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It is not uncommon to use different terminology or notation for the same
mathematical concept. There are several reasons for such a phenomenon.

• Authors independently discover the same object and have to name it. It
is quite natural that they choose different names.

• Sometimes the same concept appears in different mathematical schools or
in different disciplines. By using particular terminology in a given context
makes understanding of such a concept much easier.

• Sometimes original terminology is not well-chosen, not intuitive and it is
difficult to relate the name of the object to its meaning. A name that is
more appropriate for a given concept is preferred.

One would expect terminology to be as simple as possible, and as easy to
connect it to the concept as possible. However, it should not be too simple.
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In other words it should not introduce ambiguity. Unfortunately, the term
bipartite double cover that has been used lately in several places to replace
an older term canonical double cover, also known as the Kronecker cover,
[1, 4], is ambiguous.

Let X be a graph. Its Kronecker cover KC(X) is the tensor product [3] of
X by K2. This means that the adjacency matrix of KC(X) is the tensor
product of the adjacency matrices of X and K2. Since the tensor product
of matrices is also known as the Kronecker product, the term Kronecker
cover seems to be appropriate.
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(b) (c)
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Figure 1: Graph B with at most two non-zero voltages a, b. Unlabeled
edges carry voltage 0 (a). Double cover of B for a = 0, b = 0 (b). Double
cover of B for a = 1, b = 0, Kronecker cover (c). Double cover of B for
a = 0, b = 1 (d). Double cover of B for a = 1, b = 1 (e).

The term canonical double cover, which is a synonym for the Kronecker
cover, has a different intuitive motivation which does not come from graph
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products but from covering graph theory. The topic of this note considers
covering graphs which are combinatorial analogs of covering spaces from
algebraic topology. For basic notions of covering graphs and voltage graphs
the reader is referred to the classical book [2] and to [5]. A mapping p : X →
B is a graph covering projection, B being the base graph and X being the
covering graph, if it is a local isomorphism. It turns out that for connected
base graph B there exist a natural number m such that each preimage of
p, called the fibre has the same number of elements; in this case X is called
an m-fold cover over B. Two-fold covers are also known as double covers.
Each double cover of B can be described by 0-1 labelling of edges of B.
These labels are called voltages. The graph X is then constructed in two
layers. Each vertex v of B gives rise to two vertices v0 and v1 of X. If
voltage 0 is assigned to an edge uv of B the edge gives rise to two edges
u0v0 and u1v1. If voltage 1 is assigned to uv the corresponding fibre consists
of edges u0v1 and u1v0. It turns out that double covers depend only on the
net voltages (parities) around cycles of B. The trivial double cover has all
voltages equal to 0. The corresponding double cover consists of two copies
of B, ie., it is 2B. On the opposite side the double cover obtained by all
1 voltages is called the canonical double cover. One of the main features
of voltage graphs is the fact that two voltage assignments give rise to the
same covering graph with the same covering projection if and only if each
cycle of the base graph has the same net voltage relative to both voltage
assignments. Such voltage assignments and corresponding covers are called
equivalent. It is not hard to see that canonical double cover is bipartite
and isomorphic to the Kronecker cover. Both the trivial double cover and
the canonical double cover can be defined in terms of graph B alone. In a
similar way the clone cover defined and studied in [6] is uniquely determined
by B itself.

Consider the graph B with voltages a and b as in Figure 1(a). There are
four non-isomorphic double covers. The trivial cover (b) is disconnected.
Both (d) and (e) are non-bipartite double covers only (c) is bipartite and
also Kronecker cover.

One can show the following:

Proposition 1. Let B be connected non-bipartite graph. Then among dou-
ble covers only the Kronecker cover KC(B) is bipartite.

Proof. It follows from the definition that the Kronecker cover is bipartite.
Now take an arbitrary bipartite double cover X of a non-bipartite graph
B. Since the cover is bipartite every odd cycle C of the base graph B must
have net voltage 1 and unwind to a cycle of double length. Suppose that
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there is an even cycle D with net voltage 1 so that D unwind, too. Let P
be a path joining C to D. By starting at the vertex common to C and P ,
traversing first C then P , following D and then P in the opposite direction,
the resulting closed walk W has odd length but net voltage 0. It follows
that the covering graph is non-bipartite: a contradiction. Hence all even
cycles (if they exist) must have net voltage 0. But then by switching all 0
voltages to 1, does not change the covering graph X, which, in turn is the
canonical cover: X = KC(B).

a b

Figure 2: Bipartite graph X with at most two non-zero voltages a, b. Un-
labeled edges carry voltage 0. It gives rise to three nonisomorphic bipartite
double covers: a = 0, b = 0 gives rise to the trivial cover that is simul-
taneously the Kronecker cover, a = 1, b = 0 and a = 0, b = 1 result in
isomorphic covers, different from the cover for a = 1, b = 1.

Proposition 2. There exist disconnected non-bipartite graphs with bipar-
tite double covers different from their Kronecker covers.

Proof. Let B = C3∪C4. Then KC(B) = C6∪2C4. By assigning net voltage
1 to each cycle, the resulting double cover C6 ∪ C8 is clearly bipartite,
too.

Proposition 3. Every double cover of bipartite graph is bipartite. Among
double covers of a connected bipartite graph only the Kronecker cover is
disconnected.

Proof. Every double cover is regular. Hence the only disconnected double
cover over connected graph is the trivial cover. The Kronecker cover over
a bipartite graph is trivial.

An example associated with this Proposition is depicted in Figure 2.

As we have seen the term bipartite double cover correctly designates the
canonical double cover only in case the base graph is connected and non-
bipartite. If either of the two conditions is dropped, i.e. if the base graph
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is disconnected or bipartite, the term bipartite double cover becomes am-
biguous.
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