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Abstract: The purpose of this paper is to describe and analyze the
Cayley-Purser algorithm, which is a public-key cryptosystem proposed by
Flannery in 1999. I will present two attacks on it, one of which is apparently
new. I will also examine a variant of the Cayley-Purser algorithm that was
patented by Slavin in 2008, and show that it is also insecure.

1 Introduction

When she was only 16 years of age, Sarah Flannery won the EU Young
Scientist of the Year Award for 1999. Her project consisted of a proposal of
a public-key cryptosystem based on 2 by 2 matrices with entries from Zn,
where n is the product of two distinct primes p and q. The cryptosystem
she proposed was named the Cayley-Purser algorithm, after the mathe-
maticians Arthur Cayley and Michael Purser. Flannery [3] states that the
Cayley-Purser algorithm was based in part on ideas in an unpublished paper
by Purser.

Because this algorithm was faster than the famous RSA public-key cryp-
tosystem, it garnered an incredible amount of press coverage in early 1999;
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see, for example, the BBC News article [1] published on January 13, 1999.
However, at the time of this press coverage, the algorithm had not un-
dergone any kind of serious peer review. Unfortunately, the Cayley-Purser
algorithm was shown to be insecure later in 1999, e.g., as reported by Bruce
Schneier [5] in December, 1999.

Two years later, Ms Flannery later wrote an interesting book, entitled In
Code: A Mathematical Journey [3], which recounts her experiences relating
to her work on the algorithm. The technical description and the analysis
of the Cayley-Purser algorithm, as well as an attack on it, are found in [3,
Appendix A].

In this paper, I will describe the Cayley-Purser algorithm and two attacks
on it, one of which is apparently new. I will also comment a bit on the
underlying mathematical theory. Finally, I will examine a variant of the
Cayley-Purser algorithm, which was patented in 2008 by Slavin, and show
that it is also insecure.

2 The Cayley-Purser algorithm

In this section, we describe the Cayley-Purser algorithm, which is presented
in [3, pp. 274–277]. Note that all material in this section is paraphrased
from [3].

Setup: Let n = pq, where p and q are large distinct primes. (We assume
that it is infeasible to factor n.) GL(2, n) denotes the 2 by 2 invertible
matrices with entries from Zn. Let A,C ∈ GL(2, n) be chosen such that
AC 6= CA. Define B = C−1A−1C. Then choose a secret, random positive
integer r and let G = Cr.

The public key consists of A,B,G, n.

The private key consists of C, p, q.

Encryption: Let X ∈ GL(2, n) be the plaintext to be encrypted. The
following computations are performed:

1. choose a secret, random positive integer s

2. compute D = Gs
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3. compute E = D−1AD

4. compute K = D−1BD

5. compute Y = KXK

6. the ciphertext is (E, Y ).

Decryption: Let (E, Y ) ∈ GL(2, n) × GL(2, n) be the ciphertext to be
decrypted. The following computations are performed:

1. compute L = C−1EC (note: L = K−1)

2. compute X = LY L

Observe that the factorization n = pq is not needed in order to decrypt
ciphertexts; the matrix C is all that is required.

The correctness of the decryption process is easy to show.

Theorem 1. [3] If the ciphertext (E, Y ) is an encryption of the plaintext
X, then the decryption of (E, Y ) yields X.

Proof. First we show that L = K−1:

LK = (C−1EC)(D−1BD) substituting for L and K
= C−1(D−1AD)CD−1BD substituting for E
= D−1C−1ACDD−1BD because C and D = Crs commute
= D−1C−1ACBD cancelling DD−1

= D−1B−1BD because B−1 = C−1AC
= I.

Then it is easy to verify that

LY L = K−1Y K−1 = X.

3 Two attacks

The basis of the two attacks we will describe is the observation from [3, p.
290] that any scalar multiple µC can be used in place of C in the decryption
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process. This is easy to see, because

(µC)−1E(µC) = C−1EC. (1)

Therefore, using µC in step 1 of the decryption process still results in the
correct value of L being computed.

Thus, it is sufficient for an attacker to compute C up to a scalar multiple.
This will allow any ciphertext to be decrypted, because the factorization
n = pq is not required in order to be able to decrypt ciphertexts, as noted
above.

3.1 Linear algebra attack

The attack described in this section is very simple but apparently new.
It turns out to be straightforward to construct the private key C (or a
scalar multiple µC) directly from the public key by solving a certain system
of linear equations in Zn. We make use of the following two equations
involving C:

CB = A−1C (2)

and
CG = GC (3)

Note that (2) follows from the formula B = C−1A−1C. It is also clear that
(3) holds because G is a power of C and hence G and C commute.

We observe that (2) and (3) are sufficient to compute C, up to a scalar
multiple, by solving a system of linear equations in Zn. In these equations,
A,B and G are known matrices and we are trying to determine C. Let

C =

(
a b
c d

)
, (4)

where a, b, c, d ∈ Zn. Then (2) and (3) each yield four homogeneous linear
equations (in Zn) in the four unknowns a, b, c, d. The solution space of (2) is
a 2-dimensional subspace of (Zn)4, as is the solution space of (3). However,
when we solve all eight equations simultaneously, we get precisely the scalar
multiples of C (i.e., the solution space is a 1-dimensional subspace of (Zn)4).

We will justify the statements made above in the next section. For now,
we illustrate the attack with a toy example.
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Example 1. Suppose p = 193 and q = 149, so n = 28757. Suppose we
define

A =

(
16807 19399
7483 18143

)

and

C =

(
2910 1657
5341 24803

)
.

Then

B =

(
11947 1712
4630 14946

)
.

Finally, suppose G = C7; then

G =

(
1438 1433
20759 24068

)
.

The system of linear equation to be solved is




24034 4630 19287 0
1712 27033 0 19287
9570 0 1724 4630

0 9570 1712 4723
0 20759 27324 0

1433 22630 0 27324
7998 0 6127 20759

0 7998 1433 0







a
b
c
d


 =




0
0
0
0


 .

The solution to this system is

(a, b, c, d) = µ(28365, 13928, 25231, 28756),

µ ∈ Zn. It is straightforward to verify that this solution space indeed
consists of all the scalar multiples of C.

3.2 Cayley-Hamilton attack

The other attack I will present is the original attack presented in [3, pp.
290–292]. It is in fact even more efficient than the attack we just described
above. We summarize it briefly now.

The Cayley-Hamilton theorem states that every square matrix A over a
commutative ring satisfies its own characteristic polynomial. The charac-
teristic polynomial of A is the polynomial det(xIn−A) in the indeterminate
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x, where A is an n by n matrix and In is the n by n identity matrix. When
n = 2, the characteristic polynomial is quadratic. In this case, as noted in
[3, p. 291], it follows that any power of A can can be expressed as a linear
combination of A and I2.

Recall that G is a power of C and hence C is also a power of G. So the
unknown matrix C can be expressed in the form C = αI2 + βG, for scalars
α and β. Since we only have to determine C up to a scalar multiple, we
can, without loss of generality, take β = 1, and write C = αI2 + G (note
that β 6= 0 because AC 6= CA). Suppose we substitute this expression for
C into (2). Then we obtain

(αI2 +G)B = A−1(αI2 +G).

Rearranging this, we have

α(B −A−1) = A−1G−GB.

If we compute the two matrices B−A−1 and A−1G−GB, we can compare
any two corresponding nonzero entries of these two matrices to determine
α (note that B −A−1 contains a nonzero entry because AC 6= CA).

Example 2. We use the same parameters as in Example 1. First we
compute

B −A−1 =

(
24034 20999
14200 4723

)
.

and

A−1G−GB =

(
17977 4614
25427 10780

)
.

From this, we see that

28534(B −A−1) = A−1G−GB,

so α = 28534. Hence,

28534I2 +G =

(
1215 1433
20759 23845

)

should be a multiple of C. In fact, it can be verified that

(
1215 1433
20759 23845

)
= 5485C.
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4 Discussion and comments

When the Cayley-Purser algorithm was proposed, there was some math-
ematical analysis provided to justify its security against certain types of
attacks [3, pp. 277–283]. There are some interesting mathematical points
related to this that I discuss in this section. I also look briefly at the
efficiency of encryption and decryption.

4.1 Security analysis from [3]

The main possible attack discussed in [3, pp. 277–283] involves trying to use
(2) to compute C (or a scalar multiple of C). The argument given is that
the number of solutions (for C) to (2) is so large that it would be infeasible
to distinguish the real value of C from the extra “bad” solutions to (2).
It is noted that the number of solutions for C is equal to |CGL(2,n)(A

−1)|,
where CGL(2,n)(A

−1) denotes the centralizer of A−1, i.e., the set of matrices
in GL(2, n) that commute with A−1. (The actual set of solutions to (2) is
a coset of CGL(2,n)(A

−1).)

Then, a lower bound on |CGL(2,n)(A
−1)| is obtained from the observation

that every power of A−1 (or, equivalently, every power of A) is an element of
the set CGL(2,n)(A

−1). Hence, |CGL(2,n)(A
−1)| ≥ ord(A). Then, an analysis

of the number of group elements of all possible orders is done, and it is
shown that most group elements have order that is close to n2. Because
there are only n scalar multiples of the correct C, there are many “bad”
solutions remaining.

The above-described analysis is correct. But, more precisely, it turns out
that it is fairly straightforward to determine the exact number of solutions
to (2) using some standard group theoretic arguments. Note also that the
solution space of (2) or (3) contains tuples (a, b, c, d) where the correspond-
ing matrices (4) turn out not be invertible.

We need some definitions to get started. For now, we confine our attention
to GL(2, q) for a prime q. The following results are found in various stan-
dard algebra textbooks, such as Dummit and Foote [2]. Details of these
calculations are presented in Mathewson [4].

Two matrices A and B are similar if B = C−1AC for some matrix C.
(Thus, if (2) holds, thenA−1 andB are similar.) Similarity is an equivalence
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relation and the equivalence classes under similarity are known as conjugacy
classes. The conjugacy class containing A is denoted by conj(A). It follows
from the orbit-stabilizer theorem that

|GL(2, q)| = |CGL(2,n)(A)| · |conj(A)| (5)

for any A ∈ GL(2, q). Further, it is well-known that

|GL(2, q)| = (q2 − 1)(q2 − q). (6)

Now, it is fairly easy to determine the various conjugacy classes by using the
fact that any conjugacy class contains a unique matrix in rational canonical
form. The rational canonical forms in GL(2, q) have the following possible
structures:

case (1) (
a 0
0 a

)
.

case (2) (
0 b
1 c

)
.

Case 2 further subdivides into three subcases:

case (2a) b2 + 4a is not a perfect square in Zq,

case (2b) b2 + 4a = 0 in Zq, and

case (2c) b2 + 4a is a nonzero perfect square in Zq.

Further, for a given matrix expressed in rational canonical form, it is rel-
atively straightforward to determine |CGL(2,q)(A)|. Then |CA| can also be
determined, from (5) and (6). Table 1 lists the number of conjugacy classes
of all possible sizes (note that these results are all given in [4]).

The Cayley-Purser algorithm lives in Zn. So the relevant sizes of conjugacy
classes would be obtained by working modulo p and modulo q, and then
applying the Chinese remainder theorem to derive the sizes of the conjugacy
classes in GL(2, n). The vast majority of these conjugacy classes in GL(2, n)
have size very close to n2, which indicates that the solution to (2) will be
a two-dimensional subspace of (Zn)4.
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Table 1: The number of conjugacy classes in GL(2, q) of all possible sizes

Case Size of conjugacy class Number of conjugacy classes

case (1) 1 q − 1

case (2a) q2 − q q2−q
2

case (2b) q2 − 1 q − 1

case (2c) q2 + q (q−1)(q−2)
2

The second possible attack considered in [3] involves trying to determine
the private key C from the public key G. It is known that G = Cr, where
r is secret. However, r might be chosen from a small range of values (in [3],
r ≤ 50). So we might consider trying various values of r until the equation
G = Cr can be solved. However, even if r is known, it is not easy to solve
this equation. For example, consider the special case where r = 2 and G is a
scalar multiple of the identity. Solving for C is then equivalent in difficulty
to extracting square roots in Zn, which is equivalent to factoring n. So this
particular attack will not succeed.

Of course, these two analyses are not sufficient to establish the security of
the Cayley-Purser algorithm. As we saw in the previous section, an attack
that utilizes all the public information allows C to be computed up to a
scalar multiple, which breaks the cryptosystem.

4.2 Efficiency of encryption and decryption

We also have a few comments about the efficiency of encryption and de-
cryption in the Cayley-Purser algorithm. One of the attractive features of
the Cayley-Purser algorithm is its speed relative to RSA. It is reported in
[3, pp. 284–289] that Cayley-Purser encryption and decryption is roughly
20–30 times faster than the comparable RSA operations.

Clearly Cayley-Purser decryption is much faster than RSA decryption,
because Cayley-Purser decryption just requires a few fast matrix opera-
tions, whereas RSA decryption uses an exponentiation modulo n. On the
other hand, Cayley-Purser encryption involves exponentiating the matrix
G, which is an expensive operation. However, there is a trick that can
be used to speed up encryption. A careful reading of the Mathematica
code that is provided in [3] shows that step 2 of the encryption method
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is implemented by computing a linear combination of G and the identity.
Using the Cayley-Hamilton theorem, it can easily be shown that this is a
quicker way of obtaining a matrix D that is actually a power of G. With
this modification to the encryption algorithm, no matrix exponentiations
are required to encrypt a plaintext.

5 A variation due to Slavin

In this section, I discuss a variation of the Cayley-Purser algorithm due
to Slavin [6]. I am not aware of any analysis of this algorithm in the
cryptographic literature. However, it is not difficult to see that it is also
insecure.

The following description is from the 2008 U.S. patent [6]. It is clear that
this cryptosystem is similar to the Cayley-Purser algorithm in many re-
spects; however, several of the equations have been modified.

Setup: Let n = pq, where p and q are distinct primes. Let A,C ∈ GL(2, n)
be chosen such that AC 6= CA. Define B = CAC. Then choose a secret,
random positive integer r and let G = Cr.

The public key consists of A,B,G, n.

The private key consists of C, p, q.

Encryption: Let X be the plaintext to be encrypted. The following com-
putations are performed:

1. choose a secret, random positive integer s

2. compute D = Gs

3. compute E = DAD

4. compute K = DBD

5. let Y = eK(X) under some secret-key cryptosystem such as AES.

6. the ciphertext is (E, Y ).
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Remark: The value K is used as a key in a secret-key cryptosystem. This
is different from the Cayley-Purser algorithm, but it does not affect the
security of this cryptosystem.

Decryption: Let (E, Y ) be the ciphertext to be decrypted. The following
computations are performed:

1. compute L = CEC

2. compute X = dL(Y )

Using the fact that C and D commute, it is not difficult to verify that
CEC = DBD and therefore L = K; hence, decryption will succeed.

5.1 The attack

Our attack is based on the following observation from [6].

Lemma 2. Define M = BGB−1 and N = AGA−1. Then M = CNC−1.

Proof. We compute as follows:

CNC−1 = C(AGA−1)C−1 substituting for N
= CACC−1GCC−1A−1C−1 inserting CC−1 twice
= BC−1GCB−1 because B = CAC
= BGC−1CB−1 because G and C commute
= BGB−1 cancelling C−1C
= M.

We now describe our attack on Slavin’s cryptosystem. First, note that N
and M can both be computed from public information. Using the two
equations M = CNC−1 and GC = CG, we can carry out either of the
attacks described in Section 3 to compute a scalar multiple of the unknown
matrix C, say C ′. Thus C = µC ′ for some unknown value µ ∈ Zn

∗.

Slavin [6] argues that, unlike the situation in the Cayley-Purser algorithm,
it is not sufficient to compute a scalar multiple of C. In the Cayley-Purser
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algorithm, equation (1) allows K−1 to be computed by an attacker using
any scalar multiple of C. On the other hand, in Slavin’s cryptosystem, the
“key” K = CEC. If we replace C by a scalar multiple, then the attacker
doesn’t obtain the correct value of K.

However, an attacker can compute K by a slightly different approach. Con-
sider the equation B = CAC. We can rewrite this as B = µ2C ′AC ′. From
this, it is a simple matter to compute µ2. Computing µ is infeasible unless
the factorization of n is known; however, it turns out that we do not need
to compute µ.

Finally, consider the equation K = CEC. We can rewrite this as K =
µ2C ′EC ′. Since C ′, E and µ2 are known, the attacker can compute K and
use it to decrypt the ciphertext Y .

Thus, the steps in the attack are summarized as follows:

1. Compute M and N from A, B and G.

2. Compute C ′, where C = µC ′ for some unknown value µ.

3. Use the equation B = µ2C ′AC ′ to compute µ2.

4. Given a ciphertext (E, Y ), compute K = µ2C ′EC ′.

5. Use K to decrypt Y .

Observe that steps 1–3 only involve the public key; they only need to be car-
ried out once. Steps 4–5 then allow the decryption of a specific ciphertext;
they can be repeated as often as desired, for various ciphertexts.

Example 3. Suppose p = 223 and q = 173, so n = 38579. Suppose we
define

A =

(
16807 38390
17333 21788

)

and

C =

(
10106 10420
27722 27626

)
.

Then

B =

(
17590 36066
32833 33331

)
.
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Finally, suppose G = C11; then

G =

(
11303 17971
5315 18194

)
.

The attack begins by computing M and N :

M = BGB−1 =

(
18545 20365
25987 10952

)

and

N = AGA−1 =

(
37716 5184
18941 30360

)
.

Using the linear algebra attack, the system of linear equation to be solved
is 



19171 18941 , 18214 0
5184 11815 0 18214
12592 0 26764 18941

0 12592 5184 19408
0 5315 20608 0

17971 6891 0 20608
33264 0 31688 5315

0 33264 17971 0







a
b
c
d


 =




0
0
0
0


 .

The solution to this system is

(a, b, c, d) = µ(12688, 23061, 22337, 38578),

µ ∈ Zn.

Let

C ′ =

(
12688 23061
22337 38578

)
.

Then C ′ is an unknown scalar multiple of C. However, the attacker can
compute

C ′AC ′ =

(
27011 27739
26956 8680

)

By comparing B to C ′AC ′, it is easy to see that µ2 = 26098.

Now suppose a plaintext is encrypted. First, D = Gs is computed for a
random exponent s. Suppose that D = G129; then

D =

(
18776 31218
20617 22838

)
.
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Then

E = DAD =

(
33712 19745
30382 3658

)
and K = DBD =

(
33935 21771
36280 7314

)
.

Given E, the attacker can compute

µ2C ′EC ′ =

(
33935 21771
36280 7314

)
,

which yields the “key” K.

6 Final comments

The Cayley-Purser algorithm was a huge news story in early 1999. How-
ever, like many other “broken” cryptosystems, it has been forgotten to a
certain extent. I hope that this paper serves to highlight some interesting
mathematical techniques that can be used to analyze and break this cryp-
tosystem as well as the later, lesser-known variant that was patented by
Slavin in 2008.
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