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Abstract: Consider a simple undirected graph G = (V,E). A family
of subtrees, {Sv}v∈V , of a tree H is called an (H, t)-representation of G
provided uv ∈ E if and only if |V (Su) ∩ V (Sv)| ≥ t. Let Hm denote the
K1,3-subdivision with center node x and three leaves, each of distance m
from x and let H(t) denote the set of (Hm, t)-representable graphs for some
positive integer m. In this paper we show that any graph G in H(t) is also
in H(t + 1) for all t and use this result to proof H(1) = H(2). We also
characterize the set of all trees in H(1) and hence in H(2)
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1 Introduction

In this paper we consider tree tolerance representations of graphs.

Definition 1. Let G = (V,E) be a simple graph, H a tree and t > 0. Then
G is called (H,t)-representable if there exists a family of subtrees of H,
{Sv}v∈V , such that

uv ∈ E ↔ |V (Su) ∩ V (Sv)| ≥ t.

In this case we call {Sv}v∈V an H tolerance representation of G with tol-
erance t or an (H,t)-representation of G. Also note that the tree H is
referred to as the host tree of the representation.

Definition 2. We will denote by Hm the K1,3-subdivision with x the center
node of degree three and three leaves, each of distance m from x. See Figure
1.

Figure 1: Hm

We denote the three subpaths of Hm, beginning at x = a0 = b0 = c0, as
follows:

Pa = a0, a1, a2, . . . , am;

Pb = b0, b1, b2, . . . , bm;

and

Pc = c0, c1, c2, . . . , cm.

Figure 2 illustrates an H2 tolerance representation of C4 with tolerance 3.
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Figure 2: H2 tolerance representation of C4
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Definition 3. The class of all graphs that are (Hm, t)-representable for
some m is denoted H(t).

A well established theorem due to Buneman, Gavril and Walter shows that
when the tolerance is limited to one, the tree representable graphs are the
chordal graphs. See [1] [2] and [4]. Here we restrict the host tree to Hm

and look at implications of increasing tolerance.

Theorem 1. Let G be a graph in H(t). Then G is in H(t + 1).

Proof. Let G = (V,E) be a graph in H(t) for some t ≥ 1 with (Hm, t)-
representation F = {Sv}v∈V . We use this representation to create an

(Hm+1, t + 1)-representation, F ′′, for G through the following steps.

step 1: Define the following subgraph of G:

Ga =< {v ∈ V |ai ∈ V (Sv) for some i ∈ {0, 1, 2, ...,m}} > .

Consider v ∈ V (Ga) and let i be the maximum value such that ai ∈ V (Sv).
Now define S′

v = Sv ∪ {ai+1}. Repeat this process for each v ∈ V (Ga). We
claim that {S′

v}v∈V (Ga) is an (Hm+1, t + 1)-representation for the graph
Ga. Indeed, take i and j to be the maximum values for which ai ∈ V (Su)
and aj ∈ V (Sv). Without loss of generality, assume i ≥ j. If aj ∈ V (Su),
then aj+1 ∈ V (S′

u) and |V (S′
u) ∩ V (S′

v)| = |V (Su) ∩ V (Sv)| + 1. If aj 6∈
V (Su), then |V (S′

u) ∩ V (S′
v)| ≤ 1 since |V (Su) ∩ V (Sv)| = 0. Hence, if

uv ∈ E(Ga), then aj ∈ V (Su) and |V (S′
u) ∩ V (S′

v)| ≥ t + 1. Furthermore,
if uv 6∈ E(Ga), then |V (Su) ∩ V (Sv)| ≤ t− 1 and |V (S′

u) ∩ V (S′
v)| ≤ t.

step 2: Define the following subgraphs of G:

Gb =< {v ∈ V |Sv ⊆ Pb − {x}} >
Gc =< {v ∈ V |Sv ⊆ Pc − {x}} >

Observe that V (G) = V (Ga)∪V (Gb)∪V (Gc). Repeat the process done in
step 1 with Ga for each Gb and Gc to obtain an (Hm+1, t+1)-representation,
{S′

v}v∈V (Gb) for Gb and an (Hm+1, t + 1)-representation, {S′
v}v∈V (Gc) for

Gc. Denote the resulting set of subtrees F ′ = {S′
v}v∈V .
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We know that F ′ satisfies the edge and non-edge conditions necessary for an
(Hm+1, t+1)-representation for G within each of the subgraphs Ga, Gb, and
Gc. Now we address these conditions for edge and non-edge pairs of vertices
of G that are not contained in the same subgraph. For any u ∈ V (Gb) and
v ∈ V (Gc) we have V (S′

u) ∩ V (S′
v) = V (Su) ∩ V (Sv) = ∅. Therefore,

the non-edge condition |V (S′
u) ∩ V (S′

v)| ≤ t is satisfied for u ∈ V (Gb) and
v ∈ V (Gc). It remains to look at the edges and non-edges between Ga and
Gb or Ga and Gc. Take u ∈ V (Ga) and v ∈ V (Gb) such that uv 6∈ E.
We know |V (Su) ∩ V (Sv)| ≤ t − 1. Adding a pendant node from Pa to
Su and a pendant node from Pb to Sv can only increase the intersection
by at most one, since Sv ⊆ Pb − {x}. Therefore, |V (S′

u) ∩ V (S′
v)| ≤ t.

Hence, the non-edge condition between Ga and Gb is satisfied. We can use
a similar argument to show that the non-edge condition between Ga and
Gc is satisfied as well. Finally, we address the edges between Ga and Gb or
Ga and Gc, which will require modification of F ′.

step 3: In this last step we look at the edges between Ga and Gb, and
observe that an analogous process may be used for the edges between Ga

and Gc. Take u ∈ V (Ga) and v ∈ V (Gb) such that uv ∈ E. We know
|V (Su) ∩ V (Sv)| ≥ t. This implies that Su contains at least t nodes from
Pb and that x = b0 ∈ V (Su). Let i and j be the maximum values such
that bi ∈ V (S′

u) and bj ∈ V (S′
v). If i ≥ j, then |V (S′

u) ∩ V (S′
v)| ≥ t + 1

since bj ∈ V (S′
u) and S′

v = Sv ∪ {bj}. Now suppose i < j. In this case,
bi+1 ∈ V (S′

v)/V (S′
u). Replace S′

u with S′′
u = S′

u ∪ {bi+1} and we have
|V (S′′

u) ∩ V (S′
v)| ≥ t + 1.

Now we confirm that we did not disrupt any existing non-edge conditions.
Take w ∈ V such that w is not adjacent to u. It suffices to show that
|V (S′′

u) ∩ V (S′
w)| ≤ t.

Case 1. w ∈ Gc

In this case |V (S′′
u) ∩ V (S′

w)| = |V (S′
u) ∩ V (S′

w)| ≤ t.

Case 2. w ∈ Gb

In this case V (S′
u) ∩ V (S′

w) = V (Su) ∩ V (Sw). Hence, adding bi+1 to
S′
u can only increase |V (S′

u) ∩ V (S′
w)| by at most one. Thus, we have

|V (S′′
u) ∩ V (S′

w)| ≤ |V (S′
u) ∩ V (S′

w)|+1 = |V (Su) ∩ V (Sw)|+1 ≤ t−1+1 =
t.

Case 3. w ∈ Ga
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Since uv ∈ E, u ∈ V (Ga) and v ∈ V (Gb), we know that Su and Sv share
at least t nodes from Pb−{x}. Hence, i ≥ t− 1. If bi ∈ Sw, then we would
have |V (Su) ∩ V (Sw)| ≥ t, which is impossible as uw 6∈ E. Hence, bi 6∈ Sw,
which implies that bi+1 6∈ Sw and |V (S′′

u) ∩ V (S′
w)| = |V (S′

u) ∩ V (S′
w)| ≤ t.

We use an analogous process to accommodate the edges between Ga and
Gc, adding nodes from Pc where necessary. Now let S′′

v = S′
v for those S′

v

from F ′ that were not modified in step 3 and let F ′′ = {S′′
v }v∈V .

In order to show F ′′ is an (Hm+1, t + 1)-representation for G, it remains
to verify that uv 6∈ E(Ga) implies that |V (S′′

u) ∩ V (S′′
v )| < t + 1. First,

observe that uv 6∈ E(Ga) implies that uv 6∈ E. If S′′
u was obtained from S′

u

by adding a vertex from Pb and S′′
v was obtained from S′

v by adding a vertex
from Pc, then |V (S′′

u) ∩ V (S′′
v )| = |V (S′

u) ∩ V (S′
v)| < t + 1. Consider the

situation where both S′′
u and S′′

v were obtained by adding a vertex from Pb

to S′
u and S′

v, respectively. In this situation, Su and Sv must both contain
x and at least t nodes from Pb. However, this implies |V (Su) ∩ V (Sv)| ≥ t,
which is impossible, since uv 6∈ E. We can make an analogous argument
for the situation where both S′′

u and S′′
v were obtained by adding a vertex

from Pc.

The arguments above, show that F ′′ is an (Hm+1, t+ 1)-representation for
G. Therefore, G ∈ H(t + 1) as was to be shown.

We use Theorem 1 to show a graph G is in H(1) if and only if G is in H(2).

Theorem 2. H(1) = H(2)

Proof. H(1) ⊆ H(2) follows from Theorem 1. It remains to show H(2) ⊆
H(1). Consider a graph G = (V,E) in H(2) with (Hm, t)-representation
{Sv}v∈V . Recall x = a0 = b0 = c0. If degSv

(x) = 1 or x 6∈ Sv then proceed
as follows: For Sv ∈ Pa let S′

v = Sv − ai where i is the smallest number
such that ai ∈ Sv. For Sv ∈ Pb let S′

v = Sv − bj where j is the smallest
number such that bj ∈ Sv. For Sv ∈ Pc let S′

v = Sv − ck where k is the
smallest number such that ck ∈ Sv. If degSv (x) > 1 let S′

v = Sv. Now
we show {S′

v}v is an (Hm, 1)-representation for G. Let uv ∈ E. Then
|V (Su) ∩ V (Sv)| ≥ 2 which implies that |V (S′

u) ∩ V (S′
v)| ≥ 1. Consider

uv 6∈ E. Then |V (Su) ∩ V (Sv)| < 2. Also Su or Sv must contain x with
degree 1 or not contain x at all. Otherwise, degSu

(x) ≥ 2 and degSv
(x) ≥ 2

which implies |V (Su) ∩ V (Sv)| ≥ 2. Without loss of generality assume that
degSu(x) = 1 or x 6∈ Su. If degSu(x) = 1 then x is the one vertex that
Su and Sv share and |V (S′

u) ∩ V (S′
v)| = 0 since x 6∈ S′

u. If x 6∈ Su then
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Su and Sv must share a node from Pa − x, Pb − x or Pc − x. Without
loss of generality assume aj is the one vertex in Su ∩ Sv. We can also
assume that j is the smallest number such that aj ∈ Su and hence aj is
the largest number such that aj ∈ Sv. So j + 1 is the smallest number such
that aj+1 ∈ S′

u and j is the largest number such that aj ∈ S′
v. Therefore

|V (S′
u) ∩ V (S′

v)| = 0.

Now we characterize trees in H(1) and H(2) beginning with some prelimi-
naries.

Definition 4. An asteroidal triple in a graph G is a set of 3 distinct
vertices {x1, x2, x3} of G such that for each choice of distinct i, j, k ∈
{1, 2, 3}, there is an xixj-path that xk is not on or adjacent to.

Definition 5. G is called n-asteroidal if n is the largest integer for which
there exists a set S of n points of G with the property that any three members
of S form an asteroidal triple.

Definition 6. A graph G has property W if for any pair of asteroidal
triples {u1, u2, u3} and {v1, v2, v3} of G, every path from ui to uj, 1 ≤ i <
j ≤ 3, is adjacent to every path from vk to vm, 1 ≤ k < m ≤ 3.

The following result by Walter was stated in [5] and shown in [4].

Theorem 3. A connected chordal graph G is representable on K1,3 if and
only if G is at most 3-asteroidal and G satisfies property W .

Note that representability on K1,3 is equivalent to being in H(1).

Lemma 1. Let T be a tree and {u1, u2, u3} be an asteroidal triple of T .
Then the u1u2-path, u2u3-path, and u1u3-path all share exactly one common
vertex.

Proof: Consider an asteroidal triple, {u1, u2, u3} in T . Observe that the
path from u3 to the u1u2-path does not contain u1 or u2. Indeed, as if so
then either the u2u3-path would contain u1 or the u1u3-path would contain
u2, which is impossible as {u1, u2, u3} is an asteroidal triple. Denote the
path from u3 to the u1u2-path as P and the vertex where P and the u1u2-
path intersect as w. Observe that w is common to the u1u2-path, the
u2u3-path, and the u1u3-path as desired. We know these paths cannot
share more than one vertex as then T would contain a cycle. 2
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Definition 7. A tree T has the aster overlap property if for every pair of
asteroidal triples {u1, u2, u3} and {v1, v2, v3} in T if the following conditions
hold.
(i) The uiuj-paths and vivj-paths for i, j ∈ {1, 2, 3} all share exactly one
common vertex, say w.
(ii) If ui is distinct from vj for j = 1, 2, or 3, then either ui is on the
wvk-path or vk is on the wui-path for some k ∈ {1, 2, 3}.
Theorem 4. A tree T has the aster overlap property iff T is at most 3-
asteroidal and T satisfies property W .

Proof: Let T be a tree with the aster overlap property. Then it is easy to
see that T has property W. Now suppose for the sake of contradiction that
T is N -asteroidal for N ≥ 4. Then T has a 4-asteroidal set {u1, u2, u3, u4}.
Hence {u1, u2, u3} and {u2, u3, u4} are two asteroidal triples in T . By the
aster overlap property we know that the following paths all share exactly
one common vertex: u1u2-path, u2u3-path, u1u3-path, u3u4-path, u2u4-
path. Let us denote this common vertex as w. Furthermore, without
loss of generality we can assume that u4 is on the wu1-path, since u4 is
distinct from u1, u2 and u3. Now {u1, u2, u4} is also an asteroidal triple
in T . However, there is no path from u1 to u2 that does not contain u4.
Contradiction.

Let T be a tree that is at most 3-asteroidal and has property W. Consider
a pair of asteroidal triples {u1, u2, u3} and {v1, v2, v3} in T . From Lemma
1 we know that the u1u2-path, u2u3-path, and u1u3-path all share exactly
one common vertex, say u. We also know that the v1v2-path, v2v3-path,
and v1v3-path all share exactly one common vertex, say v. To show the
first part of the aster overlap property, we will show that u = v. For the
sake of contradiction suppose that u 6= v.

Claim 1 The only path from any uiuj-path, for 1 ≤ i < j ≤ 3, to any
vkvm-path, for 1 ≤ k < m ≤ 3 is the uv-path.

Proof of claim 1: Let us suppose the contrary. Without loss of generality
suppose there is a path from the u1u2-path to the v1v2-path that is distinct
from the uv-path. Let us denote this path the xy-path. Then u, x, y, v, u is
a cycle in T , which is impossible. 2

Now we know that v1, v2, or v3 must be distinct from u1, u2 and u3. Without
loss of generality suppose v1 is distinct from ui for i ∈ {1, 2, 3}.

Claim 2 {u1, u2, u3, v1} forms a 4-asteroidal set in T .
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Proof of claim 2: We already know that {u1, u2, u3} forms an asteroidal
triple in T . So it remains to show that {ui, uj , v1} forms an asteroidal triple
for any i, j ∈ {1, 2, 3} and i 6= j. From Claim 1 we know v1 is not adjacent
to the u1u2-path, as this path contains u. Also, the uiu-path, uv-path and
vv1-path combined, form a path from ui to v1 that is not adjacent to uj .
We can similarly justify that ui is not adjacent to the ujv1-path. Hence
our claim is shown. 2

Claim 2 contradicts our assumption that T is at most 3-asteroidal. Hence
u = v. Let us denote this vertex w. It remains to show that, if ui is
distinct from vj for j ∈ {1, 2, 3}, then either ui is on the wvk-path or vk
is on the wui-path for some k ∈ {1, 2, 3}. We do so by supposing the
contrary. Without loss of generality suppose that u1 is distinct from vj
for j ∈ {1, 2, 3}, u1 is not on the wvk-path and vk is not on the wu1-
path for k ∈ {1, 2, 3}. We know d(w, u1) ≥ 2, as if not then u1 would be
adjacent to the u2u3-path. Hence {v1, v2, v3, u1} forms a 4-asteroidal set.
Contradiction. 2

Theorem 5. A tree T is in H(1) iff T has the aster overlap property.

Theorem 5 follows directly from Theorem 3 and Theorem 4.

Theorem 6. A tree T is in H(2) iff T has the aster overlap property.

Theorem 6 follows directly from Theorem 5 and Theorem 2.
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