertex u as the unique solution modulo pk · · · pk+n−1 (call it u∗) of the
system x ≡ χ∗u(xj) (mod pj), k ≤ j ≤ k + n − 1, where χ∗u(xj) = 1 if
χu(xj) = 1 and χ∗u(xj) = û + 1 otherwise. Note that each 0 is converted
into a number which is at least 2 and at most 2n − 1, since the largest û
with u having a zero is 2n − 2. Since χ∗u(xj) takes values between 1 and
2n − 1, these are distinct modulo (2n − 1).

This encoding establishes the requisite upper bound. If u and v were adja-
cent then for each pj , the difference u∗− v∗ 6≡ 0 (mod pj) by our encoding.
This is clear if xj is in one of the vertices and not in the other. In case,
xj is in neither vertex, then as by our choice of k, both û + 1, v̂ + 1 are
distinct and ∈ {2, . . . , pj}, so they are different in Zpj

as well, following
which u∗ ≡ û + 1 6≡ v̂ + 1 ≡ v∗ (mod pj). So gcd(u∗ − v∗, pj) = 1 and
hence gcd(u∗ − v∗,∏ pj) = 1. If, on the other hand, u and v were not ad-
jacent then there exists some pj such that u∗ ≡ v∗ ≡ 1 (mod pj). Hence,
gcd(u∗ − v∗, pj) 6= 1, and so, gcd(u∗ − v∗,∏ pj) 6= 1.
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The gap between the upper bound and the lower bound is significantly large.
We have verified by hand that for n = 3, n = 4 the actual value of Rep(Gn)
coincides with the lower bound obtained by Evans et al (Proposition 4.1). In
other words, Rep(G3) = 3 · 5 · 7 = 105 and Rep(G4) = 5 · 7 · 11 · 13 = 5005.
A representation of G3 can be obtained by labelling each vertex as the
product of the numbers in the set corresponding to that vertex, as shown
in the graph of G3 of Figure 1 (see Section 1). Representations of G3 and
G4 are given in Table 1. It would be interesting to find Rep(Gn) for a
general n.

Table 1: Representations of G3 and G4

Set Labelling for G3
{x1} 3
{x2} 5
{x3} 7
{x1, x2} 3 · 5 = 15
{x1, x3} 3 · 7 = 21
{x2, x3} 5 · 7 = 35

Set Labelling for G4
{x1} 5
{x2} 7
{x3} 11
{x4} 13
{x1, x2} 2 · 5 · 7 = 70
{x1, x3} 2 · 5 · 11 = 110
{x1, x4} 5 · 13 = 65
{x2, x3} 7 · 11 = 77
{x2, x4} 2 · 7 · 13 = 182
{x3, x4} 11 · 13 = 143
{x1, x2, x3} 5 · 7 · 11 = 385
{x1, x2, x4} 5 · 7 · 13 = 455
{x1, x3, x4} 5 · 11 · 13 = 715
{x2, x3, x4} 7 · 11 · 13 = 1001
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