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Abstract: Eroh et al. proved that the zero-forcing number of a graph G,
denoted by Z(G), satisfies Z(G) 6 2Z(L(G)) (where L(G) denotes the line
graph of G); and they conjectured that Z(G) 6 Z(L(G)). This conjecture
was proven recently.

Hypergraph infection was introduced by Bergen et al. as a natural gen-
eralization of zero forcing in graphs. In [5], they determine the so-called
infection number of a hypergraph H, denoted by I(H), for several families
of hypergraphs, and give bounds for I(H) of many other families of hyper-
graphs. In particular, they show that I(H) 6 kZ(L(H)) for any reduced
k-uniform hypergraph H with no isolated vertices (where L(H) denotes the
line graph of H).

In this note we improve this bound significantly by giving an algorithm to
prove that I(H) 6 Z(L(H)) for any reduced hypergraph H with no isolated
vertices. We note that this result not only completely eliminates the factor
k, but it also applies to hypergraphs that are not uniform. We also show
that the bound is tight.

1 Introduction

To describe the notion of zero forcing, we colour the vertices of a graph
G with the colours black and white. Then a black vertex can force a
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white vertex to change its colour to black according to the following colour-
changing rule: if v is black and w is a white neighbour of v, then v can
force w to become black only if w is the only white vertex that is adjacent
to v. Then a set of initially black vertices in G is a zero-forcing set for G
if by applying the colour-changing rule repeatedly, all white vertices of G
can eventually be forced to black. The zero-forcing number of G, denoted
by Z(G), is the size of a smallest zero-forcing set for G.

The notion of zero forcing was first introduced in [1] with the motivation to
bound the minimum rank and therefore the maximum nullity of a graph.
Along with the exact value of the zero-forcing number for a variety of
graph classes it was indeed shown that the zero-forcing number of a graph
is bounded below by the maximum nullity of the graph (see [1]).

This useful property generated much interest in the study of zero forcing
since then. For example, it is now known that computing the zero-forcing
number is an NP-hard problem (see Theorem 3.1 in [10] and Theorems
6.3, 6.5, Corollary 6.6 in [16]). For additional background and results on
zero forcing, also see [2], [3], [6], [7], [11], [12], [13], [14] and [15].

The line graph of G, denoted by L(G), is the graph that has a vertex for
each edge of G, with the property that two vertices in L(G) are adjacent
if and only if the corresponding edges are adjacent in G. The zero-forcing
number is known to be not minor-monotone [4]. That is, the operations
of edge-deletion and edge-contraction may decrease, increase or not affect
the zero-forcing number of a graph. This suggests that “small” graphs can
potentially have a greater zero-forcing number than “large” graphs, which
gives us an initial motivation to compare the zero-forcing number of a graph
to the zero-forcing number of its line graph.

In [8] it is proven that

(I) Z(G) 6 2Z(L(G)) for any non-trivial graph G.

They also prove that Z(G) 6 Z(L(G)) when G is a tree, or when G con-
tains a Hamiltonian path and has a certain number of edges. Moreover
they conjecture that Z(G) 6 Z(L(G)) for any non-trivial graph G. This
conjecture was recently proven in [9]. In the current paper we extend this
result to hypergraphs.

A hypergraph H is a pair H = (V, E) where V is a set of elements, called
vertices, and E is a set of non-empty subsets of V called edges (or hyperedges
whenever the context is not clear). Drawing terminology from the setting
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of graphs, we say that a vertex v is adjacent to a vertex w if v and w are
contained together in some edge. Similarly two edges are said to be adjacent
if their intersection is non-empty. An edge E is said to be incident with a
vertex v if v ∈ E. A hypergraph where all edges are incident with exactly
k vertices is called k-uniform. Consequently, a graph can be thought of as
a 2-uniform hypergraph.

Infection in a hypergraph H is defined as follows: Initially each vertex of
H is either infected or uninfected. Suppose A is a non-empty set consisting
of infected vertices only. Then A can infect all vertices in an edge E (we
also say that “A infects E”) if

(i) A ( E, and

(ii) there exists no uninfected vertex v /∈ E with the property that A ∪
{v} ⊆ E′ for some edge E′.

A set of initially infected vertices in a hypergraph H is an infection set if
repeated application of the infection rule can eventually infect all initially
uninfected vertices in the hypergraph. The infection number of H is then
the size of a smallest infection set for H, and is denoted by I(H).

Hypergraph infection was first defined in [5] in order to generalize the notion
of zero forcing in graphs to the setting of hypergraphs. In [5] Bergen et al.
determine the infection number for several families of hypergraphs and also
give bounds on the infection number for many other families of hypergraphs.
Many of their results justify that infection in hypergraphs as is defined is
the natural extension of zero forcing to hypergraphs.

A hypergraph H is said to be reduced if no edge of H is a subset of another
edge of H. It follows that in a reduced hypergraph, for each pair of distinct
edges Ei and Ej , there exists a vertex in Ei \ Ej . In this note we prefer
working with reduced hypergraphs, as they form a better basis for naturally
extending results on zero forcing in graphs to the setting of infection in
hypergraphs, as is also suggested in Section 2 of [5].

The line graph L(H) of a hypergraph H is defined similarly to the line
graph of a graph: Each edge of H corresponds to a vertex in L(H), where
two vertices are joined with an edge if the corresponding edges in H have
a non-empty intersection. A hypergraph is said to be connected if it does
not have any isolated vertices and its line graph is connected. A connected

71



component of a hypergraph H is either an isolated vertex in H, or a hyper-
graph whose edge set is a subset of the edge set of H and which corresponds
to a connected component of L(H). In [5] it is shown that a bound similar
to (I) can be achieved for reduced k-uniform hypergraphs for any k. More
precisely, they show that

(II) I(H) 6 kZ(L(H)) for any reduced k-uniform hypergraph H with no
isolated vertices.

Thinking of graphs as 2-uniform reduced hypergraphs, one sees that (II)
is indeed a natural extension of (I) in the hypergraph setting. In this
note, however, we improve this bound significantly by showing that I(H) 6
Z(L(H)) for any reduced hypergraph H with no isolated vertices, thereby
affirming the prediction in [5] that a bound better than (II) exists. We note
that the main result of this paper not only eliminates the factor k, but it
also applies to hypergraphs that are not uniform. Moreover this result is
tight (see Section 3).

2 Preliminaries

In this section we make some observations and set some notation that will
be used in the proof of Theorem 3.2. We do so by adopting the terminology
in [9] whenever it is useful.

First we observe that at each step in a zero-forcing process exactly one
black vertex v forces exactly one white vertex w to change its colour to
black, and there is no choice for which vertex w can be forced by v, as
w is the only white neighbour of v at this step. Let Z be a zero-forcing
set. Then the aforementioned observation suggests that we can order the
vertices of a graph G in terms of |Z| oriented paths Pi, called zero-forcing
chains, such that for each 1 6 i 6 |Z|, wi,1 is in Pi. Such a vertex wi,1

is necessarily coloured black initially; moreover any vertex that is initially
coloured black is of the form wi,1 for some 1 6 i 6 |Z|. If a vertex is never
forced by another vertex and itself does not force any other vertex, then
it corresponds to a zero-forcing path having just one vertex. A vertex v
forcing a vertex w is denoted by v → w. A generic list of zero-forcing chains
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looks as follows:

P1 =w1,1 → w1,2 → · · · → w1,f(1),

P2 =w2,1 → w2,2 → · · · → w2,f(2),

...

P|Z| =w|Z|,1 → w|Z|,2 → · · · → w|Z|,f(|Z|),

(1)

where f is a function from {1, . . . , |Z|} to Z+.

We say that wi,j is the active vertex at some step of the zero-forcing process
if at that step wi,j forces wi,j+1. A vertex can force at most one other
vertex, and after it does so we call it used. Similarly when the head wi,1

of a zero-forcing chain Pi is used, we may mark Pi as used as well. A
crucial observation is that if wi,j is the active vertex at some step of the
zero-forcing process, then wi,j+1 is the only white neighbour of wi,j at that
step. This means that if at this step wi,j is adjacent to a vertex w distinct
than wi,j+1, then w must be black.

For infection in hypergraphs we note that the situation is somewhat dif-
ferent. At each step of the infection process, the infection is performed
by a subset of the vertices of some edge E, and this results in all vertices
in E being infected (we say “E is infected” or “E is entirely infected”).
Nevertheless, we can draw some parallelism to zero forcing in graphs by
observing that at the step when a set A ( E infects the edge E, E is the
only edge with the property that it has some uninfected vertices and also
contains A as a subset. That is, at this step all sets other than E which
contain A as a subset have only infected vertices.

3 Main result

In this section we prove our main result (Theorem 3.2), that I(H) 6
Z(L(H)) for any reduced hypergraph H with no isolated vertices.

The main strategy in proving Theorem 3.2 is to show that to each zero-
forcing set Z of the line graph of a hypergraph H, there is an infection set of
H of size at most |Z|. In order to obtain this one-to-one correspondence, an
algorithm is given that defines certain infection steps in H corresponding
to each zero-forcing step in L(H).
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Then we show that the bound given in Theorem 3.2 is tight, and we fin-
ish the section by illustrating the algorithm that is given in the proof of
Theorem 3.2 with a concrete example.

Lemma 3.1. For any hypergraph H consisting of k > 1 components
H1, H2, . . . ,Hk, I(H) = I(H1) + I(H2) + . . .+ I(Hk).

Proof : This is immediate by the definition of the infection number (also
see, for example, Proposition 1.3 in [5]).

We introduce a vertex adding/switching procedure that will be useful in
finding an infection set S of small size for a given hypergraph H.

Vertex adding/switching: Let H be a hypergraph and Z be a zero-
forcing set for L(H). Let P1, . . . ,P|Z| be the zero-forcing chains for a
zero-forcing process starting with Z in L(H) where the zero-forcing chains
are ordered so that chains with just one vertex are all at the end of this
collection. Label the vertices in L(H) as in (1) of Section 2, and denote
by Ei,j the edge in H corresponding to the vertex wi,j in L(H). For edges
Em,n and Ek,l in H, let m,nXk,l = Em,n ∩ Ek,l, and denote by m,nX the
multiset of intersections {m,nXk,l | Ek,l 6= Em,n is adjacent to Em,n, and
Ek,l is currently not entirely infected}. Note that each edge Ek,l in H
adjacent to Em,n corresponds to a vertex wk,l in L(H) that is adjacent to
wm,n.

Suppose that E1,1 is infected. Consider the set of uninfected edges adjacent
to E1,1. These are the edges that yield the elements of 1,1X. Rename these
edges as E∗1,1, . . . , E

∗
1,f(1), E

∗
2,1, . . . , E

∗
2,f(2), . . . , E

∗
n,1, . . . , E

∗
n,f(n) where f :

{1, . . . , n} → Z+ is a function that takes on positive integer values, E∗p,q
and E∗r,s have the same intersection with E1,1 if and only if p = r, and if
(E∗i,1 ∩ E1,1) ⊇ (E∗j,1 ∩ E1,1) then i 6 j.

Consider E∗1,1, . . . , E
∗
1,f(1). Add to a set S a vertex v∗(1,1)\(1,i) from E∗1,1\E∗1,i

for each i ∈ {2, . . . , f(1)} (note that f(1)− 1 vertices are being added). Do
not delete potential multiple appearances of elements in S. At this point the
choice of these vertices guarantees that (E∗1,1∩E1,1)∪(S∩E∗1,1) infects E∗1,1.
For all E∗1,x (x 6= 1) such that (E∗1,x∩E∗1,1) 6⊆ (E∗1,v∩E∗1,1) for any v /∈ {1, x},
E∗1,x ∩ E∗1,1 infects E∗1,x. Now consider an uninfected edge E∗1,w (w > 2)
with the property that E∗1,w ∩E∗1,1 is not a proper subset of E∗1,y ∩E∗1,1 for
any uninfected edge E∗1,y. If no subset of the currently infected vertices in
H can infect E∗1,w, this must be because there is an uninfected edge E∗1,t
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such that E∗1,w ∩ E∗1,1 = E∗1,t ∩ E∗1,1. For each such t exclude v∗(1,1)\(1,t)
from S, and instead include in S a vertex v∗(1,w)\(1,t) from E∗1,w \E∗1,t. Now⋃

t{v∗(1,w)\(1,t)} ∪ (E∗1,w ∩E1,1) ∪ (E∗1,w ∩E∗1,1) infects E∗1,w where t is such
that E∗1,w∩E∗1,1 = E∗1,t∩E∗1,1. It is crucial to note that this vertex-switching
argument does not change the number of vertices included in S, and that the
exclusion of v∗(1,1)\(1,t) from S does not harm the infection step of E∗1,1 – this
is because v∗(1,1)\(1,w) ∈ S plays the same role as v∗(1,1)\(1,t) towards infecting
E∗1,1 as a consequence of the observation that E∗1,1∩E∗1,w = E∗1,1∩E∗1,t in this
scenario. Possibly some more uninfected edges from the list E∗1,1, . . . , E

∗
1,f(1)

can be infected now by their respective intersections with E∗1,1. If there
are still some uninfected edges left in the list E∗1,1, . . . , E

∗
1,f(1), we apply

the aforementioned vertex-switching argument to an appropriately chosen
uninfected edge (like E∗1,w previously) and proceed similarly until there are
no more uninfected edges in the list E∗1,1, . . . , E

∗
1,f(1).

Next consider E∗2,1, . . . , E
∗
2,f(2). First add to S a vertex v∗(2,1)\(2,i) from

E∗2,1 \ E∗2,i for each i ∈ {2, . . . , f(2)} (note that f(2) − 1 vertices are
being added). Do not delete possible multiple appearances of elements
in S. Using a similar argument whenever necessary, we can show that
all edges in the list E∗2,1, . . . , E

∗
2,f(2) can be infected while having added

f(2) − 1 vertices to S. In this respect, it is critical that the ordering
E∗1,1, . . . , E

∗
1,f(1), E

∗
2,1, . . . , E

∗
2,f(2),

. . . , E∗n,1, . . . , E
∗
n,f(n) was imposed to have the property that if (E∗i,1 ∩

E1,1) ⊇ (E∗j,1 ∩ E1,1) then i 6 j. A repeated application of this proce-

dure guarantees that the addition of at most
∑n

i=1(f(i)− 1) vertices to S
is enough to infect all edges adjacent to E1,1.

Initial Procedure given below shows the steps towards deciding which ver-
tices to include in an initially empty set S (that will eventually become an
infection set for H) to guarantee that E1,1 in H is infected. In the proof
of Theorem 3.2, this procedure will be called upon when necessary to de-
scribe the strategy for adding vertices to the set S at different steps in the
zero-forcing process on L(H).

Initial Procedure: Use the notation as in the vertex adding/switching
procedure, and suppose that all elements in 1,1X are mutually disjoint.
For each element 1,1Xk,l contained in the set 1,1X take exactly one vertex
v(1,1)\(k,l) ∈ E1,1 \Ek,l (observe that such a vertex exists for each edge Ek,l

since H is a reduced hypergraph). Let 1,1W be the set consisting of these
vertices. (If 1,1W is initially a multiset, then reduce it to a set by deleting
multiple copies of vertices in 1,1W .) Include in S the vertices of 1,1W . Then
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the choice of the elements in 1,1W guarantees that 1,1W ( E1,1 infects E1,1

(or 1,1W = E1,1). For each 1,1Xk,l (l ∈ {1, 2}) corresponding to a vertex
v(1,1)\(k,l) ∈ E1,1 \ Ek,l in 1,1W mark the chain Pk as used. Remark that
all elements in 1,1X are of the form 1,1Xk,1 for some distinct k 6= 1, except
for 1,1X1,2. At this point, the assumption that all elements in 1,1X are
mutually disjoint guarantees that 1,1Xk,l = E1,1 ∩Ek,l infects Ek,l for each
Ek,l where E1,1 ∩ Ek,l = 1,1Xk,l ∈ 1,1X (i.e. for each Ek,l that is adjacent
to E1,1 in H).

Now suppose that not all elements in 1,1X are mutually disjoint. Exclude
from the multiset 1,1X any element 1,1Xs,t with the property that 1,1Xs,t (
1,1Xs′,t′ for some 1,1Xs′,t′ in 1,1X. Also exclude from 1,1X all but one of
the copies of each element so that the resulting collection is a set. Let this
resulting set of intersections be 1,1X

′. For each element 1,1Xk,l contained
in the set 1,1X

′ take exactly one vertex v(1,1)\(k,l) ∈ E1,1 \ Ek,l (observe
that such a vertex exists for each such edge Ek,l since H is a reduced
hypergraph). Include these vertices in S (include each such vertex only if it
is not already in S, i.e., at each step keep S as a set). Then the choice of the
elements in S guarantees that S ( E1,1 infects E1,1 (or possibly S = E1,1).
Remark that all elements in 1,1X

′ are of the form 1,1Xr,1 for some distinct
r 6= 1, except possibly for 1,1X1,2 which may or may not be in 1,1X

′.

Theorem 3.2. If H is a reduced hypergraph with no isolated vertices, then
I(H) 6 Z(L(H)).

Proof : First note that an isolated vertex in a hypergraph increases the
infection number of the hypergraph by one, however it has no effect on the
zero-forcing number of the line graph. By Lemma 3.1, we may assume that
H is connected.

Let Z be a zero-forcing set for L(H). Let P1, . . . ,P|Z| be the zero-forcing
chains for a zero-forcing process starting with Z in L(H). Label vertices in
L(H) according to the notation of (1) in Section 2. We order the collection
of zero-forcing chains so that no chain with a single vertex precedes a chain
with multiple vertices.

We will present a strategy for choosing an infection set in H of size at most
|Z|. At each step in the zero-forcing process on L(H) we describe which
vertices are added to a set S that will eventually become an infection set
for H. For each of the |Z| zero-forcing chains, at most one vertex in H will
be added to S.

Denote by Ei,j the edge in H that corresponds to the vertex wi,j in L(H).
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For edges Em,n and Ek,l in H, let m,nXk,l = Em,n ∩ Ek,l, and m,nX be
the multiset of intersections {m,nXk,l | Ek,l 6= Em,n is adjacent to Em,n,
and Ek,l is currently not entirely infected}. An easy observation is that
each edge Ek,l in H adjacent to Em,n corresponds to a vertex wk,l in L(H)
adjacent to wm,n.

In the initial step of the zero-forcing process on L(H) w1,1 is the active
vertex; so w1,1 forces w1,2. At this step w1,1 in L(H) is black, as are all
neighbours of w1,1, except for w1,2. In H consider the edges E1,1 and E1,2

corresponding to the vertices w1,1 and w1,2 in L(H), respectively. Note
that E1,1 ∩ E1,2 6= ∅.

Apply Initial Procedure to 1,1X, and for each 1,1Xk,l (l ∈ {1, 2}) in 1,1X,
mark the chain Pk as used. An easy counting argument shows that the
number of vertices included in S is less than or equal to the number of
chains that are being marked as used.

Now we apply the vertex adding/switching procedure to see that w1,1 forc-
ing w1,2 in L(H) corresponds to some infection steps in H in which no
uninfected vertices are left incident with E1,1 or with the edges adjacent to
it. Towards showing that I(H) 6 Z(L(H)), it is crucial that in this process
the number of vertices included in S is less than or equal to the number of
zero-forcing chains that are marked as used, which is equal to the number
of initially black vertices in L(H) in the closed neighbourhood of the vertex
w1,1 (where in a graph the closed neighbourhood of a vertex v is defined as
the set consisting of v together with all vertices that are adjacent to v).

We move on to a generic step of the zero-forcing process. Suppose that at
some point in the zero-forcing process on L(H) wi,j is the active vertex; so
wi,j forces wi,j+1. At this step wi,j in L(H) is black, as are all neighbours
of wi,j , except for wi,j+1 (some of these neighbours might be initially black
vertices of L(H), while others may have been forced at some earlier step).
In H consider the edge Ei,j and all the edges adjacent to it.

We consider two cases: (i) wi,j is not initially black, (ii) wi,j is an initially
black vertex.

In case (i) wi,j must have been forced at some earlier step. Therefore, in
H the edge Ei,j must have been completely infected at the corresponding
step.

In both cases (i) and (ii), the neighbours of wi,j in L(H) which are not ini-
tially black but have been forced at an earlier step correspond to edges adja-
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cent with Ei,j in H that are entirely infected. The initially black neighbours
of wi,j fall into two categories: (1) those that have already been considered
at some earlier step in the zero-forcing process of L(H) – these vertices are
heads of zero-forcing chains in L(H) that have been marked as used, and
(2) those that have not been considered in the zero-forcing process of L(H)
yet – these vertices are heads of zero-forcing chains in L(H) that have not
been marked as used. The vertices of type (1) correspond to edges in H
that are entirely infected at some earlier step. It follows that the only edges
in H adjacent to Ei,j that may have not been entirely infected are Ei,j+1

and those edges that correspond to initially black neighbours of wi,j of type
(2). Apply Initial Procedure if necessary (that is, if Ei,j is not yet infected)
and the vertex adding/switching procedure with the roles of w1,1 and w1,2

being replaced by wi,j and wi,j+1 to choose a set of at most x vertices that
we include in S to guarantee that Ei,j and all edges adjacent with Ei,j are
entirely infected, where x is the number of initially black vertices in the
closed neighbourhood of wi,j in L(H) that are heads of zero-forcing chains
in L(H) that have not been marked as used. If wi,j = wi,1 is an initially
black vertex, for each i,jXk,l (l ∈ {1, 2}) in i,jX, mark the chain Pk as
used. If, on the other hand, wi,j is not an initially black vertex, then for
each i,jXk,1 in i,jX, mark the chain Pk as used.

We showed that wi,j forcing wi,j+1 in L(H) corresponds to some infection
steps in H in which Ei,j and all edges adjacent with it are eventually
infected. A key observation is that in both cases (i) and (ii) the steps
that collectively lead to the infection of Ei,j and all edges adjacent with it
involve the inclusion of a number of vertices in S that is less than or equal to
the number of initially black vertices in L(H) in the closed neighbourhood
of the vertex wi,j that are heads of zero-forcing chains that had not been
marked as used.

We repeat this generic step for all zero-forcing process steps on L(H). If
there are any unused chains left, then each of these chains must consist
of a single vertex, which is initially black. If wt,1 is such a vertex of L(H)
(1 6 t 6 |Z|), then at this step in L(H) all neighbours of wt,1 are black; and
for any edge E in H that is adjacent to Et,1 and contains some uninfected
vertices, the vertex in L(H) corresponding to E is from an unused path
of length 1. Suppose that Et,1 contains some uninfected vertices. Apply
Initial Procedure and the vertex adding/switching procedure as necessary
– this time by granting the role of w1,1 in Initial Procedure to wt,1 and
discarding all arguments pertaining to w1,2 (since wt,1 is not forcing any
vertex, unlike w1,1 forcing w1,2 in Initial Procedure). Doing so results in
the inclusion of a set of at most y vertices in S which guarantee that Et,1

and all edges in H adjacent with Et,1 are entirely infected, where y is the

78



number of initially black vertices in the closed neighbourhood of wt,1 in
L(H) that are heads of zero-forcing chains in L(H) that have not been
marked as used. For each t,1Xu,1 in t,1X mark the chain Pu as used. Also
mark the chain Pt as used.

Continue until all single-vertex zero-forcing chains (and therefore all vertices
of L(H)) have been considered. At this point each edge in H is entirely
infected. Delete multiples copies of vertices (if there are any) from S. Thus
this procedure produces an infection set S for H of order at most |Z|. �

Now we show that Theorem 3.2 yields a tight bound. Lemma 3.5 of [5]
indicates that for a reduced hypergraph H that is a flower with p petals,
I(H) = p − 1. It is easy to see that the line graph of H is the complete
graph Kp, and therefore Z(Kp) = p− 1.

We conclude with an example that illustrates some of the ideas of the proof
of Theorem 3.2.

Example 3.3. A hypergraph H on the vertex set {1, 2, . . . , 25} is given
with the following edges:

E1,1 = {1, 2, 3}, E1,2 = {1, 2, 4, 8, 9},
E2,1 = {1, 2, 7, 13}, E2,2 = {6, 7, 14},
E2,3 = {6, 9, 10}, E2,4 = {9, 10, 11},
E2,5 = {8, 11}, E3,1 = {1, 2, 5, 12},
E4,1 = {2, 3, 4, 8, 9, 15, 24}, E5,1 = {7, 12, 25},
E6,1 = {6, 12, 14}, E7,1 = {15, 16, 17, 20, 23},
E8,1 = {15, 16, 17, 18, 21, 22}, E9,1 = {15, 16, 17, 19, 21}.

A zero-forcing set for L(H) can be given as Z = {v1,1, v2,1, v3,1, v4,1, v5,1, v6,1,
v7,1, v8,1, v9,1} with the following zero-forcing chains:

P1 =w1,1 → w1,2,

P2 =w2,1 → w2,2 → w2,3 → w2,4 → w2,5,

P3 =w3,1,

P4 =w4,1,

P5 =w5,1,

P6 =w6,1,

P7 =w7,1,

P8 =w8,1,

P9 =w9,1.

(2)
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Figure 1: 1,1X consists of the non-empty intersections of the edges with
E1,1: 1,1X = {{1, 2}, {1, 2}, {1, 2}, {2, 3}}. Include 3 and 1 in S to infect
E1,1. Vertices in S coloured red; infected vertices indicated with a star.

Consider the first step of the zero-forcing procedure given in (2): w1,1 →
w1,2. In H consider the edge E1,1, and form 1,1X = {{1, 2}, {1, 2}, {1, 2},
{2, 3}}. Elements of 1,1X are not all mutually disjoint, so form 1,1X

′ =
{{1, 2}, {2, 3}}. Include in S the following vertices: 3 ∈ E1,1 \ E1,2 and
1 ∈ E1,1 \ E4,1. Then {1, 3} infects E1,1. (See Figure 1.)

Now consider the set of edges M = {E1,2, E2,1, E3,1}. All three of these
edges have the same intersection with E1,1, namely {1, 2}. Therefore {1, 2}
cannot infect E1,2. Include in S the following vertices: 4 ∈ E1,2 \ E2,1 and
8 ∈ E1,2 \ E3,1. Then {1, 2, 4, 8} infects E1,2. (See Figure 2.)

At this step E2,1 cannot be infected (neither can E3,1). Exclude 8 ∈ E1,2 \
E3,1 from S (doing so does not harm the previous infection steps), and
include 7 ∈ E2,1 \ E3,1 in S. Then {1, 2, 7} infects E2,1. (See Figure 3.)

Now {1, 2} infects E3,1. Moreover, {2, 3} infects E4,1. (See Figure 4.)

Mark P1,P2,P3 and P4 as used. Note that at this step all vertices in E1,1

and all vertices in the edges adjacent with E1,1 are infected; and observe
that this is achieved by including only four vertices (namely, 1, 3, 4, 7) in S,
where four is equal to the number of zero-forcing chains that are marked
as used.

80



Figure 2: E1,2 ∩E1,1 = E2,1 ∩E1,1 = E3,1 ∩E1,1 = {1, 2}. Include 4 and 8
in S to infect E1,2. Vertices in S coloured red; infected vertices indicated
with a star.

Figure 3: Exclude 8 from S; then include 7 in S to infect E2,1. Vertices in
S coloured red; infected vertices indicated with a star.
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Figure 4: {1, 2} infects E3,1; {2, 3} infects E4,1. Vertices in S coloured red;
infected vertices indicated with a star.

Consider the step in the zero-forcing procedure where w2,1 → w2,2. In
H, E2,1 is adjacent to E1,1, E1,2, E2,2, E3,1, E4,1, E5,1; and all of these
edges except for E2,2 and E5,1 are entirely infected. E2,2 and E5,1 have the
same intersection with E2,1, namely {7}. Therefore {7} cannot infect E2,2.
Include in S the vertex 6 ∈ E2,2 \ E5,1. Then {6, 7} infects E2,2, and {7}
infects E5,1. Mark P5 as used.

Next consider w2,2 → w2,3. In H, E2,2 is adjacent to E2,1, E2,3, E5,1, E6,1;
and all of these edges except for E2,3 are entirely infected. {6} infects E2,3.

Consider w2,3 → w2,4. In H, E2,3 is adjacent to E1,2, E2,2, E2,4, E4,1, E6,1;
and all of these edges except for E2,4 are entirely infected. {9, 10} infects
E2,4.

The final zero forcing occurs at the step w2,4 → w2,5. In H, E2,4 is adjacent
to E1,2, E2,3, E2,5, E4,1; and all of these edges are entirely infected.

It only remains to consider the paths of length 1 in the zero-forcing chains.
The first unused path of length 1 corresponding to an edge that contains
some uninfected vertices is P7. At this step 16, 17, 20, 23 ∈ E7,1 are unin-
fected. E8,1 and E9,1 are the only edges adjacent to E7,1 that contain some
uninfected vertices. Then 7,1X = {{15, 16, 17}, {15, 16, 17}} and there-
fore 7,1X

′ = {{15, 16, 17}}. Include in S the vertex 20 ∈ E7,1 \ E8,1.
{15, 16, 17, 20} infects E7,1. Since {15, 16, 17} = E7,1 ∩ E8,1 = E7,1 ∩ E9,1,
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neither E8,1 nor E9,1 can be infected at this point. We include in S the
vertex 18 ∈ E8,1 \ E9,1. Then {15, 16, 17, 18} infects E8,1, and {15, 16, 17}
infects E9,1. Mark P8 and P9 as used. S = {1, 3, 4, 6, 7, 18, 20} is infection
set for H of size 7. Observe that the given zero-forcing set for L(H) was of
size 9.
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