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Abstract: The traditional development of chordal bipartite graph the-
ory is largely by analogy with chordal graph theory. But chordal bipartite
graphs can be viewed, instead, within a general concept of “chordally k-
partite graphs,” defined to be the k-partite graphs in which every minimal
vertex separator induces a complete k-partite subgraph. Chordal bipartite
graphs are precisely the chordally 2-partite graphs.

A new characterization of a graph G being chordally k-partite is proved that
emphasizes the graphs being properly k-colored: If each color c determines
the subgraph Gc of all edges of G that have a color-c endpoint, then G
is chordally k-partite if and only if each Gc is chordal bipartite and every
induced nontriangular cycle of G is in exactly two Gc subgraphs.

1 Introduction

Define an ≥l-cycle to be a cycle of length l or more. A graph can be defined
to be chordal if every cycle long enough to have a chord—in other words,
every ≥4-cycle—does have a chord, and a bipartite graph can be defined to
be chordal bipartite if every cycle long enough to have a chord—in other
words, using bipartiteness, every ≥6-cycle—does have a chord.

The successes of chordal graph theory help motivate chordal bipartite graphs
(although they are also strongly connected with matrix analysis and in-
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terconnected with strongly chordal graphs; see [10]). This approach in-
volves looking at chordal bipartite graphs as the bipartite analogs of chordal
graphs. For instance, the following types of characterizations of bipartite
graphs being chordal bipartite correspond to characterizations of chordal
graphs: (i) having no induced ≥4-cycle, in [3]; (ii) minimal separators
always inducing complete bipartite graphs, in [3, 9]; (iii) having perfect
elimination schemes, both edge elimination in [1, 3] and vertex elimination
in [1, 4]; and (iv) using subtrees-of-trees representations, both intersection
graphs in [5] and neighborhood trees in [6].

In spite of the successful and continuing study of chordal bipartite graphs,
corresponding notions of chordal tripartite and chordal k-partite graphs
have been lacking. The present paper attempts to help with this by focus-
ing on chordal bipartite graphs as the k = 2 case of “chordally k-partite
graphs,” which are defined using a type (ii) definition based on [7].

A graph G is k-partite (equivalently, properly k-colored) if V (G) is par-
titioned into partite sets V1, . . . , Vk (also called color classes) such that
vertices in the same Vi are always nonadjacent. Partite sets Vi are allowed
to be empty, making k-partite graphs also k′-partite for all k′≥ k. Typically,
the vertices of V1, . . . , Vk will be assigned colors c = 1, . . . , k, respectively.
A k-partite graph is complete k-partite if every vertex in Vi is adjacent to
every vertex in Vj whenever i 6= j. Say that color c occurs in a subgraph H
of G if V (H)∩Vc 6= ∅. If S ⊂ V (G), let G[S] denote the k-partite subgraph
of G induced by S with colors as in G, meaning that G[S] has partite sets
V1 ∩ S, . . . , Vk ∩ S. Let NG(v) denote the neighborhood of v, meaning the
set of vertices that are adjacent to v in G.

For nonadjacent vertices x and y in a connected graph G, an x,y-separator
of G is a set S ⊂ V (G) such that x and y are in different components of
G[V (G) − S]. A minimal x,y-separator is an x,y-separator that is not a
proper subset of another x,y-separator, and a minimal separator of G is a
minimal x,y-separator for some x, y ∈ V (G); see [1] for details (and for any
undefined notation and terminology).

Define a chordally k-partite graph to be a k-partite graph G in which every
minimal separator S induces a complete k-partite with colors as inG. (More
general “complete-multipartite–separator graphs,” not requiring G itself to
be k-partite, were introduced in [8], but these may be too general and seem
to lack a simple characterization.)

The graph on the left in Figure 1 is chordally 3-partite; its only mini-
mal separators are the minimal a, h-separators {b, c} and {f, g}, the min-
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imal b, g-separator {c, d, e, f}, the minimal c, f -separator {b, d, e, g}, and
the minimal d, e-separator {b, c, f, g}), each of which induces a complete
bipartite graph (either K1,1

∼= K2 or K2,2
∼= C4) with colors as in G. The

graph on the right is not chordally 3-partite; for instance, the minimal a, g-
separator {c, d, e} does not induce a complete 3-partite graph with colors
as in G (since c and e have different colors without being adjacent).
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Figure 1: Attaching subscripts to indicate vertex colors, the graph on the
left is chordally 3-partite, but the graph on the right is not.

Chordally k-partite graphs were introduced as “chordal multipartite graphs”
in [7]. Among the characterizations in [7] (but not used below) is that a
graph is chordally k-partite if and only if it is weakly chordal—meaning that
neither G nor its complement G contains an induced ≥5-cycle—and no in-
duced subgraph is isomorphic to the order-5 graph obtained by bisecting
one edge of K4.

While the characterizations in [7] are useful, Section 2 will present a new
characterization of chordally k-partite graphs that views k-partite graphs
in terms of how their color-c vertices are related to their non-c colored
vertices, over all colors c, by emphasizing chordal bipartite subgraphs in a
simple way that does not have a previous chordal graph analog.

Since connected bipartite graphs have uniquely determined color classes,
the chordally 2-partite graphs are precisely the traditional “chordal bipar-
tite graphs” as in [2, 3, 10], even though that traditional terminology may
seem to conflict with forests being the only graphs that are simultaneously
chordal and bipartite. Since a graph happens to be chordal bipartite if
and only if it is simultaneously weakly chordal and bipartite, see [1, 2, 9],
an occasional remedy for the problematic terminology “chordal bipartite
graphs” is to call them “weakly chordal bipartite graphs” instead.

This “weakly chordal” remedy would fail for chordally k-partite graphs. Al-
though [7] shows that chordally k-partite graphs are always weakly chordal,
a graph that is both weakly chordal and k-partite does not have to be
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chordally k-partite—any proper 3-coloring of the weakly chordal, (non-
chordally) 3-partite graph obtained by bisecting one edge of K4 is an ex-
ample. All in all, the adverb “chordally” in “chordally k-partite graphs”
seems to be an attractive alternative to the adjective “weakly chordal” in
“weakly chordal bipartite graphs.”

2 The new, color-based characterization

Lemma 1 No induced ≥4-cycle of a chordally k-partite graph G with colors
as in G can be a ≥5-cycle or have vertices of three or more distinct colors.

Proof. Suppose G is a chordally k-partite graph with an induced cycle C
of length l ≥ 4 and vertices v1, v2, . . . , vl in that order around C, with colors
as in G. Also assume that either l ≥ 5 or C has vertices of more than two
distinct colors (arguing by contradiction). Either way, C has nonadjacent,
distinctly colored vertices vi and vj with 1 6= i 6= l. But now vi and vj are
in a common minimal vi−1, vi+1-separator S of G, and so G[S] would not
be complete k-partite with colors as in G (contradicting that G is chordally
k-partite). 2

For a k-partite graph G in which color c occurs, define the color-c-based
subgraph of G to be the subgraph Gc with colors as in G that is formed
by all the edges of G that have a color-c endpoint. Since the vertices of
induced cycles of Gc alternate between color-c and non-c vertices of G, every
induced cycle of Gc has even length, and so every color-c-based subgraph
is bipartite (irrespective of the coloring of G).

If k = 2, then both subgraphs Gc = G. Figure 2 shows the Gc subgraphs
of the graph on the left in Figure 1 for the colors c = 1, 2, 3.

Theorem 2 A k-partite graph G is chordally k-partite if and only if every
color-c-based subgraph Gc is chordal bipartite (irrespective of the coloring
of G) and every induced ≥4-cycle of G is in exactly two Gc subgraphs.

Proof. To prove necessity, first suppose G is chordally k-partite, but
also assume that some color-c-based subgraph Gc is not chordal bipartite
(arguing by contradiction). Thus, the bipartite graph Gc has an even-
length induced ≥6-cycle C. By Lemma 1, C is not an induced cycle of
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Figure 2: The subgraphs G1, G2, G3 of the chordally 3-partite graph G on
the left in Figure 1.

G, so there are vertices x1, y1 ∈ V (C) with distinct non-c colors such that
x1y1 ∈ E(G)−E(Gc) is a chord of C in G. Let C ′1 be the longer of the two
cycles of G that have edges sets contained in E(C) ∪ {x1y1}. Thus C ′1 is
a ≥4-cycle in which at least three colors occur (c and the colors of x1 and
y1). By Lemma 1, C ′1 is not an induced cycle of G, so there are vertices
x2, y2 ∈ V (C ′1) with distinct non-c colors such that x2y2 ∈ E(G) − E(Gc)
is a chord of C in G. Let C ′2 be the longer of the two cycles of G that have
edges sets contained in E(C) ∪ {x2y2}.

Repeat this for successively shorter cycles C ′i of G with V (C ′i) ⊂ V (C).
Lemma 1 combines with the definition of Gc to ensure that there will even-
tually be edges uv, vw ∈ E(G) − E(Gc) that are chords of C in G, where
u, v, w have three distinct non-c colors in G, such that uv and vw form an
induced 4-cycle of G with two edges ux,wx ∈ E(C) where x has color c.
But now this induced 4-cycle of G would have vertices x, u, v with three
distinct colors (contradicting Lemma 1). Therefore, every Gc is chordal
bipartite.

Now suppose C is an induced ≥4-cycle of the chordally k-partite graph G.
By Lemma 1, the vertices of C must alternate between two colors c and c′.
Therefore, C is a cycle of the two subgraphs Gc and Gc′, but not of a third
subgraph Gd with d 6∈ {c, c′}.

To prove sufficiency, suppose G is k-partite with every Gc chordal bipartite
and every induced ≥4-cycle of G in exactly two Gc subgraphs. Also assume
that G is not chordally k-partite (arguing by contradiction).

Thus G has a minimal x, y-separator S that contains nonadjacent, distinctly
colored vertices u, v ∈ S, and so there is an induced x-to-y-path πu that
contains u but not v, and there is an induced x-to-y-path πv that contains
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v but not u. If Gx and Gy are the components of G[V (G)−S] that contain,
respectively, x and y, then the portion of πu∪πv in Gx contains an induced
u-to-v-path τx whose interior vertices all lie in Gx; similarly, there is an
induced u-to-v-path τy whose interior vertices all lie in Gy. The induced
cycle C = τx ∪ τy is a ≥4-cycle that contains both u and v.

Only two colors can occur in C (otherwise C would have three consecu-
tive vertices with three distinct colors, which would contradict C being an
induced cycle of exactly two Gc subgraphs). Since u, v ∈ V (C) have dif-
ferent colors, C is not a 4-cycle. Therefore, C is a ≥5-cycle whose vertices
alternate between two colors c and c′, and so C would be a ≥6-cycle of Gc

(which would contradict Gc being chordal bipartite). 2

Figure 3 shows the Gc subgraphs of the graph G on the right in Figure 1
for the colors c = 1, 2, 3. This particular G is not chordally 3-partite and
satisfies neither of the two conditions in Theorem 2 (since G3 − d is an
induced 6-cycle of G3, and since the cycle G[{a, c, e, g}] is only in G1).
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Figure 3: The subgraphs G1, G2, G3 of the non-chordally 3-partite graph
G on the right in Figure 1.

Moreover, a graph that is not chordally k-partite can have either one of
those two conditions holding by itself, as shown by the proper 3-colorings
of C6 (commonly called a “3-prism,” in which the first condition holds but
the second fails) and by the proper 2-coloring of C6 (in which the second
condition holds but the first fails).
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