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Abstract:  The complete 3-uniform hypergraph of order v has a set V
of size v as its vertex set and the set of all 3-element subsets of V' as its
edge set. A loose 4-cycle in such a hypergraph has vertex set {v1,va,v3,
V4, V5,06, U7,8} C V and edge set {{Ul,UQ,U3}, {vs, v4,v5}, {v5,v6, 07},
{vr,vs,v1}}. We give necessary and sufficient conditions for the existence
of a decomposition of the complete 3-uniform hypergraph of order v into
isomorphic copies of a loose 4-cycle.

1 Introduction

A commonly studied problem in combinatorics concerns decompositions of
graphs into edge-disjoint subgraphs. A decomposition of a graph K is a set
A = {G1,Ga,...,Gs} of pairwise edge-disjoint subgraphs of K such that
E(G1)UE(G2)U---UE(Gs) = E(K). If each element of A is isomorphic to a
fixed graph G, then A is called a G-decomposition of K. A G-decomposition
of K, is also known as a G-design of order v. A Kj-design of order v is
an S(2, k,v)-design or a Steiner system. An S(2, k,v)-design is also known
as a balanced incomplete block design of index 1 or a (v,k,1)-BIBD. The
problem of determining all v for which there exists a G-design of order v is
of special interest (see [1] for a survey).
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The notion of decompositions of graphs naturally extends to decompositions
of uniform hypergraphs. A hypergraph H consists of a finite nonempty set
V of vertices and a set E = {ej,ea,...,e,} of nonempty subsets of V
called hyperedges. If for each e € E we have |e| = t, then H is said to
be t-uniform. Thus graphs are 2-uniform hypergraphs. The complete ¢-
uniform hypergraph on the vertex set V' has the set of all t-element subsets
of V as its edge set and is denoted by K‘(/t). If v = |V, then K is called
the complete t-uniform hypergraph of order v and is used to denote any
hypergraph isomorphic to K‘(/t). A decomposition of a hypergraph K is a
set A = {Hy, Ho,...,Hs} of pairwise edge-disjoint subgraphs of K such
that F(H,) U E(Hy) U ---U E(H,) = E(K). If each element H; of A is
isomorphic to a fixed hypergraph H, then H; is called an H-block, and A
is called an H-decomposition of K. If there exists an H-decomposition of
K, then we may simply state that H decomposes K. An H-decomposition
of the complete t-uniform hypergraph of order v is called an H-design of
order v. The problem of determining all v for which there exists an H-
design of order v is called the spectrum problem for H-designs.

AK ,it)—design of order v is a generalization of Steiner systems and is equiv-
alent to an S(t, k, v)-design. A summary of results on S(¢, k, v)-designs ap-
pears in [7]. Keevash [13] has recently shown that for all ¢ and k the obvious
necessary conditions for the existence of an S(¢, k, v)-design are sufficient for
sufficiently large values of v. Similar results were obtained by Glock, Kiihn,
Lo, and Osthus [8, 9] and extended to include the corresponding asymptotic
results for H-designs of order v for all uniform hypergraphs H. These re-
sults for t-uniform hypergraphs mirror the celebrated results of Wilson [19]
for graphs. Although these asymptotic results assure the existence of H-
designs for sufficiently large values of v for any uniform hypergraph H, the
spectrum problem has been settled for very few hypergraphs of uniformity
larger than 2.

In the study of graph decompositions, a fair amount of the focus has been
on G-decompositions of K, where G is a graph with a relatively small
number of edges (see [1] and [6] for known results). Some authors have
investigated the corresponding problem for 3-uniform hypergraphs. For ex-
ample, in [4], the spectrum problem is settled for all 3-uniform hypergraphs
on 4 or fewer vertices. In [16], Mathon and Street give necessary conditions
for the existence of decompositions of K,ES) into copies of the projective
plane PG(2,2) and into copies of the affine plane AG(2,3). They give suf-
ficient conditions for several infinite classes in both cases. More recently,
the spectrum problem was settled in [5] for all 3-uniform hypergraphs with
at most 6 vertices and at most 3 edges. In [5], they also settle the spectrum
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Figure 1: The loose 4-cycle LCy denoted H [v1,v2,v3, Vg, U5, Vg, U7, Us].

problem for the 3-uniform hypergraph of order 6 whose edges form the lines
of the Pasch configuration. Authors have also considered H-designs where
H is a 3-uniform hypergraph whose edge set is defined by the faces of a
regular polyhedron. Let T, O, and I denote the tetrahedron, the octahe-
dron, and the icosahedron hypergraphs, respectively. The hypergraph 7T is
the same as K f’), and its spectrum was settled in 1960 by Hanani [10]. In
another paper [11], Hanani settled the spectrum problem for O-designs and
gave necessary conditions for the existence of I-designs. Perhaps the best
known general result on decompositions of complete t-uniform hypergraphs
is Baranyai’s result [3] on the existence of 1-factorizations of Kffli for all
positive integers m. There are, however, several articles on decompositions
of complete t-uniform hypergraphs (see [2] and [17]) and of t-uniform ¢-
partite hypergraphs (see [14] and [18]) into variations on the concept of
a Hamilton cycle. There are also several results on decompositions of 3-
uniform hypergraphs into structures known as Berge cycles with a given
number of edges (see for example [12] and [15]). We note however that the
Berge cycles in these decompositions are not required to be isomorphic.

In this paper we are interested in the spectrum problem for H-designs
where H is the hypergraph known as a loose 4-cycle. A loose m-cycle in
KS’), denoted LC,,, is a hypergraph with vertex set {v1,va,...,v2,} and
edge set {{vgi,l,vgi,vmﬂ} 1<i<m-— 1} U{vam—1, Vam, v1 }. The spec-
trum problem for a loose 3-cycle was settled by Bryant, Herke, Maenhaut,
and Wannasit in [5]. Let H[v1,v2,vs,v4, U5, Vg, V7, V] denote the loose 4-
cycle with vertex set {vy,v2,v3,v4,v5,v6,v7,v8} and edge set {{vl, vg, U3},
{vs,v4,v5}, {vs,v6, 07}, {v7, Vs, ful}}. This hypergraph is shown in Figure 1.
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1.1 Additional notation and terminology

If @ and b are integers, we define [a,b] to be {r € Z : a < r < b}. Let Z,
denote the group of integers modulo n. We next define some notation for
certain types of 3-uniform hypergraphs.

Let Uy, Us,Us be pairwise disjoint sets. The hypergraph with vertex set
Uy UUs U Us and edge set consisting of all 3-element sets having exactly

one vertex in each of Uy, Us, Us is denoted by K 5’1 )7U2,U3. The hypergraph
with vertex set Uy UUs and edge set consisting of all 3-element sets having
at most 2 vertices in each of Uy, Us is denoted by L$1)7U2. If |U;| = u; for
i €{1,2,3}, we may use K&?%M,M to denote any hypergraph that is isomor-
phic to K I(ng )’UZ’Ug and LSﬁ’,uZ to denote any hypergraph that is isomorphic

(3)
to LUl,UQ'

If H' is a subhypergraph of H, then H \ H’ denotes the hypergraph ob-
tained from H by deleting the edges of H’. We may refer to H \ H' as the
hypergraph H with a hole H'. The vertices in H' are called the vertices in
the hole.

2 Some small examples

We give several examples of LCy-decompositions that are used in proving
our main result.

Example 2.1. Let V(Ké?’)) = Zg and let
By = {H[0,5,1,7,2,3,6,4]},
By = {H[O, 1,2,3,4,5,6,7], H[0,7,2,1,4,3,6,5], H[0,5,2,7,4,1,6, 3],
H[1,2,3,4,5,6,7,0], H[1,0,3,2,5,4,7,6], H[1,6,3,0,5,277,4]}.

Then an LCy-decomposition of K ég) consists of the orbit of the H-block in
Bj under the action of the map j — j+1 (mod 8) along with the H-blocks
in BQ.

Example 2.2. Let V(Ké3)> = Z7 U {001,002} and let

B = {H[0017002,0,5,274,3,6], H[2,001,0,3,002,6, 174]a
H[4,3,0,003,1,001,2,5]}.
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Then an LC4-decomposition of Ké?’) consists of the orbits of the H-blocks
in B under the action of the map oo; — oo;, for ¢ € {1,2}, and j — j + 1
(mod 7).

Example 2.3. Let V(Kg)) = Z1o and let
B ={H[0,8,1,3,2,9,5,7], H[4,0,2,8,6,3,7,9], H[0,1,3,4,8,2,9,5]}.

Then an LC4-decomposition of K ﬁ)’)) consists of the orbits of the H-blocks
in B under the action of the map j — j+ 1 (mod 10).

Example 2.4. Let V(Kg)) = Z11 U {oo} and let

B ={H[9,1,0,00,5,4,3,6], H[2,5,0,00,3,7,1,4],
H[07 007 1)57 2747 9’ 6]7 H[67O7 17007 8? 47 97 2]7
H[8,1,0,00,2,6,4,3]}.

Then an LCy-decomposition of K S) consists of the orbits of the H-blocks
in B under the action of the map oo — oo and j +— j+ 1 (mod 11).

Example 2.5. Let V(Kﬁ)) = Z13 U{oo} and let

B={H[4,12,8,11,1,0,00,2], H[0,9,11,6,4,8, 00, 3],
HI[1,4,10,5,0,7,00,6], H[0,1,2,3,8,4,9,10],
H[8,11,6,4,3,0,7,1], H[2,0,8,12,7,9,10,3],

H[1,5,4,11,2,0,10,8]}.

Then an LC4-decomposition of K S) consists of the orbits of the H-blocks
in B under the action of the map co — oo and j — j + 1 (mod 13).

Example 2.6. Let V(Lg%) = Z1¢ with vertex partition {{0,2,4,6,8, 10,
12,14}, {1,3,5,7,9,11,13,15} } and let

B ={H|0,5,1,2,8,14,15,11], H[0,2,5,9,6,8,13,7],
H[1,6,0,4,3,10,15,12], H[0,8,1,2,10,4,7,5],
HI0,14,1,10,3,11,6,5], H[7,0,3,8,13,4, 1, 14],

H[1,0,2,5,3,7,12,4]}.

Then an LCy-decomposition of Lg’é consists of the orbits of the H-blocks
in B under the action of the map j — j+ 1 (mod 16).
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Example 2.7. Let V(Lg% U Kf’g’s) = Z16 U {00} with vertex partition
{{oc}, {0,2,4,6,8,10,12,14}, {1,3,5,7,9,11,13,15} } and let

B ={HI7,0,1,11,2,3,00,10], H[5,0,1,13,2,9, 00, 10],
H[0,2,5,9,6,8,13,7], H[1,6,0,4,3,10,15,12],
H[0,8,1,2,10,4,7,5], H[0,14,1,10,3,11,6, 5],

HI[7,0,3,8,13,4,1,14], H[1,0,2,5,3,7,12,4] }.

Then an LC4-decomposition of Lg’é UK Sg,S consists of the orbits of the
H-blocks in B under the action of the map co — oo and j — j+1 (mod 16).
Example 2.8. Let V(Kégg) = Z16 U {001,002} with vertex partition
{{o01, 002}, {0,2,4,6,8,10,12,14}, {1,3,5,7,9,11,13,15} } and let

B = {H[o001,1,0,3,002,9,8,11], H[001,5,0,7,002,13,8,15] }.
Then an LC4-decomposition of K. 5?8)’8 consists of the orbits of the H-blocks
in B under the action of the map oo; — oo;, for ¢ € {1,2}, and j — j + 1
(mod 16).
Example 2.9. Let V(Kg)\Kf’)) = ZgU{001, 009,003,004} with coq, ...,
004 being the vertices in the hole and let

= {H[2 0747003757670017002]3 H[07275a 00274700470017003]a

H[0,2,003,3,002,4,004, 1], H[2,0,001,4, 7,004,003, 5],
H([3,0,009,5,7,4,004,1]},

= {H[2,1,0,001,4,5,6,002], H[3,2,1,001,5,6,7, 003,
HI[4,3,2,001,6,7,0,000], H[5,4,3,001,7,0,1,00],
H[Sl00037457004],H[421003,560004],
HI5,3,2,003,6,7,1,004], H[6,4,3,003,7,0,2, 004,
HI[0,5,1,6,2,7,3,4], H[4,0,1,5,2,6,3,7), H[6,1,0,3,2,5,4,7],
H[4,1,5,2,6,3,7,0], H[0,4,5,1,6,2,7,3], H[7,2,1,4,3,6,5,0]}.

Then an LCy-decomposition of K \K consists of the orbits of the H-
blocks in By under the action of the map oo; — 00;, for i € [1,4], and
j—j+1 (mod 8) along with the H-blocks in Bs.

Example 2.10. Let V(K(g)\K ) = Zsg U {001, 009, 003, 004, 005, 006 }
with co1,...,006 being the vertices in the hole and let
B, = {H[OO1707002727003747OQ5u6]7 H[OO6777005757OO4737002u 1]7
H[001,0,003, 7; 006763 04, 1]7 H[OOG,001,0,2, 0037004,577]7
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HO 001,17002,4,004,5,005], H[O,OO2,17003,4,OO5,5,006],

=

= {

[2,1,0,001,4,5,6,003],
[4,3,2,001,6,7,0,00],
[3,1,0,003,4, 5, 7, 004,
[5,3,2,003,6,7,1,004],
[3,2,0,005,4,6, 7 00g],
[5,4,2,005,6,0,1, 00g],
[0, H[4,

m::mmmm::

0,5,1,6,2,7,3,4],

[
H[O 03, 1, 1, 4, o o/: ¥ 5, 004],
[005, 002,0,4,1,3,5, 7]}7

H[O,001727002,47OO4,6,3],

[3,2,1,001,5,6,7,002],
[5,4,3,001,7,0,1,002],
[4,2,1,003,5,6,0,004],
[6, 4,3, 003, 7,0, 2, 004,
[4,3,1,005,5,7, O o0g],
[6,5,3,005,7,1,2,006],

,5,2,6,3,7,0]}.

Then an LC4-decomposition of K(g)\Ké ) consists of the orbits of the H-
blocks in B; under the action of the map oo; — ooy, for ¢ € [1,6], and
jr—j+1 (mod 8) along with the H-blocks in Bs.

3 Main results

We begin by giving necessary conditions for the existence of an LCy-decom-

position of K 1(,3)

. An obvious necessary condition is that 4 must divide the
number of edges in Ki(,g)7 and thus we must have v = 0, 1, 2, 4, or 6
(mod 8). Since K {3) and K2(3) contain no edges, it is vacuously true that
LCy decomposes K, () and Ké?’). Also since LCYy has order 8, there is no

LCy-decomposition of K, () or Ké?’). Thus we have the following.

Lemma 1. There exists an LCy-decomposition of Kz(,s) only if v=0, 1,
2,4, or 6 (mod 8) and v & {4,6}.

We will show that the above conditions are sufficient by showing how to
construct LC4-decompositions of Kq(,g) forallv =0, 1, 2, 4, or 6 (mod 8)
with v > 8. Our constructions are dependent on the many small examples
given in Section 2.

We begin by proving a lemma that is fundamental to our constructions.

Lemma 2. Let n, x, and r be nonnegative integers such that nx +r > 3.
There exists a decomposition of K£?+T that is comprised of isomorphic

copies of each of the following under the given conditions:
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K® if 2 =0,

K& if 2 >1,

KO NKD if 2> 2,
K ULS, if o> 2,
K$) . if x> 3.

Proof. If © € {0,1}, the decomposition is trivial. Similarly, if n = 0,
the result is trivial because K\¥ = K,(L‘?T Kﬁ)—” while K(3)r \ K,
Kﬁ?’,)m U L,(f,)n, and Kf’%n are all empty (i.e., contain no edges). For the
remainder of the proof, we assume that x > 2 and n > 1.

Let Vb, Vi,...,V, be pairwise disjoint sets of vertices with |Vy| = r and
|[Vi| = |[V2| = --- = |V;] = n. Then, the result follows from the fact that the
complete 3-uniform hypergraph on the vertex set Vo U V3 U---UV,, which
is nx + r vertices, can be viewed as the (edge-disjoint) union

Ky, U U (K‘(/S)uvo (3)) v U <K1(/i),m,v UL(V%-),VJ-)

2<i<zx 1<i<j<z

3

1<i<j<k<z

We now give our main result.

Theorem 3. There exists an LCy-decomposition of K753) if and only if
v=0,1,2,4, or 6 (mod 8) and v & {4,6}.

Proof. The necessary conditions for the existence of an LC4-decomposition
of K§? are established in Lemma 1. Thus we need only to establish their
sufficiency. Let v = 8x + r where > 1 and r € {0,1,2,4,6}. By Lemma 2
it suffices to find LC-decompositions of Kéi)r, Ké?jr)r \ K(S) K(S)g U Lg’g,
and Kégg. We note that if » € {0,1,2} then K8 \ K is isomorphic
to Kéi’_)r. Also, K(g?s),s is empty, and Ké,g),s decomposes ng& Ké?’g 5, and
K8(38)8 Thus, it suffices to find LC4-decompositions of KE(;?’), Kég) Kl(g),
K3, KD, KD\ KD, KD\ K, K UL, KS9 g, and LY, which
are each Shown to exist in Examples 2.1-2.10. O
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