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Abstract: The complete 3-uniform hypergraph of order v has a set V
of size v as its vertex set and the set of all 3-element subsets of V as its
edge set. A loose 4-cycle in such a hypergraph has vertex set {v1, v2, v3,
v4, v5, v6, v7, v8} ⊆ V and edge set

{
{v1, v2, v3}, {v3, v4, v5}, {v5, v6, v7},

{v7, v8, v1}
}

. We give necessary and sufficient conditions for the existence
of a decomposition of the complete 3-uniform hypergraph of order v into
isomorphic copies of a loose 4-cycle.

1 Introduction

A commonly studied problem in combinatorics concerns decompositions of
graphs into edge-disjoint subgraphs. A decomposition of a graph K is a set
∆ = {G1, G2, . . . , Gs} of pairwise edge-disjoint subgraphs of K such that
E(G1)∪E(G2)∪· · ·∪E(Gs) = E(K). If each element of ∆ is isomorphic to a
fixed graph G, then ∆ is called a G-decomposition of K. A G-decomposition
of Kv is also known as a G-design of order v. A Kk-design of order v is
an S(2, k, v)-design or a Steiner system. An S(2, k, v)-design is also known
as a balanced incomplete block design of index 1 or a (v, k, 1)-BIBD. The
problem of determining all v for which there exists a G-design of order v is
of special interest (see [1] for a survey).
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The notion of decompositions of graphs naturally extends to decompositions
of uniform hypergraphs. A hypergraph H consists of a finite nonempty set
V of vertices and a set E = {e1, e2, . . . , em} of nonempty subsets of V
called hyperedges. If for each e ∈ E we have |e| = t, then H is said to
be t-uniform. Thus graphs are 2-uniform hypergraphs. The complete t-
uniform hypergraph on the vertex set V has the set of all t-element subsets

of V as its edge set and is denoted by K
(t)
V . If v = |V |, then K

(t)
v is called

the complete t-uniform hypergraph of order v and is used to denote any

hypergraph isomorphic to K
(t)
V . A decomposition of a hypergraph K is a

set ∆ = {H1, H2, . . . ,Hs} of pairwise edge-disjoint subgraphs of K such
that E(H1) ∪ E(H2) ∪ · · · ∪ E(Hs) = E(K). If each element Hi of ∆ is
isomorphic to a fixed hypergraph H, then Hi is called an H-block, and ∆
is called an H-decomposition of K. If there exists an H-decomposition of
K, then we may simply state that H decomposes K. An H-decomposition
of the complete t-uniform hypergraph of order v is called an H-design of
order v. The problem of determining all v for which there exists an H-
design of order v is called the spectrum problem for H-designs.

A K
(t)
k -design of order v is a generalization of Steiner systems and is equiv-

alent to an S(t, k, v)-design. A summary of results on S(t, k, v)-designs ap-
pears in [7]. Keevash [13] has recently shown that for all t and k the obvious
necessary conditions for the existence of an S(t, k, v)-design are sufficient for
sufficiently large values of v. Similar results were obtained by Glock, Kühn,
Lo, and Osthus [8, 9] and extended to include the corresponding asymptotic
results for H-designs of order v for all uniform hypergraphs H. These re-
sults for t-uniform hypergraphs mirror the celebrated results of Wilson [19]
for graphs. Although these asymptotic results assure the existence of H-
designs for sufficiently large values of v for any uniform hypergraph H, the
spectrum problem has been settled for very few hypergraphs of uniformity
larger than 2.

In the study of graph decompositions, a fair amount of the focus has been
on G-decompositions of Kv where G is a graph with a relatively small
number of edges (see [1] and [6] for known results). Some authors have
investigated the corresponding problem for 3-uniform hypergraphs. For ex-
ample, in [4], the spectrum problem is settled for all 3-uniform hypergraphs
on 4 or fewer vertices. In [16], Mathon and Street give necessary conditions

for the existence of decompositions of K
(3)
v into copies of the projective

plane PG(2, 2) and into copies of the affine plane AG(2, 3). They give suf-
ficient conditions for several infinite classes in both cases. More recently,
the spectrum problem was settled in [5] for all 3-uniform hypergraphs with
at most 6 vertices and at most 3 edges. In [5], they also settle the spectrum
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Figure 1: The loose 4-cycle LC4 denoted H[v1, v2, v3, v4, v5, v6, v7, v8].

problem for the 3-uniform hypergraph of order 6 whose edges form the lines
of the Pasch configuration. Authors have also considered H-designs where
H is a 3-uniform hypergraph whose edge set is defined by the faces of a
regular polyhedron. Let T , O, and I denote the tetrahedron, the octahe-
dron, and the icosahedron hypergraphs, respectively. The hypergraph T is

the same as K
(3)
4 , and its spectrum was settled in 1960 by Hanani [10]. In

another paper [11], Hanani settled the spectrum problem for O-designs and
gave necessary conditions for the existence of I-designs. Perhaps the best
known general result on decompositions of complete t-uniform hypergraphs

is Baranyai’s result [3] on the existence of 1-factorizations of K
(t)
mt for all

positive integers m. There are, however, several articles on decompositions
of complete t-uniform hypergraphs (see [2] and [17]) and of t-uniform t-
partite hypergraphs (see [14] and [18]) into variations on the concept of
a Hamilton cycle. There are also several results on decompositions of 3-
uniform hypergraphs into structures known as Berge cycles with a given
number of edges (see for example [12] and [15]). We note however that the
Berge cycles in these decompositions are not required to be isomorphic.

In this paper we are interested in the spectrum problem for H-designs
where H is the hypergraph known as a loose 4-cycle. A loose m-cycle in

K
(3)
n , denoted LCm, is a hypergraph with vertex set {v1, v2, . . . , v2m} and

edge set
{
{v2i−1, v2i, v2i+1} : 1 ≤ i ≤ m− 1

}
∪ {v2m−1, v2m, v1}. The spec-

trum problem for a loose 3-cycle was settled by Bryant, Herke, Maenhaut,
and Wannasit in [5]. Let H[v1, v2, v3, v4, v5, v6, v7, v8] denote the loose 4-
cycle with vertex set {v1, v2, v3, v4, v5, v6, v7, v8} and edge set

{
{v1, v2, v3},

{v3, v4, v5}, {v5, v6, v7}, {v7, v8, v1}
}

. This hypergraph is shown in Figure 1.
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1.1 Additional notation and terminology

If a and b are integers, we define [a, b] to be {r ∈ Z : a ≤ r ≤ b}. Let Zn

denote the group of integers modulo n. We next define some notation for
certain types of 3-uniform hypergraphs.

Let U1, U2, U3 be pairwise disjoint sets. The hypergraph with vertex set
U1 ∪ U2 ∪ U3 and edge set consisting of all 3-element sets having exactly

one vertex in each of U1, U2, U3 is denoted by K
(3)
U1,U2,U3

. The hypergraph
with vertex set U1 ∪U2 and edge set consisting of all 3-element sets having

at most 2 vertices in each of U1, U2 is denoted by L
(3)
U1,U2

. If |Ui| = ui for

i ∈ {1, 2, 3}, we may use K
(3)
u1,u2,u3 to denote any hypergraph that is isomor-

phic to K
(3)
U1,U2,U3

and L
(3)
u1,u2 to denote any hypergraph that is isomorphic

to L
(3)
U1,U2

.

If H ′ is a subhypergraph of H, then H \ H ′ denotes the hypergraph ob-
tained from H by deleting the edges of H ′. We may refer to H \H ′ as the
hypergraph H with a hole H ′. The vertices in H ′ are called the vertices in
the hole.

2 Some small examples

We give several examples of LC4-decompositions that are used in proving
our main result.

Example 2.1. Let V
(
K

(3)
8

)
= Z8 and let

B1 =
{
H[0, 5, 1, 7, 2, 3, 6, 4]

}
,

B2 =
{
H[0, 1, 2, 3, 4, 5, 6, 7], H[0, 7, 2, 1, 4, 3, 6, 5], H[0, 5, 2, 7, 4, 1, 6, 3],

H[1, 2, 3, 4, 5, 6, 7, 0], H[1, 0, 3, 2, 5, 4, 7, 6], H[1, 6, 3, 0, 5, 2, 7, 4]
}
.

Then an LC4-decomposition of K
(3)
8 consists of the orbit of the H-block in

B1 under the action of the map j 7→ j+1 (mod 8) along with the H-blocks
in B2.

Example 2.2. Let V
(
K

(3)
9

)
= Z7 ∪ {∞1,∞2} and let

B =
{
H[∞1,∞2, 0, 5, 2, 4, 3, 6], H[2,∞1, 0, 3,∞2, 6, 1, 4],

H[4, 3, 0,∞2, 1,∞1, 2, 5]
}
.
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Then an LC4-decomposition of K
(3)
9 consists of the orbits of the H-blocks

in B under the action of the map ∞i 7→ ∞i, for i ∈ {1, 2}, and j 7→ j + 1
(mod 7).

Example 2.3. Let V
(
K

(3)
10

)
= Z10 and let

B =
{
H[0, 8, 1, 3, 2, 9, 5, 7], H[4, 0, 2, 8, 6, 3, 7, 9], H[0, 1, 3, 4, 8, 2, 9, 5]

}
.

Then an LC4-decomposition of K
(3)
10 consists of the orbits of the H-blocks

in B under the action of the map j 7→ j + 1 (mod 10).

Example 2.4. Let V
(
K

(3)
12

)
= Z11 ∪ {∞} and let

B =
{
H[9, 1, 0,∞, 5, 4, 3, 6], H[2, 5, 0,∞, 3, 7, 1, 4],

H[0,∞, 1, 5, 2, 4, 9, 6], H[6, 0, 1,∞, 8, 4, 9, 2],

H[8, 1, 0,∞, 2, 6, 4, 3]
}
.

Then an LC4-decomposition of K
(3)
12 consists of the orbits of the H-blocks

in B under the action of the map ∞ 7→ ∞ and j 7→ j + 1 (mod 11).

Example 2.5. Let V
(
K

(3)
14

)
= Z13 ∪ {∞} and let

B =
{
H[4, 12, 8, 11, 1, 0,∞, 2], H[0, 9, 11, 6, 4, 8,∞, 3],

H[1, 4, 10, 5, 0, 7,∞, 6], H[0, 1, 2, 3, 8, 4, 9, 10],

H[8, 11, 6, 4, 3, 0, 7, 1], H[2, 0, 8, 12, 7, 9, 10, 3],

H[1, 5, 4, 11, 2, 0, 10, 8]
}
.

Then an LC4-decomposition of K
(3)
14 consists of the orbits of the H-blocks

in B under the action of the map ∞ 7→ ∞ and j 7→ j + 1 (mod 13).

Example 2.6. Let V
(
L
(3)
8,8

)
= Z16 with vertex partition

{
{0, 2, 4, 6, 8, 10,

12, 14}, {1, 3, 5, 7, 9, 11, 13, 15}
}

and let

B =
{
H[0, 5, 1, 2, 8, 14, 15, 11], H[0, 2, 5, 9, 6, 8, 13, 7],

H[1, 6, 0, 4, 3, 10, 15, 12], H[0, 8, 1, 2, 10, 4, 7, 5],

H[0, 14, 1, 10, 3, 11, 6, 5], H[7, 0, 3, 8, 13, 4, 1, 14],

H[1, 0, 2, 5, 3, 7, 12, 4]
}
.

Then an LC4-decomposition of L
(3)
8,8 consists of the orbits of the H-blocks

in B under the action of the map j 7→ j + 1 (mod 16).
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Example 2.7. Let V
(
L
(3)
8,8 ∪ K

(3)
1,8,8

)
= Z16 ∪ {∞} with vertex partition

{
{∞}, {0, 2, 4, 6, 8, 10, 12, 14}, {1, 3, 5, 7, 9, 11, 13, 15}

}
and let

B =
{
H[7, 0, 1, 11, 2, 3,∞, 10], H[5, 0, 1, 13, 2, 9,∞, 10],

H[0, 2, 5, 9, 6, 8, 13, 7], H[1, 6, 0, 4, 3, 10, 15, 12],

H[0, 8, 1, 2, 10, 4, 7, 5], H[0, 14, 1, 10, 3, 11, 6, 5],

H[7, 0, 3, 8, 13, 4, 1, 14], H[1, 0, 2, 5, 3, 7, 12, 4]
}
.

Then an LC4-decomposition of L
(3)
8,8 ∪ K

(3)
1,8,8 consists of the orbits of the

H-blocks in B under the action of the map∞ 7→ ∞ and j 7→ j+1 (mod 16).

Example 2.8. Let V
(
K

(3)
2,8,8

)
= Z16 ∪ {∞1,∞2} with vertex partition

{
{∞1,∞2}, {0, 2, 4, 6, 8, 10, 12, 14}, {1, 3, 5, 7, 9, 11, 13, 15}

}
and let

B =
{
H[∞1, 1, 0, 3,∞2, 9, 8, 11], H[∞1, 5, 0, 7,∞2, 13, 8, 15]

}
.

Then an LC4-decomposition of K
(3)
2,8,8 consists of the orbits of the H-blocks

in B under the action of the map ∞i 7→ ∞i, for i ∈ {1, 2}, and j 7→ j + 1
(mod 16).

Example 2.9. Let V
(
K

(3)
12 \K

(3)
4

)
= Z8∪{∞1,∞2,∞3,∞4} with∞1, . . . ,

∞4 being the vertices in the hole and let

B1 =
{
H[2, 0, 4,∞3, 5, 6,∞1,∞2], H[0, 2, 5,∞2, 4,∞4,∞1,∞3],

H[0, 2,∞3, 3,∞2, 4,∞4, 1], H[2, 0,∞1, 4, 7,∞4,∞3, 5],

H[3, 0,∞2, 5, 7, 4,∞4, 1]
}
,

B2 =
{
H[2, 1, 0,∞1, 4, 5, 6,∞2], H[3, 2, 1,∞1, 5, 6, 7,∞2],

H[4, 3, 2,∞1, 6, 7, 0,∞2], H[5, 4, 3,∞1, 7, 0, 1,∞2],

H[3, 1, 0,∞3, 4, 5, 7,∞4], H[4, 2, 1,∞3, 5, 6, 0,∞4],

H[5, 3, 2,∞3, 6, 7, 1,∞4], H[6, 4, 3,∞3, 7, 0, 2,∞4],

H[0, 5, 1, 6, 2, 7, 3, 4], H[4, 0, 1, 5, 2, 6, 3, 7], H[6, 1, 0, 3, 2, 5, 4, 7],

H[4, 1, 5, 2, 6, 3, 7, 0], H[0, 4, 5, 1, 6, 2, 7, 3], H[7, 2, 1, 4, 3, 6, 5, 0]
}
.

Then an LC4-decomposition of K
(3)
12 \K

(3)
4 consists of the orbits of the H-

blocks in B1 under the action of the map ∞i 7→ ∞i, for i ∈ [1, 4], and
j 7→ j + 1 (mod 8) along with the H-blocks in B2.

Example 2.10. Let V
(
K

(3)
14 \K

(3)
6

)
= Z8 ∪ {∞1,∞2,∞3,∞4,∞5,∞6}

with ∞1, . . . ,∞6 being the vertices in the hole and let

B1 =
{
H[∞1, 0,∞2, 2,∞3, 4,∞5, 6], H[∞6, 7,∞5, 5,∞4, 3,∞2, 1],

H[∞1, 0,∞3, 7,∞6, 6,∞4, 1], H[∞6,∞1, 0, 2,∞3,∞4, 5, 7],
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H[0,∞1, 1,∞2, 4,∞4, 5,∞5], H[0,∞2, 1,∞3, 4,∞5, 5,∞6],

H[0,∞3, 1,∞1, 4,∞6, 5,∞4], H[0,∞1, 2,∞2, 4,∞4, 6, 3],

H[∞5,∞2, 0, 4, 1, 3, 5, 7]
}
,

B2 =
{
H[2, 1, 0,∞1, 4, 5, 6,∞2], H[3, 2, 1,∞1, 5, 6, 7,∞2],

H[4, 3, 2,∞1, 6, 7, 0,∞2], H[5, 4, 3,∞1, 7, 0, 1,∞2],

H[3, 1, 0,∞3, 4, 5, 7,∞4], H[4, 2, 1,∞3, 5, 6, 0,∞4],

H[5, 3, 2,∞3, 6, 7, 1,∞4], H[6, 4, 3,∞3, 7, 0, 2,∞4],

H[3, 2, 0,∞5, 4, 6, 7,∞6], H[4, 3, 1,∞5, 5, 7, 0,∞6],

H[5, 4, 2,∞5, 6, 0, 1,∞6], H[6, 5, 3,∞5, 7, 1, 2,∞6],

H[0, 5, 1, 6, 2, 7, 3, 4], H[4, 1, 5, 2, 6, 3, 7, 0]
}
.

Then an LC4-decomposition of K
(3)
14 \K

(3)
6 consists of the orbits of the H-

blocks in B1 under the action of the map ∞i 7→ ∞i, for i ∈ [1, 6], and
j 7→ j + 1 (mod 8) along with the H-blocks in B2.

3 Main results

We begin by giving necessary conditions for the existence of an LC4-decom-

position of K
(3)
v . An obvious necessary condition is that 4 must divide the

number of edges in K
(3)
v , and thus we must have v ≡ 0, 1, 2, 4, or 6

(mod 8). Since K
(3)
1 and K

(3)
2 contain no edges, it is vacuously true that

LC4 decomposes K
(3)
1 and K

(3)
2 . Also since LC4 has order 8, there is no

LC4-decomposition of K
(3)
4 or K

(3)
6 . Thus we have the following.

Lemma 1. There exists an LC4-decomposition of K
(3)
v only if v ≡ 0, 1,

2, 4, or 6 (mod 8) and v 6∈ {4, 6}.

We will show that the above conditions are sufficient by showing how to

construct LC4-decompositions of K
(3)
v for all v ≡ 0, 1, 2, 4, or 6 (mod 8)

with v ≥ 8. Our constructions are dependent on the many small examples
given in Section 2.

We begin by proving a lemma that is fundamental to our constructions.

Lemma 2. Let n, x, and r be nonnegative integers such that nx + r ≥ 3.

There exists a decomposition of K
(3)
nx+r that is comprised of isomorphic

copies of each of the following under the given conditions:
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• K
(3)
r if x = 0,

• K
(3)
n+r if x ≥ 1,

• K
(3)
n+r \K(3)

r if x ≥ 2,

• K
(3)
r,n,n ∪ L

(3)
n,n if x ≥ 2,

• K
(3)
n,n,n if x ≥ 3.

Proof. If x ∈ {0, 1}, the decomposition is trivial. Similarly, if n = 0,

the result is trivial because K
(3)
r = K

(3)
n+r = K

(3)
nx+r while K

(3)
n+r \ K(3)

r ,

K
(3)
r,n,n ∪ L

(3)
n,n, and K

(3)
n,n,n are all empty (i.e., contain no edges). For the

remainder of the proof, we assume that x ≥ 2 and n ≥ 1.

Let V0, V1, . . . , Vx be pairwise disjoint sets of vertices with |V0| = r and
|V1| = |V2| = · · · = |Vx| = n. Then, the result follows from the fact that the
complete 3-uniform hypergraph on the vertex set V0 ∪ V1 ∪ · · · ∪ Vx, which
is nx + r vertices, can be viewed as the (edge-disjoint) union

K
(3)
V1∪V0

∪
⋃

2≤i≤x

(
K

(3)
Vi∪V0

\K(3)
V0

)
∪

⋃

1≤i<j≤x

(
K

(3)
V0,Vi,Vj

∪ L
(3)
Vi,Vj

)

∪
⋃

1≤i<j<k≤x

(
K

(3)
Vi,Vj ,Vk

)
.

We now give our main result.

Theorem 3. There exists an LC4-decomposition of K
(3)
v if and only if

v ≡ 0, 1, 2, 4, or 6 (mod 8) and v 6∈ {4, 6}.

Proof. The necessary conditions for the existence of an LC4-decomposition

of K
(3)
v are established in Lemma 1. Thus we need only to establish their

sufficiency. Let v = 8x+ r where x ≥ 1 and r ∈ {0, 1, 2, 4, 6}. By Lemma 2

it suffices to find LC4-decompositions of K
(3)
8+r, K

(3)
8+r \K

(3)
r , K

(3)
r,8,8 ∪ L

(3)
8,8,

and K
(3)
8,8,8. We note that if r ∈ {0, 1, 2} then K

(3)
8+r \ K

(3)
r is isomorphic

to K
(3)
8+r. Also, K

(3)
0,8,8 is empty, and K

(3)
2,8,8 decomposes K

(3)
4,8,8, K

(3)
6,8,8, and

K
(3)
8,8,8. Thus, it suffices to find LC4-decompositions of K

(3)
8 , K

(3)
9 , K

(3)
10 ,

K
(3)
12 , K

(3)
14 , K

(3)
12 \ K

(3)
4 , K

(3)
14 \ K

(3)
6 , K

(3)
1,8,8 ∪ L

(3)
8,8, K

(3)
2,8,8, and L

(3)
8,8, which

are each shown to exist in Examples 2.1–2.10.

82



References

[1] P. Adams, D. Bryant, and M. Buchanan, A survey on the existence of
G-designs, J. Combin. Des. 16 (2008), 373–410.

[2] R. F. Bailey and B. Stevens, Hamilton decompositions of complete k-
uniform hypergraphs, Discrete Math. 310 (2010), 3088–3095.

[3] Zs. Baranyai, On the factorization of the complete uniform hypergraph,
in: Infinite and finite sets, Colloq. Math. Soc. János Bolyai 10, North-
Holland, Amsterdam, 1975, 91–108.

[4] J.-C. Bermond, A. Germa, and D. Sotteau, Hypergraph-designs, Ars
Combin. 3 (1977), 47–66.

[5] D. Bryant, S. Herke, B. Maenhaut, and W. Wannasit, Decompositions
of complete 3-uniform hypergraphs into small 3-uniform hypergraphs,
Australas. J. Combin. 60 (2014), 227–254.

[6] D. E. Bryant and T. A. McCourt, Existence results for G-designs,
http://wiki.smp.uq.edu.au/G-designs/

[7] C. J. Colbourn and R. Mathon, Steiner systems, in The CRC Hand-
book of Combinatorial Designs, 2nd edition, (Eds. C. J. Colbourn and
J. H. Dinitz), CRC Press, Boca Raton (2007), 102–110.
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