BULLETIN of the Stebruary 2019 INSTITUTE of COMBINATORICS and its APPLICATIONS

Editors-in-Chief: Marco Buratti, Donald Kreher, Tran van Trung

ISSN 1182 - 1278

A generalization of magic labeling of two classes of graphs

C. Meenakshi¹ and K.M. Kathiresan²

¹Sri Krishnasamy Arts and Science College, Mettamalai, Sattur, India. meenaloshini91@gmail.com ²Ayya Nadar Janaki Ammal College (Autonomous), Sivakasi, India. kathir2esan@yahoo.com

Abstract: A k-magic labeling of a finite, simple graph with |V(G)| = pand |E(G)| = q, is a bijection from the set of edges into the set of integers $\{1, 2, 3, \dots, q\}$ such that the vertex set V can be partitioned into k sets $V_1, V_2, V_3, \dots, V_k, 1 \le k \le p$, and each vertex in the set V_i has the same vertex sum and any two vertices in different sets have different vertex sum, where a vertex sum is the sum of the labels of all edges incident with that vertex. A graph is called k-magic if it has a k-magic labeling. The study of k-magic labeling is very interesting, since all magic graphs are 1-magic and all antimagic graphs are p-magic. The Splendour Spectrum of a graph G, denoted by SSP(G), is defined by $SSP(G) = \{k \mid G \text{ has a } k\text{-magic labeling}\}$.

In this paper, we determine $SSP(K_{m,n})$, m and n are even and $SSP(T_n)$, where T_n is the friendship graph and $n \ge 1$.

1 Introduction

Let G be a finite, undirected simple connected graph with p vertices and q edges. A magic labeling is a bijection from the set of edges into the

Received: 22 July, 2018 Accepted: 1 November 2018

Key words and phrases: k-magic labeling, k-magic graph, Splendour Spectrum AMS (MOS) Subject Classifications: 05C78

set of integers $\{1, 2, 3, \dots, q\}$ such that all vertex sums are same, where a vertex sum is the sum of labels of all edges incident with that vertex. A graph is called *magic* if it has a magic labeling. Magic labeling concept was introduced in 1963 by Sedláček [8]. An *antimagic labeling* of a graph is a bijection from the set of edges into the set of integers $\{1, 2, 3, \dots, q\}$ such that all p vertex sum are pairwise distinct. The concept of antimagic graph was introduced by *Hartsfield and Ringel*[3] in 1990. The concept of bimagic labeling of graphs was introduced by Babujee [1] in 2004.

Motivated by the concept of magic and antimagic labeling, we define a k-magic labeling, $1 \le k \le p$. A k-magic labeling of a graph is a bijection from the set of edges into the set of integers $\{1, 2, 3, \dots, q\}$ such that the vertex set V can be partitioned into k sets $V_1, V_2, V_3, \dots, V_k, 1 \le k \le p$, and each vertex in the set V_i has the same vertex sum and any two vertices in different sets have the different vertex sum. A graph is called k-magic if it has a k-magic labeling. We observe that a magic labeling is 1- magic and an antimagic labeling is p - magic so that k-magic labeling is a generalization of both magic and antimagic labeling of a graph.

We have the following problems:

- 1. Does there exists a graph which is k-magic for all $k, 1 \le k \le p$?
- 2. Given a graph G, determine the values of k for which G is k-magic.

In this paper, we attempt to solve the above problems.

2 Construction of k-magic rectangles

A magic rectangle is an arrangement of the set of integers $\{1, 2, 3, \ldots, mn\}$ in an array of m rows and n columns so that each row adds to the same total R and each column to the same total C. The totals R and C are termed as the row magic constant and column magic constant respectively. Since the average value of set of integers $\{1, 2, 3, \ldots, mn\}$ is $A = \frac{mn+1}{2}$, we must have R = nA and C = mA. The total of all the integers in the array is mnA = mR = nC. These two constants are the same just in the case m = n. A magic rectangle may be one of the two kinds - even by even or odd by odd. If mn is even, then mn + 1 is odd and so for $R = \frac{n(mn+1)}{2}$ and $C = \frac{m(mn+1)}{2}$ to be integers m and n must both be even. On the other hand, since either m or n being even would result in the product mn being even, and so if mn is odd then m and n must both be odd. In this case also R and C are integers since mn + 1 is even. Therefore, an odd by even magic rectangle is not possible. Also, 2×2 magic rectangle is impossible.

For an update on available literature on magic rectangles we refer to Hegedorn [4] and Bier et al.[2]. In 2009, Reyes et al. [7] have provided complete solutions for constructing an even by even magic rectangle.

Motivated by the concept of magic rectangle, we define k-magic rectangle, $1 \le k \le m + n$.

A k-magic rectangle, $1 \le k \le m + n$, is a $m \times n$ arrangement of the set of integers $\{1, 2, 3, \ldots, mn\}$ so that the sums of the entries in each row and each column form a k-element set.

We observe that a magic rectangle is a 2-magic rectangle.

Now, we construct a $3, 4, 5, \ldots, (m + n)$ -magic rectangle from the given 2-magic rectangle.

Let R_i and C_j , $1 \le i \le m, 1 \le j \le n$ be the sum of all the entries in the i^{th} row and j^{th} column respectively. Let $A_{m \times n}^{(k)} = (a_{ij}), 1 \le i \le m, 1 \le j \le n$, be the k-magic rectangle of order $m \times n$.

Construction of $A_{m \times n}^{(3)}$ of order m = 2s, n = 2t, s and t both odd, from $A_{m \times n}^{(2)}$

First we consider $A_{m \times n}^{(2)}$ be the 2-magic rectangle in [7].

In the first $\frac{n-2}{2}$ columns, $a_{1,j} - a_{1,j+1} = 2m - 1$ and $a_{m-1,j+1} - a_{m-1,j} = 2m - 3, 1 \le j \le \frac{n-2}{2}, j$ is odd. Now, we interchange the entries $a_{1,j+1}$ and $a_{1,j+1}$ and also interchange the entries $a_{m-1,j+1}$ and $a_{m-1,j}, 1 \le j \le \frac{n-2}{2}, j$ is odd.

In $(\frac{n}{2})^{th}$ and $(\frac{n+2}{2})^{th}$ columns, we have $a_{\frac{m-2}{4},\frac{n}{2}} - a_{\frac{m-2}{4},\frac{n+2}{2}} = \frac{3m+4}{2}$ and $a_{\frac{m+2}{4},\frac{n+2}{2}} - a_{\frac{m+2}{4},\frac{n}{2}} = \frac{3m}{2}$. Now, we interchange the entries $a_{\frac{m-2}{4},\frac{n}{2}}$ and $a_{\frac{m-2}{4},\frac{n+2}{2}}$ and also interchange the entries $a_{\frac{m+2}{4},\frac{n}{2}}$ and $a_{\frac{m+2}{4},\frac{n+2}{2}}$.

In the last $\frac{n-2}{2}$ columns, $a_{1,j}-a_{1,j+1}=1$ and $a_{m-1,j+1}-a_{m-1,j}=3$, $\frac{n+4}{2} \leq j \leq n, j$ is odd. Now, we interchange the entries $a_{1,j}$ and $a_{1,j+1}$ and also interchange the entries $a_{m-1,j+1}$ and $a_{m-1,j}$.

Then we get a new magic rectangle in which

$$R_{j} = \frac{n(mn+1)}{2} \quad \text{if } 1 \le j \le m,$$

$$C_{j} = \begin{cases} \frac{m(mn+1)}{2} + 2 & \text{if } 1 \le j \le \frac{n+2}{2}, j \text{ even}, \frac{n+4}{2} \le j \le n, j \text{ odd}, \\ \frac{m(mn+1)}{2} - 2 & \text{if } 1 \le j \le \frac{n+2}{2}, j \text{ odd}, \frac{n+4}{2} \le j \le n, j \text{ even}. \end{cases}$$

This implies that it is a 3-magic rectangle $A_{m \times n}^{(3)}$ of order m = 2s, n = 2t, s and t both odd.

Construction of $A_{m \times n}^{(3)}$ of order m = 2s, n = 2t, where at least one of s and t is even, from $A_{m \times n}^{(2)}$

First we take the parameter s to be even without loss of generality.

We consider $A_{m \times n}^{(2)}$ be the 2-magic rectangle in [7].

In
$$A_{m \times n}^{(2)}$$
, $a_{1,j+1} - a_{1,j} = 2m - 1$ and $a_{\frac{m+4}{4},j} - a_{\frac{m+4}{4},j+1} = 2m - \frac{m+2}{2}, 1 \le j \le n, j$ is odd.

Now, we interchange the entries a_{1j} and $a_{1,j+1}$ and also interchange the entries $a_{\frac{m+4}{4},j+1}$ and $a_{\frac{m+4}{4},j}$, creating a new magic rectangle in which

$$R_{j} = \frac{n(mn+1)}{2} \quad \text{if } 1 \le j \le m,$$

$$C_{j} = \begin{cases} \frac{m(mn+1)}{2} + \frac{m}{2} & \text{if } 1 \le j \le n, j \text{ is odd,} \\ \frac{m(mn+1)}{2} - \frac{m}{2} & \text{if } 1 \le j \le n, j \text{ is even.} \end{cases}$$

This implies that it is a 3-magic rectangle $A_{m \times n}^{(3)}$ of order m = 2s, n = 2t, where at least one of s and t is even, from the given $A_{m \times n}^{(2)}$.

Algorithm 2.1. Algorithm for obtaining a 2*i*-magic rectangle for $2 \le i \le \frac{m+n}{2}$ where m = 2s, n = 2t, s and t both odd, from $A_{m \times n}^{(2)}$.

Input: Let $A_{m \times n}^{(2)} = (a_{ij}), 1 \le i \le m, 1 \le j \le n$, where m = 2s, n = 2t, s and t both odd be the 2-magic rectangle in [7].

Then

$$\sum_{i=1}^{m} a_{ij} = \frac{m\left(m^2 + 1\right)}{2}, \ 1 \le j \le n,$$

and

$$\sum_{i=1}^{n} a_{ij} = \frac{m\left(m^2 + 1\right)}{2}, \ 1 \le j \le m.$$

In $A_{m \times n}^{(2)}$, a_{i1} , $1 \le i \le m$ is of the form:

$$a_{i1} = \begin{cases} mn - i + 1 & \text{if } 1 \le i \le \frac{m}{2}, \\ m - i + 1 & \text{if } \frac{m + 2}{2} \le i \le m. \end{cases}$$

Step 1: Take k-magic rectangle $A_{m\times n}^{(k)}$ and interchange the entries $a_{\frac{k}{2},1}$ and $a_{m-\frac{k}{2}+1,1}$, to get a new magic rectangle in which the sum of the entries of all rows and columns are as same as in $A_{m\times n}^{(k)}$ except $R_{\frac{k}{2}}$ and $R_{m-\frac{k}{2}+1}$, where $R_{\frac{k}{2}} = \frac{n(mn+1)}{2} - (mn+1) + k$ and $R_{m-\frac{k}{2}+1} = \frac{n(mn+1)}{2} + (mn+1) - k$. It is a (k+2)-magic rectangle $A_{m\times n}^{(k+2)}$. This step is repeated whenever k varies from 2 to m-2 and k is even.

Step 2: In $A_{m \times n}^{(m)}, a_{mj}, 1 \le j \le n$ is of the form:

$$a_{mj} = \begin{cases} mn & \text{if } j = 1\\ m(j-1)+1 & \text{if } 3 \le j \le \frac{n-2}{2}, j \text{ odd}, \ \frac{n}{2} \le j \le n, j \text{ even}, \\ mj & \text{if } 1 \le j \le \frac{n-2}{2}, j \text{ even}, \ \frac{n}{2} \le j \le n, j \text{ odd}. \end{cases}$$

In $A_{m \times n}^{(m)}$, interchange the entries a_{m1} and a_{mn} , to get a new magic rectangle in which $C_1 = \frac{m(mn+1)}{2} - m + 1$ and $C_n = \frac{m(mn+1)}{2} + m - 1$. It is a (m+2)-magic rectangle $A_{m \times n}^{(m+2)}$.

- **Step 3:** Take k-magic rectangle and interchange the entries $a_{m,\frac{k-m+2}{2}}$ and $a_{m,n-\frac{k-m+2}{2}+1}$, to get a new magic rectangle in which $C_{\frac{k-m+2}{2}} = \frac{m(mn+1)}{2} + m(m+n-1-k)$ and $C_{n-\frac{k-m+2}{2}+1} = \frac{m(mn+1)}{2} m(m+n-1-k)$. It is a (k+2)-magic rectangle $A_{m\times n}^{(k+2)}$. This step is repeated whenever k varies from m+2 to m+n-4 and k is even.
- **Step 4:** In $A_{m \times n}^{(m+n-2)}$, interchange the entries $a_{\frac{m}{2},n}$ and $a_{\frac{m+2}{2},n}$ and also interchange the entries $a_{m,\frac{n}{2}}$ and $a_{m,\frac{n+2}{2}}$, to get a new magic rectangle in which $C_{\frac{m}{2}} = \frac{n(mn+1)}{2} + m(n-1) 1$, $C_{\frac{m+2}{2}} = \frac{n(mn+1)}{2} m(n-1) + 1$, $C_{\frac{n}{2}} = \frac{m(mn+1)}{2} + 1$ and $C_{\frac{n+2}{2}} = \frac{m(mn+1)}{2} 1$. It is a (m+n)-magic rectangle $A_{m \times n}^{(m+n)}$.
- **Output:** We obtain a 4, 6, 8, ..., (m + n)-magic rectangle where m = 2s, n = 2t, s and t both odd, from $A_{m \times n}^{(2)}$.

Algorithm 2.2. Algorithm for obtaining a 2i + 1-magic rectangle for $2 \le i \le \frac{m+n}{2}$ where m = 2s, n = 2t, s and t both odd, from $A_{m \times n}^{(3)}$.

Input: Let $A_{m \times n}^{(3)} = (a_{ij}), 1 \le i \le m, 1 \le j \le n$, be the 3-magic rectangle where m = 2s, n = 2t, s and t both odd.

In $A_{m \times n}^{(3)}$, $a_{i1}, 1 \le i \le m$ is of the form:

$$a_{i1} = \begin{cases} m(n-2)+1 & \text{if } i = 1, \\ mn-i+1 & \text{if } 2 \le i \le \frac{m}{2}, \\ m-i+1 & \text{if } \frac{m+2}{2} \le i \le m, \ i \ne m-1, \\ 2m-1 & \text{if } i = m-1. \end{cases}$$

Step 1: In $A_{m\times n}^{(3)}$, interchange the entries a_{11} and a_{m1} , to get a new magic rectangle in which $R_1 = \frac{n(mn+1)}{2} - m(n-2)$ and $R_m = \frac{n(mn+1)}{2} + m(n-2)$. It is a 5-magic rectangle $A_{m\times n}^{(5)}$.

Step 2: Take k-magic rectangle $A_{m\times n}^{(k)}$ and interchange the entries $a_{\frac{k+1}{2},1}$ and $a_{n-\frac{k+1}{2}+1,1}$, to get a new magic rectangle in which $R_{\frac{k+1}{2}} = \frac{n(mn+1)}{2} - mn + k$ and $R_{n-\frac{k+1}{2}+1} = \frac{n(mn+1)}{2} + mn - k$. It is a (k+2)-magic rectangle $A_{m\times n}^{(k+2)}$. This step is repeated whenever k varies from 5 to m-1 and k is odd.

Step 3: In $A_{m \times n}^{(m+1)}, a_{mj}, 1 \le j \le n$ is of the form:

$$a_{mj} = \begin{cases} m(n-2)+1 & \text{if } j = 1, \\ m(j-1)+1 & \text{if } \begin{cases} 3 \le j \le \frac{n-2}{2}, \, j \text{ is odd, or} \\ \frac{n}{2} \le j \le n, \, j \text{ is even;} \end{cases}$$
$$mj & \text{if } \begin{cases} 1 \le j \le \frac{n-2}{2}, \, j \text{ is even, or} \\ \frac{n}{2} \le j \le n, \, j \text{ is odd} \end{cases}$$

In $A_{m \times n}^{(m+1)}$, interchange the entries a_{m1} and a_{mn} , to get a new magic rectangle in which $C_1 = \frac{m(mn+1)}{2} + m - 2$ and $C_n = \frac{m(mn+1)}{2} - m + 2$. It is a (m+3)-magic rectangle $A_{m \times n}^{(m+3)}$.

- **Step 4:** Step 4.1 is repeated whenever k varies from m + 3 to m + n 3 and $k \equiv 1 \pmod{4}$ and Step 4.2 is repeated whenever k varies from m + 3 to m + n 3 and $k \equiv 3 \pmod{4}$.
 - **Step 4.1:** Take k-magic rectangle $A_{m \times n}^{(k)}$ and interchange the entries $a_{m,\frac{k-m+1}{2}}$ and $a_{m,n-\frac{k-m+1}{2}+1}$, to get a new magic rectangle in which $C_{\frac{k-m+1}{2}} = \frac{m(mn+1)}{2} + m(m+n-k) + 2$ and $C_{n-\frac{k-m+1}{2}+1} = \frac{m(mn+1)}{2} m(m+n-k) 2$. It is a (k+2)-magic rectangle $A_{m \times n}^{(k+2)}$.
 - **Step 4.2:** Take k-magic rectangle $A_{m \times n}^{(k)}$ and interchange the entries $a_{m,\frac{k-m+1}{2}}$ and $a_{m,n-\frac{k-m+1}{2}+1}$, to get a new magic rectangle in which $C_{\frac{k-m+1}{2}} = \frac{m(mn+1)}{2} + m(m+n-k) 2$ and $C_{n-\frac{k-m+1}{2}+1} = \frac{m(mn+1)}{2} m(m+n-k) + 2$. It is a (k+2)-magic rectangle $A_{m \times n}^{(k+2)}$.
- **Output:** We obtain a 5, 7, 9, ..., (m + n 1)-magic rectangle where m = 2s, n = 2t, s and t both odd, from the given $A_{m \times n}^{(3)}$.

Algorithm 2.3. Algorithm for obtaining a 4, 6, 8, ..., (m+n)-magic rectangle where m = 2s, n = 2t, where at least one of s and t is even, from $A_{m \times n}^{(2)}$.

Input: Without loss of generality, we assume that *s* must be even.

Let $A_{m \times n}^{(2)} = (a_{ij}), 1 \le i \le m, 1 \le j \le n$, be the 2-magic rectangle where m = 2s, n = 2t, s even. Then

$$\sum_{i=1}^{m} a_{ij} = \frac{m(m^2 + 1)}{2}, 1 \le j \le n,$$

and

$$\sum_{i=1}^{n} a_{ij} = \frac{m(m^2 + 1)}{2}, 1 \le j \le m.$$

In $A_{m \times n}^{(2)}$, [7] $a_{i1}, 1 \le i \le m$ is of the form:

$$a_{i1} = \begin{cases} i & \text{if } 1 \le i\frac{m}{4}, \text{ or } \frac{3m+4}{4} \le i \le, \\ mn-i+1 & \text{if } \frac{m+4}{4} \le i \le \frac{3m}{4}. \end{cases}$$

Step 1: Take k-magic rectangle $A_{m \times n}^{(k)}$ and interchange the entries $a_{\frac{k}{2},1}$ and $a_{m-\frac{k}{2}+1,1}$, to get a new magic rectangle in which $R_{\frac{k}{2}} = \frac{n(mn+1)}{2} + m+1-k$ and $R_{m-\frac{k}{2}+1} = \frac{n(mn+1)}{2} - m - 1 + k$. It is a (k+2)-magic rectangle $A_{m \times n}^{(k+2)}$. This step is repeated whenever k varies from 2 to $\frac{m}{2}$ and k is even.

Step 2: Take k-magic rectangle $A_{m \times n}^{(k)}$ and interchange the entries $a_{\frac{k}{2},1}$ and $a_{m-\frac{k}{2}+1,1}$, to get a new magic rectangle in which $R_{\frac{k}{2}} = \frac{n(mn+1)}{2} - m - 1 + k$ and $R_{m-\frac{k}{2}+1} = \frac{n(mn+1)}{2} + m + 1 - k$. It is a (k+2)-magic rectangle $A_{m \times n}^{(k+2)}$. This step is repeated whenever k varies from $\frac{m+4}{2}$ to m-2 and k is even.

Step 3: In $A_{m \times n}^{(m)}, a_{mj}, 1 \le j \le n$ is of the form:

$$a_{mj} = \begin{cases} 1 & \text{if } j = 1, \\ mj & \text{if } 2 \le j \le n, j \text{ is odd}, \\ m(j-1)+1 & \text{if } 1 \le j \le n, j \text{ is even.} \end{cases}$$

In $A_{m \times n}^{(m)}$, interchange the entries a_{m1} and a_{mn} , to get a new magic rectangle in which $C_1 = \frac{m(mn+1)}{2} + m(n-1)$ and $C_n = \frac{m(mn+1)}{2} - m(n-1)$. It is a (m+2)-magic rectangle $A_{m \times n}^{(m+2)}$.

- **Step 4:** The Step 4.1 is repeated whenever k varies from m+2 to m+n-4 and $k \equiv 2 \pmod{4}$ and the Step 4.2 is repeated whenever k varies from m+2 to m+n-4 and $k \equiv 0 \pmod{4}$.
 - **Step 4.1:** Take k-magic rectangle $A_{m \times n}^{(k)}$ and interchange the entries $a_{m, \frac{k-m+2}{2}}$ and $a_{m,n-\frac{k-m+2}{2}+1}$, to get a new magic rectangle in which $C_{\frac{k-m+2}{2}} = \frac{m(mn+1)}{2} + m(m+n-k) 1$ and $C_{n-\frac{k-m+2}{2}+1} = \frac{m(mn+1)}{2} m(m+n-k) + 1$. It is a (k+2)-magic rectangle $A_{m \times n}^{(k+2)}$.
 - **Step 4.2:** Take k-magic rectangle $A_{m \times n}^{(k)}$ and interchange the entries $a_{m,\frac{k-m+2}{2}}$ and $a_{m,n-\frac{k-m+2}{2}+1}$, to get a new magic rectangle in which $C_{\frac{k-m+2}{2}} = \frac{m(mn+1)}{2} + m(m+n-2-k) + 1$ and $C_{n-\frac{k-m+2}{2}+1} = \frac{m(mn+1)}{2} m(m+n-2-k) 1$. It is a (k+2)-magic rectangle $A_{m \times n}^{(k+2)}$.
- **Step 5:** In $A_{m \times n}^{(m+n-2)}$, interchange the entries $a_{\frac{m}{2},n}$ and $a_{\frac{m+2}{2},n}$ and also interchange the entries $a_{m,\frac{n}{2}}$ and $a_{m,\frac{n+2}{2}}$, to get a new magic rectangle in which $C_{\frac{m}{2}} = \frac{n(mn+1)}{2} 1$, $C_{\frac{m+2}{2}} = \frac{n(mn+1)}{2} + 1$, $C_{\frac{n}{2}} = \frac{m(mn+1)}{2} 1$ and $C_{\frac{n+2}{2}} = \frac{m(mn+1)}{2} + 1$. It is a (m+n)-magic rectangle $A_{m \times n}^{(m+n)}$.
- **Output:** We obtain a 4, 6, 8, ..., m + n-magic rectangle where m = 2s, n = 2t, where at least one of s and t is even, from $A_{m \times n}^{(2)}$.

Algorithm 2.4. Algorithm for obtaining a $5, 7, 9, \ldots, (m + n - 1)$ -magic rectangle, m = 2s, n = 2t, where at least one of s and t is even, from $A_{m \times n}^{(3)}$.

Input: Let $A_{m \times n}^{(3)} = (a_{ij}), 1 \le i \le m, 1 \le j \le n$, be the 3-magic rectangle, m = 2s, n = 2t, where at least one of s and t is even.

In $A_{m \times n}^{(3)}$, $a_{i1}, 1 \le i \le m$ is of the form:

$$a_{i1} = \begin{cases} 2m & \text{if } i = 1, \\ i & \text{if } 2 \le i \le \frac{m}{4}, \text{ and } \frac{3m+4}{4} \le i \le m, \\ mn - i + 1 & \text{if } \frac{m+8}{2} \le i \le m, \text{ and } i \ne \frac{3m}{4}, \\ m(n-2) + \frac{m}{4} + 1 & \text{if } i = \frac{m+4}{4}. \end{cases}$$

- **Step 1:** In $A_{m \times n}^{(3)}$, interchange the entries a_{11} and a_{m1} , to get a new magic rectangle in which $R_1 = \frac{n(mn+1)}{2} m$ and $R_m = \frac{n(mn+1)}{2} + m$. It is a 5-magic rectangle $A_{m \times n}^{(5)}$.
- **Step 2:** Take k-magic rectangle $A_{m \times n}^{(k)}$ and interchange the entries $a_{\frac{k-1}{2},1}$ and $a_{n-\frac{k-1}{2}+1,1}$, to get a new magic rectangle in which $R_{\frac{k-1}{2}} = \frac{n(mn+1)}{2} + m + 2 - k$ and $R_{n-\frac{k-1}{2}+1} = \frac{n(mn+1)}{2} - m - 2 + k$. It is a (k+2)-magic rectangle $A_{m \times n}^{(k+2)}$. This step is repeated whenever k varies from 5 to $\frac{m+2}{2}$ and k is odd.
- **Step 3:** Take k-magic rectangle $A_{m \times n}^{(k)}$ and interchange the entries $a_{\frac{k+1}{2},1}$ and $a_{n-\frac{k+1}{2}+1,1}$, to get a new magic rectangle in which $R_{\frac{k+1}{2}} = \frac{n(mn+1)}{2} - m + k$ and $R_{n-\frac{k+1}{2}+1} = \frac{n(mn+1)}{2} + m - k$. It is a (k+2)magic rectangle $A_{m \times n}^{(k+2)}$. This step is repeated whenever k varies from $\frac{m+6}{2}$ to m-1 and k is odd.
- **Step 4:** In $A_{m \times n}^{(m+1)}$, a_{mj} , $1 \le j \le n$ is of the form:

$$a_{mj} = \begin{cases} 2m & \text{if } j = 1, \\ mj & \text{if } 2 \le j \le n, \text{ and } j \text{ is odd,} \\ m(j-1)+1 & \text{if } 1 \le j \le n, \text{ and } j \text{ is even.} \end{cases}$$

In $A_{m\times n}^{(m+1)}$, interchange the entries a_{m1} and a_{mn} , to get a new magic rectangle in which $C_1 = \frac{m(mn+1)}{2} + \frac{m+2}{2} + m(n-3) + 1$ and $C_n = \frac{m(mn+1)}{2} - \frac{m}{2} - m(n-3) - 1$. It is a (m+3)-magic rectangle $A_{m\times n}^{(m+3)}$.

Step 5: The Step 5.1 is repeated whenever k varies from m+3 to m+n-3 and $k \equiv 3 \pmod{4}$ and the Step:5.2 is repeated whenever k varies from m+3 to m+n-3 and $k \equiv 1 \pmod{4}$.

- **Step 5.1:** Take k-magic rectangle $A_{m \times n}^{(k)}$ and interchange the entries $a_{m,\frac{k-m+1}{2}}$ and $a_{m,n-\frac{k-m+1}{2}+1}$, to get a new magic rectangle in which $C_{\frac{k-m+1}{2}} = \frac{m(mn+1)}{2} + m(m+n+1-k) \frac{m}{2} 1$ and $C_{n-\frac{k-m+1}{2}+1} = \frac{m(mn+1)}{2} m(m+n+1-k) + \frac{m}{2} + 1$. It is a (k+2)-magic rectangle $A_{m \times n}^{(k+2)}$.
- **Step 5.2:** Take k-magic rectangle $A_{m \times n}^{(k)}$ and interchange the entries $a_{m,\frac{k-m+1}{2}}$ and $a_{m,n-\frac{k-m+1}{2}+1}$, to get a new magic rectangle in which $C_{\frac{k-m+1}{2}} = \frac{m(mn+1)}{2} + m(m+n-1-k) + \frac{m}{2} + 1$ and $C_{n-\frac{k-m+1}{2}+1} = \frac{m(mn+1)}{2} m(m+n-1-k) \frac{m}{2} 1$. It is a (k+2)-magic rectangle $A_{m \times n}^{(k+2)}$.
- **Output:** We obtain a 5, 7, 9, ..., (m+n-1)-magic rectangle, m = 2s, n = 2t, where at least one of s and t is even, from $A_{m \times n}^{(3)}$.

3 Splendour spectrum of two classes of graphs

In this section, we associate a set of positive integers to each graph G using the existence or non-existence of a k-magic labeling of G.

The Splendour Spectrum of a graph G, denoted by SSP(G), is defined by $SSP(G) = \{k | G \text{ has a } k - \text{magic labeling}\}$. An example is provied in Figure 1.

Now, let us determine SSP(G) of two classes of graphs. In [6], we proved that $SSP(K_{n,n}) = \{1, 2, ..., 2n\}$.

Theorem 3.1. A complete bipartite graph $K_{m,n}$, m and n are even, is k-magic if and only if $k \neq 1$.

In other words, $SSP(K_{m,n}) = \{2, 3, \dots, (m+n)\}$, where m and n are even.

Proof. Let the bipartition of $K_{m,n}$ be r_1, r_2, \ldots, r_m and c_1, c_2, \ldots, c_n . By labeling the edge $r_i c_j$ with the contents of cell (i, j) in a $m \times n$ k- magic rectangle.

In [5], Ivančo et al. proved that $K_{m,n}, m, n \ge 1, m \ne n, m, n \equiv 0 \pmod{2}$, is not a magic graph (1-magic graph).

Figure 1: A graph G with $SSP(G) = \{3, 4, 5\}$.

From the constructions of 2-magic rectangle and 3-magic rectangle of order m = 2s, n = 2t, s and t both odd and from Algorithm 2.1 and Algorithm 2.2, we get k-magic rectangle $2 \le k \le m+n$ and hence $K_{m,n}, m = 2s, n = 2t, s$ and t both odd is k-magic, $2 \le k \le m+n$.

From the constructions of 2-magic rectangle and 3-magic rectangle of order m = 2s, n = 2t, at least one of s and t even and from Algorithm 2.3 and Algorithm 2.4, we get k-magic rectangle $2 \le k \le m + n$ and hence $K_{m,n}, m = 2s, n = 2t$, at least one of s and t even is k-magic, $2 \le k \le m + n$.

Thus, $K_{m,n}$, m and n are even, is k-magic if and only if $k \neq 1$.

Open Problem 3.2. Determine $SSP(K_{m,n})$, if either m or n is odd.

Theorem 3.3. A friendship graph T_n is neither magic nor 2-magic for all n.

Proof. Let $\{v_1, v_2, \ldots, v_{2n+1}\}$ be the set of vertices in $T_n, n \ge 1$ such that

 v_{2n+1} is the central vertex and let $e_i = v_i v_{2n+1}, 1 \le i \le 2n$ and let $f_i = v_{2i-1}v_{2i}, 1 \le i \le n$ be the edges in $T_n, n \ge 1$.

Then we can use the edge labels from the set of integers $\{1, 2, ..., 3n\}$ and let S_i be the sum of the edge labels incident with the vertex $v_i, 1 \le i \le 2n + 1$.

Now,

 $1 + 2 + \dots + 2n \leq S_{2n+1} \leq (n+1) + (n+2) + \dots + 3n,$ $1 + 2 \leq S_{2i-1} \leq (3n) + (3n-1),$

and

 $1+2 \leq S_{2i} \leq (3n) + (3n-1), 1 \leq i \leq n.$

This implies that

$$n(2n+1) \le S_{2n+1} \le n(4n+1), 3 \le S_{2i-1} \le 6n-1,$$

and

$$3 \le S_{2i} \le 6n - 1, 1 \le i \le n.$$

Also, 6n-1 < n(2n+1), $n \ge 3$ and the vertices v_{2i-1} and v_{2i} have different vertex sum, since adjacent vertices have different magic constant, $1 \le i \le n$. This implies that it is at least 3-magic, $n \ge 3$.

Also, T_1, T_2 are not 1-magic and T_2 is not 2-magic, since adjacent vertices have different magic constant. By direct verification, T_2 is not 2-magic.

Thus, a friendship graph $T_n, n \ge 1$ is neither 1-magic nor 2-magic. \Box

Construction of 3-magic labeling of $T_n, n \geq 1$

Let $\{v_1, v_2, \ldots, v_{2n+1}\}$ be the set of vertices in $T_n, n \ge 1$ such that v_{2n+1} is the central vertex and let $e_i, 1 \le i \le 2n$ and let $f_i, 1 \le i \le n$ such that $f_i = v_{2i-1}v_{2i}$ be the edges in $T_n, n \ge 1$.

Then we can use the edge labels from the set of integers $\{1, 2, ..., 3n\}$ and let S_i be the sum of the edge labels incident with the vertex $v_i, 1 \leq i \leq 2n + 1$.

Now, we label the edges of $T_n, n \ge 1$, as follows: $e_i, 1 \le i \le 2n, i$ is odd as $\frac{i-1}{2} + 1$, $e_i, 1 \le i \le 2n, i$ is even as $n + \frac{i}{2}$ and the edge $f_i, 1 \le i \le n$ as 3n - i + 1.

Then the vertex sum of the vertices

$$S_{i} = \begin{cases} 3n+1, & 1 \le i \le 2n, \text{ and } i \text{ odd,} \\ 4n+1, & 1 \le i \le 2n, \text{ and } i \text{ even} \end{cases}$$
$$S_{2n+1} = n(2n+1).$$

This implies that it is a 3-magic labeling of $T_n, n \ge 1$.

Construction of 4-magic labeling from 3-magic labeling of $T_n, n \ge 1$

First we consider a 3-magic labeling of T_n , $n \ge 1$.

In a 3-magic labeling, interchange the edge labels f_1 and e_1 , then we get the new labeling. Then the vertex sum of the vertices

$$S_i = \begin{cases} 3n+1 & \text{if } 1 \leq i \leq 2n, \ i \text{ odd}, \\ n+2 & \text{if } i=2 \\ 4n+1 & \text{if } 4 \leq i \leq 2n, \ i \text{ even}, \\ 2n^2+4n-1 & \text{if } i=2n+1 \end{cases}$$

This implies that it is a 4-magic labeling of T_n , $n \ge 1$.

Algorithm 3.4. Algorithm for obtaining $5, 7, \ldots, (2n + 1)$ -magic labeling from a 3-magic labeling of T_n , $n \ge 1$.

Input: Consider the 3-magic labeling of $T_n, n \ge 1$.

Case(i): n is odd

- **Step 1:** Take k-magic labeling and interchange the edge labels e_{k-2} and e_{2n-k+3} , to get a new labeling in which $S_{k-2} = 5n k + 3$ and $S_{2n-k+3} = 2n + k 1$. It is a (k+2)-magic labeling. This step is repeated whenever k varies from 3 to n and k is odd.
- **Step 2:** Take k-magic labeling and interchange the edge labels e_{k-n} and e_{3n-k+1} , to get a new labeling in which $S_{k-n} = 5n k + 2$ and $S_{3n-k+1} = 2n + k$. It is a (k+2)-magic labeling. This step is repeated whenever k varies from n+2 to 2n-1 and k is odd.

- Step 1: Take k-magic labeling and interchange the edge labels e_{k-2} and e_{2n-k+3} , to get a new labeling in which $S_{k-2} = 5n - k + 3$ and $S_{2n-k+3} = 2n + k - 1$. It is a (k+2)-magic labeling. This step is repeated whenever k varies from 3 to n+1 and k is odd.
- **Step 2:** Take k-magic labeling and interchange the edge labels e_{k-n+1} and e_{3n-k+2} , to get a new labeling in which $S_{k-n-1} = 5n-k+3$ and $S_{3n-k+2} = 2n+k-1$. It is a (k+2)-magic labeling. This step is repeated whenever k varies from n+3 to 2n-1 and k is odd.
- **Output:** We obtain a 5, 7, ..., (2n+1)-magic labeling from 3-magic labeling of T_n , $n \ge 1$.

Algorithm 3.5. Algorithm for obtaining $6, 8, \ldots, 2n$ -magic labeling from 4-magic labeling of $T_n, n \ge 1$.

- **Input:** Consider the 4-magic labeling of T_n , $n \ge 1$.
- **Step 1:** In a 4-magic labeling interchange the edge labels e_1 and e_{2n} , to get a new labeling in which $S_1 = 2n + 1$ and $S_{2n} = 5n + 1$. It is a 6-magic labeling.

Case(i): n is odd.

- **Step 2:** Take a k-magic labeling and interchange the edge labels e_{k-3} and e_{2n-k+4} , to get a new labeling in which $S_{k-3} = 5n k + 4$ and $S_{2n-k+4} = 2n + k 2$. This implies that it is a (k+2)-magic labeling. This step is repeated whenever k varies from 6 to n+1 and k is even.
- **Step 3:** Take a k-magic labeling and interchange the edge labels e_{k-n+1} and e_{3n-k+2} , to get a new labeling in which $S_{k-n+1} = 5n k + 2$ and $S_{3n-k+2} = 2n + k$. This implies that it is a (k+2)-magic labeling. This step is repeated whenever k varies from n+3 to 2n-2 and k is even.

Case(ii): n is even.

Step 2: Take k-magic labeling and interchange the edge labels e_{k-3} and e_{2n-k+4} , to get a new labeling in which $S_{k-3} = 5n - k + 4$

and $S_{2n-k+4} = 2n+k-2$. This implies that it is a (k+2)-magic labeling. This step is repeated whenever k varies from 6 to n+2 and k is even.

- **Step 3:** Take k-magic labeling and interchange the edge labels e_{k-n} and e_{3n-k+3} , to get a new labeling in which $S_{k-n} = 5n k + 2$ and $S_{3n-k+3} = 2n + k$. It is a (k+2)-magic labeling. This step is repeated whenever k varies from n+4 to 2n-2 and k is even.
- **Output:** We obtain a $6, 8, \ldots, 2n$ -magic labeling from 4-magic labeling of $T_n, n \ge 1$.

Theorem 3.6. The friendship graph T_n , $n \ge 1$ is k-magic if and only if $k \ne 1, 2$.

In other words $SSP(T_n) = \{3, 4, ..., 2n + 1\}.$

Proof. From Theorem 3.3, T_n is neither magic nor 2-magic.

From the constructions of 3-magic labeling and 4-magic labeling and from Algorithm 3.4 and Algorithm 3.5, we get k-magic labeling of $T_n, n \ge 1, 2 \le k \le 2n+1$ and hence $T_n, n \ge 1$, is k-magic if and only if $k \ne 1, 2$.

Acknowledgment

We greatly appreciate the valuable suggestions made by an anonymous referee that resulted in an improved paper.

References

- J.B. Babujee, Bimagic labeling of path graphs, Math. Educ., 38 (2004), 12–16.
- [2] T. Bier and A. Klienschmidt, Centrally symmetric and magic rectangles, Discrete Math., 176 (1997), 29–42.
- [3] N. Hartsfield and G. Ringel, *Pearls in Graph Theory*, Acadamic Press Inc., Boston, (1994).

- [4] T. Hegedorn, Magic rectangles revisited, Discrete Math., 207 (1999), 65–72.
- [5] J. Ivančo and T. Polláková, On Magic Joins of Graphs, Math. Bohem., 137 (2012), 459–472.
- [6] C. Meenakshi and KM. Kathiresan, A generalization of magic and antimagic labeling of graphs, AKCE Int. J. Graphs Comb. (2018), https://doi.org/10.1016/j.akcej.2018.01.014.
- [7] J.P. De Los Reyes, A. Das, C.K. Midha, and P. Vellaisamy, On a method to construct magic rectangles of even order, Util. Math. 80 (2009), 277– 284.
- [8] J. Sedláček, Problem 27. The Theory of Graphs and its Applications, Proc. Symp. Smolenice, Praha, (1963), 163–167.