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Abstract: We discuss two extensions of Euler phi functions, one old
and one new. We first describe an extension, due originally to Schemmel,
of the Euler φ function from elementary number theory. We then present an
application of this extended function to the construction of uniform cyclic
neofields, which are themselves useful in the construction of sets of latin
squares having very uniform orthogonality properties. Next, we extend in
an analogous way the polynomial Euler Φ function, which is used in the
study of polynomials over finite fields. Finally, we study the relationship of
our polynomial Euler function to normal bases in the finite field Fpn where
p is an odd prime.

1 An extended Euler phi function

The Euler phi function φ(n) of elementary number theory counts the num-
ber of positive integers less than a positive integer n which are relatively
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prime to n. It is easy to show that if p is a prime number and k is a positive
integer, then φ(pk) = pk−1(p − 1). Moreover, this function is multiplica-
tive in the number theory sense, i.e., if n and m are relatively prime, then
φ(nm) = φ(n)φ(m). Hence, since φ can be computed for prime powers,
it can be computed for any positive integer n provided that n can be fac-
tored into its prime power representation. We shall use this meaning of
“multiplicative” throughout this paper, including applying it to functions
on polynomials in Section 3.

A natural extension of this well-known function was first proposed by
Schemmel [7] in 1869. Though stated in a different manner, here is his
definition:

Definition 1.1. Suppose n > 1 and q is the smallest prime dividing n. For
1 ≤ b ≤ q − 1, we define the extended Euler phi function φb(n) to be the
number of elements a with 1 ≤ a < n such that gcd(a − c, n) = 1 for all
c = 0, 1, ..., b− 1. For all b, we define φb(1) = 1.

Thus an integer a smaller than n will be counted by φb(n) only if all of
a, a−1, . . . , a− b+ 1 are relatively prime to n. It follows then that φ1(n) ≥
φ2(n) ≥ φ3(n), and so on. Note that when b = 1, this is simply the standard
Euler phi function. Finally, in the definition we restrict b to be less than
q because, as one can check, φq(n) is always 0. Hence if q = 2, i.e., if n is
even, our extended functions give no new information.

Example 1.1. Suppose n = 35 and b = 3. We check, for example, that
neither 16 nor 17 satisfy the criteria to be counted by φ3(35) since 16−1 is
divisible by 5, as is 17− 2. In fact, we see that the numbers which satisfy
the criteria are 3, 4, 13, 18, 19, 24, 33, and 34. Hence φ3(35) = 8.

Schemmel stated, without proof and again in a different manner, the follow-
ing two propositions. Both of these were proved by Goldschmidt in 1894,
see page 147 of Dickson [1]. We shall include the proof of the first here
since it is brief but omit the proof of multiplicativity.

Proposition 1.1. Suppose p is a prime and k ≥ 1 is a positive integer.
Then φb(p

k) = pk−1(p− b).

Proof. From the set {1, 2, ..., pk} we must eliminate elements which are
congruent to 0, 1, . . . , b−1 modulo p. Since there are exactly pk−1 elements
in each of these congruence classes, we must eliminate a total of bpk−1

elements. Hence φb(p
k) = pk − bpk−1 = pk−1(p− b). �
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Example 1.2. By Proposition 1.1, φ3(25) = 10. That set of elements is
{3, 4, 8, 9, 13, 14, 18, 19, 23, 24}.

Here then is Schemmel’s second proposition, proved, using the Chinese
Remainder Theorem as the primary tool, by Goldschmidt as indicated in
Dickson:

Proposition 1.2. The function φb is multiplicative.

Example 1.3. In Example 1.1 we saw directly that φ3(35) = 8. We can
now get this result via Proposition 1.1, which tells us that φ3(5) = 2 and
φ3(7) = 4, and Proposition 1.2, which tells us that φ3(35) = φ3(5)φ3(7) = 8.

A well-known (and very nice) result about the standard Euler phi function
is that if we add up φ(d) over all positive divisors d of n, we obtain n as the
sum. In a third proposition, Schemmel observed that essentially the same
fact holds for the extended functions, but the terms of the summation must
be weighted by powers of b. Though Goldschmidt provided a proof for a
general composite n, we choose to include a version of it here applied to a
prime power. In the general case, each term contains multiple powers of b.

Proposition 1.3. If p is a prime and k ≥ 1 is an integer, then

k∑

i=0

bk−iφb(p
i) = pk.

Proof. Using the fact that for all b, φb(1) = 1, we have

k∑

i=0

bk−iφb(p
i)

= bk +

k∑

i=1

bk−ipi−1(p− b)

= bk +

k∑

i=1

bk−ipi −
k∑

i=1

bk−i+1pi−1

= bk +

k∑

i=1

bk−ipi −
k−1∑

i=0

bk−ipi

= bk + pk − bk = pk,

as desired. �
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In the final proposition of this section we give an explicit formula for the
summation

∑k
i=0 φb(p

i). This can be generalized to arbitrary composite
n because of the following easily proven fact: If f(n) is a multiplicative
function on the positive integers, then the function g(n) =

∑
d|n f(d) is

also multiplicative.

Proposition 1.4. If p is a prime and k ≥ 1 is an integer,

k∑

i=0

φb(p
i) =

pk(p− b) + b− 1

p− 1
.

Proof. By Proposition 1.1, we have

φb(1)+φb(p)+φb(p
2)+ · · ·+φb(pk) = 1+(p−b)+(p−b)p+ · · ·+(p−b)pk−1

= 1 + (p− b)(1 + p+ · · ·+ pk−1) = 1 + (p− b)p
k − 1

p− 1

=
(p− 1) + pk(p− b)− (p− b)

p− 1
=
pk(p− b) + b− 1

p− 1
,

as claimed. �

Note that when b = 1, we obtain the value pk, as expected.

Example 1.4. As previously observed, for any given argument n, as b goes
up from 1 to q−1, φb(n) goes down (because we are counting the elements of
a subset of the previous set). In the case n = pk, it is easy to compute that

the difference between
∑

d|pk φb(d) and
∑

d|pk φb+1(d) is pk−1
p−1 . For example,

if n = 125,
∑
φ(d) =

∑
φ1(d) = 125,

∑
φ2(d) = 94,

∑
φ3(d) = 63, and∑

φ4(d) = 32, the differences being the constant (125 − 1)/(5 − 1) = 31.
There will be no such simple pattern for n not a prime power.

Example 1.5. Using Proposition 1.4 and multiplicativity, we may now
compute that

∑
d|35 φ1(d) = 35,

∑
d|35 φ2(d) = 24,

∑
d|35 φ3(d) = 15, and∑

d|35 φ4(d) = 8.

In the following section, we examine an application of the functions φb(n)
to the construction of “neofields” (algebraic structures which have almost
all of the properties of a finite field) and latin squares derived from those
neofields.
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2 An application to the construction of ne-
ofields and latin squares

We begin this section with the definition of an algebraic structure which
has applications in combinatorics in general and latin squares in particular:

Definition 2.1. A set N equipped with two operations + (addition) and
· (multiplication) is a neofield if

• Addition has a two-sided identity 0 and each element has a two-sided
additive inverse;

• For any a ∈ N the actions x→ a+ x and x→ x+ a are bijections;

• The non-zero elements of N form a group under multiplication; the mul-
tiplicative identity is 1 with 1 6= 0;

• Multiplication distributes over addition from both sides.

Hence a neofield differs from a field in that its addition need not be either
commutative nor associative, and its multiplication need not be commuta-
tive. However, for our purposes here we will only consider a special class
of neofields called uniform cyclic neofields, as follows.

Let m be an even integer greater than or equal to 4 and let

N = {0, 1, a, a2, . . . , am−2},

that is, N \ {0} is a cyclic group generated by a.

In order to define addition in N , let u be a positive integer below m − 1
such that gcd(u,m− 1) = gcd(u− 1,m− 1) = 1. Since m is even, m− 1 is
odd and so we know from Section 1 that there are φ2(m − 1) possibilities
for u. We now define addition in the neofield N by

1 + ar = aur, r = 1, 2, . . . ,m− 2.

As indicated in [2], the set N with these operations forms a uniform cyclic
neofield of order m. The neofield N is called “uniform” since the addition
is defined via the single number u. See also [4] for a detailed treatment of
these ideas.
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Notation. It will help us below to label a specific uniform cyclic neofield
by Nm,u where m is its order and u is the uniform exponent multiplier used
to define the addition, as above.

Example 2.1. Let us construct two uniform cyclic neofields of orderm = 6.
Since there are φ2(5) = 3 choices for our u, specifically u = 2, 3 or 4, we
first let u = 2 and construct N6,2. Hence, as above, 1 +ar = aur = a2r, r =
1, 2, 3, 4, i.e., we have

1 + a = a2, 1 + a2 = a4, 1 + a3 = a6 = a, 1 + a4 = a8 = a3.

Also, by the second bullet in Definition 2.1 and the fact that 1 + 0 = 1,
we must have that 1 + 1 = 0. Given these facts, we can make use of
the distributive law and the multiplicative cyclicity to do any additions,
including that each element of our neofield is its own additive inverse. For
example, a+ a2 = a(1 + a) = a(a2) = a3, whereas a2 + a = a2(1 + a−1) =
a2(1 + a4) = a2(a3) = 1. Thus the addition table for the uniform cyclic
neofield N6,2 is:

+ 0 1 a a2 a3 a4

0 0 1 a a2 a3 a4

1 1 0 a2 a4 a a3

a a a4 0 a3 1 a2

a2 a2 a3 1 0 a4 a
a3 a3 a2 a4 a 0 1
a4 a4 a a3 1 a2 0

Next, we set u = 3 and construct the addition table for N6,3 using the key
rule of 1 + ar = a3r for r = 1, 2, 3, 4. We obtain

1 + a = a3, 1 + a2 = a6 = a, 1 + a3 = a9 = a4, 1 + a4 = a12 = a2.

Proceeding as before, here is the addition table for N6,3:
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+ 0 1 a a2 a3 a4

0 0 1 a a2 a3 a4

1 1 0 a3 a a4 a2

a a a3 0 a4 a2 1
a2 a2 a a4 0 1 a3

a3 a3 a4 a2 1 0 a
a4 a4 a2 1 a3 a 0

We note that the addition operation in neofields need not be commutative
or associative. In our two examples, the u = 3 addition is commutative,
but the u = 2 addition is not.

Definition 2.2. A latin square of order m is an m by m array in which
each of the numbers 0 through m − 1 appears once and only once in each
row and column. Two latin squares of order m are said to be s-orthogonal if
when superimposed, s out of the possible m2 distinct ordered pairs appear.
If s = m2, the squares are said to be orthogonal.

We can produce m − 1 latin squares of order m from any uniform cyclic
neofield of order m as follows: Fix k in the range 0 through m−2. Label the
rows and columns as 0 through m− 1. In the (0, 0) cell put 0. In the (0, j)
cells (i.e., the rest of Row 0), put aj−1. In the (i, 0) cells (i.e., the rest of
Column 0) put akai−1. Finally, for all other cells (i, j), put akai−1 + aj−1.
We note that when k = 0, we are simply copying the addition table of the
neofield.

Notation. We shall refer to the latin square derived from the neofield
Nm,u using the number k in the above paragraph, as Am,u,k.

Example 2.2. We now produce three latin squares of order 6, two from ne-
ofield N6,2 and one from N6,3. More specifically, we shall produce the latin
squares A6,2,0, A6,3,0, and A6,2,3. For the first two of these, the fact that
k = 0 means that we turn the addition tables directly into latin squares. In
all cases, in order for our latin squares to consist of the numbers 0 through
5 (not powers of a), we replace ai with i+ 1 for i = 1, 2, 3, 4.

So here, directly from the N6,2 addition table above, is A6,2,0:
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0 1 2 3 4 5
1 0 3 5 2 4
2 5 0 4 1 3
3 4 1 0 5 2
4 3 5 2 0 1
5 2 4 1 3 0

and here, directly from the N6,3 addition table above, is A6,3,0:

0 1 2 3 4 5
1 0 4 2 5 3
2 4 0 5 3 1
3 2 5 0 1 4
4 5 3 1 0 2
5 3 1 4 2 0

For our third latin square A6,2,3, we use the procedure described above, with
all cells (i, j) not in Row 0 or Column 0 receiving the value a3ai−1 + aj−1,
and all cells then translated into numbers 0 through 5. So here is square
A6,2,3:

0 1 2 3 4 5
4 3 5 2 0 1
5 2 4 1 3 0
1 0 3 5 2 4
2 5 0 4 1 3
3 4 1 0 5 2

Having formed our three sample latin squares of order 6, we wish now to
investigate the degree to which they are, in pairs, orthogonal, as defined
in Definition 2.2. We superimpose the three pairings and then count the
distinct ordered pairs in those arrays.

We first superimpose the squares A6,2,0 and A6,2,3 generated by the same
neofield, (i.e., “Same u Different k”):
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(0, 0) (1, 1) (2, 2) (3, 3) (4, 4) (5, 5)
(1, 4) (0, 3) (3, 5) (5, 2) (2, 0) (4, 1)
(2, 5) (5, 2) (0, 4) (4, 1) (1, 3) (3, 0)
(3, 1) (4, 0) (1, 3) (0, 5) (5, 2) (2, 4)
(4, 2) (3, 5) (5, 0) (2, 4) (0, 1) (1, 3)
(5, 3) (2, 4) (4, 1) (1, 0) (3, 5) (0, 2)

Second, we superimpose the squares A6,2,0 and A6,3,0 generated from dif-
ferent neofields but both directly from the addition tables (i.e., “Different
u Same k”):

(0, 0) (1, 1) (2, 2) (3, 3) (4, 4) (5, 5)
(1, 1) (0, 0) (3, 4) (5, 2) (2, 5) (4, 3)
(2, 2) (5, 4) (0, 0) (4, 5) (1, 3) (3, 1)
(3, 3) (4, 2) (1, 5) (0, 0) (5, 1) (2, 4)
(4, 4) (3, 5) (5, 3) (2, 1) (0, 0) (1, 2)
(5, 5) (2, 3) (4, 1) (1, 4) (3, 2) (0, 0)

.

Finally, we superimpose the squares A6,3,0 and A6,2,3 which differ both
in their generating neofield and their row multiplier ak (i.e., “Different u
Different k”):

(0, 0) (1, 1) (2, 2) (3, 3) (4, 4) (5, 5)
(1, 4) (0, 3) (4, 5) (2, 2) (5, 0) (3, 1)
(2, 5) (4, 2) (0, 4) (5, 1) (3, 3) (1, 0)
(3, 1) (2, 0) (5, 3) (0, 5) (1, 2) (4, 4)
(4, 2) (5, 5) (3, 0) (1, 4) (0, 1) (2, 3)
(5, 3) (3, 4) (1, 1) (4, 0) (2, 5) (0, 2)

.

The reader is now invited to comb through these three arrays and count the
number of distinct ordered pairs which appear and, if they do appear, how
many times for each. We summarize below what will have been discovered:

Same u Different k Different u Same k Different u Different k
21 pairs appear once. 20 pairs appear once. 16 pairs appear once.
5 pairs appear 3 times. 5 pairs appear twice. 10 pairs appear twice.

1 pair appears 6 times.

Of course, these results are from only three out the 5φ2(5) = 15 possible
latin squares which can be generated by uniform cyclic neofields of order
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6, so we do not know to what extent this data is anomalous. However, it
turns out that this data does indeed point to counts which are consistent
across all even orders m, with one caveat (see below). We now summarize
what we know and what has been proven in [2] and [4] in our main result
of this section.

Theorem 2.1. For every m ≥ 4 an even integer, there are φ2(m− 1) dis-
tinct uniform cyclic neofields of order m. Each of these neofields in turn
can generate m − 1 latin squares of order m, which we have denoted by
Am,u,k, where u identifies the generating neofield and k denotes the “row
multiplier” used to generate the addition table. Concerning orthogonal-
ity of pairs of squares, there are then three general cases to consider: (1)
Am,u,k1 with Am,u,k2 (k1 6= k2), (2) Am,u1,k with Am,u2,k (u1 6= u2), and
(3) Am,u1,k1 with Am,u2,k2 (u1 6= u2 and k1 6= k2). In the latter two cases,
we add the requirement that m− 1 be a prime number. Then the following
counts always hold true:

Same u Different k Different u Same k Different u Different k
4m−3 pairs once. (m−2)(m−1) pairs once. (m−2)2 pairs once.
m−1 pairs 3 times. m−1 pairs twice. 2m−2 pairs twice.

1 pair m times.

Hence we conclude that the latin squares Am,u,k1
and Am,u,k2

are (5m−4)-
orthogonal, and if m− 1 is prime, Am,u1,k and Am,u2,k are (m2− 2m+ 2)-
orthogonal, as are Am,u1,k1

and Am,u2,k2
.

At this time it is not known what the level of orthogonality is for pairs of
latin squares generated by different neofields when m−1 is not prime. The
reader may wish to study this problem, the smallest case obviously being
m = 10.

Finally, we make a brief transition to the next section by bringing in the
finite field Fq of order q. Please note that whereas q played the role of the
smallest prime dividing n in Section 1, from here on in this paper it will
represent a power of a prime number p.

Suppose we generate q − 1 distinct latin squares via the arithmetic of the
finite field Fq using the linear polynomial ai + j to fill in each (i, j) cell
(with a a fixed nonzero element of Fq for each square). Then in fact it is
known that every pair of squares in this set are orthogonal. So for example,
if we denote latin squares of this type by Bq,a, then here are B5,1, B5,3,
and their superimposition:
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0 1 2 3 4 0 1 2 3 4 (0, 0) (1, 1) (2, 2) (3, 3) (4, 4)
1 2 3 4 0 3 4 0 1 2 (1, 3) (2, 4) (3, 0) (4, 1) (0, 2)
2 3 4 0 1 1 2 3 4 0 (2, 1) (3, 2) (4, 3) (0, 4) (1, 0)
3 4 0 1 2 4 0 1 2 3 (3, 4) (4, 0) (0, 1) (1, 2) (2, 3)
4 0 1 2 3 2 3 4 0 1 (4, 2) (0, 3) (1, 4) (2, 0) (3, 1)

The reader can check that all possible ordered pairs appear exactly once.

Hence we see in general that sets of latin squares generated by a given finite
field display greater orthogonality than those generated by a given neofield.
For example, any two squares generated by N8,2 are, by Theorem 2.1, 36-
orthogonal, whereas any two squares generated by F8 are 64-orthogonal.
In fact, it is an unproved conjecture that a set of n−1 latin squares of order
n can be all pairwise orthogonal if and only if n is a prime power. See, for
example, [6] for a discussion of these ideas.

3 An extension of the polynomial Euler func-
tion

If q is a prime power, let Fq denote the finite field of order q and let Fq[x]
denote the ring of all polynomials in the indeterminate x over Fq. It is a
fact that this ring has a great deal in common with the ring Z of integers.
For example, monic (i.e., leading coefficient 1) irreducible polynomials in
Fq[x] play the role of prime numbers in Z, and both rings have unique
factorization. Moreover, the density of monic irreducibles in Fq[x] closely
matches the density of primes in Z. Thus many number theoretic results in
Z can be explored and possibly verified in Fq[x] as well. For a discussion
of many of the parallels between these two domains, see, for example, [3].

Hence it is no surprise that the standard integer Euler phi function φ defined
in Section 1 has an analogue Φ in the ring of polynomials over a finite field,
defined as follows:

Definition 3.1. Suppose f ∈ Fq[x] is of degree m > 0. Then the poly-
nomial Euler function Φ(f) counts the number of polynomials over Fq of
degree less than m which are relatively prime to f . If deg(f) = 0, we define
Φ(f) = 1.

One can show (see, for example, [5], Lemma 3.69) that the value of Φ(P k),
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where P ∈ Fq[x] is irreducible of degree m and k ≥ 1, is q(k−1)m(qm − 1).
Recalling from the beginning of Section 1 that φ(pk) = pk−1(p − 1), this
result simply replaces p with qm. Moreover, the function Φ is multiplica-
tive, so we can compute the value of Φ for arbitrary polynomials in Fq[x]
provided that we can factor them into the product of powers of irreducible
polynomials.

We would now like to extend the polynomial Euler function Φ in a way
analogous to the way the integer Euler function φ was extended in Section
1 to the function φb. In order to simplify our statements and arguments
here, we assume for now that we are working over Fp, a finite field of prime
(as opposed to prime power) order p. Later we will discuss generalizing our
ideas to arbitrary finite fields. We first provide a natural order to list the
polynomials over the field Fp.

Definition 3.2. If c is a non-negative integer, then c possesses a unique
base p representation. Using this fact, by Gc we mean the unique polyno-
mial in Fp[x] such that Gc(p) = c. For example, if p = 5 and c = 193, then
G193 = x3 + 2x2 + 3x+ 3 since 53 + 2(52) + 3(5) + 3 = 193.

We are now ready to define an extended polynomial Euler function Φb for
Fp[x] where p is prime.

Definition 3.3. Suppose f ∈ Fp[x] is of positive degree and assume that n
is the smallest degree of any irreducible divisor of f . For b ∈ {1, 2, ..., pn−1},
define the extended polynomial Euler function Φb(f) to be the number of
polynomials A of degree less than the degree of f such that gcd(A−Gc, f) =
1 for all c ∈ {0, 1, ..., b− 1}. If deg(f) = 0, we define Φb(f) = 1 for all b.

Proposition 3.1. Let P be an irreducible polynomial of degree m over Fp

and let k be a positive integer. Then Φb(P
k) = p(k−1)m(pm − b).

Proof. Though a bit more involved, the argument here runs directly parallel
to the argument proving Proposition 1.1. Starting with the pkm polyno-
mials A of degree less than km, we must remove those which have any
of the properties that A = QP , A − C1 = QP ,..., A − Cb−1 = QP .
That is, we remove all polynomials A which fall in the sets A = QP ,
A = QP +C1,..., A = QP +Cb−1, where the polynomials Q range over all
polynomials of degree less than m(k − 1), of which there are pm(k−1) poly-
nomials. Finally, we claim that the b sets above are pair-wise disjoint, for if
Q1P +Ca1

= Q2P +Ca2
, we have P (Q1−Q2) = Ca2

−Ca1
. However, if Q1

and Q2 differ, then the degree of the left-hand side is greater than or equal
to m, but the degree of the right-hand side is less than m since b ≤ pm− 1.
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It follows then that Q1 = Q2, thus forcing Ca1 = Ca2 . Hence the sets are all
pair-wise disjoint, and we arrive then at bpkm−m polynomials A which need
to be discarded, and our count becomes pkm− bp(k−1)m = p(k−1)m(pm− b),
completing the proof. �

Note the similarity of this proposition’s formula to that of Proposition 1.1.
Also note that if b = 1, this formula corresponds to the formula for Φ(P k)
previously stated just after Definition 3.1.

Example 3.1. Let P = x3 + x2 + 3x + 1, which is irreducible over F5.
According to Proposition 3.1, we have Φ3(P 2) = 53(53 − 3) = 15, 250, and
Φ18(P 2) = 53(53− 18) = 13, 375. These values can be confirmed by simply
counting polynomials using, for example, Mathematica.

It remains to show that the function Φb is multiplicative, for then it can
be computed for arbitrary polynomials of degree at least 1 over Fp via
Proposition 3.1. The argument proving multiplicativity of Φb, as expected,
runs entirely parallel to the argument made originally by Goldshcmidt on
the function φb, but here using as the primary tool the Chinese Remain-
der Theorem as applied to polynomials over a finite field, as done in the
previously cited [5]. Hence we again omit the proof.

Proposition 3.2. The function Φb is a multiplicative function on Fp[x].

Example 3.2. Suppose P is as in Example 3.1 above and let Q = x3 +
4x2 + x+ 1, which is also irreducible over F5. Then Mathematica confirms
that Φ18(PQ) = Φ18(P )Φ18(Q) = (125− 18)2 = 11, 449.

Continuing with the parallels between Z and Fp[x], we now state the ana-
logues of Propositions 1.3 and 1.4 on summing over divisors. In both cases
the proofs run exactly parallel to the proofs of those results, so we leave
them to the reader. We of course need Definition 3.3 and Proposition 3.1.

Proposition 3.3. Suppose P is a monic irreducible polynomial of degree
m over Fp and k ≥ 1. Then

k∑

i=0

bk−iΦb(P
i) = pmk = pdeg(P

k).

Proposition 3.4. Suppose P is a monic irreducible polynomial of degree
m over Fp and k ≥ 1 then

k∑

i=0

Φb(P
i) =

pmk(pm − b) + b− 1

pm − 1
.
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Exactly as in Section 1, multiplicativity of the summation function tells us
that we can compute the summation in Proposition 3.4 for an arbitrary
monic polynomial F over Fp. We also note that by setting b = 1 in Propo-

sition 3.4 we obtain pmk = pdeg(P
k), so for an arbitrary monic f we will

obtain pdeg(F ), as expected.

As mentioned earlier in this section, the definition and propositions about
Φb can easily be extended to arbitrary finite fields Fq where q = pk for
some prime p. To do this, the elements of Fq can be viewed as the pk

polynomials of degree less than k in, say, a variable θ. This then provides
a natural ordering of the elements of Fq, and we can proceed as above.
However, we must caution that though this ordering of the elements of Fq

is canonical, the arithmetic for manipulating them is not canonical. To
do the arithmetic, we must select and fix a monic irreducible polynomial
P of degree k over Fp, and then do polynomial arithmetic mod P on our
elements.

Example 3.3. We consider the finite field F9. Its elements can be put in
the natural order {0, 1, 2, θ, θ+1, θ+2, 2θ, 2θ+1, 2θ+2} with all arithmetic
being done, say, modulo the irreducible P = θ2 + 1 over F3. Hence the
element 0 is represented by the number 0, the element θ+ 2 by the number
5, and so on. Now suppose we have the polynomial f(x) = x2+(θ+2)x+1,
then f(9) = 92 + 5(9) + 1 = 127, and so in the notation of this section,
G127 = f(x).

With this agreement, all the results of this section generalize from Fp[x] to
Fq[x].

We now study how the function Φb is related to normal bases of the exten-
sion field Fpn over the base field Fp.

4 An application to normal bases

An element α of Fpn is called normal if the elements {α, αp, αp2

, . . . , αpn−1}
form a basis (called a normal basis) for Fpn over Fp. The elements of this
basis are called the p-conjugates of α, and we note that by definition, all
these p-conjugates are themselves normal. It is known (see, for example,
Theorem 3.73 of [5]) that the number of normal elements of Fpn is given
by Φ(tn− 1), which is why normal bases are of interest to us in this paper.
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Definition 4.1. If an element α in Fpn has the property that α, α−1, α−
2, . . . , α− (b− 1) are all normal, we say that α has normal depth b.

Our generalized Φb function from Section 3 now comes into play, because
Φb(t

n− 1) will count the number of elements in Fpn of normal depth b. As
in Section 2, where we focused on the function φ2, here we focus on elements
α which have normal depth 2, the number of which will be counted by the
function Φ2(tn − 1).

Notation. We shall denote by N the set of elements of Fpn which are nor-
mal, i.e., which are counted by Φ(tn−1), and by N2 the subset of N whose
elements are of normal depth 2, i.e., are counted by Φ2(tn− 1). In general,
we shall denote elements of Fpn either as polynomials an−1tn−1+· · ·+a1t+
a0, where each ai is in Fp, or as the vector of coefficients (an−1, . . . , a1, a0).

A key advantage of working with normal bases is the following: the p-
conjugates of any element can be identified by simply rotating its coeffi-
cients. For a full discussion of the procedure for forming normal bases,
please see [5], Section 3.4 on linearized polynomials. Here we simply give
an example. Suppose n = 3, p = 5 and α = t2 + 4t + 2, which is in fact a
normal element of F125. We replace α by its associated linearized polyno-
mial t25 + 4t5 + 2t (i.e., this is “linearized” since each exponent is a power
of 5). But now its first 5-conjugate is (t25 + 4t5 + 2t)5 = t125 + 4t25 + 2t5 =
4t25 + 2t5 + t since in our field t125 = t. Thus we see that the coefficients
have been rotated one place to the left. Finally, we rewrite this 5-conjugate
in its “conventional” form, i.e., 4t2 + 2t + 1. In the same way, α’s other
5-conjugate is 2t2 + t+ 4.

The main question we now explore is: To what extent do the p-conjugates
of an element α of normal depth 2 themselves have normal depth 2? Put
another way, to what extent are normal bases preserved under this “depth”
operation.

Definition 4.2. We call an element α which is of normal depth 2 (i.e.,
is an element of N2) lonely if at least one of its p-conjugates fails to have
normal depth 2 (i.e., is not present in N2).

In the following chart, we show for the elements of Fpn the factorization of
tn−1 over Fp, the value of Φ2(tn−1), the number of normal bases contained
within N2, and the number of lonely elements in N2. Note that of necessity,
we always have n(Normal bases) + Lonely elements = Φ2(tn − 1).
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n p Factorization Φ2(tn−1) Normal Lonely
of tn − 1 bases elements

2 3 (t− 1)(t+ 1) 1 0 1
5 (t− 1)(t+ 1) 9 3 3
7 (t− 1)(t+ 1) 25 10 5
11 (t− 1)(t+ 1) 81 36 9
13 (t− 1)(t+ 1) 121 55 11
17 (t− 1)(t+ 1) 225 105 15

3 3 (t− 1)3 9 3 0
5 (t− 1)(t2 + t+ 1) 69 21 6
7 (t− 1)(t+ 3)(t+ 5) 125 15 80
11 (t− 1)(t2 + t+ 1) 1071 351 18
13 (t− 1)(t+ 4)(t+ 10) 1331 297 440
17 (t− 1)(t2 + t+ 1) 4305 1425 30
19 (t− 1)(t+ 8)(t+ 12) 4913 1275 1088

4 3 (t− 1)(t+ 1)(t2 + 1) 7 0 7
5 (t− 1)(t+ 1)(t+ 2)(t+ 3) 81 0 81
7 (t− 1)(t+ 1)(t2 + 1) 1175 220 295
11 (t− 1)(t+ 1)(t2 + 1) 9639 2088 1287
13 (t− 1)(t+ 1)(t+ 5)(t+ 8) 14,641 1760 7601

5 3 (t− 1)(t4 + t3 + t2 + t+ 1) 79 15 4
5 (t− 1)5 1875 375 0
7 (t− 1)(t4 + t3 + t2 + t+ 1) 11,995 2395 20

6 3 (t− 1)3(t+ 1)3 81 0 81
5 (t− 1)(t+ 1)(t2 + t+ 1)(t2 − t+ 1) 4761 378 2493

The reader can look for patterns here, which may be elusive, but a couple of
patterns should jump out. First, when n = p = 3 and n = p = 5, there are
no lonely elements. Second, whenever tn−1+tn−2+ · · ·+t+1 is irreducible,
the number of lonely elements is (n − 1)(p − 2). We now show that these
two patterns hold true in general.

Proposition 4.1. For all odd primes p, if n = p, then N2 contains no
lonely elements.

Proof. Because n = p and because tp − 1 = (t − 1)p, we see that α =
(ap−1tp−1 + ap−2tp−2 + · · · + a1t + a0) is of normal depth 2 if and only if
both it and α− 1 are not divisible by t− 1. It is easy to show (using long
division) that an element is relatively prime to t− 1 if and only if the sum
of its coefficients is not congruent to 0 mod p. Hence α will be of normal
depth 2 (i.e., in N2) if the sum of its coefficients modulo p is neither 1 nor
0. But the coefficients of all of α’s p-conjugates also have that same sum
(as they have only been rotated), so they too are of normal depth 2. We
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conclude that N2 contains no lonely elements. �

On the other hand, we can say the following:

Proposition 4.2. The value Φ2(tn−1) is odd for all odd primes p. Hence if
n is even, N2 will contain an odd number of lonely elements. In particular,
if n is even, there will always be at least one lonely element.

Proof. For all odd primes p, regardless of how tn − 1 factors over Fp, all
factors of Φ2(tn − 1) are of the form pi or (pj − 2)k for some i, j and k.
Since every factor is odd, Φ2(tn − 1) is odd. If n is even, then the number
of elements of N2 which form normal bases within N2 must be even. Hence
the number of lonely elements must be odd, and in particular greater than
0. �

We now turn to the second pattern in the chart by first looking at an
example.

Example 4.1. Suppose n = 3 and p = 5. Note from the chart that t2+t+1
is irreducible over F5 and that Φ2(t3− 1) = (5− 2)(25− 2) = 69, i.e., there
are 69 elements α in F125 which have the property that both α and α−1 are
relatively prime to both t− 1 and t2 + t+ 1. We list below these elements,
arranged first by the sum of their coefficients modulo 5 and within that
together with their 3-conjugates (which, recall, are simply rotations of the
coefficients), with those sets separated by semi-colons:

Sum = 2:

{(2, 3, 2), (3, 2, 2); (0, 0, 2), (0, 2, 0), (2, 0, 0); (0, 1, 1), (1, 0, 1), (1, 1, 0);
(0, 3, 4), (3, 4, 0), (4, 0, 3); (0, 4, 3), (4, 3, 0), (3, 0, 4); (1, 2, 4), (2, 4, 1), (4, 1, 2);
(1, 3, 3), (3, 3, 1), (3, 1, 3); (1, 4, 2), (4, 2, 1), (2, 1, 4)}

Sum = 3:

{(0, 4, 4), (4, 0, 4); (0, 0, 3), (0, 3, 0), (3, 0, 0); (0, 1, 2), (1, 2, 0), (2, 0, 1);
(0, 2, 1), (2, 1, 0), (1, 0, 2); (1, 3, 4), (3, 4, 1), (4, 1, 3); (1, 4, 3), (4, 3, 1), (3, 1, 4);
(2, 2, 4), (2, 4, 2), (4, 2, 2); (2, 3, 3), (3, 3, 2), (3, 2, 3)}

Sum = 4:

{(1, 2, 1), (2, 1, 1); (0, 0, 4), (0, 4, 0), (4, 0, 0); (0, 1, 3), (1, 3, 0), (3, 0, 1);
(0, 3, 1), (3, 1, 0), (1, 0, 3); (0, 2, 2), (2, 2, 0), (2, 0, 2); (1, 4, 4), (4, 4, 1), (4, 1, 4);
(2, 3, 4), (3, 4, 2), (4, 2, 3); (2, 4, 3), (4, 3, 2), (3, 2, 4)}

Note that, as predicted by our chart, 21 normal bases are present, but the
first pair of elements for each sum is missing a 3-conjugate, and so there are
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6 lonely elements. The 3 elements which are missing are (2, 2, 3), (4, 4, 0)
and (1, 1, 2).

We can now state and prove the general result:

Proposition 4.3. If the polynomial tn−1 + tn−2 + · · ·+ t+ 1 is irreducible
over Fp for an odd prime p, then N2 contains exactly (n− 1)(p− 2) lonely
elements, and so the number of normal bases inside N2 is (p − 2)(pn−1 −
n− 1)/n.

Proof. We assume that tn−1 + tn−2 + · · · + t + 1 is irreducible over Fp.
Suppose α = (an−1, an−2, . . . , a1, a0) is an element of Fpn which has the
property that both α and α − 1 are relatively prime to t − 1, and let us
denote the set of all such elements as St−1. As we already observed in the
proof of Proposition 4.1, an element is relatively prime to t− 1 if and only
if the sum of its coefficients is not congruent to 0 mod p. Hence α has
the property that

∑n−1
i=0 ai mod p 6= 0 and 1. It follows that the number

of elements in St−1 is pn−1(p − 2). We also observe that if α is in St−1
then so are all of its p-conjugates (since we merely rotate the coefficients,
maintaining their sum).

Now, Φ2(tn − 1) = (p − 2)(pn−1 − 2), and so the number of elements
which are in St−1 but not in N2 is pn−1(p − 2) − (p − 2)(pn−1 − 2) =
2(p − 2). These are elements β in St−1 for which either β or β − 1 is
divisible by tn−1 + tn−2 + · · ·+ t+1. Thus β is of the form (a, a, . . . , a, a) or
(a, a, . . . , a, a+ 1). For the former form, if na ≡ 0 mod p, a must be 0 since
n mod p cannot be 0 (if n = kp then tkp − 1 = (tk − 1)p). If na ≡ 1 mod
p, then a = (n mod p)−1. Neither of these elements (0, 0, . . . , 0) and ((n
mod p)−1, (n mod p)−1, . . . , (n mod p)−1) is in St−1, but the other p− 2
elements of this form are in St−1 but not in N2. We also observe that all of
the p-conjugates of each of these elements are identical to the element itself,
so removing it creates no lonely elements in N2. Moving to the latter form
(a, a, . . . , a, a+ 1), by a similar argument we see that though (0, 0, . . . , 0, 1)
and (−(n mod p)−1,−(n mod p)−1, . . . ,−(n mod p)−1 + 1) are not in
St−1, the other p− 2 elements of this form are in St−1 but not in N2. This
then accounts for our 2(p − 2) elements β cited above. However, in this
latter case, as opposed to the former, each of these p−2 elements has n−1
p-conjugates, all of which are in N2 since if γ, say, is any one of them,
neither γ nor γ − 1 is divisible by tn−1 + tn−2 + · · ·+ t+ 1. Hence we have
identified the predicted (n− 1)(p− 2) lonely elements in N2.

Finally then, since Φ2(tn − 1) = (p − 2)(pn−1 − 2), the number of normal
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bases in N2 is

(p− 2)(pn−1 − 2)− (n− 1)(p− 2)

n
=

(p− 2)(pn−1 − n− 1)

n
. �

Let us single out the special cases n = 2 and n = 3 in the following two
corollaries:

Corollary 4.1. For n = 2 and all odd primes p, N2 contains p− 2 lonely
elements and hence (p− 2)(p− 3)/2 normal bases.

Proof. The polynomial t+1 is always irreducible, so Proposition 4.3 applies.
�
Corollary 4.2. For n = 3 and all primes p of the form 3k + 2 for some
k > 0, N2 contains 2(p − 2) lonely elements and hence (p − 2)2(p + 2)/3
normal bases.

Proof. The roots of t2 + t + 1 are (−1 ±
√
−3)/2. Using an argument

attributed to Gauss, one can show that if p is of the form 3k+2, then −3 is
a non-quadratic residue mod p, so t2 + t+1 is irreducible (see, for example,
[8], Chapter 24.) We now apply Proposition 4.3. �

There are no doubt numerous other patterns to be discovered and discussed
here. For example, here are three possible lines of inquiry:

1. In the case n = 3, we have established general patterns when p = 3 and
p of the form 3k + 2. What about p of the form 3k + 1?

2. Why are there no normal bases within N2 in the cases of n = 4, p = 3
or 5, and n = 6, p = 3?

3. In a different direction: What happens with normal bases for elements
of normal depth 3, or 4, or b?

The possibilities go on, but we choose to finish at this point in hopes that
the reader will explore further.
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