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Abstract: In this paper we classify 1-rotational (45, 5, 2)-BIBDs having
an automorphism group isomorphic to Z44 acting on the set of blocks with
the orbit lenghts distribution (11, 11, 44, 44, 44, 44). New (45, 5, 2)-BIBDs
are constructed. Among the constructed designs there are exactly 22 re-
solvable (45, 5, 2)-BIBDs. Until now, only one resolvable (45, 5, 2)-BIBD
was known. The smallest parameter set for which the existence question of
a resolvable BIBD is still open is (45, 5, 1).

1 Introduction

A (v, k, λ)-balanced incomplete block design (in short (v, k, λ)-BIBD) is a
finite incidence structure D = (P,B, I) where P is a set of points, B is a
multiset of blocks disjoint with P, and I ⊆ P × B is an incidence relation
such that every block B ∈ B is incident with exactly k points and each pair
of distinct points of P is incident with exactly λ blocks. In a (v, k, λ)-BIBD

every point is incident with exactly r =
λ(v − 1)

k − 1
blocks, and r is called

replication number of (v, k, λ)-BIBD. The number of blocks is denoted by b.
A Steiner S(2, k, v) design is a (v, k, 1)-BIBD such that each pair of distinct
points is incident with exactly one block. A BIBD is said to be simple if
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it contains no repeated blocks, and particularly super-simple if no pair of
distinct blocks contains more than two points in common. A partition of
the set of blocks B into parallel classes, each of which is a partition of
the set of points P, is called a resolution R, and a (v, k, λ)-BIBD which
has at least one resolution is called a resolvable (v, k, λ)-BIBD or shorter
(v, k, λ)-RBIBD.

We say that a group G acts regularly on a set X if it acts transitively on
X (i.e. for every pair of elements x, y ∈ X, there is an element g ∈ G such
that xg = y) and the stabilizer in G of every element of X is trivial, i.e.
Gx = {1G}, ∀x ∈ X.

A subnormal series of a group G is a sequence of subgroups, each a normal
subgroup of the next one, shown in a standard notation

{1} = G0 �G1 �G2 � . . .�Gn = G.

In addition, if it holds that each Gi � G, then the series is called normal
series of G. The quotient groups Gi+1/Gi are called factor groups of the
series. We assume that the reader is familiar with basic facts of the design
theory and the group theory. For more information on the topic we refer
the reader to [2] and [14].

An automorphism group G of a (v, k, λ)-BIBD is a group of permuta-
tions on its set of points leaving invariant its set of blocks. In partic-
ular, a 1-rotational (v, k, λ)-BIBD is a (v, k, λ)-BIBD admitting an au-
tomorphism group fixing one point and acting regulary on the others.
Thus, a 1-rotational (v, k, λ)-BIBD may be assumed to have the set of
points P = Zv−1 ∪ {∞} with the 1-rotational automorphism given by
i → i + 1 (mod (v − 1)), ∞ → ∞. A (v, k, λ)-RBIBD is G-invariantly
resolvable when it admits G as an automorphism group leaving invariant
at least one resolution. The set of all automorphisms of a BIBD D forms
its full automorphism group denoted by Aut(D).

Quite a deal of attention has been paid to answer the existence questions
for RBIBDs from [13, Table I.1.28.] According to the table, the smallest
parameter set for which the existence question of a resolvable BIBD is still
open is (45, 5, 1), which is a resolvable Steiner S(2, 5, 45) design, and there
are at least 16 non-isomorphic Steiner S(2, 5, 45) designs . Later on, new
S(2, 5, 45) designs are constructed having an automorphism group of order
two with maximum number of fixed points (see [4]), an automophism group
of order five (see [12]), and admitting an automorphism group Z6, Z3 ×Z3

or S3 (see [7]). However, to the best of our knowledge, no survey of known
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results on resolvable Steiner S(2, 5, 45) designs has been published, so it is
still unkown wheather there exists a resolvable one.

If we consider the next larger λ = 2 then, according to the tables of small
BIBDs in [1] and [13], the smallest unknown (v, 5, 2)-RBIBD was for v = 45.
Recently, M. Buratti, J. Yan and C. Wang in [3] constructed 1-rotational
RBIBDs in a more general context concerning partitioned difference fami-
lies and they found, in particular, the first known example of a (45, 5, 2)-
RBIBD. According to [13, Table I.1.28., Design #317], there exist at least 17
non-isomorphic (45, 5, 2)-BIBDs and they can be constructed as 2-multiples
of known Steiner S(2, 5, 45) designs. To the best of our knowledge, the first
simple (45, 5, 2)-BIBD which is also super-simple BIBD, i.e. any 2 differ-
ent blocks share at most two points, was constructed in [10, Lemma 2.8].
The design has the full automorphism group Z22 and it is not resolvable
(45, 5, 2)-BIBD, which can be easily checked by computer using [9] and [15].

In this paper we present new (resolvable) (45, 5, 2)-BIBDs using a method
of tactical decomposition. All of the constructed designs are 1-rotational
(45, 5, 2)-BIBDs with repeated blocks. In this paper we prove that there
cannot exist a simple 1-rotational (45, 5, 2)-BIBD admitting an action of
an automorphism group G ∼= Z44 with two block orbits of length 11 and
four full block orbits (namely of size |G|). Hence, in this paper we give
the classification of 1-rotational (45, 5, 2)-BIBDs with the action of the pre-
sumed automorphism group G with the block orbit lenghts distribution
(11, 11, 44, 44, 44, 44). Among the 11606 constructed 1-rotational (45, 5, 2)-
BIBDs, exactly 22 are resolvable, so there are at least 22 non-isomorphic
(45, 5, 2)-RBIBDs.

This paper is organized as follows: after the brief introduction, in Sec-
tion 2 we present basic information on the construction and refinement of
orbit matrices for an action of a presumed solvable automorphism group
on a BIBD. In Section 3 we present new 1-rotational (45, 5, 2)-BIBDs and
(45, 5, 2)-RBIBDs with Z44 as an automorphism group.

1-rotational (45, 5, 2)-BIBDs with the presumed action of the automorphism
group Z44 were classified within a reasonable amount of time, with the help
of computers. Orbit matrices and designs are obtained using programs
written for GAP ([9]). For isomorphism testing, and for the analysis of
their full automorphism groups we used [9] and [15].
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2 Outline of the construction

Let D = (P,B, I) be a (v, k, λ)-BIBD and let G ≤ Aut(D). Further, let the
group G acts on D with m point orbits and n block orbits. We denote the
point G-orbits by P1, . . . ,Pm and the block G-orbits by B1, . . . ,Bn, and
put |Pi| = νi and |Bj | = βj , i = 1, . . . ,m, j = 1, . . . , n. The number of
blocks of Bj which are incident with a representative of the point orbit Pi

we denote by aij . The number aij does not depend on the choice of a point
P ∈ Pi, and the following conditions hold (see [5, 8, 11]):

(c1) 0 ≤ aij ≤ βj , 1 ≤ i ≤ m, 1 ≤ j ≤ n,

(c2)

n∑

j=1

aij = r, 1 ≤ i ≤ m,

(c3)

m∑

i=1

νi
βj
aij = k, 1 ≤ j ≤ n,

(c4)

n∑

j=1

νt
βj
asj atj = λνt + δst(r − λ), 1 ≤ s, t ≤ m,

where

m∑

i=1

νi = v,

n∑

j=1

βj = b and b = vr
k .

Definition 2.1. An (m×n)-matrix (aij) with entries satisfying the condi-
tions (c1)− (c4) is called orbit matrix for the parameters (v, k, λ) and orbit
lengths distributions (ν1, . . . , νm) and (β1, . . . , βn).

The construction of BIBDs admitting an action of an automorphism group,
using orbit matrices, consists of the following two basic steps (see [5, 11]):

1. Construction of orbit matrices for the presumed automorphism group,

2. Construction of designs from the obtained orbit matrices. This step
is often called an indexing of orbit matrices.

In indexing of orbit matrices, we have to determine which blocks are inci-
dent with the representative of a point orbit. That leads us to the notion
of an index set.
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Definition 2.2. The set of indices of blocks of the orbit Bj indicating which
blocks of Bj are incident with the representative of the point orbit Pi is called
index set for the position (i, j) of the orbit matrix.

In the first step of the construction of (m × n)-orbit matrices that could
produce a block design D = (P,B, I) with a presumed automorphism group
G ≤ Aut(D), it is very important to reduce the number of those matrices
which will produce isomorphic designs, as much as possible. To conduct
that reduction we imply elements of centralizer of the group G in the group
Sm × Sn, as described in [6].

The second step of the construction of BIBDs, called indexing, often lasts
too long and can not be performed in a reasonable amount of time. Hence,
to make such a construction possible, it could be very useful to use a normal
series of a persumed automorphism group G acting on a BIBD, and the pro-
cess is called a refinement of orbit matrices. An algorithm for a refinement
of an orbit matrix of a BIBD using principal series of its Abelian automor-
phism group, and using a composition series of its solvable automorphism
group G

{1} = G0 �G1 �G2 � . . .�Gn−1 �Gn = G

is described in [5] and [6], respectively. More generally, if a presumed
automorphism group G acting on a BIBD is a finite Abelian group, one
can also use a normal series of G instead of a composition series of G to
conduct the refinement of orbit matrices. So, the condition that each factor
group Gi+1/Gi must be simple is not necessary.

The method for refinement of an orbit matrix for the presumed automor-
phism group G of a BIBD D is based on the fact that each G-orbit of D
decomposes to H-orbits of the same size, where H is a normal subgroup
of G (see [5, Theorem 2]). Therefore, each orbit matrix for the group G
decomposes to orbit matrices for the group H �G, and the quotient group
G/H acts transitively on the set of H-orbits obtained from one G-orbit (see
[6]). Very often, the algorithm for the refinement of orbit matrices consists
of several steps, depending on the length of a normal series of a presumed
automorphism group G ≤ Aut(D). In the first step of the algorithm we
need to find all refinements for the normal subgroup Gn−1 �G. Secondly,
we find refinements of the resulting orbit matrices and obtain orbit matrices
for the group Gn−2 �Gn−1, etc., until the desired designs are constructed.
Application of the groups G/Gn−1, Gn−1/Gn−2, . . . , Gn−(i−1)/Gn−i in
the i-th step of the algorithm significantly speeds up the refinement (see
[5], Example 1). For the elimination of orbit matrices which will produce
isomorphic BIBDs, we use elements of the normalizer of a presumed auto-
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morphism group and some particular automorphisms of the orbit matrices.
For more details see [5] and [8].

BIBDs constructed by the method has to be checked for isomorphism be-
cause one orbit matrix or two different orbit matrices may produce iso-
morphic designs. More details on the construction of designs using orbit
matrices and tactical decomposition can be found in [5] and [6].

3 New (resolvable) (45, 5, 2)-BIBDs having Z44

as an automorphism group

In this section we give the classification of 1-rotational (45, 5, 2)-BIBDs
admitting an action of an automorphism group G ∼= Z44 with two block
orbits of length 11 and four full block orbits (namely of size |G|). Let
D = (P,B, I) be the (45, 5, 2)-RBIBD constructed in (see [3, Example
2.9]), which was obtained using a resolvable 1-rotational difference family.
Considering the method of its construction, the design D is 1-rotational
with repeated blocks.
If P = {1, . . . , 45}, then the set of blocks B of the design D can be obtained
by developing the base blocks

{1, 2, 13, 24, 35}, {1, 2, 13, 24, 35}, {2, 3, 6, 30, 34},
{2, 3, 23, 32, 41}, {2, 4, 9, 12, 38}, {2, 4, 16, 23, 29},

under the action of its full automorphism group Aut(D) ∼= Z44 generated
by the permutation

(2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28,

29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45).

Hence, the first two base blocks are repeated and each of them have an
orbit of size 11, whereas each of the last four base blocks have an full
orbit of size 44. We wanted to construct some new 1-rotational (45, 5, 2)-
BIBDs with the presumed action of automorphism group Z44, i.e. acting on
(45, 5, 2)-BIBDs with the point and block orbit lengths distribution (1, 44)
and (11, 11, 44, 44, 44, 44), respectively. Then we construct orbit matrices,
as described in Section 2. Solving the system of equations (c1) - (c4), we
get the following Lemma.
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Lemma 3.1. There is exactly one orbit matrix for a 1-rotational (45, 5, 2)-
BIBD having G ∼= Z44 as an automorphism group acting on the set of blocks
with the orbit lengths distribution (11, 11, 44, 44, 44, 44). The orbit matrix
A is given in Table 1.

A 11 11 44 44 44 44
1 11 11 0 0 0 0
44 1 1 5 5 5 5

Table 1: Orbit matrix for (45, 5, 2)-BIBDs under the particular action of Z44

From Table 1, the fixed point is incident with all blocks from the two short
orbits, but each non-fixed point is incident with exactly one block from the
two short orbits and with exactly five blocks from each of the full orbits.
The result of indexing the first row (fixed point) and the first two columns
(short block orbits) of the orbit matrix A is unique, since normalizers of
the group Z11 in S11 are applied, as it is shown with reverse lexicographical
order in Table 2 (see [5], [8]). Hence, the first 22 columns in Table 2, which

×11︷ ︸︸ ︷
11111111111

×11︷ ︸︸ ︷
11111111111

×44︷ ︸︸ ︷
1 · · · 1

×44︷ ︸︸ ︷
1 · · · 1

×44︷ ︸︸ ︷
1 · · · 1

×44︷ ︸︸ ︷
1 · · · 1

1 11111111111 11111111111 0 · · · 0 0 · · · 0 0 · · · 0 0 · · · 0

×44





1 10000000000 10000000000

? ? ? ?
1 10000000000 10000000000
1 10000000000 10000000000
1 10000000000 10000000000

1 01000000000 01000000000
1 01000000000 01000000000
1 01000000000 01000000000
1 01000000000 01000000000

...
...

...

1 00000000001 00000000001
1 00000000001 00000000001
1 00000000001 00000000001
1 00000000001 00000000001

Table 2: Incidence matrix of a (45, 5, 2)-BIBD obtained by indexing of A

correspond to the blocks from two orbits of length 11, are repeated blocks
of a 1-rotational (45, 5, 2)-BIBD, and the following lemma holds.
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Lemma 3.2. A 1-rotational (45, 5, 2)-BIBD admitting an action of an au-
tomorphism group G ∼= Z44 with two block orbits of length 11 and four full
block orbits of length 44 is not a simple design, and its repeated blocks form
two block orbits of length 11.

However, it would be very difficult to proceed with indexing of the remain-
ing part of A, i.e. rows and columns of A corresponding to the full point
and block orbits respectively, since there are

(
44
5

)
possibilities for index sets

for the positions (2, 3) − (2, 6) in the orbit matrix A. Hence, we applied
the method of refinement using a normal series of the automorphism group
G ∼= Z44, as described in Section 2. Here, the refinement of the orbit ma-
trix A can be conducted on two different ways. We used the following two
different normal series of the group G ∼= Z44

{1}� Z4 � Z4 × Z11 and {1}� Z11 � Z4 × Z11,

since every finite Abelian group is a direct product of cyclic groups. Hence,
we made the refinement of A in two different ways in order to check the
correctness of the obtained results.

Firstly, we made the refinement of the orbit matrix A using the first normal
series of the group G, and decomposed it to orbit matrices for the subgroup
Z4�Z4×Z11, considering the action of the quotient group Z44/Z4

∼= Z11 on
a (45, 5, 2)-BIBD, as described in Section 2. As a result of that refinement,
562 orbit matrices are constructed. Further, in the next refinement (called
indexing) 228246 (45, 5, 2)-BIBDs are constructed, and among them exactly
11606 are non-isomorphic. For the final isomorphism testing of constructed
designs and determining structures of their full automorphism groups we
used [9] and [15].

Furthermore, to check the correctness of the obtained results, we also made
the refinement of A using the second normal series of G and we constructed
17 orbit matrices for the subgroup Z11 � Z4 × Z11, considering the action
of the quotient group Z44/Z11

∼= Z4 on a (45, 5, 2)-BIBD. As a result of
indexing of the 17 orbit matrices, 150860 (45, 5, 2)-BIBDs are constructed.
After additional checking for isomorphisms, the same result is obtained.
Information about the number of orbit matrices and designs constructed
by the application of the described method is given in Table 3.

Therefore, we proved the following theorem.
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Theorem 3.3. There are exactly 11606 non-isomorphic 1-rotational
(45, 5, 2)-BIBDs having an automorphism group G ∼= Z44 acting with the
block orbit lengths distribution (11, 11, 44, 44, 44, 44). They have repeated
blocks from the orbits of length 11. Among them there are 11594 designs
with the full automorphism group of order 44 isomorphic to the group Z44,
4 of them having the full automorphism group of order 88 isomorphic to the
group Z11×D8, and 8 designs having the full automorphism group of order
88 isomorphic to the group Z4 ×D22.

# orbit matrices in the first step 1

# orbit matrices after refinement for Z4 � Z4 × Z11 562
# constructed designs 228246

# non-isomorphic designs 11606
# orbit matrices after refinement for Z11 � Z4 × Z11 17

# constructed designs 150860
# non-isomorphic designs 11606

Table 3: The results of the construction of 1-rotational (45, 5, 2)-BIBDs
with the particular action of an automorphism group G ∼= Z44

Among the 11606 constructed (45, 5, 2)-BIBDs there are exactly 22 resolv-
able (45, 5, 2)-BIBDs with Z44 as an automorphism group, checked by com-
puter using [9] and [15]. In Table 4 we give the base blocks of the 22
constructed (45, 5, 2)-RBIBDs, denoted by D1, D2, . . . , D22.
The group G1 = 〈g1, g2〉 is the full automorphism group of the designs
D1,D2,D9,D15 and D17, the group G2 = 〈g1, g3〉 is the full automorphism
group of D3,D5, and D13, the group G3 = 〈g1, g4〉 is the full automorphism
group of D4, D7, D8, D11, D12, D14, D16, D19, D21 and D22, and the group
G4 = 〈g1, g5〉 is the full automorphism group of D6,D10,D18 and D20. The
generators of the groups are

g1 = (2, 3, 4, 5)(6, 7, 8, 9)(10, 11, 12, 13)(14, 15, 16, 17)(18, 19, 20, 21)(22, 23, 24, 25)

(26, 27, 28, 29)(30, 31, 32, 33)(34, 35, 36, 37)(38, 39, 40, 41)(42, 43, 44, 45)

g2 = (2, 8, 10, 16, 18, 24, 26, 32, 34, 40, 42, 4, 6, 12, 14, 20, 22, 28, 30, 36, 38, 44)

(3, 9, 11, 17, 19, 25, 27, 33, 35, 41, 43, 5, 7, 13, 15, 21, 23, 29, 31, 37, 39, 45)

g3 = (2, 9, 12, 15, 18, 25, 28, 31, 34, 41, 44, 3, 6, 13, 16, 19, 22, 29, 32, 35, 38, 45, 4, 7, 10, 17,

20, 23, 26, 33, 36, 39, 42, 5, 8, 11, 14, 21, 24, 27, 30, 37, 40, 43)

g4 = (2, 6, 10, 14, 18, 22, 26, 30, 34, 38, 42)(3, 7, 11, 15, 19, 23, 27, 31, 35, 39, 43)

(4, 8, 12, 16, 20, 24, 28, 32, 36, 40, 44)(5, 9, 13, 17, 21, 25, 29, 33, 37, 41, 45)

g5 = (2, 7, 12, 17, 18, 23, 28, 33, 34, 39, 44, 5, 6, 11, 16, 21, 22, 27, 32, 37, 38, 43, 4, 9, 10, 15,

20, 25, 26, 31, 36, 41, 42, 3, 8, 13, 14, 19, 24, 29, 30, 35, 40, 45).

61



Base blocks Base blocks

D1

{1, 2, 3, 4, 5}, {1, 2, 3, 4, 5},
D2

{1, 2, 3, 4, 5}, {1, 2, 3, 4, 5},
{2, 6, 10, 17, 23}, {2, 7, 21, 23, 39}, {2, 6, 13, 30, 40}, {2, 6, 21, 29, 45},
{2, 7, 25, 27, 36}, {2, 9, 14, 22, 40} {2, 7, 24, 37, 39}, {2, 8, 16, 34, 41}

D3

{1, 2, 3, 4, 5}, {1, 2, 3, 4, 5},
D4

{1, 2, 3, 4, 5}, {1, 2, 3, 4, 5},
{2, 6, 16, 25, 39}, {2, 6, 24, 33, 44}, {2,6,10,31,45},{2, 7, 14, 33, 35},
{2, 7, 10, 15, 34}, {2, 8, 24, 36, 39} {2,8,17,20,26},{2, 9, 16, 22, 30}

D5

{1, 2, 3, 4, 5}, {1, 2, 3, 4, 5},
D6

{1, 2, 3, 4, 5}, {1, 2, 3, 4, 5},
{2, 6, 16, 25, 39}, {2, 6, 22, 34, 41}, {2, 6, 11, 24, 26}, {2, 6, 18, 29, 37},
{2, 7, 12, 33, 43}, {2, 8, 10, 28, 35} {2, 7, 29, 35, 41}, {2, 9, 12, 20, 39}

D7

{1, 2, 3, 4, 5}, {1, 2, 3, 4, 5},
D8

{1, 2, 3, 4, 5}, {1, 2, 3, 4, 5},
{2, 6, 16, 21, 38}, {2, 6, 24, 31, 44}, {2, 6, 13, 29, 44}, {2, 6, 20, 23, 38},
{2, 7, 13, 34, 41}, {2, 9, 20, 29, 37} {2, 7, 14, 24, 38}, {2, 7, 26, 35, 41}

D9

{1, 2, 3, 4, 5}, {1, 2, 3, 4, 5},
D10

{1, 2, 3, 4, 5}, {1, 2, 3, 4, 5},
{2, 6, 21, 29, 39}, {2, 6, 33, 34, 41}, {2, 6, 17, 32, 34}, {2, 6, 21, 27, 30},
{2, 7, 13, 19, 37}, {2, 8, 18, 28, 43} {2, 7, 10, 34, 44}, {2, 7, 15, 32, 41}

D11

{1, 2, 3, 4, 5}, {1, 2, 3, 4, 5},
D12

{1, 2, 3, 4, 5}, {1, 2, 3, 4, 5},
{2, 6, 12, 20, 43}, {2, 6, 13, 25, 33}, {2, 6, 23, 32, 44}, {2, 6, 30, 35, 43},
{2, 7, 16, 32, 34}, {2, 7, 17, 22, 35} {2, 7, 26, 36, 38}, {2, 9, 20, 27, 36}

D13

{1, 2, 3, 4, 5}, {1, 2, 3, 4, 5},
D14

{1, 2, 3, 4, 5}, {1, 2, 3, 4, 5},
{2, 6, 13, 30, 39}, {2, 6, 14, 19, 44}, {2, 6, 17, 33, 37}, {2, 7, 13, 16, 35},
{2, 7, 17, 33, 36}, {2, 8, 16, 28, 37} {2, 7, 15, 21, 27}, {2, 9, 14, 24, 32}

D15

{1, 2, 3, 4, 5}, {1, 2, 3, 4, 5},
D16

{1, 2, 3, 4, 5}, {1, 2, 3, 4, 5},
{2, 6, 14, 20, 23}, {2, 6, 23, 30, 45}, {2, 6, 15, 30, 36}, {2, 6, 16, 35, 43},
{2, 7, 18, 26, 36}, {2, 8, 14, 21, 39} {2, 7, 10, 23, 32}, {2, 7, 14, 34, 40}

D17

{1, 2, 3, 4, 5}, {1, 2, 3, 4, 5},
D18

{1, 2, 3, 4, 5}, {1, 2, 3, 4, 5},
{2, 6, 16, 18, 25}, {2, 6, 23, 32, 43}, {2, 6, 15, 20, 26}, {2, 6, 27, 39, 44},
{2, 7, 20, 28, 36}, {2, 7, 27, 34, 40} {2, 8, 21, 24, 33}, {2, 9, 16, 24, 32}

D19

{1, 2, 3, 4, 5}, {1, 2, 3, 4, 5},
D20

{1, 2, 3, 4, 5}, {1, 2, 3, 4, 5},
{2, 6, 11, 22, 30}, {2, 6, 15, 37, 40}, {2, 6, 12, 20, 41}, {2, 6, 24, 30, 43},
{2, 7, 29, 36, 43}, {2, 8, 14, 20, 35} {2, 7, 18, 24, 39}, {2, 7, 26, 34, 41}

D21

{1, 2, 3, 4, 5}, {1, 2, 3, 4, 5},
D22

{1, 2, 3, 4, 5}, {1, 2, 3, 4, 5},
{2, 6, 12, 37, 44}, {2, 6, 13, 28, 36}, {2, 6, 16, 18, 31}, {2, 6, 16, 19, 39},
{2, 7, 18, 27, 36}, {2, 7, 19, 30, 43} {2, 7, 10, 19, 28}, {2, 7, 13, 27, 35}

Table 4: The base blocks of the (45, 5, 2)-RBIBDs D1, D2, . . . , D22 under
the action of their full automorphism groups

Thus, the following theorem holds.

Theorem 3.4. There are exactly 22 non-isomorphic 1-rotational (45, 5, 2)-
RBIBDs having the automorphism group G ∼= Z44 acting with the block orbit
lengths distribution (11, 11, 44, 44, 44, 44). All of them have repeated blocks
from the orbits of size 11 and their full automorphism groups are isomorphic
to the group Z44.

All 11606 non-isomorphic 1-rotational (45, 5, 2)-BIBDs constructed in this
paper can be found at http://www.math.uniri.hr/∼ddumicic/results/
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