BULEAN of the

Volume 85
Fehruary 2019

IISTINTH: 1

GOMBNMIORGE and its IPPIBITOLS

Editors-in-Chief: Marco Buratti, Donald Kreher, Tran van Trung

A generalization of magic labeling of two classes of graphs

C. Meenakshi ${ }^{1}$ and K.M. Kathiresan ${ }^{2}$
${ }^{1}$ Sri Krishnasamy Arts and Science College, Mettamalai, Sattur, India. meenaloshini91@gmail.com
${ }^{2}$ Ayya Nadar Janaki Ammal College (Autonomous), Sivakasi, India.
kathir2esan@yahoo.com

Abstract

A k-magic labeling of a finite, simple graph with $|V(G)|=p$ and $|E(G)|=q$, is a bijection from the set of edges into the set of integers $\{1,2,3, \cdots, q\}$ such that the vertex set V can be partitioned into k sets $V_{1}, V_{2}, V_{3}, \cdots, V_{k}, 1 \leq k \leq p$, and each vertex in the set V_{i} has the same vertex sum and any two vertices in different sets have different vertex sum, where a vertex sum is the sum of the labels of all edges incident with that vertex. A graph is called k-magic if it has a k-magic labeling. The study of k-magic labeling is very interesting, since all magic graphs are 1-magic and all antimagic graphs are p-magic. The Splendour Spectrum of a graph G, denoted by $S S P(G)$, is defined by $S S P(G)=\{k \mid G$ has a k-magic labeling $\}$.

In this paper, we determine $S S P\left(K_{m, n}\right), m$ and n are even and $S S P\left(T_{n}\right)$, where T_{n} is the friendship graph and $n \geq 1$.

1 Introduction

Let G be a finite, undirected simple connected graph with p vertices and q edges. A magic labeling is a bijection from the set of edges into the

Key words and phrases: k-magic labeling, k-magic graph, Splendour Spectrum AMS (MOS) Subject Classifications: 05C78
set of integers $\{1,2,3, \cdots, q\}$ such that all vertex sums are same, where a vertex sum is the sum of labels of all edges incident with that vertex. A graph is called magic if it has a magic labeling. Magic labeling concept was introduced in 1963 by Sedláček [8]. An antimagic labeling of a graph is a bijection from the set of edges into the set of integers $\{1,2,3, \cdots, q\}$ such that all p vertex sum are pairwise distinct. The concept of antimagic graph was introduced by Hartsfield and Ringel[3] in 1990. The concept of bimagic labeling of graphs was introduced by Babujee [1] in 2004.

Motivated by the concept of magic and antimagic labeling, we define a k magic labeling, $1 \leq k \leq p$. A k-magic labeling of a graph is a bijection from the set of edges into the set of integers $\{1,2,3, \cdots, q\}$ such that the vertex set V can be partitioned into k sets $V_{1}, V_{2}, V_{3}, \cdots, V_{k}, 1 \leq k \leq p$, and each vertex in the set V_{i} has the same vertex sum and any two vertices in different sets have the different vertex sum. A graph is called k-magic if it has a k-magic labeling. We observe that a magic labeling is 1 - magic and an antimagic labeling is p-magic so that k-magic labeling is a generalization of both magic and antimagic labeling of a graph.

We have the following problems:

1. Does there exists a graph which is k-magic for all $k, 1 \leq k \leq p$?
2. Given a graph G, determine the values of k for which G is k-magic.

In this paper, we attempt to solve the above problems.

2 Construction of k-magic rectangles

A magic rectangle is an arrangement of the set of integers $\{1,2,3, \ldots, m n\}$ in an array of m rows and n columns so that each row adds to the same total R and each column to the same total C. The totals R and C are termed as the row magic constant and column magic constant respectively. Since the average value of set of integers $\{1,2,3, \ldots, m n\}$ is $A=\frac{m n+1}{2}$, we must have $R=n A$ and $C=m A$. The total of all the integers in the array is $m n A=m R=n C$. These two constants are the same just in the case $m=n$. A magic rectangle may be one of the two kinds - even by even or odd by odd. If $m n$ is even, then $m n+1$ is odd and so for $R=\frac{n(m n+1)}{2}$ and $C=\frac{m(m n+1)}{2}$ to be integers m and n must both be even. On the other
hand, since either m or n being even would result in the product $m n$ being even, and so if $m n$ is odd then m and n must both be odd. In this case also R and C are integers since $m n+1$ is even. Therefore, an odd by even magic rectangle is not possible. Also, 2×2 magic rectangle is impossible.

For an update on available literature on magic rectangles we refer to Hegedorn [4] and Bier et al.[2]. In 2009, Reyes et al. [7] have provided complete solutions for constructing an even by even magic rectangle.

Motivated by the concept of magic rectangle, we define k-magic rectangle, $1 \leq k \leq m+n$.

A k-magic rectangle, $1 \leq k \leq m+n$, is a $m \times n$ arrangement of the set of integers $\{1,2,3, \ldots, m n\}$ so that the sums of the entries in each row and each column form a k-element set.

We observe that a magic rectangle is a 2-magic rectangle.
Now, we construct a $3,4,5, \ldots,(m+n)$-magic rectangle from the given 2-magic rectangle.

Let R_{i} and $C_{j}, 1 \leq i \leq m, 1 \leq j \leq n$ be the sum of all the entries in the $i^{t h}$ row and $j^{\text {th }}$ column respectively. Let $A_{m \times n}^{(k)}=\left(a_{i j}\right), 1 \leq i \leq m, 1 \leq j \leq n$, be the k-magic rectangle of order $m \times n$.

Construction of $A_{m \times n}^{(3)}$ of order $m=2 s, n=2 t, s$ and t both odd, from $A_{m \times n}^{(2)}$

First we consider $A_{m \times n}^{(2)}$ be the 2-magic rectangle in [7].
In the first $\frac{n-2}{2}$ columns, $a_{1, j}-a_{1, j+1}=2 m-1$ and $a_{m-1, j+1}-a_{m-1, j}=$ $2 m-3,1 \leq j \leq \frac{n-2}{2}, j$ is odd. Now, we interchange the entries $a_{1, j}$ and $a_{1, j+1}$ and also interchange the entries $a_{m-1, j+1}$ and $a_{m-1, j}, 1 \leq j \leq \frac{n-2}{2}, j$ is odd.

In $\left(\frac{n}{2}\right)^{t h}$ and $\left(\frac{n+2}{2}\right)^{t h}$ columns, we have $a_{\frac{m-2}{4}, \frac{n}{2}}-a_{\frac{m-2}{4}, \frac{n+2}{2}}=\frac{3 m+4}{2}$ and $a_{\frac{m+2}{4}, \frac{n+2}{2}}-a_{\frac{m+2}{4}, \frac{n}{2}}=\frac{3 m}{2}$. Now, we interchange the entries $a_{\frac{m-2}{4}, \frac{n}{2}}$ and $a_{\frac{m-2}{4}, \frac{n+2}{2}}$ and also interchange the entries $a_{\frac{m+2}{4}, \frac{n}{2}}$ and $a_{\frac{m+2}{4}, \frac{n+2}{2}}$.

In the last $\frac{n-2}{2}$ columns, $a_{1, j}-a_{1, j+1}=1$ and $a_{m-1, j+1}-a_{m-1, j}=3, \frac{n+4}{2} \leq$ $j \leq n, j$ is odd. Now, we interchange the entries $a_{1, j}$ and $a_{1, j+1}$ and also interchange the entries $a_{m-1, j+1}$ and $a_{m-1, j}$.

Then we get a new magic rectangle in which
$R_{j}=\frac{n(m n+1)}{2} \quad$ if $1 \leq j \leq m$,
$C_{j}= \begin{cases}\frac{m(m n+1)}{2}+2 & \text { if } 1 \leq j \leq \frac{n+2}{2}, j \text { even, } \frac{n+4}{2} \leq j \leq n, j \text { odd, } \\ \frac{m(m n+1)}{2}-2 & \text { if } 1 \leq j \leq \frac{n+2}{2}, j \text { odd, } \frac{n+4}{2} \leq j \leq n, j \text { even. }\end{cases}$

This implies that it is a 3-magic rectangle $A_{m \times n}^{(3)}$ of order $m=2 s, n=2 t, s$ and t both odd.

Construction of $A_{m \times n}^{(3)}$ of order $m=2 s, n=2 t$, where at least one of s and t is even, from $A_{m \times n}^{(2)}$

First we take the parameter s to be even without loss of generality.
We consider $A_{m \times n}^{(2)}$ be the 2-magic rectangle in [7].
In $A_{m \times n}^{(2)}, a_{1, j+1}-a_{1, j}=2 m-1$ and $a_{\frac{m+4}{4}, j}-a_{\frac{m+4}{4}, j+1}=2 m-\frac{m+2}{2}, 1 \leq$ $j \leq n, j$ is odd.

Now, we interchange the entries $a_{1 j}$ and $a_{1, j+1}$ and also interchange the entries $a_{\frac{m+4}{4}, j+1}$ and $a_{\frac{m+4}{4}, j}$, creating a new magic rectangle in which

$$
\begin{aligned}
& R_{j}=\frac{n(m n+1)}{2} \text { if } 1 \leq j \leq m, \\
& C_{j}= \begin{cases}\frac{m(m n+1)}{2}+\frac{m}{2} & \text { if } 1 \leq j \leq n, j \text { is odd } \\
\frac{m(m n+1)}{2}-\frac{m}{2} & \text { if } 1 \leq j \leq n, j \text { is even. }\end{cases}
\end{aligned}
$$

This implies that it is a 3-magic rectangle $A_{m \times n}^{(3)}$ of order $m=2 s, n=2 t$, where at least one of s and t is even, from the given $A_{m \times n}^{(2)}$.
Algorithm 2.1. Algorithm for obtaining a $2 i$-magic rectangle for $2 \leq i \leq$ $\frac{m+n}{2}$ where $m=2 s, n=2 t, s$ and t both odd, from $A_{m \times n}^{(2)}$.

Input: Let $A_{m \times n}^{(2)}=\left(a_{i j}\right), 1 \leq i \leq m, 1 \leq j \leq n$, where $m=2 s, n=2 t$, s and t both odd be the 2 -magic rectangle in [7].

Then

$$
\sum_{i=1}^{m} a_{i j}=\frac{m\left(m^{2}+1\right)}{2}, 1 \leq j \leq n
$$

and

$$
\sum_{i=1}^{n} a_{i j}=\frac{m\left(m^{2}+1\right)}{2}, 1 \leq j \leq m
$$

In $A_{m \times n}^{(2)}, a_{i 1}, 1 \leq i \leq m$ is of the form:

$$
a_{i 1}= \begin{cases}m n-i+1 & \text { if } 1 \leq i \leq \frac{m}{2} \\ m-i+1 & \text { if } \frac{m+2}{2} \leq i \leq m\end{cases}
$$

Step 1: Take k-magic rectangle $A_{m \times n}^{(k)}$ and interchange the entries $a_{\frac{k}{2}, 1}$ and $a_{m-\frac{k}{2}+1,1}$, to get a new magic rectangle in which the sum of the entries of all rows and columns are as same as in $A_{m \times n}^{(k)}$ except $R_{\frac{k}{2}}$ and $R_{m-\frac{k}{2}+1}$, where $R_{\frac{k}{2}}=\frac{n(m n+1)}{2}-(m n+1)+k$ and $R_{m-\frac{k}{2}+1}=$ $\frac{n(m n+1)}{2}+(m n+1)-k$. It is a $(k+2)$-magic rectangle $A_{m \times n}^{(k+2)}$.This step is repeated whenever k varies from 2 to $m-2$ and k is even.

Step 2: In $A_{m \times n}^{(m)}, a_{m j}, 1 \leq j \leq n$ is of the form:

$$
a_{m j}= \begin{cases}m n & \text { if } j=1 \\ m(j-1)+1 & \text { if } 3 \leq j \leq \frac{n-2}{2}, j \text { odd, } \frac{n}{2} \leq j \leq n, j \text { even } \\ m j & \text { if } 1 \leq j \leq \frac{n-2}{2}, j \text { even, } \frac{n}{2} \leq j \leq n, j \text { odd }\end{cases}
$$

In $A_{m \times n}^{(m)}$, interchange the entries $a_{m 1}$ and $a_{m n}$, to get a new magic rectangle in which $C_{1}=\frac{m(m n+1)}{2}-m+1$ and $C_{n}=\frac{m(m n+1)}{2}+m-1$. It is a $(m+2)$-magic rectangle $A_{m \times n}^{(m+2)}$.

Step 3: Take k-magic rectangle and interchange the entries $a_{m, \frac{k-m+2}{2}}$ and $a_{m, n-\frac{k-m+2}{2}+1}$, to get a new magic rectangle in which $C_{\frac{k-m+2}{2}}^{{ }^{2}}=$ $\frac{m(m n+1)}{2}+m(m+n-1-k)$ and $C_{n-\frac{k-m+2}{2}+1}=\frac{m(m n+1)}{2}-m(m+$ $n-1-k)$. It is a $(k+2)$-magic rectangle $A_{m \times n}^{(k+2)}$. This step is repeated whenever k varies from $m+2$ to $m+n-4$ and k is even.
Step 4: In $A_{m \times n}^{(m+n-2)}$, interchange the entries $a_{\frac{m}{2}, n}$ and $a_{\frac{m+2}{2}, n}$ and also interchange the entries $a_{m, \frac{n}{2}}$ and $a_{m, \frac{n+2}{2}}$, to get a new magic rectangle in which $C_{\frac{m}{2}}=\frac{n(m n+1)}{2}+m(n-1)-1, C_{\frac{m+2}{2}}=\frac{n(m n+1)}{2}-m(n-1)+$ $1, C_{\frac{n}{2}}=\frac{m(m n+1)}{2}+1$ and $C_{\frac{n+2}{2}}=\frac{m(m n+1)^{2}}{2}-1$. It is a $(m+n)$-magic rectangle $A_{m \times n}^{(m+n)}$.

Output: We obtain a $4,6,8, \ldots,(m+n)$-magic rectangle where $m=$ $2 s, n=2 t, s$ and t both odd, from $A_{m \times n}^{(2)}$.

Algorithm 2.2. Algorithm for obtaining a $2 i+1$-magic rectangle for $2 \leq$ $i \leq \frac{m+n}{2}$ where $m=2 s, n=2 t, s$ and t both odd, from $A_{m \times n}^{(3)}$.

Input: Let $A_{m \times n}^{(3)}=\left(a_{i j}\right), 1 \leq i \leq m, 1 \leq j \leq n$, be the 3-magic rectangle where $m=2 s, n=2 t, s$ and t both odd.
In $A_{m \times n}^{(3)}, a_{i 1}, 1 \leq i \leq m$ is of the form:

$$
a_{i 1}= \begin{cases}m(n-2)+1 & \text { if } i=1 \\ m n-i+1 & \text { if } 2 \leq i \leq \frac{m}{2} \\ m-i+1 & \text { if } \frac{m+2}{2} \leq i \leq m, i \neq m-1, \\ 2 m-1 & \text { if } i=m-1\end{cases}
$$

Step 1: In $A_{m \times n}^{(3)}$, interchange the entries a_{11} and $a_{m 1}$, to get a new magic rectangle in which $R_{1}=\frac{n(m n+1)}{2}-m(n-2)$ and $R_{m}=\frac{n(m n+1)}{2}+$ $m(n-2)$. It is a 5 -magic rectangle $A_{m \times n}^{(5)}$.

Step 2: Take k-magic rectangle $A_{m \times n}^{(k)}$ and interchange the entries $a_{\frac{k+1}{2}, 1}$ and $a_{n-\frac{k+1}{2}+1,1}$, to get a new magic rectangle in which $R_{\frac{k+1}{2}}=$ $\frac{n(m n+1)}{2}-m n+k$ and $R_{n-\frac{k+1}{2}+1}=\frac{n(m n+1)}{2}+m n-k$. It is a $(k+2)-$ magic rectangle $A_{m \times n}^{(k+2)}$. This step is repeated whenever k varies from 5 to $m-1$ and k is odd.
Step 3: In $A_{m \times n}^{(m+1)}, a_{m j}, 1 \leq j \leq n$ is of the form:

$$
a_{m j}=\left\{\begin{array}{ll}
m(n-2)+1 & \text { if } j=1, \\
m(j-1)+1 & \text { if }\left\{\begin{array}{l}
3 \leq j \leq \frac{n-2}{2}, j \text { is odd, or } \\
\frac{n}{2} \leq j \leq n, j \text { is even; }
\end{array}\right. \\
m j & \text { if }\left\{\begin{array}{l}
1 \leq j \leq \frac{n-2}{2}, j \text { is even, or } \\
\frac{n}{2} \leq j \leq n, j \text { is odd }
\end{array}\right.
\end{array} .\right.
$$

In $A_{m \times n}^{(m+1)}$, interchange the entries $a_{m 1}$ and $a_{m n}$, to get a new magic rectangle in which $C_{1}=\frac{m(m n+1)}{2}+m-2$ and $C_{n}=\frac{m(m n+1)}{2}-m+2$. It is a $(m+3)$-magic rectangle $A_{m \times n}^{(m+3)}$.

Step 4: Step 4.1 is repeated whenever k varies from $m+3$ to $m+n-3$ and $k \equiv 1(\bmod 4)$ and Step 4.2 is repeated whenever k varies from $m+3$ to $m+n-3$ and $k \equiv 3(\bmod 4)$.

Step 4.1: Take k-magic rectangle $A_{m \times n}^{(k)}$ and interchange the entries $a_{m, \frac{k-m+1}{2}}$ and $a_{m, n-\frac{k-m+1}{2}+1}$, to get a new magic rectangle in which $C_{\frac{k-m+1}{2}}=\frac{m(m n+1)}{2}+m(m+n-k)+2$ and $C_{n-\frac{k-m+1}{2}+1}=$ $\frac{m(m n+1)}{2}-m(m+n-k)-2$. It is a $(k+2)$-magic rectangle $A_{m \times n}^{(k+2)}$.
Step 4.2: Take k-magic rectangle $A_{m \times n}^{(k)}$ and interchange the entries $a_{m, \frac{k-m+1}{2}}$ and $a_{m, n-\frac{k-m+1}{2}+1}$, to get a new magic rectangle in which $C_{\frac{k-m+1}{2}}=\frac{m(m n+1)}{2}+m(m+n-k)-2$ and $C_{n-\frac{k-m+1}{2}+1}=$ $\frac{m(m n+1)}{2}-m(m+n-k)+2$. It is a $(k+2)$-magic rectangle $A_{m \times n}^{(k+2)}$.

Output: We obtain a $5,7,9, \ldots,(m+n-1)$-magic rectangle where $m=$ $2 s, n=2 t, s$ and t both odd, from the given $A_{m \times n}^{(3)}$.

Algorithm 2.3. Algorithm for obtaining a $4,6,8, \ldots,(m+n)$-magic rectangle where $m=2 s, n=2 t$, where at least one of s and t is even, from $A_{m \times n}^{(2)}$.

Input: Without loss of generality, we assume that s must be even.
Let $A_{m \times n}^{(2)}=\left(a_{i j}\right), 1 \leq i \leq m, 1 \leq j \leq n$, be the 2-magic rectangle where $m=2 s, n=2 t, s$ even. Then

$$
\sum_{i=1}^{m} a_{i j}=\frac{m\left(m^{2}+1\right)}{2}, 1 \leq j \leq n
$$

and

$$
\sum_{i=1}^{n} a_{i j}=\frac{m\left(m^{2}+1\right)}{2}, 1 \leq j \leq m
$$

In $A_{m \times n}^{(2)},[7] a_{i 1}, 1 \leq i \leq m$ is of the form:

$$
a_{i 1}= \begin{cases}i & \text { if } 1 \leq i \frac{m}{4}, \text { or } \frac{3 m+4}{4} \leq i \leq \\ m n-i+1 & \text { if } \frac{m+4}{4} \leq i \leq \frac{3 m}{4}\end{cases}
$$

Step 1: Take k-magic rectangle $A_{m \times n}^{(k)}$ and interchange the entries $a_{\frac{k}{2}, 1}$ and $a_{m-\frac{k}{2}+1,1}$, to get a new magic rectangle in which $R_{\frac{k}{2}}=\frac{n(m n+1)}{2}+$ $m+1-k$ and $R_{m-\frac{k}{2}+1}=\frac{n(m n+1)}{2}-m-1+k$. It is a $(k+2)$-magic rectangle $A_{m \times n}^{(k+2)}$. This step is repeated whenever k varies from 2 to $\frac{m}{2}$ and k is even.

Step 2: Take k-magic rectangle $A_{m \times n}^{(k)}$ and interchange the entries $a_{\frac{k}{2}, 1}$ and $a_{m-\frac{k}{2}+1,1}$, to get a new magic rectangle in which $R_{\frac{k}{2}}=\frac{n(m n+1)}{2}-$ $m-1+k$ and $R_{m-\frac{k}{2}+1}=\frac{n(m n+1)}{2}+m+1-k$. It is a $(k+2)$-magic rectangle $A_{m \times n}^{(k+2)}$. This step is repeated whenever k varies from $\frac{m+4}{2}$ to $m-2$ and k is even.

Step 3: In $A_{m \times n}^{(m)}, a_{m j}, 1 \leq j \leq n$ is of the form:

$$
a_{m j}= \begin{cases}1 & \text { if } j=1 \\ m j & \text { if } 2 \leq j \leq n, j \text { is odd } \\ m(j-1)+1 & \text { if } 1 \leq j \leq n, j \text { is even }\end{cases}
$$

In $A_{m \times n}^{(m)}$, interchange the entries $a_{m 1}$ and $a_{m n}$, to get a new magic rectangle in which $C_{1}=\frac{m(m n+1)}{2}+m(n-1)$ and $C_{n}=\frac{m(m n+1)}{2}-$ $m(n-1)$. It is a $(m+2)$-magic rectangle $A_{m \times n}^{(m+2)}$.

Step 4: The Step 4.1 is repeated whenever k varies from $m+2$ to $m+n-4$ and $k \equiv 2(\bmod 4)$ and the Step 4.2 is repeated whenever k varies from $m+2$ to $m+n-4$ and $k \equiv 0(\bmod 4)$.

Step 4.1: Take k-magic rectangle $A_{m \times n}^{(k)}$ and interchange the entries $a_{m, \frac{k-m+2}{2}}$ and $a_{m, n-\frac{k-m+2}{2}+1}$, to get a new magic rectangle in which $C_{\frac{k-m+2}{2}}=\frac{m(m n+1)}{2}+m(m+n-k)-1$ and $C_{n-\frac{k-m+2}{2}+1}=$ $\frac{m(m n+1)}{2}-m(m+n-k)+1$. It is a $(k+2)$-magic rectangle $A_{m \times n}^{(k+2)}$.
Step 4.2: Take k-magic rectangle $A_{m \times n}^{(k)}$ and interchange the entries $a_{m, \frac{k-m+2}{2}}$ and $a_{m, n-\frac{k-m+2}{2}+1}$, to get a new magic rectangle in which $C_{\frac{k-m+2}{2}}=\frac{m(m n+1)}{2}+m(m+n-2-k)+1$ and $C_{n-\frac{k-m+2}{2}+1}=\frac{m(m n+1)}{2}-m(m+n-2-k)-1$. It is a $(k+2)-$ magic rectangle $A_{m \times n}^{(k+2)}$.

Step 5: In $A_{m \times n}^{(m+n-2)}$, interchange the entries $a_{\frac{m}{2}, n}$ and $a_{\frac{m+2}{2}, n}$ and also interchange the entries $a_{m, \frac{n}{2}}$ and $a_{m, \frac{n+2}{2}}$, to get a new magic rectangle in which $C_{\frac{m}{2}}=\frac{n(m n+1)}{2}-1, C_{\frac{m+2}{2}}=\frac{n(m n+1)}{2}+1, C_{\frac{n}{2}}=\frac{m(m n+1)}{2}-1$ and $C_{\frac{n+2}{2}}=\frac{m(m n+1)}{2}+1$. It is a $(m+n)$-magic rectangle $A_{m \times n}^{(m+n)}$.

Output: We obtain a $4,6,8, \ldots, m+n$-magic rectangle where $m=2 s, n=$ $2 t$, where at least one of s and t is even, from $A_{m \times n}^{(2)}$.

Algorithm 2.4. Algorithm for obtaining a $5,7,9, \ldots,(m+n-1)$-magic rectangle, $m=2 s, n=2 t$, where at least one of s and t is even, from $A_{m \times n}^{(3)}$.

Input: Let $A_{m \times n}^{(3)}=\left(a_{i j}\right), 1 \leq i \leq m, 1 \leq j \leq n$, be the 3-magic rectangle, $m=2 s, n=2 t$, where at least one of s and t is even.

In $A_{m \times n}^{(3)}, a_{i 1}, 1 \leq i \leq m$ is of the form:

$$
a_{i 1}= \begin{cases}2 m & \text { if } i=1, \\ i & \text { if } 2 \leq i \leq \frac{m}{4}, \text { and } \frac{3 m+4}{4} \leq i \leq m, \\ m n-i+1 & \text { if } \frac{m+8}{2} \leq i \leq m, \text { and } i \neq \frac{3 m}{4}, \\ m(n-2)+\frac{m}{4}+1 & \text { if } i=\frac{m+4}{4}\end{cases}
$$

Step 1: In $A_{m \times n}^{(3)}$, interchange the entries a_{11} and $a_{m 1}$, to get a new magic rectangle in which $R_{1}=\frac{n(m n+1)}{2}-m$ and $R_{m}=\frac{n(m n+1)}{2}+m$. It is a 5 -magic rectangle $A_{m \times n}^{(5)}$.

Step 2: Take k-magic rectangle $A_{m \times n}^{(k)}$ and interchange the entries $a_{\frac{k-1}{2}, 1}$ and $a_{n-\frac{k-1}{2}+1,1}$, to get a new magic rectangle in which $R_{\frac{k-1}{2}}=$ $\frac{n(m n+1)}{2}+m+2-k$ and $R_{n-\frac{k-1}{2}+1}=\frac{n(m n+1)}{2}-m-2+k$. It is a $(k+2)$-magic rectangle $A_{m \times n}^{(k+2)}$. This step is repeated whenever k varies from 5 to $\frac{m+2}{2}$ and k is odd.

Step 3: Take k-magic rectangle $A_{m \times n}^{(k)}$ and interchange the entries $a_{\frac{k+1}{2}, 1}$ and $a_{n-\frac{k+1}{2}+1,1}$, to get a new magic rectangle in which $R_{\frac{k+1}{2}}=$ $\frac{n(m n+1)}{2}-m+k$ and $R_{n-\frac{k+1}{2}+1}=\frac{n(m n+1)}{2}+m-k$. It is a $(k+2)-$ magic rectangle $A_{m \times n}^{(k+2)}$. This step is repeated whenever k varies from $\frac{m+6}{2}$ to $m-1$ and k is odd.

Step 4: In $A_{m \times n}^{(m+1)}, a_{m j}, 1 \leq j \leq n$ is of the form:

$$
a_{m j}= \begin{cases}2 m & \text { if } j=1 \\ m j & \text { if } 2 \leq j \leq n, \text { and } j \text { is odd } \\ m(j-1)+1 & \text { if } 1 \leq j \leq n, \text { and } j \text { is even }\end{cases}
$$

In $A_{m \times n}^{(m+1)}$, interchange the entries $a_{m 1}$ and $a_{m n}$, to get a new magic rectangle in which $C_{1}=\frac{m(m n+1)}{2}+\frac{m+2}{2}+m(n-3)+1$ and $C_{n}=$ $\frac{m(m n+1)}{2}-\frac{m}{2}-m(n-3)-1$. It is a $(m+3)$-magic rectangle $A_{m \times n}^{(m+3)}$.

Step 5: The Step 5.1 is repeated whenever k varies from $m+3$ to $m+n-3$ and $k \equiv 3(\bmod 4)$ and the Step:5.2 is repeated whenever k varies from $m+3$ to $m+n-3$ and $k \equiv 1(\bmod 4)$.

Step 5.1: Take k-magic rectangle $A_{m \times n}^{(k)}$ and interchange the entries $a_{m, \frac{k-m+1}{2}}$ and $a_{m, n-\frac{k-m+1}{2}+1}$, to get a new magic rectangle in which $C_{\frac{k-m+1}{2}}=\frac{m(m n+1)}{2}+m(m+n+1-k)-\frac{m}{2}-1$ and $C_{n-\frac{k-m+1}{2}+1}=\frac{m(m n+1)}{2}-m(m+n+1-k)+\frac{m}{2}+1$. It is a $(k+2)$-magic rectangle $A_{m \times n}^{(k+2)}$.
Step 5.2: Take k-magic rectangle $A_{m \times n}^{(k)}$ and interchange the entries $a_{m, \frac{k-m+1}{2}}$ and $a_{m, n-\frac{k-m+1}{2}+1}$, to get a new magic rectangle in which $C_{\frac{k-m+1}{2}}=\frac{m(m n+1)}{2}+m(m+n-1-k)+\frac{m}{2}+1$ and $C_{n-\frac{k-m+1}{2}+1}=\frac{m(m n+1)}{2}-m(m+n-1-k)-\frac{m}{2}-1$. It is a $(k+2)$-magic rectangle $A_{m \times n}^{(k+2)}$.

Output: We obtain a $5,7,9, \ldots,(m+n-1)$-magic rectangle, $m=2 s, n=$ $2 t$, where at least one of s and t is even, from $A_{m \times n}^{(3)}$.

3 Splendour spectrum of two classes of graphs

In this section, we associate a set of positive integers to each graph G using the existence or non-existence of a k-magic labeling of G.

The Splendour Spectrum of a graph G, denoted by $\operatorname{SSP}(G)$, is defined by $S S P(G)=\{k \mid G$ has a k - magic labeling $\}$. An example is provied in Figure 1.

Now, let us determine $\operatorname{SSP}(G)$ of two classes of graphs. In [6], we proved that $\operatorname{SSP}\left(K_{n, n}\right)=\{1,2, \ldots, 2 n\}$.
Theorem 3.1. A complete bipartite graph $K_{m, n}, m$ and n are even, is k-magic if and only if $k \neq 1$.

In other words, $\operatorname{SSP}\left(K_{m, n}\right)=\{2,3, \ldots,(m+n)\}$, where m and n are even.

Proof. Let the bipartition of $K_{m, n}$ be $r_{1}, r_{2}, \ldots, r_{m}$ and $c_{1}, c_{2}, \ldots, c_{n}$. By labeling the edge $r_{i} c_{j}$ with the contents of cell (i, j) in a $m \times n k$ - magic rectangle.

In [5], Ivančo et al. proved that $K_{m, n}, m, n \geq 1, m \neq n, m, n \equiv 0(\bmod 2)$, is not a magic graph (1-magic graph).

Figure 1: A graph G with $S S P(G)=\{3,4,5\}$.

From the constructions of 2-magic rectangle and 3-magic rectangle of order $m=2 s, n=2 t, s$ and t both odd and from Algorithm 2.1 and Algorithm 2.2, we get k-magic rectangle $2 \leq k \leq m+n$ and hence $K_{m, n}, m=2 s, n=2 t, s$ and t both odd is k-magic, $2 \leq k \leq m+n$.

From the constructions of 2-magic rectangle and 3-magic rectangle of order $m=2 s, n=2 t$, at least one of s and t even and from Algorithm 2.3 and Algorithm 2.4, we get k-magic rectangle $2 \leq k \leq m+n$ and hence $K_{m, n}, m=2 s, n=2 t$, at least one of s and t even is k-magic, $2 \leq k \leq m+n$.

Thus, $K_{m, n}, m$ and n are even, is k-magic if and only if $k \neq 1$.
Open Problem 3.2. Determine $\operatorname{SSP}\left(K_{m, n}\right)$, if either m or n is odd.
Theorem 3.3. A friendship graph T_{n} is neither magic nor 2-magic for all n.

Proof. Let $\left\{v_{1}, v_{2}, \ldots, v_{2 n+1}\right\}$ be the set of vertices in $T_{n}, n \geq 1$ such that
$v_{2 n+1}$ is the central vertex and let $e_{i}=v_{i} v_{2 n+1}, 1 \leq i \leq 2 n$ and let $f_{i}=$ $v_{2 i-1} v_{2 i}, 1 \leq i \leq n$ be the edges in $T_{n}, n \geq 1$.

Then we can use the edge labels from the set of integers $\{1,2, \ldots, 3 n\}$ and let S_{i} be the sum of the edge labels incident with the vertex $v_{i}, 1 \leq i \leq$ $2 n+1$.

Now,

$$
\begin{aligned}
& 1+2+\cdots+2 n \leq S_{2 n+1} \leq(n+1)+(n+2)+\cdots+3 n, \\
& 1+2 \leq S_{2 i-1} \leq(3 n)+(3 n-1),
\end{aligned}
$$

and

$$
1+2 \leq S_{2 i} \leq(3 n)+(3 n-1), 1 \leq i \leq n
$$

This implies that

$$
n(2 n+1) \leq S_{2 n+1} \leq n(4 n+1), 3 \leq S_{2 i-1} \leq 6 n-1
$$

and

$$
3 \leq S_{2 i} \leq 6 n-1,1 \leq i \leq n
$$

Also, $6 n-1<n(2 n+1), n \geq 3$ and the vertices $v_{2 i-1}$ and $v_{2 i}$ have different vertex sum, since adjacent vertices have different magic constant, $1 \leq i \leq n$. This implies that it is at least 3 -magic, $n \geq 3$.

Also, T_{1}, T_{2} are not 1-magic and T_{2} is not 2-magic, since adjacent vertices have different magic constant. By direct verification, T_{2} is not 2-magic.

Thus, a friendship graph $T_{n}, n \geq 1$ is neither 1-magic nor 2-magic.

Construction of 3-magic labeling of $T_{n}, n \geq 1$

Let $\left\{v_{1}, v_{2}, \ldots, v_{2 n+1}\right\}$ be the set of vertices in $T_{n}, n \geq 1$ such that $v_{2 n+1}$ is the central vertex and let $e_{i}, 1 \leq i \leq 2 n$ and let $f_{i}, 1 \leq i \leq n$ such that $f_{i}=v_{2 i-1} v_{2 i}$ be the edges in $T_{n}, n \geq 1$.

Then we can use the edge labels from the set of integers $\{1,2, \ldots, 3 n\}$ and let S_{i} be the sum of the edge labels incident with the vertex $v_{i}, 1 \leq i \leq$ $2 n+1$.

Now, we label the edges of $T_{n}, n \geq 1$, as follows: $e_{i}, 1 \leq i \leq 2 n, i$ is odd as $\frac{i-1}{2}+1, e_{i}, 1 \leq i \leq 2 n, i$ is even as $n+\frac{i}{2}$ and the edge $f_{i}, 1 \leq i \leq n$ as $3 n-i+1$.

Then the vertex sum of the vertices

$$
\begin{aligned}
S_{i} & = \begin{cases}3 n+1, & 1 \leq i \leq 2 n, \text { and } i \text { odd }, \\
4 n+1, & 1 \leq i \leq 2 n, \text { and } i \text { even }\end{cases} \\
S_{2 n+1} & =n(2 n+1)
\end{aligned}
$$

This implies that it is a 3-magic labeling of $T_{n}, n \geq 1$.

Construction of 4-magic labeling from 3-magic labeling of $T_{n}, n \geq 1$

First we consider a 3-magic labeling of $T_{n}, n \geq 1$.
In a 3 -magic labeling, interchange the edge labels f_{1} and e_{1}, then we get the new labeling. Then the vertex sum of the vertices

$$
S_{i}= \begin{cases}3 n+1 & \text { if } 1 \leq i \leq 2 n, i \text { odd } \\ n+2 & \text { if } i=2 \\ 4 n+1 & \text { if } 4 \leq i \leq 2 n, i \text { even } \\ 2 n^{2}+4 n-1 & \text { if } \mathrm{i}=2 \mathrm{n}+1\end{cases}
$$

This implies that it is a 4-magic labeling of $T_{n}, n \geq 1$.
Algorithm 3.4. Algorithm for obtaining $5,7, \ldots,(2 n+1)$-magic labeling from a 3-magic labeling of $T_{n}, n \geq 1$.

Input: Consider the 3-magic labeling of $T_{n}, n \geq 1$.
Case(i): n is odd

Step 1: Take k-magic labeling and interchange the edge labels e_{k-2} and $e_{2 n-k+3}$, to get a new labeling in which $S_{k-2}=5 n-k+3$ and $S_{2 n-k+3}=2 n+k-1$. It is a $(k+2)$-magic labeling. This step is repeated whenever k varies from 3 to n and k is odd.

Step 2: Take k-magic labeling and interchange the edge labels e_{k-n} and $e_{3 n-k+1}$, to get a new labeling in which $S_{k-n}=5 n-k+2$ and $S_{3 n-k+1}=2 n+k$. It is a $(k+2)$-magic labeling. This step is repeated whenever k varies from $n+2$ to $2 n-1$ and k is odd.

Step 1: Take k-magic labeling and interchange the edge labels e_{k-2} and $e_{2 n-k+3}$, to get a new labeling in which $S_{k-2}=5 n-k+3$ and $S_{2 n-k+3}=2 n+k-1$. It is a $(k+2)$-magic labeling. This step is repeated whenever k varies from 3 to $n+1$ and k is odd.
Step 2: Take k-magic labeling and interchange the edge labels e_{k-n+1} and $e_{3 n-k+2}$, to get a new labeling in which $S_{k-n-1}=5 n-k+3$ and $S_{3 n-k+2}=2 n+k-1$. It is a $(k+2)$-magic labeling. This step is repeated whenever k varies from $n+3$ to $2 n-1$ and k is odd.

Output: We obtain a $5,7, \ldots,(2 n+1)$-magic labeling from 3-magic labeling of $T_{n}, n \geq 1$.

Algorithm 3.5. Algorithm for obtaining $6,8, \ldots, 2 n$-magic labeling from 4-magic labeling of $T_{n}, n \geq 1$.

Input: Consider the 4-magic labeling of $T_{n}, n \geq 1$.
Step 1: In a 4-magic labeling interchange the edge labels e_{1} and $e_{2 n}$, to get a new labeling in which $S_{1}=2 n+1$ and $S_{2 n}=5 n+1$. It is a 6 -magic labeling.

Case(i): n is odd.

Step 2: Take a k-magic labeling and interchange the edge labels e_{k-3} and $e_{2 n-k+4}$, to get a new labeling in which $S_{k-3}=5 n-k+4$ and $S_{2 n-k+4}=2 n+k-2$. This implies that it is a ($k+2$)-magic labeling. This step is repeated whenever k varies from 6 to $n+1$ and k is even.

Step 3: Take a k-magic labeling and interchange the edge labels e_{k-n+1} and $e_{3 n-k+2}$, to get a new labeling in which $S_{k-n+1}=$ $5 n-k+2$ and $S_{3 n-k+2}=2 n+k$. This implies that it is a $(k+2)$-magic labeling. This step is repeated whenever k varies from $n+3$ to $2 n-2$ and k is even.

Case(ii): n is even.

Step 2: Take k-magic labeling and interchange the edge labels e_{k-3} and $e_{2 n-k+4}$, to get a new labeling in which $S_{k-3}=5 n-k+4$
and $S_{2 n-k+4}=2 n+k-2$. This implies that it is a ($k+2$)-magic labeling. This step is repeated whenever k varies from 6 to $n+2$ and k is even.
Step 3: Take k-magic labeling and interchange the edge labels e_{k-n} and $e_{3 n-k+3}$, to get a new labeling in which $S_{k-n}=5 n-k+2$ and $S_{3 n-k+3}=2 n+k$. It is a $(k+2)$-magic labeling. This step is repeated whenever k varies from $n+4$ to $2 n-2$ and k is even.

Output: We obtain a $6,8, \ldots, 2 n$-magic labeling from 4-magic labeling of $T_{n}, n \geq 1$.

Theorem 3.6. The friendship graph $T_{n}, n \geq 1$ is k-magic if and only if $k \neq 1,2$.

In other words $\operatorname{SSP}\left(T_{n}\right)=\{3,4, \ldots, 2 n+1\}$.

Proof. From Theorem 3.3, T_{n} is neither magic nor 2-magic.
From the constructions of 3-magic labeling and 4-magic labeling and from Algorithm 3.4 and Algorithm 3.5, we get k-magic labeling of $T_{n}, n \geq 1,2 \leq$ $k \leq 2 n+1$ and hence $T_{n}, n \geq 1$, is k-magic if and only if $k \neq 1,2$.

Acknowledgment

We greatly appreciate the valuable suggestions made by an anonymous referee that resulted in an improved paper.

References

[1] J.B. Babujee, Bimagic labeling of path graphs, Math. Educ., 38 (2004), 12-16.
[2] T. Bier and A. Klienschmidt, Centrally symmetric and magic rectangles, Discrete Math., 176 (1997), 29-42.
[3] N. Hartsfield and G. Ringel, Pearls in Graph Theory, Acadamic Press Inc., Boston, (1994).
[4] T. Hegedorn, Magic rectangles revisited, Discrete Math., 207 (1999), 65-72.
[5] J. Ivančo and T. Polláková, On Magic Joins of Graphs, Math. Bohem., 137 (2012), 459-472.
[6] C. Meenakshi and KM. Kathiresan, A generalization of magic and antimagic labeling of graphs, AKCE Int. J. Graphs Comb. (2018), https://doi.org/10.1016/j.akcej.2018.01.014.
[7] J.P. De Los Reyes, A. Das, C.K. Midha, and P. Vellaisamy, On a method to construct magic rectangles of even order, Util. Math. 80 (2009), 277284.
[8] J. Sedláček, Problem 27. The Theory of Graphs and its Applications, Proc. Symp. Smolenice, Praha, (1963), 163-167.

