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Abstract: We obtain the shifting property and some other combinatorial
identities for the bivariate Fibonacci polynomials (which generalize the Fi-
bonacci, Pell, Jacobsthal, Chebyschev, Fermat, Morgav-Voyce polynomials
and the Horadam numbers). In particular, we specialize all these identities
to the Chebyshev polynomials of the second kind.
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1 Introduction

The bivariate Fibonacci polynomials F,(x,y) are defined by the recurrence

Fn,+2(xay) :xF"H(I,y) +yFn(x,y) (1)

with the initial values Fy(z,y) =1 and Fi(z,y) = . Several classical
numerical and polynomial sequences can be viewed as a specialization of
this sequence. For instance, we have:
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1. The Fibonacci polynomials F,(x) = F,(x,1) defined by the recur-
rence Fio(x) = xF,1(x)+F,(z) with the initial values Fy(z) =1
and Fj(z) = z. The Fibonacci numbers f, = F,(1,1) = F,(1), [10,
A000045].

2. The Pell polynomials P,(z) = F,(2z,1) = F,(2z), [5], defined by
the recurrence P, i2(z) = 22P,41(x) + P, (x) with the initial values
Py(z) =1 and Pi(x) = 2x. The Pell numbers p, = F,(2,1) =
Pa(1), [10, A000129].

3. The Jacobsthal polynomials J,(xz) = F,(1,2z), [6], defined by the
recurrence  Jpi2(z) = Jhp1(z) + 22J,(z) with the initial values
Jo(z) = Ji(x) = 1. The Jacobsthal numbers j, = F,(1,2) = J,(1) =
(21 4 (=1)™)/3, [10, A001045].

4. The Chebyshev polynomials of the second kind Uy (z) = F,(x,—1),
[1, 4, 9], defined by the recurrence Uj,io(x) = 22U, 41(z) — Up(2)
with the initial values Up(z) =1 and Uy(z) = 2z.

5. The Fermat polynomials ¢n(x) = Fy(z,—2), [4], defined by the
recurrence @n42(z) = Tp+1(x) — 20, (x) with the initial values
wo(x) =1 and ¢1(x) = . The Lehmer numbers F,(1,-2), [10,
A107920].

6. The Morgan-Voyce polynomials Bp(z) = Fp(z +2,—1) = U, (x/2 +
2),[7, 11, 12], defined by the recurrence B, i2(x) = (+2)Bp4+1(z) —
B, (x) with the initial values Bg(z) =1 and Bi(z) =2+ 2.

7. The Horadam numbers W,, = F, (p, —q), [2, 3], defined by the recur-
rence Wi, yo = pWy41 — qW, with the initial values Wy =1 and
W1 =D.

The bivariate Fibonacci polynomials have generating series

1
Fple,y) t" = ——— 2
> Fule) 1" =y )
n>0
and can be expressed as
[n/2] n—k
Fate) = 30 (" F)ar
k=0
[n/2]
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Moreover, we have the Binet formula

Oé(l’, y)nJrl 7 5(%, y)n+1

Va2 +4y

where «(z,y) = %M and B(z,y) = =¥ Vfw are the solutions

of the equation t?> — zt —y = 0. Using this formula, we can prove the
identities

Fn(xvy) =

F2n+2(377y) = Fn+1($7y)2 +yFn(xuy)2 (4)
:z:F2n+3(x,y) :Fn+2('ray)2 7y2Fn(‘T7y)2' (5)

Starting from recurrence (1), we obtain the shifting property for the bivari-
ate Fibonacci polynomials, extending the shifting property

kz: (Z) Jres1 = kzn:_o (Zii) Jr (6)

for the ordinary Fibonacci numbers obtained in [8]. Moreover, using iden-
tities (4) and (5), we prove, in a similar way, two other binomial identities
resembling the shifting property. Clearly, all these identities can be spe-
cialized to the polynomials recalled at be beginning. In the final section,
as an example, we specialize them for the Chebyshev polynomials.

2 Shifting property and main identities

We start by generalizing identity (6) to the polynomials F,(x,y).

Theorem 1. For the bivariate Fibonacci polynomials, we have the shifting
property

~ (0 & nk R N4k A YR N
Z(k)wy Fk+1(x,y)—z<k+1>w Yy F(zy)  (7)

k=0 k=0
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Proof. From recurrence (1), we have

™ML

- s}
<k+1> 71 Frte(,y) =

- LRt2 n—1 n \ gk+1
Z_:<k+1) k+1 k+1($ y)+2(k+1> y’“ Fk(zay)

k=0

that is

n n k+1 n—1 n $k+1
— Fi( — F
> (k) - File) +z(k+1) - Fia)

that is

n k
n\xr
(3) % Fuato) = R =

- zn: [(Z) + (kil)] x;l Fi(z,y) — vFo(z,y) .-

By the recurrence of the binomial coefficients and by the initial values
Fo(xz,y) =1 and Fi(x,y) = =, we obtain the identity

n k n k+1
n) x n+1\z
E — Frpi(z,y) = E ( ) Fi(z,y)
k k
pars <k‘ y = k+1) vy
which is equivalent to identity (7). O

Notice that identity (7) can be obtained also by employing the general
techniques related to Riordan matrices developed in [8]. However, the ele-
mentary approach used to prove Theorem 1 can also be used to obtain other
identities similar to (7), such as the ones stated in next two theorems.

Theorem 2. We have the identity

i <Z> " Pl y) En:O (ZIi)y"ka(%y)z- 8)

k=0



Proof. From identity (4), we have

— n \ Fapya(z,y) _nfl n o\ Feri(2,9)? = ([ 0\ Fulz,y)?
SR\ I E 74_5 AV
k+1 yktl kE+1 yhtl k+1 yk
k=0

\ghi

k=0 k=0

that is
n F n F ’ 2 n—1 F z, 2
Z ( ) ok (2, Y) Z (Z) k(ﬂﬁky) + Z (qu) k(yky)
k=1 k=1 Yy k=0

that is

n

,;) <Z)WFO(x’y) g‘: [(Z) * (ki1)] WFO(W/)Q-

By the recurrence of the binomial coefficients and by the initial value
Fo(x,y) =1, we obtain the identity

i:(n) FQk(‘rvy) _i:(n—’_]-) Fk(ir?y)2
ko %
= \k y = \k+1 Yy
which is equivalent to identity (8). O

Theorem 3. We have the identity

>y (Z> (—D)*y* 2P Fy(2,y)? Fogga (2,y) =
2 (9)

n+1 -
- Z (1) 0 R Bt

Proof. From identity (5), we have

TF1(2,9) Farss(2,y) = Frp1(2,9)* Frpo(2,9)* =y Fr(2,y)* Fega (2, )2 .
Then, from this equation, we have

n—1

Z n O\ Fup1(@,y)? Forgs(z,y)
E+1 y2k+2 -

Z_: n Fk+1($,y)2Fk+2(zvy)2+
k +1 y2k+2
k=0

_Z( n )Fk<x7y>2Fk+l<x’y>2

k+1 y2k
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- n Fk(x,y)QngH(m,y)
zz <k:) Y2k =

:zn: (k) Fi(2,y)? Fk+1 ,y)? ( n )F;C 2, Y) 2 Fri1 (2, y)?

2k
P y2k = E+1 Y

M

" /n Fy(z,y)?*F. z,y
”fZ(k) : Qkﬂ( : — aFy(,y)*Fi(z,y) =

-y K > (kzl)] @y Pn@n)? g g e

k=0 Yy

By the recurrence of the binomial coefficients and by the initial values
Fo(xz,y) =1 and Fi(z,y) = x, we obtain the identity

“~ /n\ 1 “~ (n+ 1\ Fy(2,9)*Fyi(z,y)?
T
k=0

k=0 Yy

which is equivalent to identity (9). O

3 Some generalizations

The bivariate Lucas polynomials are defined by the Binet formula

Ln(w7y) :O‘(m>y)n+5(xvy)n' (10)

They have generating series

2—uxt
L "=
> Ln(x,y) —
n>0

and they can be expressed in terms of the bivariate Fibonacci polynomials
as Ly(z,y) = F(x,y) + yFn—2(x,y). In particular, we have the Lucas
numbers L, = L,(1,1), [10, A000032].

We have the following result.
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Lemma 4. For every m > 1, we have the generating series

mel(mv y)
T 1 L(zy)t+ (—y)me

ZFm(n+1) 1(15 y)

n>0

Proof. By Binet formula (3), we have

oz, y)"™" = Bz, y)™"
Zan,l(a@y)t”:Z t
n>0 n>0 \% x? + 4

- 1 ( 1 _ 1 )
T/ ray \I—alwy)t 1 Bla,y)m
1 (a(z,y)™ — Blx,y)™ )t

22+ 4y 1— (a(@,y)™ + B(z,y)™)t + (a2, y)B(z,y))mt2

By Binet formulas (3) and (10), and by dividing by ¢, we get series (11).

Now, by Lemma 4, we can obtain next

Theorem 5. For m > 1, we have the identities

n

n m n— m(n—
Z<k>(_1)( OOk =R L (2, y)* Fr o)1 (2, y) =

k=0

E+1
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= ( )(_1)( 1 k)y ( k)Lm(xay)k+lFm(k+1)fl(m7
k=0

n

n - m(n—
Fm1($7y)2<k>(_l)(m+l)(n k)y ( k)Fm(2k+1)—1(-T7y):
k=0

= <k+1)(_1)( ) k)y ( k)Fm(k+1)—1($ay)2
k=0

and

n

Y)

Am(%y) ( )( 1)ky2m(n MF (k+1)—1($»y)2F2m(k+1)—1(3C7y):

=0

n + ]- m(n— F 1 2)—
( > k 2 ( k) YL(kI ]) 1 ( , y) r,n(k:-‘r ) (x, y) .
=0

E+1

where Ay (2,y) = Fr—1(2,y) L (2, y) .
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Proof. By series (2) and (11), we have at once the identity

Enan-1(y) _ Fo(Ln(z,9), —(—y)™) .

mel (l‘, y)
So, by replacing = and y by L, (x,y) and —(—y)™, respectively, in
identities (7), (8) and (9), we obtain the three claimed identities. O

4 Chebyshev polynomials

In this final section, we specialize the identities obtained above to the
Chebyshev polynomials of the second kind U, (z) = F,(2z,—1). Iden-
tities (7), (8) and (9) become

> (1) ety tinm =3 (31 @0 -y

(22)"
0
(_
_1)k

=

(
23 (3) -1V Uassa(o) = S (S [CIEACR TS

k=0

k
Ue(2)?Usoss () (” * 1) (DM@, 9)? Ui (2)?
k=0

“5()

Moreover, since Ly (2z,—1) = 2T,,(z), the identities stated in Theorem 5
becomes

= k+1
Un-1(2) ) <Z)(1)”kUm(2k+1>—1( ) =
k=0
" /n+1 n—
B 1;) (k + 1) (=1)"*Upn(ery—1(2)
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and

2Up-1(2) T () | (Z)(—l)kUm(kH)1(3?)2U2m(1e+1)1(33):

" n+1
=3 (3 )) 0 U1V
k=0

References

[1]

[11]

[12]

M. Abramowitz, I. A. Stegun, (Eds.), Handbook of Mathematical
Functions with Formulas, Graphs, and Mathematical Tables, Dover,
New York 1972.

A. F. Horadam, Basic properties of a certain generalized sequence of
numbers, Fibonacci Quart., 3 (1965), 161-176.

A. F. Horadam, Generating functions for powers of a certain general-
ized sequence of numbers, Duke Math. J., 32 (1965), 437-446.

A. F. Horadam, Chebyshev and Fermat polynomials for diagonal func-
tions, Fibonacci Quart., 17 (1979), 328-333.

A. F. Horadam, J. M. Mahon, Pell and Pell-Lucas polynomials, Fi-
bonacci Quart., 23 (1985), 7-20.

A. F. Horadam, Jacobsthal representation polynomials, Fibonacci
Quart., 35 (1997), 137-148.

A. M. Morgan-Voyce, Ladder network analysis using Fibonacci num-
bers, I. R. E. Trans. Circuit Theory, 6.3 (1959), 321-322.

E. Munarini, Shifting property for Riordan, Sheffer and connection
constants matrices, J. Integer Seq., 20 (2017), Article 17.8.2 (31 pages).

T. J. Rivlin, Chebyshev Polynomials, Wiley, New York 1990.

N. J. A. Sloane, On-Line Encyclopedia of Integer Sequences, electron-
ically published at http://oceis.org/.

M. N. S. Swamy, Properties of the polynomials defined by Morgan-
Voyce, Fibonacci Quart., 4 (1966), 73-81.

M. N. S. Swamy, Further properties of Morgan-Voyce polynomials,
Fibonacci Quart., 6 (1968), 167-175.

50



