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Abstract: Skolem sequences and Skolem labelled graphs have been de-
scribed and examined for several decades. This paper explores the weak
Skolem labelling of cycle graphs, which we call Skolem circles. The relation-
ship between Skolem sequences and Skolem cirlces is explored, and Skolem
circles of small sizes are enumerated, with some loose general bounds es-
tablished.

1 Introduction

A Skolem-type sequence of order m is a sequence S = (s1, s2, ..., s2m) of
positive integers taken from a set D with |D| = m such that for each
s ∈ D, there are exactly two subscripts i, j ∈ [1, 2m] such that si = sj and
|i − j| = s. If D is the set {1, 2, 3, . . . ,m} then S is a Skolem sequence
or order m, if the set D = {d, d + 1, . . . , d + m − 1} then S is a Langford
sequence of order m and defect d [16]. A sequence S′ = (s1, s2, ..., s2m+1)
is an extended Skolem-type sequence when it contains a null element often
denoted as 0. A Skolem-type sequence is k extended if it contains a null
symbol its kth position. If the null element appears in the penultimate
position of the sequence the null may be called a hook. We consider (0) to
be the extended Skolem-type sequence of order 0.

∗Corresponding author
Key words and phrases: Graph labelling, Skolem Sequence, Langford Sequence
AMS (MOS) Subject Classifications: 05C78, 11B50

BULLETIN OF THE ICA
Volume 84 (2018), Pages 79–97

Received: 17 August 2017
Accepted: 6 July 2018

79



Skolem and Langford sequences were first introduced by Langford in [9]
and Skolem [19] in the 1950s. Skolem and Langford sequences have been
used to construct Steiner Triple Systems [3, 19], difference sets [2, 15] and
have many applications in graph theory [5, 7, 13] and cryptography [8].

There are many Skolem like sequences, each interesting on its own or for
particular applications [6, 16] and many interesting variations [17]. The
variation of interest here is a Skolem labelling of a graph.

A Skolem labelled graph [12] is a graph G with 2m nodes, each node having
a label from the set {1, 2, . . . ,m} such that

1. each label appears exactly twice,

2. for any two nodes v1, v2, which have the same label, x, the length of
the shortest path from v1 to v2 is x,

3. removing any edge from the graph violates criterion 2.

Criterion 2 is called the Skolem property. In this paper we are interested
in Skolem labelling of cycle graphs. However we are also interested in the
cases that violate criterion 3. A weak Skolem labelled graph is a labelling of
a graph which meets criterion 1 and 2 of a Skolem labelled graph, but may
not meet criterion 3.

A Skolem sequence of order m may be represented as a sequence of 2m
symbols or as a set of m ordered pairs {(a1, b1), (a2, b3), . . . , (am, bm)} where
(ai, bi) are the locations of the symbol i in the sequence with ai < bi, thus
bi−ai = i. The Skolem sequence (1, 1, 4, 2, 3, 2, 4, 3) may be represented by
the Skolem pairs {(1, 2), (4, 6), (5, 8), (3, 7)}.

We consider a variation where the arrangement is a circle rather than a
sequence. A Skolem circle may be represented as a labelling of a cycle
graph on 2m nodes as in Figure 1, or as a set of ordered pairs

{(a1, b1), (a2, b2), . . . , (am, bm)},

where bi − ai ≡ i mod 2m. Note that ai > bi if and only if bi ≤ i. A
Skolem circle may be suitable to use in applications where a finite cyclic
group is useful.

In Section 2 we list some known results on Skolem sequences and the anal-
ogous results for Skolem circles. In Section 3 we investigate the structure
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Figure 1: A weak Skolem labelling of a cycle graph on 8 nodes, also called
a Skolem circle on 4 symbols. There are three different edges that could
be removed to form a Skolem labeling, hence this Skolem circle contains 6
distinct Skolem sequences.

of Skolem Circles showing how they can be broken into subsequences of
Skolem-type. Computational techniques are used in Section 4 to enumer-
ate distinct Skolem circles of small orders.

2 Skolem circles

A cycle graph is a graph on n nodes that has n edges arranged in a cycle of
length n. A Skolem circle of order m is a weak Skolem labelled cycle graph
with 2m nodes. A Skolem circle is a cycle graph, G, with 2m nodes, each
node having a label from the set {1, 2, . . . ,m} such that

1. each label appears exactly twice

2. for any two nodes v1, v2 which have the same label, x, the length of
the shortest path from v1 to v2 is x.

A Skolem circle may be represented as a labelling of a cycle graph on 2m
nodes as in Figure 1, or as a set of ordered pairs

{(a1, b1), (a2, b2), . . . , (am, bm)},
where

bi − ai ≡ i mod 2m.

The inspiration for the definition of Skolem Circle comes from considering
Skolem sequences using modular arithmetic, rather than integer arithmetic.
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A Skolem sequence may be wrapped around a cycle to form a Skolem circle.
For example the sequence (1, 1, 4, 2, 3 ,2 ,4 ,3) can be wrapped around to
form the circle in Figure 1.

Skolem sequences have been studied for a few decades now, there is quite
a lot known about them. Some of the properties of Skolem sequences have
analogous properties of Skolem circles.

Theorem 2.1 (Skolem [19]). A Skolem Sequence of order m exists if and
only if m ≡ 0, 1 mod 4.

In [12] it is shown that Skolem labelled cycle graphs exist for every cycle on
2m nodes if and only if m ≥ 8 and m ≡ 0, 1 mod 4. Those Skolem circles
which are weak Skolem labelled graphs (and not Skolem labelled graphs)
can be constructed by wrapping a Skolem sequence around the circle graph,
thus the possible orders of Skolem circles are the same as the possible orders
of Skolem sequences.

Theorem 2.2. A Skolem circle of order m exists if and only if m ≡ 0, 1
mod 4.

Some Skolem circles contain several Skolem sequences. The Skolem circle in
Figure 1 contains six distinct Skolem sequences. There are three anticlock-
wise sequences (1, 1, 4, 2, 3, 2, 4, 3), (4, 2, 3, 2, 4, 3, 1, 1), (2, 3, 2, 4, 3, 1, 1, 4),
and three clockwise sequences (3, 4, 2, 3, 2, 4, 1, 1), (1, 1, 3, 4, 2, 3, 2, 4),
(4, 1, 1, 3, 4, 2, 3, 2).

A circle is a highly symmetric arrangement of vertices. Fixing a posi-
tional labelling on a circle can be useful to discuss aspects of the circle. A
positional labelling of the circle contains the symbols {1, 2, . . . , 2m} in lex-
icographic order, beginning with any vertex, and moving either clockwise
or anticlockwise. Allowing travel around a circle clockwise or anticlockwise
and allowing any beginning vertex we consider Skolem sequences to be cir-
cle equivalent if they form the same Skolem circle allowing for cyclic shifts
and reversal of direction. Skolem circles

C1 =
{

(a1, b1), (a2, b2), . . . , (am, bm)
}

and

C2 =
{

(α1, β1), (α2, β2), . . . , (αm, βm)
}

are circle equivalent if there exists x such that (ai + x, bi + x) = (αi, βi)
mod 2m for all 1 ≤ i ≤ m or (x − ai, x − bi) = (αi, βi) mod 2m for all
1 ≤ i ≤ m.
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For ease of comparing Skolem circles we consider a Skolem circle to be
given the standard positional labelling if (a1, b1) = (1, 2) and 3 ≤ a2 ≤
m. Graphs in this paper are drawn to represent the labelling with vertex
1 at an angle of 0 from the horizontal, and a vertex x + 1 at an angle
of xπ/m. The Skolem circles in Figures 1 and 2 are both shown in the
standard positional labelling. The standard positional labelling also allows
representation of a Skolem circle as a sequence. The Skolem circle of Figure
1 may be represented as the sequence (1, 1, 4, 2, 3, 2, 4, 3). The six Skolem
sequences:

(1, 1, 4, 2, 3, 2, 4, 3), (4, 2, 3, 2, 4, 3, 1, 1), (2, 3, 2, 4, 3, 1, 1, 4),
(3, 4, 2, 3, 2, 4, 1, 1), (1, 1, 3, 4, 2, 3, 2, 4), (4, 1, 1, 3, 4, 2, 3, 2)

are circle equivalent. This notion of circle equivalence will be used in Section
4 to put a lower bound on the number of distinct Skolem circles.

There exists Skolem circles which cannot be constructed by wrapping a
Skolem sequence around a cycle. Figure 2 shows a Skolem labelling of a
cycle graph with 16 vertices. It is a Skolem labelling of a cycle graph, as
removal of any edge will violate the Skolem property.

1
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3

Figure 2: A Skolem labelling of a cycle graph on 16 vertices, which has no
corresponding Skolem sequence.
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Figure 3: Examining the Skolem circle of Figure 1, there are three different
edges that could be removed whilst maintaining a Skolem labelling. Hence
this Skolem circle contains 6 distinct Skolem sequences.

3 Structures of Skolem circles

Skolem sequences can contain subsequences which are Skolem-type sequen-
ces or extended Skolem type sequences. This is apparent when regarding a
Skolem circle as a weak Skolem labelled cycle graph. Removing appropriate
edges from a weak Skolem labelled graph creates a Skolem labelled graph,
although this graph may no longer be a cycle (see Figure 3), and if more
than one edge is removed the Skolem labelled graph is not connected (see
Figure 4).

Let C be a Skolem circle of order m to which j different edges may be re-
moved to create 2j distinct Skolem sequences, then C is a j-edge-removable
Skolem circle. A circle with 3 removable edges is shown in Figure 3. When
removing all edges at once the resulting graph may be a Skolem labelled
graph, or as in case of Figure 4, may form a extended Skolem Labelled
graph by treating the symbol m as a null.

The edges of the Skolem labelled graph that may be removed to partition
a Skolem circle into Skolem-type (or extended Skolem-type) subsequences
are called removable edges.

At each removable edge, two Skolem sequences are constructed (clockwise
and anticlockwise) see Figure 3. All Skolem sequences create a Skolem
circle with at least one removable edge. The Skolem circle in Figure 1 is 3-
edge-removable, the anticlockwise subsequences are (1, 1), (4), (2, 3, 2, 4, 3).
The Skolem circle in Figure 2 has 0 removable edges making it a Skolem
labelling of a cycle graph.
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Figure 4: (a) Removing two edges from the Skolem circle of Figure 1 creates
a Skolem labelled graph which is not connected. (b) Replacing the symbol
4 with a null, the Skolem circle is partitioned into 3 Skolem-type sequences.

Note that removing an edge from a Skolem circle creates two Skolem se-
quences, clockwise and anticlockwise. These observations lead to the fol-
lowing result.

Lemma 3.1. A Skolem circle with j removable edges represents a set of
2j circle equivalent Skolem sequences.

Example 3.2. Construct a 4-edge-removable Skolem circle by pasting to-
gether Langford Sequences. Begin with the smallest Langford sequence
(1, 1). Next a Langford sequence of defect 2, for example

(3, 4, 2, 3, 2, 4).

Then a Langford sequence of defect 5, for example

(13, 11, 9, 7, 5, 12, 10, 8, 6, 5, 7, 9, 11, 13, 6, 8, 10, 12).

Finally a Langford sequence of defect 14, for example

(40, 38, 36, 34, 32, 30, 28, 26, 24, 22, 20, 18, 16, 14, 39, 37, 35,
33, 31, 29, 27, 25, 23, 21, 19, 17, 15, 14, 16, 18, 20, 22, 24, 26, 28,

30, 32, 34, 36, 38, 40, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39).

These sequences can be concatenated together and wrapped around a cycle
to form a 4-edge-removable Skolem circle of order 40.

Example 3.2 can be formalised into a general construction.
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Lemma 3.3. Let S = {S1, S2, . . . , Sj} be a set of j Skolem-type sequences
and let Xi be the set of symbols in sequence Si for i ∈ {1, 2, . . . , j} such
that ⋃

i

Xi = {1, 2, 3, . . .m} and
⋂

i

Xi = ∅,

then the concatenation of the sequences in S, wrapped around a cycle forms
a j-edge-removable Skolem circle.

Next we find appropriate Skolem type sequences.

Theorem 3.4 (simpson [18]). A Langford Sequence of order m and defect
d exists if and only if

1. m ≥ 2d− 1,

2. if d is odd then m ≡ 0, 1 mod 4, and if d is even then m ≡ 0, 3
mod 4.

Knowing that appropriate Langford sequences exist a general construction
can be described.

Theorem 3.5. Let j ∈ N, then there exists a j-edge-removable Skolem
circle of order ((3n+1)/2)− 1.

Proof. For n ≥ 0 let dn = (3n + 1)/2 and mn = 3n. With these parameters
if n is odd then dn is even and mn ≡ 3 mod 4, and if n is even then dn is
odd and mn ≡ 1 mod 4. Thus the conditions of Theorem 3.4 are satisfied
and therefore Langford sequences with appropriate parameters exist.

Let Sn be a Langford sequence of defect dn and order mn. Let Xn be the
set of symbols contained in Sn. Note that X0 = {1}, X1 = {2, 3, 4}. Hence

1⋃

i=0

Xi = {1, 2, 3, 4} and

1⋂

i=0

Xi = ∅.

Hence by Lemma 3.3 the concatenation of S0 and S1 forms a 2-edge-
removable Skolem circle. Now assume for induction that the concatena-
tion of S0, . . . , and Sn−1 is a n-edge-removable Skolem circle with order
dn−1 +mn−1 − 1. We have

dn−1 +mn−1 − 1 = (3n−1 + 1)/2 + 3n−1 − 1

= (3n−1 + 1 + 2× 3n−1)/2− 1 = dn − 1.
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Hence
(
n−1⋃

i=0

Xi

)
∪Xn = {1, 2, 3, 4 . . . , dn +mn − 1} and

(
n−1⋂

i=0

Xi

)
∩Xn = ∅.

So by Lemma 3.3 the concatenation of S0, . . . , Sn−1, Sn is an (n+ 1)-edge-
removable Skolem circle. The order of the Skolem circle is the largest value
in Sn, and is hence dn+mn−1 = (3n+1)/2−1. By the principle of induction
the concatenation of S0, . . . , Sj is a j + 1-edge-removable Skolem circle of
order (3j+1)/2− 1.

We now give an algorithm for a specific construction of the required Lang-
ford sequences.

Theorem 3.6. A Langford sequence, Sj, of order m = 3j and defect d =
(3j + 1)/2 can be constructed using the Skolem pairs (y+ 1,m+ d− y) with
y ∈ {0, 1, 2, . . . , d− 1} and (d+ z, 2m− z + 1) with z ∈ {1, 2, . . . , d− 1}.

Proof. Let x be symbols of the Skolem sequence, which also representes the
distances of the Skolem pairs.

If x is the same parity as d + m − 1, then for y ∈ {0, 1, 2, . . . , d − 1}, let
x = d+m− 1− 2y and the Skolem pairs are (y+ 1,m+d− y). This means
that the symbols with the same parity as d + m − 1 appear in Sj [i] with
i ∈ [1, d] ∪ [m+ 1, 3(m+ 1)/2− 1]. If x is the opposite parity as d+m− 1
then for z ∈ {1, 2, d − 1} let x = d + m − 2z and the Skolem pairs are
(d+ z, 2m− z + 1). This means that the symbols with the opposite parity
as d+m− 1 appear in Sj [i] with i ∈ [d+ 1,m] ∪ [3(m+ 1)/2, 2m].

When x is the same parity as d+m− 1, the gap between the Skolem pairs
is

m+ d− y − (y + 1) = d+m− 1− 2y = x

and when the x is the opposite parity, the gap betwean the Skolem pairs is

2m− z + 1− (d− z) = 2m− d+ 1− 2z = m+ d− 2z = x.

Hence all symbols x ∈ [d, d + m − 1] appear exactly twice at a Skolem
distance of x making a Langford sequence.

Example 3.2 is a 4-edge removable Skolem circle constructed using the algo-
rithm of Theorem 3.6. The algorithm shows that it is possible to construct
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a j-edge-removable Skolem circle for any j ∈ N, the Skolem circle just needs
to be large enough. The next result gives a bound for how large the circle
must be.

Theorem 3.7. Let S be a Skolem circle of order m, then the maximum
number of removable edges is O(logm).

Proof. Let C be a j-edge-removable Skolem circle with j ≥ 1. Let S1, S2,
S3, . . . , Sj be the j subsequences of Skolem type or extended Skolem type
that when concatenated together give C. Let the symbols {1, 2, . . . ,m} as
used in the Skolem circle be treated as integers with the usual ordering.
Let the sequences be ordered by their largest symbol. Note that for all
symbols x 6= m, both copies of x are in the same sequence, thus the only
ambiguity in the ordering is if the symbol m is the largest symbol in two
different subsequences, in which case these two may be ordered according
to the next largest symbol (as noted below at most one of the sequences can
contain only the symbol m so there is no ambiguity to this ordering). Note
that if a subsequence, Si, contains symbol m once then Si is an extended
Skolem sequence with m as the null symbol. At most two sequences contain
m, and they will be ordered as Sj (and Sj−1 if needed), thus Si for i ≤ j−2
do not contain the symbol m, and must be Skolem type sequences.

The largest symbol appearing twice in S1 is at least 1. Let x ∈ {2, . . . , j−3}.
We proceed by induction on x.

Assume that for every i ∈ {1, 2, 3, . . . , x− 1} the largest symbol appearing
in Si is at least 2i−1. Let ti be the largest symbol appearing in Si, then
ti ≥ 2i−1 . Let Xi be the set of symbols which appear in the sequence
Si. Let X =

⋃x
i=1Xi, then tx is the largest symbol in X . Thus |X | ≤ tx.

However the length of a Skolem type sequence is at least one more than the
largest symbol. Therefore the number of distinct symbols appearing in Si
is at least (ti + 1)/2. Hence

x∑

i=1

ti + 1

2
≤ |X | ≤ tx, (1)

(
x−1∑

i=1

(ti + 1)

)
+ tx + 1 ≤ 2tx, (2)

(
x−1∑

i=1

(ti + 1)

)
+ 1 ≤ tx. (3)
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Using the inductive hypothesis
(
x−1∑

i=1

(2i−1 + 1)

)
+ 1 ≤ tx, (4)

2x + x ≤ tx, (5)

2x−1 ≤ tx. (6)

By induction the largest symbol appearing in Sj−2 is at least 2j−3.

The sequences Sj and Sj−1 must be non-empty. Exactly one of the Skolem
pair (am, bm) must lie between the Skolem pair (am−1, bm−1), hence at least
one of the sequences Sj or Sj−1 must contain at least m/2 different symbols.
Hence |Xj ∪Xj−1| ≥ m/2.

Hence

m/2 ≥ |{1, 2, . . . ,m} \ (Xj ∪Xj−1)| = |
j−2⋃

i=1

Si| ≥
j−2∑

i=1

(2i−1 + 1)/2 ≥ 2j−3

which can be rearranged to j ≤ 2 + log2(m).

4 Enumeration of Skolem circles

One of the fundamental questions asked about any combinatorial structure
is how many? General lower bounds on the number of Skolem and Langford
sequences have been calculated [1] some 30 years ago, some recent work
improves the bounds on Langford sequences [10]. We use the ideas of circle
equivalence and a known lower bound on the number of Skolem sequences
to give a general lower bound on the number of distinct Skolem circles. We
also compute the number of distinct Skolem circles for small orders.

Theorem 4.1 (Abrham [1]). There are at least 2bm/3c distinct Skolem
sequences of order m.

Combine Theorem 4.1 with Theorem 3.7, and we have a lower bound on
the number of distinct Skolem circles.

Theorem 4.2. For m ≥ 8 with m ≡ 0, 1 mod 4, there are at least

2bm/3c−1

2 + log2(m)
+ 1
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Skolem circles of order m.

Proof. From Theorem 4.1 there are at least 2bm/3c distinct Skolem sequences
of order m. From Theorem 3.7 there are at most 2 + log2(m) removable
edges in each Skolem circle, and hence each Skolem circle of order m repre-
sents at most 2(2 + log2(m)) Skolem sequences. It was shown in [12] that
at least one 0-edge-removable Skolem circle exists for each m ≥ 8.

As with Theorem 4.1, the lower bound described in Theorem 4.2 is far
from sharp. For m = 8 the bound gaurantees at least two Skolem circles,
however our computations find almost 200 (see Table 2).

Next we enumerate the number of distinct Skolem circles for small orders.
As with many combinatorial problems, the small orders m = 4 and m = 5
can be done by hand, then larger orders require computer based techniques.

Theorem 4.3. There is exactly one Skolem circle of order 4.

Proof. There are exactly 6 distinct Skolem sequences of order 4 [16]. The
Skolem circle of Figure 1 contains all of these. Hence this is the only edge-
removable Skolem circle. From previous results [12] we know that there are
no 0-edge-removable Skolem circles of order 4.

Theorem 4.4. There are exactly two Skolem circles of order 5.

Proof. There are exactly 10 distinct Skolem sequences of order 5 [16]. They
can be partitioned into two circle equivalence classes.

The class

{
(4, 1, 1, 5, 4, 2, 3, 2, 5, 3), (3, 5, 2, 3, 2, 4, 5, 1, 1, 4),
(2, 3, 2, 5, 3, 4, 1, 1, 5, 4), (4, 5, 1, 1, 4, 3, 5, 2, 3, 2)

}

is a 2-edge-removable Skolem circle.

The class





(1, 1, 5, 2, 4, 2, 3, 5, 4, 3), (3, 4, 5, 3, 2, 4, 2, 5, 1, 1),
(5, 2, 4, 2, 3, 5, 4, 3, 1, 1), (1, 1, 3, 4, 5, 3, 2, 4, 2, 5),
(2, 4, 2, 3, 5, 4, 3, 1, 1, 5), (5, 1, 1, 3, 4, 5, 3, 2, 4, 2)





is a 3-edge-removable Skolem circle.

It was shown in [12] that there are no 0-edge-removable Skolem circles of
order 5.
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For larger values of m, computer based searches were used. Computations
were done on the QUT High Performance Computing facilities using Matlab
[11] and C++[4].

Skolem circles (and Skolem sequences) of orderm can be classified according
to the number of removable edges.

The following technique was used to search for Skolem circles. Begin by
setting up sets of logical vectors Ai containing all the possible places for
each Skolem pair (ai, bi). Note that we use Skolem circles in standard
positional labelling, therefore there is exactly one place for placing the pair
of 1s, and (m−2) for placing a pair of 2s. Thus |A1| = 1 and |A2| = m−2.
The symbols m are always antipodal, and hence after placing the pair of
1s, there are m − 2 options for placing the ms, |Am| = m − 2. All other
sets |Ai| = 2m− 4, since the symbol 1 is already fixed in positions 1 and 2.

Vectors from the set A2, A3, . . . are progressively chosen, and checked for
any clashes. In this way a complete list of Skolem circles can be created
for small values of m. This algorithm was inspired by an algorithm previ-
ously used to enumerate Langford Sequences [14]. Lists of Skolem circles
of small order are available on http://www.joannelhall.com/gallery/

skolem. More computational time would obviously increase the size of the
Skolem circles that can be catalogued.

The following algorithm was used to calculate the number of removable-
edges in a Skolem circle.

Algorithm 4.5.

1. Let C be a Skolem circle, with standard position labelling, represented
as a vector ~c of length 2m.

2. Let ~v be a vector of length 2m with vi being the ith component of ~v.
Initialise all entries in ~v as 1. For each i ∈ {2, 3, 4, . . . ,m − 1} set
the components vai+1, vai+2, . . . , vbi−1 to 0, where the subscripts are
calculated mod 2m. This sets the components of ~v with positions
between Skolem pairs to 0. All components not set to 0 remain as 1.

3. • If ~v = ~0, then C is an 0-edge removable Skolem Circle. The
components of ~v set to 1 are those which are not between any
Skolem pair, and hence are nodes of a removable edge.

• If the symbol m has a removable edge on either side, then the po-
sition am (or bm) is next to two removable edges. Thus the two
removable edges around the null sequence (m) will induce three
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1s in the vector ~v. Exactly one of am or bm must be between
am−1 and bm−1, hence two adjacent removable edges can occur
at most once in any circle. All other removable edges are nonad-
jacent, and hence all other removable edges create a unique pair
of adjacent 1s in the vector ~v.

4. Let w(~v) be the Hamming weight of ~v. Then C is a j-edge removable
Skolem circle with j = 1/2w(~v) if w(~v) is even,and j = 1/2(w(~v) + 1)
if w(~v) is odd.

The following is an example of Algorithm 4.5.

Example 4.6.

1. Start with a Skolem circle in standard positional labelling represented
as a vector.

~c = (1 1 2 8 2 3 6 7 3 4 5 8 6 4 7 5)

2. Create a logical vector of the same length as the Skolem circle with all
values set to 1.

~v ← (1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1)

Starting with the symbol 2 in ~c, set all positions between, but not
including, the 2’s of ~v to 0.

~c =(1 1 2 8 2 3 6 7 3 4 5 8 6 4 7 5)

~v ←(1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1)

Continue for all other symbols up to 7.

3 ~c = (1 1 2 8 2 3 6 7 3 4 5 8 6 4 7 5)
~v ← (1 1 1 0 1 1 0 0 1 1 1 1 1 1 1 1)

4 ~c = (1 1 2 8 2 3 6 7 3 4 5 8 6 4 7 5)
~v ← (1 1 1 0 1 1 0 0 1 1 0 0 0 1 1 1)

5 ~c = (1 1 2 8 2 3 6 7 3 4 5 8 6 4 7 5)
~v ← (1 1 1 0 1 1 0 0 1 1 0 0 0 0 0 1)

6 ~c = (1 1 2 8 2 3 6 7 3 4 5 8 6 4 7 5)
~v ← (1 1 1 0 1 1 0 0 0 0 0 0 0 0 0 1)

7 ~c = (1 1 2 8 2 3 6 7 3 4 5 8 6 4 7 5)
~v ← (1 1 1 0 1 1 0 0 0 0 0 0 0 0 0 1)
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removables
edges

0 1 2 3 4

m = 4 0 0 0 1 0
m = 5 0 0 1 1 0
m = 8 24 96 60 12 0
m = 9 280 574 284 62 0
m = 12 271,880 146,436 34,400 4,244 0
m = 13 2,742,984 1,035,186 207,756 22,810 288
m = 16 3,764,810,632 530,928,868 75,697,744 5,872,996 33,760
m = 17 46,071,353,270 4,751,383,672 620,552,462 43,754,420 184,848

Table 1: The number of distinct Skolem circles of each order, classified
according to the number of breakpoints

Skolem sequences [16] Skolem circles
m = 4 6 1
m = 5 10 2
m = 8 504 192
m = 9 2,656 1,200
m = 12 455,936 456,960
m = 13 3,040,560 4,009,024
m = 16 1,400,156,768 4,377,344,000
m = 17 12,248,982,496 51,487,228,672

Table 2: The number of distinct Skolem sequences and Skolem circles

3. As ~v 6= ~0, the Skolem circle has removeable edges.

4. Take the weight of the edge vector w(~v) = 6, and thus there are 6/2 = 3
removeable edges in the Skolem circle ~c.

Algorithm 4.5 was used in an exhaustive search to compute the number of
Skolem circles up to 17 symbols, classifyied by the number of removable
edges. Table 1 tabulates the number of Skolem circles found, classifying for
the number of removeable edges. Table 2 compares the number of Skolem
sequences with the number of Skolem circles for upto 17 symbols.

From Table 2 note that for m ≥ 12 the number of Skolem circles is greater
than the number of Skolem sequences. A simple combinatorial argument
gives an idea of why the number of Skolem circles grows faster than the
number of Skolem sequences.
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The growth rate of the number of Skolem seuqences may be calculated as:

1. Begin with an empty sequence with 2m positions to fill.

2. Then a1 may take any value other than 2m, this is (2m− 1) different
possible values for a1, with b1 = a1 + 1.

3. The symbol a2 can take any value other that 2m, 2m−1, thus there is
a maximum of 2m−2 different possible values for a2, then b2 = a2+2.

4. The symbol a3 can take any value other that 2m, 2m−1, 2m−2, thus
there is a maximum of 2m− 3 different possible values for a3.

5. The symbol ai with i ≥ 3 can take any value other than 2m, 2m− 1,
. . . , 2m− i+ 1, there is a maximum of 2m− i possible values for ai.

6. For i = m− 2 there is a maximum of 2 possible arrangement for the
symbols m,m− 1,m− 2 [14].

Taking the product of these possibilities an upper bound on the maximum
number of possible Skolem sequences is obtained.

2

m−2∏

i=1

(2m− i) ' O(m!)

The same counting techniques is used to find an upper bound on the number
of Skolem circles.

1. A Skolem circle always begins with a1 = 1 and b1 = 2.

2. Due to standard positional labelling, the symbol a2 can take values
from {3, 4, . . . ,m} thus there is a maximum of m−2 different possible
values for a2, then b2 ≡ a2 + 2 mod 2m.

3. The symbol ai can take any value other that 1 and 2, thus there is a
maximum of 2m − 2 different possible values for ai, then bi ≡ ai + i
mod 2m.

4. For i = m− 2 there is a maximum of 2 possible arrangements for the
symbols m,m− 1,m− 2[14].
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Taking the product of these possibilities we see that there is a maximum of

2(m− 2) (2m− 2)
m−5 ' O(mm)

possible Skolem circles.

These are both naive upper bounds, however they are calculated in the
same way, so give us some intuition.

O(mm) > O(m!),

and hence the number of Skolem circles eventually grows faster than the
number of Skolem sequences.

5 Further ideas

The motivation behind investigating Skolem circles was to portray sequen-
ces with symbols taken from a finite cyclic group, which was found to cor-
relate well with previous work on Skolem labelling of cycle graphs. Investi-
gating Skolem structures with symbols taken from other group structures
may correlate with Skolem labelling of other families of graph.

A similar investigation of Langford or Rosa labelling of cycle graphs may
also lead in interesting directions and further applications in cryptography.
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