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Abstract: It is shown that every graph made up of internally disjoint
paths joining two vertices is Hall t-chromatic for all non-negative integers
t.

1 Introduction

Let G be a simple, finite graph with the vertex set, edge set, vertex inde-
pendence number, chromatic number and fractional chromatic number of
G denoted V (G), E(G), α(G), χ(G), χf (G), respectively; for definitions of
these terms see [12]. The Hall ratio of G is

ρ(G) = max

{ |V (H)|
α(H)

: H is a subgraph of G

}
.

Let N be the set of non-negative integers.
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For any graph G, a function κ : V (G) → N is called a color demand on,
or for, G. Let C be an infinite set of colors. A function L : V (G) →
{finite subsets of C} = F(C) is called a color supply for, or a list assign-
ment to, G. For a color supply L and a color demand κ for G, a proper
(L, κ) coloring of G is a function ϕ : V (G) → F(C) satisfying, for all
u, v ∈ V (G):

(i) |ϕ(v)| = κ(v);

(ii) If uv ∈ E(G), then ϕ(u) ∩ ϕ(v) = ∅;
[Equivalently; for each σ ∈ C, {v ∈ V (G) | σ ∈ ϕ(v)}
is an independent set of vertices in G.]

(iii) ϕ(v) ⊆ L(v).

Suppose that L is a color supply, and κ is a color demand, for G, and H
is a subgraph of G. For σ ∈ C, let H(σ, L) be the subgraph of H induced
by {v ∈ V (H) | σ ∈ L(v)}. [The null graph, with no edges nor vertices, is
allowed to exist in this paper.] G, L, κ satisfy Hall’s condition if and only
if for each subgraph H of G,

∑

σ∈C
α
(
H(σ, L)

)
≥

∑

v∈V (H)

κ(v) (∗)H

Clearly G, L, and κ satisfy Hall’s condition if (∗)H holds for every con-
nected induced subgraph H of G.

Hall’s condition on G, L and κ is a necessary condition for the existence of
a proper (L, κ) coloring of G. The name of this condition descends from the
fact that when G is a complete graph, Hall’s condition on G, L, and κ is
sufficient for the existence of a proper (L, κ) coloring of G; this assertion is
a restatement of the extension of Hall’s Theorem [6] to the question of the
existence of pairwise disjoint subset representatives of prescribed cardinali-
ties of given sets. The extension is due to Rado [10], Halmos and Vaughan
[7], and possibly others. For a fuller discussion of these matters see [2] or [8].

The question of for which G there is a proper (L, κ) coloring of G whenever
G, L and κ satisfy Hall’s condition is answered completely in [3]. We will
need only the following special case, which is also proven in [2].

Theorem 1.1 (Path Theorem). If P is a finite path, L is a color supply
for P , κ is a color demand on P , and P , L, and κ satisfy Hall’s condition,
then there is a proper (L, κ) coloring of P .
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We consider a special case of Hall’s condition where L(v) is the same t-
element subset for all v ∈ V (G): L = {1, ..., t} = [t]. With this constant
assignment L, Hall’s condition becomes the following, which we will call
Hall’s t-condition on κ, G: for each subgraph H of G

t∑

σ=1

α
(
H(σ, L)

)
= tα(H) ≥

∑

v∈V (H)

κ(v) (∗∗)H

As for Hall’s condition in general, for G and κ to satisfy Hall’s t-condition
it suffices that (∗∗)H holds for all connected induced subgraphs H of G.

For t ∈ N (when t = 0, [t] = L = ∅) and a color demand κ for G, a
proper (t, κ) coloring of G is a function ϕ : V (G) → 2[t] satisfying, for all
u, v ∈ V (G):

(i) |ϕ(v)| = κ(v);

(ii) if uv ∈ E(G), then ϕ(u) ∩ ϕ(v) = ∅.

A graph G is said to be Hall t-chromatic if the only color demands κ for
which there does not exist a proper (t, κ) coloring of G are those that
fail Hall’s t-condition. In other words, G is Hall t-chromatic if and only
if for all κ, Hall’s t-condition on κ and G is sufficient for the existence
of a proper (t, κ) coloring of G. The Hall t-chromatic spectrum of G is
τ(G) = {t ∈ N | G is Hall t-chromatic}. It is known from previous results
in [1] and [4] that, for all finite simple graphs G,

(i) {0, 1, 2} ⊆ τ(G);

(ii) if H is an induced subgraph of G, then τ(G) ⊆ τ(H);

(iii) if τ(G) is an infinite set, then

χf (G) = max

{ |V (H)|
α(H)

: H is a subgraph of G

}
= ρ(G).

We think the result (iii) is reason enough to further pursue the study of
the Hall t-chromatic spectra of graphs. There are also intriguing questions
about Hall t-chromatic spectra about which we know very little. For in-
stance: Is τ(G) always a block of consecutive integers, either N or {0, ..., N}
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for some N ≥ 2? The only known values of τ(G) are N and {0, 1, 2}.

Another question: Is the converse of (iii), above, true? That is, does
|τ(G)| <∞ imply that χf (G) > ρ(G)? (It is well known that χf (G) ≥ ρ(G)
for all G; see [11].)

Our purpose here is nowhere near so lofty as these mysteries. We aim sim-
ply to show that τ(G) = N for all graphs in a certain class, the class of
theta graphs. A theta graph is a union of m ≥ 3 paths, internally disjoint
with the same end vertices. The term theta graph arises from the fact that
such a union of m = 3 paths looks like the Greek letter theta. Let the set
of all theta graphs which are the union of m internally disjoint paths with
common end vertices be denoted Θm.

We will need the following results from [1] and [4].

Lemma 1.2.

(a) If G is a cycle, then τ(G) = N.

(b) If G is bipartite, then τ(G) = N.

(c) If t ∈ τ(Gi) for i = 1, 2, and G1∩G2 is a clique, then t ∈ τ(G1∪G2).

The following is an easy corollary of Lemma 1.2.

Corollary 1.3.

(a) If G is a theta graph and one of the internally disjoint paths whose
union is G is a single edge, then τ(G) = N.

(b) If G is a theta graph and the internally disjoint paths whose union is
G are either all of even length or all of odd length, then τ(G) = N.

Proof. For part (a), let G ∈ Θm, m ≥ 3 and suppose that one of the paths
comprising G is a single edge. We proceed by induction on m. If m = 3,
then G = G1 ∪G2 where G1, G2 are cycles and G1 ∩G2 = K2. By (a) and
(c) of Lemma 1.2, it follows τ(G) = N.
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Now suppose m > 3. Then G = G1 ∪G2 where G1 ∈ Θm−1 and one of its
constituent paths is a single edge, G2 is a cycle, and G1 ∩G2 = K2. Then
τ(G) = N follows from the induction hypothesis and (a) and (c) of Lemma
1.2.

If the hypothesis of (b) holds, then G is bipartite, so the conclusion of (b)
holds by Lemma 1.2.

2 Main Result and proof

Lemma 2.1. If t, a, b, c ∈ N, a ≥ b ≥ c and t ≥ a+ b− c, then there exist
A,B ⊆ [t] such that |A| = a, |B| = b, and |A ∩B| = c.

Proof. Let a ≥ b ≥ c, and t ≥ a + b − c ≥ a. Take an a-subset, A, of [t].
Let Z ⊆ [t] \ A, such that |Z| = b− c. Let W ⊆ A such that |W | = c. Let
B = W ∪ Z. Then |B| = c+ b− c = b and |A ∩B| = |W | = c.

Theorem 2.2. Let G be a graph that consists of m ≥ 3 internally disjoint
paths joining a vertex u ∈ V (G) and a vertex v ∈ V (G). Then G is Hall
t-chromatic for all t ∈ N.

Proof. By Corollary 1.3, we may assume all of the paths joining u and v
are of lengths > 1, at least one of those lengths is odd, and at least one is
even.

Given an integer t > 2 and κ : V (G)→ N such that G and κ satisfy Hall’s t-
condition: for each choice of paths u, x1, x2, ..., x2p, v and u, y1, y2, ..., y2q−1, v,
respectively of odd and even lengths ≥ 2, we have, by (∗∗)H , where H is
the odd cycle which is the union of these two paths:

t(p+ q) ≥ κ(u) + κ(v) +

2p∑

i=1

κ(xi) +

2q−1∑

j=1

κ(yj). (2.1)

Let

s = min

{
tp−

2p∑

i=1

κ(xi) : u, Px, v = u, x1, ..., x2p, v is a u-v path of G

}
.
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For any such path Px = x1, ..., x2p, we have tα(Px) = tp ≥∑2p
i=1 κ(xi), so

s is a non-negative integer.

Without loss of generality, we can assume κ(u) ≥ κ(v). There are two cases
to consider. In Case I, s ∈ {0, . . . , κ(v)}. In Case II, s > κ(v).

Case I. s ∈ {0, ..., κ(v)}. We have that s ≤ κ(v) ≤ κ(u). By Lemma 2.1,
we can find ϕ(u), ϕ(v) ⊆ [t] such that |ϕ(u)| = κ(u), |ϕ(v)| = κ(v), and
|ϕ(u) ∩ ϕ(v)| = s, provided

t ≥ κ(u) + κ(v)− s. (2.2)

For some path P = x1, x2, ..., x2p, we have tp−∑2p
i=1 κ(xi) = s.

Let uPv be the subgraph of G induced by u, v, and the vertices of P .
From (∗∗)uPv, we get

t(p+ 1) ≥ κ(u) + κ(v) +

2p∑

i=1

κ(xi)⇒

t ≥ κ(u) + κ(v)− (tp−
2p∑

i=1

κ(xi))

= κ(u) + κ(v)− s,

so (2.2) holds.

Therefore, by Lemma 2.1, we have ϕ(u), ϕ(v) ⊆ [t] satisfying |ϕ(u)| = κ(u),
|ϕ(v)| = κ(v), and |ϕ(u) ∩ ϕ(v)| = s.

Define a list assignment, L, to G− {u, v} by:

L(w) = [t] \ ϕ(u) if w is adjacent to u and not to v;

L(w) = [t] \ ϕ(v) if w is adjacent to v and not to u;

L(w) = [t] \ (ϕ(u) ∪ ϕ(v)) if w is adjacent to u and to v;

L(w) = [t] otherwise.
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We want to show that G − {u, v}, L, κ satisfy Hall’s condition; this will
show that each component of G − {u, v} has a proper (L, κ) coloring, due
to the Path Theorem. This will be sufficient to show G has a proper (t, κ)
coloring due to the way L is defined.

To show that Px = x1, x2, ..., x2p satisfies Hall’s condition with L and κ,
the only subgraph we need to check is Px itself, as all proper subgraphs
of Px are easily shown to satisfy this condition. To see this, observe that
the path u, x1, ..., x2p−1 has a proper (t, κ) coloring, by the Path Theorem,
because G and κ satisfy Hall’s t-condition, and this condition applies to
every subgraph of G. We may assume that u is colored with ϕ(u) in this
coloring, since the choice of the set A in Lemma 2.1 is arbitrary. Therefore,
this coloring restricted to x1, ..., x2p−1 is a proper (L, κ) coloring of that
path, and therefore, that path satisfies Hall’s condition with L and κ. Sim-
ilarly, x2, ..., x2p satisfies Hall’s condition with L and κ. Every subpath of
Px which is not the whole path is a subpath of either Px−x2p or of Px−x1.
Therefore, we need only show that (∗)Px is satisfied, to show that Px, L, and
κ satisfy Hall’s condition. A similar argument applies to paths y1, ..., y2q−1.

We need to show that
∑t
σ=1 α

(
Px(σ, L)

)
≥∑2p

i=1 κ(xi).

If σ ∈ [t] \
(
ϕ(u) ∪ ϕ(v)

)
, then α

(
Px(σ, L)

)
= p.

If σ ∈
(
ϕ(u) \ ϕ(v)

)
∪
(
ϕ(v) \ ϕ(u)

)
, then α

(
Px(σ, L)

)
= p.

If σ ∈ ϕ(u) ∩ ϕ(v), then α
(
Px(σ, L)

)
= p− 1.

Therefore,

t∑

σ=1

α
(
Px(σ, L)

)
= p
(
t− |ϕ(u) ∪ ϕ(v)|

)

+ p
(
|ϕ(u) ∪ ϕ(v)| − |ϕ(u) ∩ ϕ(v)|

)

+
(
p− 1

)
|ϕ(u) ∩ ϕ(v)|

= p(t− s) + s(p− 1)

= pt− s ≥
2p∑

i=1

κ(xi)

by the definition of s.
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Given Py = y1, ..., y2q−1, a component of G − {u, v} of odd order: we aim

to show that
∑t
σ=1 α

(
Py(σ, L)

)
≥ ∑2q−1

j=1 κ(yj). There are 2 subcases to
consider. In Subcase Ia, q > 1. In Subcase Ib, q = 1.

Subcase Ia. q > 1.

If σ ∈ [t] \
(
ϕ(u) ∪ ϕ(v)

)
, then α

(
Py(σ, L)

)
= q.

If σ ∈
(
ϕ(u) \ ϕ(v)

)
∪
(
ϕ(v) \ ϕ(u)

)
, then α

(
Py(σ, L)

)
= q − 1.

If σ ∈ ϕ(u) ∩ ϕ(v), then α
(
Py(σ, L)

)
= q − 1.

Therefore,

t∑

σ=1

α
(
Py(σ, L)

)
= q
(
t− |ϕ(u) ∪ ϕ(v)|

)
+
(
q − 1

)
|ϕ(u) ∪ ϕ(v)|

= qt− |ϕ(u) ∪ ϕ(v)|
= qt− (κ(u) + κ(v)− s)
= qt− κ(u)− κ(v) + s.

We want:

qt− κ(u)− κ(v) + s ≥
2q−1∑

j=1

κ(yj). (2.3)

By the definition of s, we can find in G − {u, v} a component, Px =

x1, ..., x2p, such that tp = s +
∑2p
i=1 κ(xi). If we plug this into inequal-

ity (2.1), then we get:

t(p+ q) = tq + s+

2p∑

i=1

κ(xi)

≥ κ(u) + κ(v) +

2p∑

i=1

κ(xi) +

2q−1∑

j=1

κ(yj),

which implies (2.3).

Subcase Ib. q = 1. In this subcase, Py = y1. The list assignment in this
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case is L(y1) = [t] \
(
ϕ(u) ∪ ϕ(v)

)
. Then

t∑

σ=1

α
(
Py(σ, L)

)
= |L(y1)|

= t− |ϕ(u) ∪ ϕ(v)|
= t− (κ(u) + κ(v)− s).

By a similar argument to the first subcase, we see that Py satisfies the in-
equality, t− κ(u)− κ(v) + s ≥ κ(y1).

Case II. s > κ(v). For this case we take ϕ(u) = {1, ..., κ(u)} and ϕ(v) =
{1, ..., κ(v)}. Let L be the list assignment to G− {u, v} as defined in Case
I. As in Case I, we are done if we show that the inequality (∗)H holds for
each maximal path H in G − {u, v}. The inequality for Hall’s condition
is satisfied by L and κ on each of the internal paths Px of even order,
x1, ..., x2p, by the following argument.
If σ ∈ [t] \

(
ϕ(u) ∩ ϕ(v)

)
= {κ(v) + 1, ..., t}, then α

(
Px(σ, L)

)
= p.

If σ ∈ ϕ(u) ∩ ϕ(v) = {1, ..., κ(v)}, then α
(
Px(σ, L)

)
= p− 1. Therefore,

t∑

σ=1

α
(
Px(σ, L)

)
= p
(
t− κ(v)

)
+ (p− 1)κ(v)

= pt− κ(v)

> pt− s

≥ pt−
[
tp−

2p∑

i=1

κ(xi)

]

=

2p∑

i=1

κ(xi).

But the same method does not show that the inequality for Hall’s condi-
tion is satisfied by L and κ for path components of G−{u, v} of odd order,
y1, ..., y2q−1.

For Py = y1, ..., y2q−1, we will give a proper (L, κ) coloring of the path.
Color as follows:

ϕ(yj) =

{
{t− κ(yj) + 1, ..., t} if j is odd
{1, ..., κ(yj)} if j is even.
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This is a proper (L, κ) coloring of y1, ..., y2q−1 because the path u, y1, ..., y2q−1, v
satisfies Hall’s t-condition with κ, and therefore t = tα(zw) ≥ κ(z) + κ(w)
for each edge zw of that path.

Hence G has a proper (t, κ) coloring. Since κ was arbitrary, it follows that
G is Hall t-chromatic.

Corollary 2.3. If G is a theta graph, then χf (G) = ρ(G).

Great thanks are due to the two anonymous referees for their careful reading
of this paper. An extra measure of appreciation is owed to the referee who
provided six pages of corrections and suggestions, mostly the former. We
are chastened and grateful.
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