## BULLETIN of the Volume 82 February 2018 INSTITUTE of COMBINATORICS and its APPLICATIONS

Editors-in-Chief: Marco Buratti, Donald Kreher, Tran van Trung



**ISSN 1182 - 1278** 



## $K_{1,3}$ -subdivision representations with tolerance 1 and 2

MARY ANN BARBATO

Fitchburg State University, Mathematics Department, Fitchburg, MA 01420-2697 msaadi@fitchburgstate.edu

NANCY EATON

University of Rhode Island, Mathematics Department, Kingston, RI 02881 eaton@math.uri.edu

**Abstract:** Consider a simple undirected graph G = (V, E). A family of subtrees,  $\{S_v\}_{v \in V}$ , of a tree H is called an (H, t)-representation of Gprovided  $uv \in E$  if and only if  $|V(S_u) \cap V(S_v)| \geq t$ . Let  $H_m$  denote the  $K_{1,3}$ -subdivision with center node x and three leaves, each of distance mfrom x and let  $\mathcal{H}(t)$  denote the set of  $(H_m, t)$ -representable graphs for some positive integer m. In this paper we show that any graph G in  $\mathcal{H}(t)$  is also in  $\mathcal{H}(t+1)$  for all t and use this result to proof  $\mathcal{H}(1) = \mathcal{H}(2)$ . We also characterize the set of all trees in  $\mathcal{H}(1)$  and hence in  $\mathcal{H}(2)$ 

Keywords: chordal, host tree, subdivision, tolerance representation

## 1 Introduction

In this paper we consider tree tolerance representations of graphs.

**Definition 1.** Let G = (V, E) be a simple graph, H a tree and t > 0. Then G is called **(H,t)-representable** if there exists a family of subtrees of H,  $\{S_v\}_{v \in V}$ , such that

$$uv \in E \leftrightarrow |V(S_u) \cap V(S_v)| \ge t.$$

In this case we call  $\{S_v\}_{v \in V}$  an H tolerance representation of G with **tolerance** t or an (H,t)-representation of G. Also note that the tree H is referred to as the **host tree** of the representation.

**Definition 2.** We will denote by  $H_m$  the  $K_{1,3}$ -subdivision with x the center node of degree three and three leaves, each of distance m from x. See Figure 1.



Figure 1:  $H_m$ 

We denote the three subpaths of  $H_m$ , beginning at  $x = a_0 = b_0 = c_0$ , as follows:

$$P_a = a_0, a_1, a_2, \dots, a_m;$$
  
 $P_b = b_0, b_1, b_2, \dots, b_m;$ 

and

$$P_c = c_0, c_1, c_2, \ldots, c_m.$$

Figure 2 illustrates an  $H_2$  tolerance representation of  $C_4$  with tolerance 3.



Figure 2:  $H_2$  tolerance representation of  $C_4$ 

**Definition 3.** The class of all graphs that are  $(H_m, t)$ -representable for some m is denoted  $\mathcal{H}(t)$ .

A well established theorem due to Buneman, Gavril and Walter shows that when the tolerance is limited to one, the tree representable graphs are the chordal graphs. See [1] [2] and [4]. Here we restrict the host tree to  $H_m$ and look at implications of increasing tolerance.

**Theorem 1.** Let G be a graph in  $\mathcal{H}(t)$ . Then G is in  $\mathcal{H}(t+1)$ .

*Proof.* Let G = (V, E) be a graph in  $\mathcal{H}(t)$  for some  $t \ge 1$  with  $(H_m, t)$ -representation  $\mathcal{F} = \{S_v\}_{v \in V}$ . We use this representation to create an

 $(H_{m+1}, t+1)$ -representation,  $\mathcal{F}''$ , for G through the following steps.

step 1: Define the following subgraph of G:

$$G_a = \langle \{v \in V | a_i \in V(S_v) \text{ for some } i \in \{0, 1, 2, ..., m\} \} \rangle$$

Consider  $v \in V(G_a)$  and let *i* be the maximum value such that  $a_i \in V(S_v)$ . Now define  $S'_v = S_v \cup \{a_{i+1}\}$ . Repeat this process for each  $v \in V(G_a)$ . We claim that  $\{S'_v\}_{v \in V(G_a)}$  is an  $(H_{m+1}, t+1)$ -representation for the graph  $G_a$ . Indeed, take *i* and *j* to be the maximum values for which  $a_i \in V(S_u)$  and  $a_j \in V(S_v)$ . Without loss of generality, assume  $i \geq j$ . If  $a_j \in V(S_u)$ , then  $a_{j+1} \in V(S'_u)$  and  $|V(S'_u) \cap V(S'_v)| = |V(S_u) \cap V(S_v)| + 1$ . If  $a_j \notin V(S_u)$ , then  $|V(S'_u) \cap V(S'_v)| \leq 1$  since  $|V(S_u) \cap V(S_v)| = 0$ . Hence, if  $uv \in E(G_a)$ , then  $a_j \in V(S_u)$  and  $|V(S'_u) \cap V(S'_v)| \geq t + 1$ . Furthermore, if  $uv \notin E(G_a)$ , then  $|V(S_u) \cap V(S_v)| \leq t - 1$  and  $|V(S'_u) \cap V(S'_v)| \leq t$ .

step 2: Define the following subgraphs of G:

$$G_b = \langle \{v \in V | S_v \subseteq P_b - \{x\}\} \rangle$$
  
$$G_c = \langle \{v \in V | S_v \subseteq P_c - \{x\}\} \rangle$$

Observe that  $V(G) = V(G_a) \cup V(G_b) \cup V(G_c)$ . Repeat the process done in step 1 with  $G_a$  for each  $G_b$  and  $G_c$  to obtain an  $(H_{m+1}, t+1)$ -representation,  $\{S'_v\}_{v \in V(G_b)}$  for  $G_b$  and an  $(H_{m+1}, t+1)$ -representation,  $\{S'_v\}_{v \in V(G_c)}$  for  $G_c$ . Denote the resulting set of subtrees  $\mathcal{F}' = \{S'_v\}_{v \in V}$ . We know that  $\mathcal{F}'$  satisfies the edge and non-edge conditions necessary for an  $(H_{m+1}, t+1)$ -representation for G within each of the subgraphs  $G_a, G_b$ , and  $G_c$ . Now we address these conditions for edge and non-edge pairs of vertices of G that are not contained in the same subgraph. For any  $u \in V(G_b)$  and  $v \in V(G_c)$  we have  $V(S'_u) \cap V(S'_v) = V(S_u) \cap V(S_v) = \emptyset$ . Therefore, the non-edge condition  $|V(S'_u) \cap V(S'_v)| \leq t$  is satisfied for  $u \in V(G_b)$  and  $v \in V(G_c)$ . It remains to look at the edges and non-edges between  $G_a$  and  $G_b$  or  $G_a$  and  $G_c$ . Take  $u \in V(G_a)$  and  $v \in V(G_b)$  such that  $uv \notin E$ . We know  $|V(S_u) \cap V(S_v)| \leq t - 1$ . Adding a pendant node from  $P_a$  to  $S_u$  and a pendant node from  $P_b$  to  $S_v$  can only increase the intersection by at most one, since  $S_v \subseteq P_b - \{x\}$ . Therefore,  $|V(S'_u) \cap V(S'_v)| \leq t$ . Hence, the non-edge condition between  $G_a$  and  $G_b$  is satisfied as well. Finally, we address the edges between  $G_a$  and  $G_b$  or  $G_a$  and  $G_c$ , which will require modification of  $\mathcal{F}'$ .

step 3: In this last step we look at the edges between  $G_a$  and  $G_b$ , and observe that an analogous process may be used for the edges between  $G_a$ and  $G_c$ . Take  $u \in V(G_a)$  and  $v \in V(G_b)$  such that  $uv \in E$ . We know  $|V(S_u) \cap V(S_v)| \ge t$ . This implies that  $S_u$  contains at least t nodes from  $P_b$  and that  $x = b_0 \in V(S_u)$ . Let i and j be the maximum values such that  $b_i \in V(S'_u)$  and  $b_j \in V(S'_v)$ . If  $i \ge j$ , then  $|V(S'_u) \cap V(S'_v)| \ge t + 1$ since  $b_j \in V(S'_u)$  and  $S'_v = S_v \cup \{b_j\}$ . Now suppose i < j. In this case,  $b_{i+1} \in V(S'_v)/V(S'_u)$ . Replace  $S'_u$  with  $S''_u = S'_u \cup \{b_{i+1}\}$  and we have  $|V(S''_u) \cap V(S'_v)| \ge t + 1$ .

Now we confirm that we did not disrupt any existing non-edge conditions. Take  $w \in V$  such that w is not adjacent to u. It suffices to show that  $|V(S''_u) \cap V(S''_u)| \leq t$ .

Case 1.  $w \in G_c$ 

In this case  $|V(S''_u) \cap V(S'_w)| = |V(S'_u) \cap V(S'_w)| \le t$ .

Case 2.  $w \in G_b$ 

In this case  $V(S'_u) \cap V(S'_w) = V(S_u) \cap V(S_w)$ . Hence, adding  $b_{i+1}$  to  $S'_u$  can only increase  $|V(S'_u) \cap V(S'_w)|$  by at most one. Thus, we have  $|V(S''_u) \cap V(S'_w)| \le |V(S'_u) \cap V(S'_w)| + 1 = |V(S_u) \cap V(S_w)| + 1 \le t - 1 + 1 = t$ .

Case 3.  $w \in G_a$ 

Since  $uv \in E$ ,  $u \in V(G_a)$  and  $v \in V(G_b)$ , we know that  $S_u$  and  $S_v$  share at least t nodes from  $P_b - \{x\}$ . Hence,  $i \ge t - 1$ . If  $b_i \in S_w$ , then we would have  $|V(S_u) \cap V(S_w)| \ge t$ , which is impossible as  $uw \notin E$ . Hence,  $b_i \notin S_w$ , which implies that  $b_{i+1} \notin S_w$  and  $|V(S''_u) \cap V(S'_w)| = |V(S'_u) \cap V(S'_w)| \le t$ .

We use an analogous process to accommodate the edges between  $G_a$  and  $G_c$ , adding nodes from  $P_c$  where necessary. Now let  $S''_v = S'_v$  for those  $S'_v$  from  $\mathcal{F}'$  that were not modified in step 3 and let  $\mathcal{F}'' = \{S''_v\}_{v \in V}$ .

In order to show  $\mathcal{F}''$  is an  $(H_{m+1}, t+1)$ -representation for G, it remains to verify that  $uv \notin E(G_a)$  implies that  $|V(S''_u) \cap V(S''_v)| < t+1$ . First, observe that  $uv \notin E(G_a)$  implies that  $uv \notin E$ . If  $S''_u$  was obtained from  $S'_u$ by adding a vertex from  $P_b$  and  $S''_v$  was obtained from  $S'_v$  by adding a vertex from  $P_c$ , then  $|V(S''_u) \cap V(S''_v)| = |V(S'_u) \cap V(S'_v)| < t+1$ . Consider the situation where both  $S''_u$  and  $S''_v$  were obtained by adding a vertex from  $P_b$ to  $S'_u$  and  $S'_v$ , respectively. In this situation,  $S_u$  and  $S_v$  must both contain x and at least t nodes from  $P_b$ . However, this implies  $|V(S_u) \cap V(S_v)| \ge t$ , which is impossible, since  $uv \notin E$ . We can make an analogous argument for the situation where both  $S''_u$  and  $S''_v$  were obtained by adding a vertex from  $P_c$ .

The arguments above, show that  $\mathcal{F}''$  is an  $(H_{m+1}, t+1)$ -representation for G. Therefore,  $G \in \mathcal{H}(t+1)$  as was to be shown.

We use Theorem 1 to show a graph G is in  $\mathcal{H}(1)$  if and only if G is in  $\mathcal{H}(2)$ .

Theorem 2.  $\mathcal{H}(1) = \mathcal{H}(2)$ 

*Proof.*  $\mathcal{H}(1) \subseteq \mathcal{H}(2)$  follows from Theorem 1. It remains to show  $\mathcal{H}(2) \subseteq \mathcal{H}(1)$ . Consider a graph G = (V, E) in  $\mathcal{H}(2)$  with  $(H_m, t)$ -representation  $\{S_v\}_{v \in V}$ . Recall  $x = a_0 = b_0 = c_0$ . If  $deg_{S_v}(x) = 1$  or  $x \notin S_v$  then proceed as follows: For  $S_v \in P_a$  let  $S'_v = S_v - a_i$  where i is the smallest number such that  $a_i \in S_v$ . For  $S_v \in P_b$  let  $S'_v = S_v - b_j$  where j is the smallest number such that  $b_j \in S_v$ . For  $S_v \in P_c$  let  $S'_v = S_v - c_k$  where k is the smallest number such that  $c_k \in S_v$ . If  $deg_{S_v}(x) > 1$  let  $S'_v = S_v$ . Now we show  $\{S'_v\}_v$  is an  $(H_m, 1)$ -representation for G. Let  $uv \in E$ . Then  $|V(S_u) \cap V(S_v)| \geq 2$  which implies that  $|V(S'_u) \cap V(S'_v)| \geq 1$ . Consider  $uv \notin E$ . Then  $|V(S_u) \cap V(S_v)| < 2$ . Also  $S_u$  or  $S_v$  must contain x with degree 1 or not contain x at all. Otherwise,  $deg_{S_u}(x) \geq 2$  and  $deg_{S_v}(x) \geq 2$  which implies  $|V(S_u) \cap V(S_v)| \geq 2$ . Without loss of generality assume that  $deg_{S_u}(x) = 1$  or  $x \notin S_u$ . If  $deg_{S_u}(x) = 1$  then x is the one vertex that  $S_u$  and  $S_v$  share and  $|V(S'_u) \cap V(S'_v)| = 0$  since  $x \notin S'_u$ . If  $x \notin S_u$  then

 $S_u$  and  $S_v$  must share a node from  $P_a - x$ ,  $P_b - x$  or  $P_c - x$ . Without loss of generality assume  $a_j$  is the one vertex in  $S_u \cap S_v$ . We can also assume that j is the smallest number such that  $a_j \in S_u$  and hence  $a_j$  is the largest number such that  $a_j \in S_v$ . So j+1 is the smallest number such that  $a_{j+1} \in S'_u$  and j is the largest number such that  $a_j \in S'_v$ . Therefore  $|V(S'_u) \cap V(S'_v)| = 0.$ 

Now we characterize trees in  $\mathcal{H}(1)$  and  $\mathcal{H}(2)$  beginning with some preliminaries.

**Definition 4.** An asteroidal triple in a graph G is a set of 3 distinct vertices  $\{x_1, x_2, x_3\}$  of G such that for each choice of distinct  $i, j, k \in \{1, 2, 3\}$ , there is an  $x_i x_j$ -path that  $x_k$  is not on or adjacent to.

**Definition 5.** G is called *n*-asteroidal if n is the largest integer for which there exists a set S of n points of G with the property that any three members of S form an asteroidal triple.

**Definition 6.** A graph G has property W if for any pair of asteroidal triples  $\{u_1, u_2, u_3\}$  and  $\{v_1, v_2, v_3\}$  of G, every path from  $u_i$  to  $u_j$ ,  $1 \le i < j \le 3$ , is adjacent to every path from  $v_k$  to  $v_m$ ,  $1 \le k < m \le 3$ .

The following result by Walter was stated in [5] and shown in [4].

**Theorem 3.** A connected chordal graph G is representable on  $K_{1,3}$  if and only if G is at most 3-asteroidal and G satisfies property W.

Note that representability on  $K_{1,3}$  is equivalent to being in  $\mathcal{H}(1)$ .

**Lemma 1.** Let T be a tree and  $\{u_1, u_2, u_3\}$  be an asteroidal triple of T. Then the  $u_1u_2$ -path,  $u_2u_3$ -path, and  $u_1u_3$ -path all share exactly one common vertex.

**Proof:** Consider an asteroidal triple,  $\{u_1, u_2, u_3\}$  in T. Observe that the path from  $u_3$  to the  $u_1u_2$ -path does not contain  $u_1$  or  $u_2$ . Indeed, as if so then either the  $u_2u_3$ -path would contain  $u_1$  or the  $u_1u_3$ -path would contain  $u_2$ , which is impossible as  $\{u_1, u_2, u_3\}$  is an asteroidal triple. Denote the path from  $u_3$  to the  $u_1u_2$ -path as P and the vertex where P and the  $u_1u_2$ -path intersect as w. Observe that w is common to the  $u_1u_2$ -path, the  $u_2u_3$ -path, and the  $u_1u_3$ -path as desired. We know these paths cannot share more than one vertex as then T would contain a cycle.

**Definition 7.** A tree T has the aster overlap property if for every pair of asteroidal triples  $\{u_1, u_2, u_3\}$  and  $\{v_1, v_2, v_3\}$  in T if the following conditions hold.

(i) The  $u_iu_j$ -paths and  $v_iv_j$ -paths for  $i, j \in \{1, 2, 3\}$  all share exactly one common vertex, say w.

(ii) If  $u_i$  is distinct from  $v_j$  for j = 1, 2, or 3, then either  $u_i$  is on the  $wv_k$ -path or  $v_k$  is on the  $wu_i$ -path for some  $k \in \{1, 2, 3\}$ .

**Theorem 4.** A tree T has the aster overlap property iff T is at most 3asteroidal and T satisfies property W.

**Proof:** Let T be a tree with the aster overlap property. Then it is easy to see that T has property W. Now suppose for the sake of contradiction that T is N-asteroidal for  $N \ge 4$ . Then T has a 4-asteroidal set  $\{u_1, u_2, u_3, u_4\}$ . Hence  $\{u_1, u_2, u_3\}$  and  $\{u_2, u_3, u_4\}$  are two asteroidal triples in T. By the aster overlap property we know that the following paths all share exactly one common vertex:  $u_1u_2$ -path,  $u_2u_3$ -path,  $u_1u_3$ -path,  $u_3u_4$ -path,  $u_2u_4$ -path. Let us denote this common vertex as w. Furthermore, without loss of generality we can assume that  $u_4$  is on the  $wu_1$ -path, since  $u_4$  is distinct from  $u_1, u_2$  and  $u_3$ . Now  $\{u_1, u_2, u_4\}$  is also an asteroidal triple in T. However, there is no path from  $u_1$  to  $u_2$  that does not contain  $u_4$ . Contradiction.

Let T be a tree that is at most 3-asteroidal and has property W. Consider a pair of asteroidal triples  $\{u_1, u_2, u_3\}$  and  $\{v_1, v_2, v_3\}$  in T. From Lemma 1 we know that the  $u_1u_2$ -path,  $u_2u_3$ -path, and  $u_1u_3$ -path all share exactly one common vertex, say u. We also know that the  $v_1v_2$ -path,  $v_2v_3$ -path, and  $v_1v_3$ -path all share exactly one common vertex, say v. To show the first part of the aster overlap property, we will show that u = v. For the sake of contradiction suppose that  $u \neq v$ .

**Claim 1** The only path from any  $u_i u_j$ -path, for  $1 \le i < j \le 3$ , to any  $v_k v_m$ -path, for  $1 \le k < m \le 3$  is the *uv*-path.

**Proof of claim 1:** Let us suppose the contrary. Without loss of generality suppose there is a path from the  $u_1u_2$ -path to the  $v_1v_2$ -path that is distinct from the uv-path. Let us denote this path the xy-path. Then u, x, y, v, u is a cycle in T, which is impossible.  $\Box$ 

Now we know that  $v_1, v_2$ , or  $v_3$  must be distinct from  $u_1, u_2$  and  $u_3$ . Without loss of generality suppose  $v_1$  is distinct from  $u_i$  for  $i \in \{1, 2, 3\}$ .

Claim 2  $\{u_1, u_2, u_3, v_1\}$  forms a 4-asteroidal set in T.

**Proof of claim 2:** We already know that  $\{u_1, u_2, u_3\}$  forms an asteroidal triple in T. So it remains to show that  $\{u_i, u_j, v_1\}$  forms an asteroidal triple for any  $i, j \in \{1, 2, 3\}$  and  $i \neq j$ . From Claim 1 we know  $v_1$  is not adjacent to the  $u_1u_2$ -path, as this path contains u. Also, the  $u_iu$ -path, uv-path and  $vv_1$ -path combined, form a path from  $u_i$  to  $v_1$  that is not adjacent to  $u_j$ . We can similarly justify that  $u_i$  is not adjacent to the  $u_jv_1$ -path. Hence our claim is shown.  $\Box$ 

Claim 2 contradicts our assumption that T is at most 3-asteroidal. Hence u = v. Let us denote this vertex w. It remains to show that, if  $u_i$  is distinct from  $v_j$  for  $j \in \{1, 2, 3\}$ , then either  $u_i$  is on the  $wv_k$ -path or  $v_k$  is on the  $wu_i$ -path for some  $k \in \{1, 2, 3\}$ . We do so by supposing the contrary. Without loss of generality suppose that  $u_1$  is distinct from  $v_j$  for  $j \in \{1, 2, 3\}$ ,  $u_1$  is not on the  $wv_k$ -path and  $v_k$  is not on the  $wu_1$ -path for  $k \in \{1, 2, 3\}$ . We know  $d(w, u_1) \ge 2$ , as if not then  $u_1$  would be adjacent to the  $u_2u_3$ -path. Hence  $\{v_1, v_2, v_3, u_1\}$  forms a 4-asteroidal set. Contradiction.

**Theorem 5.** A tree T is in  $\mathcal{H}(1)$  iff T has the aster overlap property.

Theorem 5 follows directly from Theorem 3 and Theorem 4.

**Theorem 6.** A tree T is in  $\mathcal{H}(2)$  iff T has the aster overlap property.

Theorem 6 follows directly from Theorem 5 and Theorem 2.

## References

- P. Buneman, A characterization of rigid circuit graphs, *Discrete Math.*, 9 (1974) 205-212.
- [2] F. Gavril, The intersection graphs of subtrees in a tree are exactly the chordal graphs, J. Combin. Theory Ser. B, 16 (1974) 47-56.
- [3] M.A. Saadi, Some results on tree tolerance representations, Ph.D. Thesis, Department of Mathematics, University of Rhode Island, 2001.
- [4] J. Walter, Representations of rigid cycle graphs, Dissertation, Wayne State University (1972).
- [5] J. Walter, Representations of chordal graphs as subtrees of a tree, J. of Graph Theory, 2 (1978), 265-267.