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Abstract: We determine the number of triples in the maximal partial
triple system on n elements formed by a greedy algorithm.

1 Introduction

A Steiner triple system of order n (STS(n) is a pair (V,B) where V is an
n-set and B is a collection of 3-subsets of V called triples such that every
2-subset of V is contained in exactly one triple. If the word ”exactly” is
replaced with ”at most” then (V,B) is a partial triple system of order n
(PTS(n)). The leave of a partial triple system is the graph (V,E) with
vertex-set V whose edges are those pairs of elements of V which are not
contained in any triple of B.

A PTS is maximal (MPT) if its leave is triangle-free. A PTS(n) (V,B) is
maximum (MPTS) if there exists no PTS(n) having more triples than B.

It is well known [1] that an STS(n) exists if and only if n ≡ 1 or 3 (mod 6);
clearly, the leave of an STS contains no edges. When n ≡ 2 or 4 (mod 6)
the leave of a maximum PTS(n) is a 1-factor on V , when n ≡ 5 (mod 6)
the leave of a maximum PTS(n) consists of a quadrangle (plus isolated
vertices), and when n ≡ 4 (mod 6), the leave of any maximum PTS(n) is a
factor consisting of a claw K1,3 and isolated edges (cf., e.g., [1]).
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At the other extreme, the smallest (minimum) maximal PTS(n) has the
least possible number of triples of a maximal PTS(n). This number, while
more difficult to determine, was nevertheless determined exactly by Novak
[5] (cf. [1]). When n ≡ 2 or 6 (mod 12), this number is exactly one-half
of the number of triples in an MPT(n), in the remaining cases it is slightly
more; for the exact number, see Theorem 9.8 in [1].

We note that, in fact, the complete spectrum for maximal partial triple
systems is also known. It was determined almost completely by Severn [6]
who left only a few cases unsettled; these were later settled in [2] completing
the determination of all possible sizes of maximal partial triple systems (cf.
Theorem 9.10 in [1]).

2 Greedy triple systems

Let N = {1, 2, . . . , n}, let
(
N
3

)
be the collection of all 3-subsets of N , and

let the elements of N and those of
(
N
3

)
be ordered lexicographically.

For every natural n, form now a PTS(n) (N,B) greedily as follows: include
into B repeatedly the lexicographically smallest element b of

(
N
3

)
subject

to the condition that no 2-subset of b is already contained in an element of
B; stop when this is no longer possible.

What results is the (uniquely determined) greedy triple system GTS(n) of
order n, (N,B). By definition, GTS(n) is a maximal PTS(n).

When is GTS(n) a maximum PTS? It was observed by many people (cf.
[3]) that GTS(n) is an STS(n) if and only if n = 2m−1 for some m, and that
in this case the STS(n) obtained is actually PG(m−1, 2). It is also easy to
see that when n = 2m−2 for some m, then GTS(n) is a maximum PTS(n),
and the latter (with n ≡ 0 or 2 (mod 6)) is the ”punctured” PG(m− 1, 2).
It can be easily deduced from what follows that when n ≥ 6, in no other
case our GTS(n) is a maximum PTS.

The following question does not seem to have been treated in the literature:
what is the size and the structure of the GTS(n) when n is ”between” 2m

and 2m+1?

First of all, it is easily observed that if (N,B) is GTS(n) and (N ′,B′)
is GTS(n + 1) then B ⊆ B′. It follows that in any infinite sequence
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(GTS(n))∞i , a GTS(k) contains all GTS(j) with i ≤ j ≤ k.

In particular, GTS(2n) has the same triples as GTS(2n − 1) but contains
one extra element that occurs in no triple.

So let n = 2m + t, t ∈ {0, 1, . . . , 2m − 1}, thus 2m ≤ n < 2m+1.

We have the following result concerning the number of triples in a GTS(n).

Theorem. Let (N,B) be the GTS(n) with n = 2m + t, 0 ≤ t ≤ 2m − 1.
Then

|B| = (2m − 1)(2m − 2)/6 +
(
t+1
2

)
.

Proof. First we show that when t < 2m − 1, the number of independent
edges in the leave of GTS(n) is t+ 1.

The leave of GTS(2m) is the star K1,2m−1, and the leave of GTS(2m + 1)
is the complete bipartite graph K2,2m−1; the number of independent edges
in the leave is clearly 1, and 2, respectively. Now we proceed by induction.
When n < 2m+1 − 2, maximum matching in the leave of GTS(n) is not a
perfect matching, and so the leave contains a vertex x not in the maximum
matching, thus the edge {x, n + 1} enlarges the maximum matching in
GTS(n+ 1) by one.

The proof of the theorem now follows by easy induction.

One obvious corollary is that the GTS(n) can be embedded into PG(m −
1, 2), where m is the smallest integer such that n ≤ 2m − 1, and into no
smaller STS.

Where does GTS(n) fit in the spectrum of maximal partial triple systems
of order n? For example, when n = 42, any maximum PTS contains 280
triples, any smallest maximal PTS contains 140 triples, and the GTS(42)
contains 210 triples, the exact average of the two.

On the other hand, for each of the intervals [8, 15], [15, 31], and [31, 63] it
happens that for exactly four orders n in this interval is the number of
triples in GTS(n) less than this average; in all other cases it is more. Is
there a pattern here?
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3 More on greedy triple systems

The automorphism group of GTS(n) acts 2-transitively on elements when
n = 2m − 1 and acts transitively when n = 2m − 2; this is obvious since
GTS in these cases is PG(m − 1, 2)), and the punctured projective space,
respectively. When n ≥ 4, in no other case is the automorphism group of
GTS(n) transitive.

What can one say about colouring GTSs? Both the chromatic number χ
and the chromatic index χ′ (for definitions, see [1]) of GTS(n) increase
monotonically with n. Since the sequence of GTS(n)s includes the projec-
tive spaces PG(d, 2), this alone indicates the difficulty of determining these
parameters for individual GTSs.

The chromatic number χ of the projective spaces PG(d, 2) remains unde-
termined. Since χ(PG(3, 2)), χ(PG(4, 2)), χ(PG(5, 2)) is known to equal
3, 4 and 5, respectively, it has been conjectured that the chromatic number
of PG(d, 2) increases by 1 when dimension increases by 1. However, this
was brilliantly disproved by A. Blokhuis (unpublished) who showed that
the growth in chromatic number is slower.

Concerning the chromatic index χ′, here the situation is somewhat better,
because χ′(PG(d, 2)) has been recently completely determined: for d odd,
it is well known that PG(d, 2) is resolvable, and so its chromatic index χ′

equals 2d−1. On the other hand, for d even χ′(PG(d, 2)) was determined by
Meszka [4]: when d > 2, χ′(PG(d, 2)) = 2d + 2. So, for example, for each
GTS(n) with n ∈ {7, 8, 9, 10, 11, 12, 13, 14, 15} we have χ′(GTS(n) = 7,
because χ′(PG(2, 2)) and χ′(PG(3, 2)) both equal 7. For an increase of
16 between orders 15 and 31, we have an increase of 11 (from 7 to 18) in
chromatic index. Similarly, for an increase of 32 between orders 31 and
63, there is an increase of 13 (from 18 to 31) in chromatic index. But to
determine exactly the chromatic index χ′ of GTS(n) for individual orders
n remains a challenge.
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(1974) 43–57.

[6] E.A. Severn, Maximal Partial Steiner Triple Systems, Ph.D. Disserta-
tion, Univ. of Toronto, 1984.

78


