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Abstract: Suppose r ≥ 3 and k ≥ 2 are integers. If k(r − 1) is even
then the edge Grundy number of the Turán graph Tkr,r is 2k(r − 1) − 1.
Otherwise, the edge Grundy number of Tkr,r is 2k(r − 1) − m for some
m ∈ {1, . . . ,min[g(k), 2r − 1]}, where g(k) = 2 if k = 3 and g(k) = k − 2
otherwise.

1 Introduction

A Grundy coloring of a finite simple graph G is a proper coloring of the
vertices of G with positive integers such that if v ∈ V (G) is colored with
c > 1 then all the colors 1, . . . , c − 1 appear on vertices adjacent to v.
(As usual, proper means that adjacent vertices bear different colors.) The
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Grundy number of G, denoted Γ(G), is the greatest number of colors in a
Grundy coloring of G.

A greedy coloring of a G is a coloring of the vertices of G, with positive
integers, obtained as follows: order V (G) somehow, say v1, . . . , vn, and color
v1 with 1; having colored v1, . . . , vj−1, 1 < j ≤ n, color vj with the smallest
positive integer not appearing on neighbors of vj among v1, . . . , vj−1.

The following are basic results about Grundy colorings and Grundy num-
bers; see [2] and [3]. As usual, χ(G) denotes the chromatic number of G
and ∆(G) the maximum degree in G.

1.1 Every greedy coloring of G is Grundy, and every Grundy coloring of
G is greedy, meaning that for each Grundy coloring of G there is an
ordering of V (G) the greedy coloring with respect to which is the
given Grundy coloring.

A corollary: any partial Grundy coloring of G, an assignment of posi-
tive integers to some of the vertices of G so that whenever a vertex v
bears a color c > 1 then the colors 1, . . . , c−1 appear on neighbors of
v, and no two adjacent vertices bear the same color, can be extended
to a Grundy coloring of G: order the vertices of G so that the colored
vertices precede all the uncolored vertices, and so that the sequence
of colors on the colored vertices is non-decreasing. Then the greedy
coloring of V (G) with respect to this ordering will reproduce the given
partial coloring.

1.2 χ(G) ≤ Γ(G) ≤ ∆(G) + 1.

1.3 If k is an integer satisfying

χ(G) ≤ k ≤ Γ(G)

then there is a Grundy coloring of G with k being the largest integer
appearing.

1.4 If H is an induced subgraph of G then every Grundy coloring of H can
be extended to a Grundy coloring of G (see 1.1) and so Γ(H) ≤ Γ(G).

1.5 For any Grundy coloring of G, the set of vertices colored 1 is an
independent dominating (maximal independent) subset of V (G).

The line graph of a graph G is the graph L(G) such that V (L(G)) = E(G)
and distinct edges e, f ∈ E(G) are adjacent in L(G) if and only if they are
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adjacent as edges in G; i.e., they are both incident to some vertex. An edge
Grundy coloring of G is, or corresponds to, a Grundy coloring of L(G). As
with any edge coloring of G, such a coloring can be thought of as a coloring
of the edges of G or as a coloring of the vertices of L(G); the former is
usually preferred.

The edge Grundy number of G, provided E(G) 6= ∅, is Γ′(G) = Γ(L(G)).
Let χ′(G) = χ(L(G)), the edge-chromatic number or chromatic index of
G. Let dG denote vertex degree in G, and let ∆′(G) = ∆(L(G)) =
maxuv∈E(G)[dG(u) + dG(v) − 2]. From the elementary results 1.1 - 1.5
about Grundy colorings and Γ we have the following for any finite simple
graph G such that E(G) 6= ∅.

1.1′ Each edge Grundy coloring of G is obtainable by greedily coloring the
edges with respect to an ordering of E(G). Any partial edge Grundy
coloring of G can be extended (greedily) to an edge Grundy coloring
of G.

1.2′ χ′(G) ≤ Γ′(G) ≤ ∆′(G) + 1 = maxuv∈E(G)[dG(u) + dG(v)− 1]

1.3′ For any integer k ∈ [χ′(G),Γ′(G)] there is an edge Grundy coloring
of G with k being the largest color appearing.

1.4′ If H is a subgraph of G then every edge Grundy coloring of H can be
extended to an edge Grundy coloring of G. Consequently, Γ′(H) ≤
Γ′(G).

1.5′ For any edge Grundy coloring of G, the set of edges colored 1 is an
edge-dominating (maximal) matching in G.

It has proved to be not too easy to evaluate χ′, Γ, and now Γ′, even at com-
mon garden-variety graphs. For instance, the values of χ′(G) as G ranges
over the complete multipartite graphs was not known until 1992, when the
problem was solved in [5]. In [4] the values Γ(Qn), n = 1, 2, 3, . . . , where Qn

is the n-cube, are determined. In [1] the values Γ′(G) are determined (with
a few small exceptions) when G is a grid, cylindrical grid, toroidal grid,
cube, complete bipartite graph, or complete graph. Of these, the complete
bipartite and the complete graphs were the most challenging. Because we
will be using the results in these cases here, we state the results for those
cases. In the following, m and n are integers.

Theorem 1.1 (Anderson et.al. [1]). If 1 ≤ m < n then Γ′(Km,n) =
∆′(Km,n) + 1 = m+ n− 1.
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If n > 1, Γ′(Kn,n) = 2n− 2.

Theorem 1.2 (Anderson et.al. [1]). If n ≥ 3 is odd, then Γ′(Kn) =
∆′(Kn) + 1 = 2n− 3.

If n ≥ 6 is even, then Γ′(Kn) = 2n− 4.

Finally, Γ′(K1) = 0, Γ′(K2) = 1, and Γ′(K4) = 3.

We would like very much to extend these results by determining Γ′(G) for
all complete multipartite graphs G, but this goal seems very far off, at
present. In the next section we will state and prove what we know about
the regular complete multipartite graphs. These have, for some positive
integers r and k, r parts with k vertices per part. They are also known
as the regular Turán graphs; such a graph is denoted Tkr,r. In view of
Theorems 1.1 and 1.2, we may as well confine our attention to pairs (k, r)
satisfying r ≥ 3 and k ≥ 2.

Note for future reference: |V (Tkr,r)| = kr, |E(Tkr,r)| = r(r−1)
2 k2, ∆(Tkr,r) =

k(r − 1), and ∆′(Tkr,r) + 1 = 2k(r − 1)− 1.

2 Γ′(Tkr,r)

Throughout, k ≥ 2 and r ≥ 3 will be integers, and A1, . . . , Ar will be the
parts of Tkr,r; so |Ai| = k, i = 1, . . . , r.

Theorem 2.1. If k(r− 1) is even, then Γ′(Tkr,r) = ∆′(Tkr,r) + 1 = 2k(r−
1)− 1.

Proof. Since Γ′(Tkr,r) ≤ ∆′(Tkr,r) + 1, it suffices to prove the existence of a
Grundy edge coloring of G = Tkr,r with 2k(r− 1)− 1 appearing as a color.

Let H be the subgraph of G induced by A1 ∪ · · · ∪Ar−1. Because
k(r − 1) = |V (H)| is even, and H ' Tk(r−1),r−1 is a complete multipartite
graph,

χ′(H) = ∆(H) = k(r − 2)

by the main result of [5]. Let the edges of H be properly colored with
1, . . . , k(r − 2). Note that for each v ∈ V (H), all of these colors appear
“at” v—meaning, on the k(r − 2) edges of H incident to v.
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The edges of G that remain to be colored are the edges of X ' Kk,k(r−1),
the complete bipartite graph with bipartition Ar, A1 ∪ · · · ∪Ar−1. Because
r − 1 ≥ 2, by Theorem 1.1 there is an edge Grundy coloring of X with
the color k + k(r − 1) − 1 = kr − 1 appearing. Add k(r − 2) to the color
on each edge of X. Putting this new edge coloring of X together with the
edge coloring of H results in an edge Grundy coloring of G with the color
k(r − 2) + kr − 1 = 2k(r − 1)− 1 appearing on some edge.

Theorem 2.2. If k(r − 1) is odd then Γ′(Tkr,r) ≥ 2k(r − 1)− g(k), where
g(3) = 2 and g(k) = k − 2, k ≥ 5.

Proof. Clearly it suffices to show that there is a partial edge Grundy col-
oring of G = Tkr,r in which 2k(r − 1)− g(k) appears.

As in the proof of Theorem 2.1, let the parts of G be A1, . . . , Ar, and let
H = G − Ar ' Tk(r−1),r−1. Since ∆(H) = k(r − 2), by Vizing’s theorem
(χ′(H) ≤ ∆(H) + 1) and a main result of [6], there is a proper equalized
edge coloring of H with k(r − 2) + 1 colors. “Equalized” means that the
most frequently occurring color appears on at most one more edge than
does the least frequently occurring color. Consider H to be so colored.

Since the average number of appearances of a color in this coloring is

|E(H)|
k(r − 2) + 1

=
k2(r−1)(r−2)

2

k(r − 2) + 1
=
k(r − 1)− 1

2
− k − 1

2[k(r − 2) + 1]
,

it follows that the frequencies of the colors on the edges of H are k(r−1)−1
2

and k(r−1)−1
2 −1. Let a be the number of colors that each appear on exactly

k(r−1)−1
2 − 1 of the edges of H, and let b be the number of colors that each

appear on k(r−1)−1
2 edges of H. Let A be the first set of colors, and B the

latter set of colors, so |A| = a and |B| = b.

Solving the two equations

a+ b = k(r − 2) + 1

and

a

[
k(r − 1)− 1

2
− 1

]
+ b

k(r − 1)− 1

2
=
∣∣E(H)

∣∣ =
k2(r − 1)(r − 2)

2

for a and b, we obtain

a =
k − 1

2
and b = k(r − 1)− 3

2
(k − 1).

49



Let the colors be named so that

B = {1, . . . , b} = {1, . . . , k(r − 1)− 3
2 (k − 1)} and

A = {b+ 1, . . . , b+ a} = {k(r − 1)− 3
2 (k − 1) + 1, . . . , k(r − 2) + 1}.

Each color class in the edge coloring of H is a matching. Therefore, the
number of vertices at which each color appears is twice the number of edges

on which the color appears. Therefore each c ∈ B appears at 2 · k(r−1)−12 =
k(r − 1)− 1 vertices of H; that is, c appears at all but one vertex of H.

Similarly, each c ∈ A appears at k(r− 1)− 3 vertices of H, missing exactly
3 vertices.

Meanwhile, since k(r − 2) + 1 colors appear, and each vertex of H has
degree k(r− 2) in H, it follows that at each vertex of H, exactly one color
is missing. Therefore, for each color in B, at the single vertex of H where
that color is missing, all the other colors in A ∪ B appear, and for each
color in A, at each of the 3 vertices of H where that color is missing, all
the other colors are present.

Let SB ⊆ V (H) be the set of b vertices of H corresponding to the b colors
of B; at each v ∈ SB some c ∈ B is missing from the edges incident to
v. Let SA = V (H)\SB . Then SA can be partitioned into a 3-sets (triples)
corresponding to the a colors of A.

Suppose k = 3. Let Ar = {u, v, w}. Since a = k−1
2 = 1, SA is a single

triple, {x, y, z}, at each vertex of which the single color in A, 3(r−2) + 1 =
3(r−1)−2, is missing in the edge coloring of H. Color the edges ux, vy, wz
with that color.

For each vertex q ∈ SB , color wq with the (single) color missing at q in the
edge coloring of H. At this point all colors 1, . . . , 3(r−2) + 1 = 3(r−1)−2
appear at each vertex of H, and only those colors.

The 3(r−1)−1 edges of G incident to u that have not yet been colored will
be colored with integers from the set {3(r−1)−1, · · · , 6(r−1)−2}\{6(r−1)−
3}, and the 3(r−1)−1 edges ofG incident to v that have not yet been colored
will be colored with integers from the set {3(r − 1) − 1, . . . , 6(r − 1) − 3}.
The assignment of colors to the edges must satisfy two requirements:
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1. For some vertex q ∈ V (H)\{x, y}, uq is colored 6(r − 1)− 2, and vq
is colored 6(r − 1)− 3.

2. For no q ∈ V (H) will the color on uq be the same as the color on vq.

Clearly there will be no great difficulty in satisfying these requirements.
The result will be a partial edge Grundy coloring of G = T3r,r in which
6(r − 1) − 2 = 2 · 3(r − 1) − g(3) appears. This proves the claim of the
theorem in the case k = 3.

Now suppose that k ≥ 5, and let u, v, w, x, and y be distinct vertices in
Ar. For a color c ∈ A let {h(c), q(c), z(c)} be the triple of vertices in SA

at which c is missing in the edge coloring of H. Color wh(c), xq(c) and
yz(c) with c and let this be done for every c ∈ A. Also, for each vertex
p ∈ SB , color wb with the color missing at p in the edge coloring of H. At
this point, all colors 1, . . . , k(r − 2) + 1 = k(r − 1) − k + 1 appear at each
vertex of H, and only those colors appear anywhere in G.

Now we will color the edges incident to u with

{k(r − 1)− k + 2, . . . , 2k(r − 1)− k + 2}\{2k(r − 1)− k + 1}

and the edges incident to v with {k(r − 1) − k + 2, . . . , 2k(r − 1) − k,
2k(r − 1)− k + 1}, constrained by:

1. For some vertex q ∈ V (H), uq is colored 2k(r − 1)− k + 2 and vq is
colored 2k(r − 1)− k + 1.

2. For no q ∈ V (H) will the color on uq be the same as the color on vq.

The result is a partial edge Grundy coloring of G with the color 2k(r−1)−
k + 2 = 2k(r − 1)− g(k) appearing.

Corollary 2.3. If k(r − 1) is odd and g is as in Theorem 2.2, then

Γ′(Tkr,r) ≥ max[2k(r − 1)− g(k), 2k(r − 1)− (2r − 1)].

Proof. By Theorem 2.1, since k − 1 is even,
Γ′(T(k−1)r,r) = 2(k − 1)(r − 1) − 1 = 2k(r − 1) − (2r − 1). Since T(k−1)r,r
is a subgraph of Tkr,r, the result follows.
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