BULETIN of The

Volume 87
Octoher 2019

NSTIINT: 0f

GOMBNMTORGS and its APPIBIHOXS

Editors-in-Chief: Marco Buratti, Donald Kreher, Tran van Trung

Cyclic and rotational six-cycle systems

Mariusz Meszka* ${ }^{* 1}$ and Alexander Rosa ${ }^{2}$
${ }^{1}$ AGH University of Science and Technology, Kraków, Poland meszka@agh.edu.pl
${ }^{2}$ McMaster University, Hamilton, ON, Canada
rosa@mcmaster.ca

Abstract: We obtain necessary and sufficient conditions for the existence of 2-rotational 6-cycle systems, and enumerate certain classes of 6 -cycle systems of small orders with prescribed types of automorphisms.

1 2-rotational 6-cycle systems

A 6-cycle system of order n, denoted $6 \mathrm{CS}(n)$, is a pair (V, B) where V is an n-set and B is a collection of edge-disjoint cycles of length 6 such that each edge of the complete graph K_{n} on V is contained in exactly one of the 6cycles of B. In other words, a 6 -cycle system of order n is a decomposition of the complete graph K_{n} into 6 -cycles.

There has been recently some interest in 6-cycle systems, mainly because of their connections to algebra and to Steiner triple systems. It is well known that a $6 \mathrm{CS}(n)$ exists if and only if $n \equiv 1$ or $9(\bmod 12)$, see, e.g., [4].

It was shown recently [3] that 6-cycle systems are universal in the sense that every abstract group is the full automorphism group of a 6-cycle system. Therefore the next natural question is: Which permutations of degree n are automorphisms of a $6 \mathrm{CS}(n)$?

[^0]A $6 \mathrm{CS}(n)$ is cyclic if it admits an automorphism permuting the vertices in a single cycle of length n. A $6 \mathrm{CS}(n)$ is k-rotational $(k \geq 1)$ if it admits as an automorphism a permutation containing exactly one fixed point and k cycles of length $\frac{n-1}{k}$ each. Note that we are using the term "cycle" to describe both, a sequence in a graph (or a graph itself) as well as a part of a permutation; no confusion should arise by this, however.

It was shown in [5], [6] that a cyclic $6 \mathrm{CS}(n)$ exists if and only if $n \equiv 1$ or 9 $(\bmod 12), n \geq 13$.

In [1], it was shown that there exists no 1 -rotational $6 \mathrm{CS}(n)$ for any n. It is not difficult to show that, in fact, a k-rotational $6 \mathrm{CS}(n)$ cannot exist for any odd k.

The main purpose of this note is to settle the existence question for 2 rotational $6 \mathrm{CS}(n)$, i.e. those that admit an automorphism having exactly one fixed point and two cycles of length $\frac{n-1}{2}$ each. In [7] which deals more generally with k-cycle systems with an even k, it was established that there exists a 2 -rotational $6 \mathrm{CS}(9)$, and the same can be gleaned also from [2].

Theorem 1.1. A 2-rotational $6 \mathrm{CS}(n)$ exists if an only if $n \equiv 1$ or 9 $(\bmod 12), n \geq 9$.

Proof. Our proof is by direct construction. In what follows we use standard notation x_{i} to denote (x, i).
I. Let $n \equiv 1(\bmod 12), n=12 k+1$. The set of elements $V=\mathbb{Z}_{6 k} \times\{1,2\} \cup$ $\{\infty\}$. Each base cycle below is to be developed modulo $(6 k,-)$.
I.1. k is odd, $k \geq 1$
i) $\left(0_{1}, k_{1},(2 k)_{1},(3 k)_{1},(4 k)_{1},(5 k)_{1}\right)$ (orbit of length k)
ii) $\left(0_{1}, 0_{2},(3 k-1)_{2},(6 k-1)_{2},(3 k)_{2},(3 k)_{1}\right) \quad$ (orbit of length $3 k$)
iii) $\left(0_{1},(2 k)_{2}, 1_{1},(3 k)_{1},(5 k)_{2},(3 k+1)_{1}\right) \quad$ (orbit of length $3 k$)
iv) $\left(\infty, 0_{2}, k_{2},(k+1)_{1},(k-2)_{2}, k_{1}\right)$
v) $\left(0_{2},(4 i+2)_{1},(5 i+2)_{1},(i+2)_{2},(5 i+3)_{1}, i_{2}\right)$, $i=1,2, \ldots, k-1$
vi) $\left(0_{2},(4 k+4 i)_{1},(5 k+8 i-3)_{1},(4 k+4 i-1)_{1}, 1_{2},(k+4 i-2)_{2}\right)$, $i=1,2, \ldots,(k-1) / 2$
vii) $\left(0_{2},(4 k+4 i+1)_{1},(5 k+8 i)_{1},(4 k+4 i)_{1}, 1_{2},(k+4 i)_{2}\right)$, $i=1,2, \ldots,(k-1) / 2$
I.2. k is even, $k \geq 2$.
i) $\left(0_{1}, k_{1},(2 k)_{1},(3 k)_{1},(4 k)_{1},(5 k)_{1}\right)$
(orbit of length k)
ii) $\left(0_{1}, 1_{2},(3 k)_{2}, 0_{2},(3 k+1)_{2},(3 k)_{1}\right)$, (orbit of length $3 k$)
iii) $\left(0_{1},(2 k)_{2}, 1_{1},(3 k)_{1},(5 k)_{2},(3 k+1)_{1}\right)$
(orbit of length $3 k$)
iv) $\left(\infty, 0_{2}, k_{2},(k+2)_{1},(k-1)_{2}, k_{1}\right)$
v) $\left(0_{2},(4 i+2)_{1},(5 i+2)_{1},(i+2)_{2},(5 i+3)_{1}, 1_{2}\right)$,

$$
i=1,2, \ldots, k-1
$$

vi) $\left(0_{2},(4 k+4 i)_{1},(5 k+8 i-3)_{1},(4 k+4 i-1)_{1}, 1_{2},(k+4 i-2)_{2}\right)$,

$$
i=1,2, \ldots,(k-2) / 2
$$

vii) $\left(0_{2},(4 k+4 i+1)_{1},(5 k+8 i)_{1},(4 k+4 i)_{1}, 1_{2},(k+4 i)_{2}\right)$,

$$
i=1,2, \ldots,(k-2) / 2
$$

viii) $\left(0_{1}, 2_{2},(3 k-1)_{2}, 1_{2}, 1_{1},(3 k-2)_{1}\right)$
II. Let $n \equiv 9(\bmod 12), n=12 k+9$. The set of elements $V=\mathbb{Z}_{6 k+4} \times$ $\{1,2\} \cup\{\infty\}$. Each base block cycle is to be developed modulo $(6 k+$ $4,-)$.
II.1. k is even, $k \geq 0$.
i) $\left(0_{1}, 0_{2}, 1_{2},(3 k+3)_{2},(3 k+2)_{2},(3 k+2)_{1}\right) \quad$ (orbit of length $\left.3 k+2\right)$)
ii) $\left(\infty, 0_{2}, 3_{1}, 1_{2}, 2_{1}, 1_{1}\right)$
iii) $\left(0_{2},(4 i+2)_{1},(5 i+3)_{1},(i+3)_{2},(5 i+4)_{1},(i+1)_{2}\right)$, $i=1,2, \ldots, k$
iv) $\left(0_{2},(4 k+4 i+2)_{1},(5 k+8 i)_{1},(4 k+4 i+1)_{1}, 1_{2},(k+4 i-1)_{2}\right)$, $i=1,2, \ldots, k / 2$
v) $\left(0_{2},(4 k+4 i+3)_{1},(5 k+8 i+3)_{1},(4 k+4 i+2)_{1}, 1_{2},(k+4 i+1)_{2}\right)$, $i=1,2, \ldots, k / 2$
II. $2 k$ is odd, $k \geq 1$.
i) $\left(0_{2}, 1_{1},(3 k+3)_{1},(3 k+2)_{2},(3 k+3)_{2}, 1_{2}\right) \quad$ (orbit of length $\left.3 k+2\right)$
ii) $\left(\infty, 0_{2}, 5_{1}, 1_{2}, 4_{1}, 3_{1}\right)$
iii) $\left(0_{2},(4 i+4)_{1},(5 i+5)_{1},(i+3)_{2},(5 i+6)_{1},(i+1)_{2}\right)$, $i=1,2, \ldots, k$
iv) $\left(0_{2}, 2_{1},(k+4)_{1}, 1_{1}, 1_{2},(k+3)_{2}\right)$
v) $\left(0_{2},(4 k+4 i+4)_{1},(5 k+8 i+4)_{1},(4 k+4 i+3)_{1}, 1_{2},(k+4 i+1)_{2}\right)$, $i=1,2, \ldots,(k-1) / 2$
vi) $\left(0_{2},(4 k+4 i+5)_{1},(5 k+8 i+7)_{1},(4 k+4 i+4)_{1}, 1_{2},(k+4 i+3)_{2}\right)$, $i=1,2, \ldots,(k-1) / 2$

Corollary 1.2. A 4-rotational $6 \mathrm{CS}(n)$ exists if and only if $n \equiv 1$ or 9 $(\bmod 12)$.

Proof. Let α be an automorphism of a 2-rotational $6 \mathrm{CS}(n)$ such that it consists of one fixed point and two cycles of length $l=\frac{n-1}{2}$. Since l is even, α^{2} is an automorphism that contains one fixed point and four cycles of length $\frac{n-1}{4}$.

By analogy with Steiner triple systems, let us call a 6-cycle system reverse if it admits as an automorphism an involution with exactly one fixed point.

Corollary 1.3. A reverse $6 \mathrm{CS}(n)$ exists if and only if $n \equiv 1$ or $9(\bmod 12)$.

Proof. If α is an automorphism of a 2-rotational $6 \mathrm{CS}(n)$ that contains one fixed point and two cycles of length $\frac{n-1}{2}$, then $\alpha^{\frac{n-1}{4}}$ is a required involution.

2 Some enumeration results

The 6 -cycle systems appear to be very numerous. But the only enumeration result on $6 \mathrm{CS}(n)$ that we are aware of is in [2] where it is established that there are exactly 640 nonisomorphic $6 \mathrm{CS}(9)$. We have enumerated cyclic $6 \mathrm{CS}(n)$ for $n=13$ and $n=21$. They number 16 , and 378 , respectively. In Tables 1 and 2, we list the base cycle of all 16 cyclic $6 \mathrm{CS}(13)$ and the three base cycles of the 10 lexicographically smallest $6 \mathrm{CS}(21)$; the remaining cyclic $6 \mathrm{CS}(21)$ can be found in

```
http://home.agh.edu.pl/~meszka/2r6cs_13.html
```

We have also enumerated the 2-rotational 6CS(13); there are 384 of them. In Table 3 we list the three base cycles of the 10 lexicographically smallest 2-rotational $6 \mathrm{CS}(13)$; the remaining such systems can be found in
http://home.agh.edu.pl/~meszka/2r6cs_13.html

Table 1 Cyclic 6-cycle systems of order 13.
$V=\mathbb{Z}_{13}$.

1. $(0,1,3,6,2,7)$	9. $(0,1,3,12,4,7)$
2. $(0,1,3,6,2,8)$	10. $(0,1,3,12,4,10)$
3. $(0,1,3,6,11,7)$	11. $(0,1,3,12,5,10)$
4. $(0,1,3,6,11,4)$	12. $(0,1,3,9,5,8)$
5. $(0,1,3,6,12,8)$	13. $(0,1,4,6,2,7)$
6. $(0,1,3,6,12,4)$	14. $(0,1,4,6,2,8)$
7. $(0,1,3,12,2,7)$	15. $(0,1,4,9,11,7)$
8. $(0,1,3,12,2,8)$	16. $(0,1,6,9,11,7)$

The full automorphism group of each of the above systems has order 13, except for systems No. 5, 9, and 16 whose group has order 39 .

Table 2 Cyclic 6-cycle systems of order 21 (the first ten out of 378).

$$
\begin{aligned}
& V=\mathbb{Z}_{21} . \\
& \text { 1. }(0,1,7,8,14,15),(0,2,7,9,14,16),(0,3,7,14,1,10) \\
& \text { 2. }(0,1,7,8,14,15),(0,2,7,9,14,16),(0,3,7,14,1,12) \\
& \text { 3. }(0,1,7,8,14,15),(0,2,7,9,14,16),(0,3,7,14,2,10) \\
& \text { 4. }(0,1,7,8,14,15),(0,2,7,9,14,16),(0,3,7,14,2,13) \\
& \text { 5. }(0,1,7,8,14,15),(0,2,7,9,14,16),(0,3,7,14,4,12) \\
& \text { 6. }(0,1,7,8,14,15),(0,2,7,9,14,16),(0,3,7,14,4,13) \\
& \text { 7. }(0,1,7,8,14,15),(0,2,7,9,14,16),(0,3,7,15,1,10) \\
& \text { 8. }(0,1,7,8,14,15),(0,2,7,9,14,16),(0,3,7,15,1,12) \\
& \text { 9. }(0,1,7,8,14,15),(0,2,7,9,14,16),(0,3,7,15,5,12) \\
& \text { 10. }(0,1,7,8,14,15),(0,2,7,9,14,16),(0,3,7,15,5,14)
\end{aligned}
$$

Each of the 378 cyclic $6 \mathrm{CS}(21)$ has \mathbb{Z}_{21} as its full automorphism group.

Table 3 2-rotational 6-cycle systems of order 13.

```
V= \mathbb{Z}
    1. }(\mp@subsup{0}{1}{},\mp@subsup{2}{1}{},\mp@subsup{5}{1}{},\mp@subsup{3}{1}{},\mp@subsup{0}{2}{},\mp@subsup{3}{2}{}),(\mp@subsup{0}{1}{},\mp@subsup{0}{2}{},\mp@subsup{1}{2}{},\mp@subsup{3}{1}{},\mp@subsup{3}{2}{},\mp@subsup{4}{2}{}),(\infty,\mp@subsup{0}{1}{},\mp@subsup{1}{2}{},\mp@subsup{2}{1}{},\mp@subsup{4}{2}{},\mp@subsup{0}{2}{}
    2. (0},\mp@subsup{2}{1}{},\mp@subsup{5}{1}{},\mp@subsup{3}{1}{},\mp@subsup{0}{2}{},\mp@subsup{3}{2}{}),(\mp@subsup{0}{1}{},\mp@subsup{0}{2}{},\mp@subsup{1}{2}{},\mp@subsup{3}{1}{},\mp@subsup{3}{2}{},\mp@subsup{4}{2}{}),(\infty,\mp@subsup{0}{1}{},\mp@subsup{1}{2}{},\mp@subsup{2}{1}{},\mp@subsup{4}{2}{},\mp@subsup{2}{2}{}
    3. (01, 2, , 51, 3, , 0, ,32), (0, , 02, 12, 31, 32, 4, ), ( }~,\mp@subsup{0}{1}{},\mp@subsup{1}{2}{},\mp@subsup{5}{1}{},\mp@subsup{4}{2}{},\mp@subsup{0}{2}{}
    4. }(\mp@subsup{0}{1}{},\mp@subsup{2}{1}{},\mp@subsup{5}{1}{},\mp@subsup{3}{1}{},\mp@subsup{0}{2}{},\mp@subsup{3}{2}{}),(\mp@subsup{0}{1}{},\mp@subsup{0}{2}{},\mp@subsup{1}{2}{},\mp@subsup{3}{1}{},\mp@subsup{3}{2}{},\mp@subsup{4}{2}{}),(\infty,\mp@subsup{0}{1}{},\mp@subsup{1}{2}{},\mp@subsup{5}{1}{},\mp@subsup{4}{2}{},\mp@subsup{2}{2}{}
    5. }(\mp@subsup{0}{1}{},\mp@subsup{2}{1}{},\mp@subsup{5}{1}{},\mp@subsup{3}{1}{},\mp@subsup{0}{2}{},\mp@subsup{3}{2}{}),(\mp@subsup{0}{1}{},\mp@subsup{0}{2}{},\mp@subsup{1}{2}{},\mp@subsup{3}{1}{},\mp@subsup{3}{2}{},\mp@subsup{4}{2}{}),(\infty,\mp@subsup{0}{1}{},\mp@subsup{1}{2}{},\mp@subsup{3}{2}{},\mp@subsup{1}{1}{},\mp@subsup{0}{2}{}
    6. }(\mp@subsup{0}{1}{},\mp@subsup{2}{1}{},\mp@subsup{5}{1}{},\mp@subsup{3}{1}{},\mp@subsup{0}{2}{},\mp@subsup{3}{2}{}),(\mp@subsup{0}{1}{},\mp@subsup{0}{2}{},\mp@subsup{1}{2}{},\mp@subsup{3}{1}{},\mp@subsup{3}{2}{},\mp@subsup{4}{2}{}),(\infty,\mp@subsup{0}{1}{},\mp@subsup{1}{2}{},\mp@subsup{3}{2}{},\mp@subsup{4}{1}{},\mp@subsup{0}{2}{}
    7. (01, 2, ,51, 3, , 0, ,32), (0, 0 , , 12, 31, 32, 42), ( }~,\mp@subsup{0}{1}{},\mp@subsup{1}{2}{},\mp@subsup{5}{2}{},\mp@subsup{3}{1}{},\mp@subsup{2}{2}{}
    8. (01, 2, , 51, 3, , 0, ,32), (0, , 02, 12, 31, 32, 42), ( 
    9. (01, 2, , 51, 3, , 0, ,32), (0, , 02, 12, 31, 32, 4, ), ( }~,\mp@subsup{0}{1}{},\mp@subsup{2}{2}{},\mp@subsup{3}{1}{},\mp@subsup{4}{2}{},\mp@subsup{0}{2}{}
    10. }(\mp@subsup{0}{1}{},\mp@subsup{2}{1}{},\mp@subsup{5}{1}{},\mp@subsup{3}{1}{},\mp@subsup{0}{2}{},\mp@subsup{3}{2}{}),(\mp@subsup{0}{1}{},\mp@subsup{0}{2}{},\mp@subsup{1}{2}{},\mp@subsup{3}{1}{},\mp@subsup{3}{2}{},\mp@subsup{4}{2}{}),(\infty,\mp@subsup{0}{1}{},\mp@subsup{2}{2}{},\mp@subsup{0}{2}{},\mp@subsup{5}{1}{},\mp@subsup{4}{2}{}
```

Each of the 384 nonisomorphic 2-rotational $6 \mathrm{CS}(13)$ has \mathbb{Z}_{6} as its full automorphism group.

References

[1] M. Buratti, Existence of 1-rotational k-cycle systems of the complete graph, Graphs Combin., 20 (2004), 41-46.
[2] I.J. Dejter, P.I. Rivera-Vega and A. Rosa, Invariants for 2-factorizations and cycle systems, J. Combin. Math. Combin. Comput., 16 (1994), 129-152.
[3] M.J. Grannell, T.S. Griggs and G.J. Lovegrove, Even-cycle systems with prescribed automorphism groups, J. Combin. Designs, 21 (2013), 142-156.
[4] C.C. Lindner and C.A. Rodger, Decomposition into cycles ii: Cycle systems, in "Contemporary Design Theory. A Collection of Surveys", J.H. Dinitz and D.R. Stinson, eds., pages 325-369. Wiley, 1992.
[5] A. Rosa, On cyclic decompositions of the complete graph into $(4 m+2)$ gons, Mat.-Fyz. Casopis SAV, 16 (1966), 349-352.
[6] A. Rosa and C. Huang, Another class of balanced graph designs: balanced circuit designs, Discrete Math., 12 (1975), 269-293.
[7] A. Vietri, On certain 2-rotational cycle systems of complete graphs, Australas. J. Combin., 37 (2007), 73-79.

[^0]: * Corresponding author.

