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Abstract: One of the most promising structural approaches to resolving
the Hadamard Conjecture uses the family of cocyclic matrices over Zt×Z2

2.
Two types of equivalence relations for classifying cocyclic matrices over
Zt×Z2

2 have been independently found. Any cocyclic matrix equivalent by
either of these relations to a Hadamard matrix will also be Hadamard.

Bundle equivalence is based on algebraic relations between cocycles over
any finite group. Diagram equivalence is based on geometric relations
between diagrammatic visualisations of cocyclic matrices over the group
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Zt×Z2
2. Here we reconcile the two. We show the group Bund(t) generated

by bundle equivalence operations is isomorphic to a subgroup of index 2 in
the group Diag(t) generated by diagram equivalence operations, and that
Diag(t) ∼= 〈Bund(t),>〉, where > is the geometric translation of matrix
transposition.

Keywords: Hadamard matrix, cocyclic matrix, shift equivalence, bundle, Williamson-

type matrix.

1 Introduction

A Hadamard matrix of order m is a square matrix [h(i, j)] with entries
h(i, j) = ±1, 1 ≤ i, j ≤ m, whose row vectors are pairwise orthogonal. A
Hadamard matrix must have order 1, 2 or a multiple of 4, but no other
restrictions on the order are known, and the century-old Hadamard Con-
jecture proposes that a Hadamard matrix of order m exists for every m ≡ 0
(mod 4).

About 20 years ago, the use of cocycles and cocyclic matrices was introduced
by Horadam and de Launey [10] as a structural approach to resolving the
Hadamard Conjecture. Its advantages led to the cocyclic Hadamard con-
jecture: that a cocyclic Hadamard matrix exists for every m = 4t. We can
restrict the conjecture to odd t ≥ 1. The study and use of cocyclic matrices
has since expanded substantially, to include generalised Hadamard matrices
[8, 9] and pairwise combinatorial designs [5].

If G is a group and C is an abelian group, a (2-dimensional, normalized)
cocycle ψ from G to C is a mapping ψ : G × G → C satisfying ψ(1, 1) =
ψ(g, 1) = ψ(1, g) = 1, g ∈ G and the cocycle equation:

ψ(g, h) ψ(gh, k) = ψ(g, hk) ψ(h, k), g, h, k ∈ G. (1)

The set of cocycles from G to C forms an abelian group Z2(G,C) under
pointwise multiplication. The simplest cocycles are the coboundaries ∂f ,
defined for any function f : G→ C by ∂f(g, h) = f(g)−1f(h)−1f(gh).

A cocycle ψ may be represented by its matrix of values in C

Mψ = [ψ(g, h)]g,h∈G (2)

once an indexing of the elements of G has been chosen.

64



We set C = {±1} ∼= Z2 when searching for cocyclic Hadamard matrices.
A cocycle ψ for which the cocyclic matrix Mψ is Hadamard is termed
orthogonal. It is computationally easy to check whether Mψ is a Hadamard
matrix, as we only need to check whether the dot product of the first row
with each other row is 0. This computational cutdown is one motivation
for using cocyclic matrices.

Many known constructions for Hadamard matrices yield cocyclic matrices
[8, Ch. 6]. Computationally, the most prolific indexing groups G for pro-
ducing cocyclic Hadamard matrices appear to be the abelian groups Zt×Z2

2

and the dihedral groups D4t. The D4t cocyclic Hadamard matrix family,
related to the Ito type Hadamard matrices, has been investigated by many
researchers including the authors (see [8]). The Zt × Z2

2 family, related
to the Williamson type Hadamard matrices, has also been investigated by
the authors [3, 4], and while exhaustive search often finds fewer Hadamard
matrices in each order than for D4t, abelian-ness makes the family compu-
tationally more tractable.

In parallel with the search for examples of Hadamard matrices in new or-
ders, whether cocyclic or not, has been the attempt to classify them into
equivalence classes. Hadamard equivalence of a {±1} matrix involves only
permutation of rows or columns, and multiplication of a row or column
by −1. While the transpose of a Hadamard matrix is a Hadamard ma-
trix, transposition is not a Hadamard equivalence. The total number of
Hadamard equivalence classes in small orders grows so rapidly that Orrick
[13] uses a coarser Q-equivalence relation on Hadamard matrices which al-
lows extra “switching” operations and leads to a dramatic reduction in the
number of classes.

The total number of equivalence classes of cocyclic Hadamard matrices
over all indexing groups G is studied by Ó Catháin and Röder [12] and
calculated up to m = 36. An allied but distinct approach has been to
identify equivalences of cocycles that preserve orthogonality. For the Zt×Z2

2

family, two different types of equivalence of cocycles, both of which preserve
orthogonality, have been discovered independently.

The first of these is defined (see [8]) for any G and C by all compositions
of a “shift” action and two “automorphism” actions. (For C = {±1}, one
of the automorphism actions is trivial.) The resulting equivalence classes,
called bundles, are already studied under other names in specific contexts;
for example, they correspond to the Extended Affine equivalence classes for
cryptographic functions [9]. Shift action is also studied separately, for appli-
cations to the search for self-dual codes [14] and, via shift representations,
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to classification of pairwise combinatorial designs [6].

The second of these equivalences, independently introduced in [3], is spe-
cific to cocycles ψ in Z2 := Z2(Zt × Z2

2, {±1}) and arises from detailed
investigation of a generating set of cocycles for Z2. Corresponding to the
decomposition of ψ as a product of generators there is a Hadamard prod-
uct decomposition of Mψ into generator matrices. Geometric actions on
these generator matrices lead to a concise diagrammatic representation of
cocycles and geometric equivalences which is very useful for effective com-
putation.

This paper relates and reconciles the two types of equivalence.

The paper is organized as follows. Section 2 describes the two types of
equivalence. The group acting on cocycles is determined for each type; the
two groups are not isomorphic. Section 3 gives our main results, Theorems
3 and 4, translating shift action and the nontrivial automorphism action
into diagram actions, relating the two groups of actions, and showing that
the diagram action termed “complement” has no algebraic analogue. In
Section 4 this diagram action is shown to be the transposing operation on
Mψ. We summarise and suggest further work.

2 Background

From now on we assume C = {±1}, G ∼= Zt × Z2
2 with t > 1 odd, and

ψ ∈ Z2. Denote the group of units of the ring Zt by Z∗t . Let G have
presentation

G = 〈x, u, v : xt = u2 = v2 = 1, xu = ux, xv = vx, uv = vu〉,

and ordering

(xi, 1) < (xi, u) < (xi, v) < (xi, uv), 0 ≤ i < t, (xi, uv) < (xi+1, 1), 0 ≤ i < t−1 .

We describe an orthogonality-preserving algebraic action on ψ in the first
subsection and an orthogonality-preserving geometric action on ψ in the
second.
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2.1 Bundle action on cocycles

For any a ∈ G, the shift ψ·a of ψ is the cocycle (ψ·a)(g, h) = ψ(ag, h)ψ(a, h)−1.
It is orthogonal if ψ is orthogonal. For any automorphism θ ∈ Aut(G), the
cocycle ψ ◦ (θ×θ), defined by ψ ◦ (θ×θ)(g, h) = ψ(θ(g), θ(h)), is orthogonal
if ψ is. When the two actions are combined, the result is an action called
bundle action under which the orbit of ψ is its bundle

B(ψ) = {(ψ · a) ◦ (θ × θ) : a ∈ G, θ ∈ Aut(G)}. (3)

The group acting on Z2 is G o Aut(G), where the semidirect product is
defined for a, b ∈ G, θ1, θ2 ∈ Aut(G) by aθ1 ◦ bθ2 = aθ−11 (b)θ1θ2 [8, Ch.
8].

The Hadamard equivalence operations on Mψ corresponding to shift and
automorphism action can be easily described. Mψ·a is Hadamard equivalent
to Mψ by first permuting the rows of Mψ with respect to the row index
permutation g 7→ g′ = ag, g ∈ G, obtaining M ′ = [ψ(ag, h)]g,h∈G. The first
row of M ′ is the ath row of Mψ. Then obtain Mψ·a from M ′ by multiplying
every column of M ′ by its first entry. Mψ◦(θ×θ) is Hadamard equivalent to
Mψ by permuting rows and columns under θ.

We complete this subsection by computing Go Aut(G) for G = Zt × Z2
2.

Theorem 1 The group Bund(t) defined by bundle action on Z2 is Bund(t) ∼=
[Zt oZ∗t ]× [Z2

2 o S3]. Its order is 24 t φ(t), where φ is the Euler function.

A generating set for Bund(t) is {x, u, v, hr, r ∈ Z∗t , h23, h243}, where x, u
and v are shift actions and h23 : x 7→ x, u 7→ v, v 7→ u; h243 : x 7→ x, u 7→
uv, v 7→ u and hr : x 7→ xr, u 7→ u, v 7→ v are automorphism actions.

Proof. Since t is odd, Aut(Zt×Z2
2) ∼= Aut(Zt)×Aut(Z2

2) ∼= Z∗t ×S3. Under
the identification 1 ↔ 1, u ↔ 2, v ↔ 3, uv ↔ 4, Aut(Z2

2) is the subgroup
of S4 which fixes 1. Then {Id} × Aut(Z2

2) is generated by h23 and h243.
Thus Bund(t) = [Zt×Z2

2]o [Z∗t ×S3], with the listed generating set. Since
h23(x) = h243(x) = x, Zt commutes with S3 and since hr(u) = u, hr(v) = v,
Z2
2 commutes with Z∗t . Hence Bund(t) ∼= [Zt o Z∗t ]× [Z2

2 o S3]. �
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2.2 Geometric action on cocycle diagrams

The group of cocycles Z2 has a (non minimal, see Section 2 in [3]) generating
set Z = {∂1, . . . , ∂4t, β1, β2, κ} consisting of 4t coboundaries ∂i := ∂δi,
where δi is the Kronecker delta function of the ith-element in G in the
given ordering, and three representative cocycles β1, β2, κ, all of which are
explicitly described in [2, 3]. Every 2-cocycle over G admits a (non unique)
representation as a product of the generators in Z. The identity of Z2 is the
trivial cocycle 1 for which M1 = J4t is the all-ones matrix. All orthogonal
cocycles known so far (cf. [4, 3]) contain the factor ρ = β1β2κ, where

Mρ = Jt ⊗




1 1 1 1
1 −1 1 −1
1 −1 −1 1
1 1 −1 −1


 , (4)

and Jt denotes the t× t matrix all of 1s. It is conjectured this must always
be true [8, Research Problem 37]. For the remainder of the paper, we work
with cocycles of this type. That is, ψ = ∂1

ε1 . . . ∂4t
ε4t ρ, εi ∈ {0, 1}, so

ψ = ∂d1 . . . ∂dk ρ for some d1 < · · · < dk, di ∈ {1, . . . , 4t}.

We describe ψ in the concise notation of [3], which allows one to determine
orthogonality much more easily, but here we adopt a more natural ordering
for clarity. First, partition the set {d1, . . . , dk} according to the equivalence
classes modulo 4, in class order 1, 2, 3, 4 and in descending order within each
class. Denote this ordered set of coboundary indices by

{c1, c2, c3, c4} = {{d1+4j1}, {d2+4j2}, {d3+4j3}, {d4j4}}. (5)

For example, for t = 7, the cocycle ψ = ∂4∂6∂9∂10∂11∂12∂14∂20∂21∂25 ρ is
orthogonal, and is represented as

{c1, c2, c3, c4} = {{25, 21, 9}, {14, 10, 6}, {11}, {20, 12, 4}}. (6)

Second, write the integers 1, . . . , 4t, in descending order, by equivalence
classes modulo 4, as the rows of a 4 × t matrix (treated as a cylinder, i.e.
left and right edges are identified) and mark out only the entries occurring
in {d1, . . . , dk}.

Definition 1 (cf. [3]) The diagram Dψ of ψ = ∂d1 . . . ∂dk ρ is a 4 × t
matrix A, such that aij = × if 4(t − j) + i ∈ {d1, . . . , dk} and aij = −
elsewhere.
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The diagram for the example in (6) above is

A =

∣∣∣∣∣∣∣∣

× × − − × − −
− − − × × × −
− − − − × − −
− − × − × − ×

∣∣∣∣∣∣∣∣
(7)

We now list four types of orthogonality-preserving operations on ψ. We
adopt the notation [m]n for m mod n for brevity.

Definition 2 Let {c1, c2, c3, c4} represent a set of coboundaries. Denote
the columns of its diagram A by (Ct−1, · · · , C0). Let cj + k denote the set
of coboundaries obtained by adding k to each element of cj modulo 4t.

1. The complement C2({c1, c2, c3, c4}) of this set is the set {c1, c2, c3, c4}
where c2 is complement of c2 in the equivalence class 2 modulo 4.

2. Six elementary swapping operations are possible on this set, of which
we list three here:

• s12({c1, c2, c3, c4}) = {c2 − 1, c1 + 1, c3, c4}.
• s23({c1, c2, c3, c4}) = {c1, c3 − 1, c2 + 1, c4}.
• s34({c1, c2, c3, c4}) = {c1, c2, c4 − 1, c3 + 1}.

3. The i-rotation Ti({c1, c2, c3, c4}), 0 ≤ i ≤ t− 1, of this set is the set

{c1 − 4i, c2 − 4i, c3 − 4i, c4 − 4i}.

4. The r-th dilatation Vr({c1, c2, c3, c4}), for r ∈ Z∗t , is the set with
diagram Vr(A), where Vr(Cj) = C[jr]t , 0 ≤ j ≤ t− 1.

Complementation at row 2 is chosen since by Lemma 4 in [3] any other row
complementation reduces to it.

Clearly the order of C2 is 2 and 〈C2〉 ∼= Z2. The swappings each have
order 2 and generate a group ∼= S4. The rotations are generated by T1 so
〈T1〉 ∼= Zt; and 〈Vr, r ∈ Z∗t 〉 ∼= Z∗t .

In terms of diagrams, C2 complements the second row of A; sij swaps rows
corresponding to ci and cj; Ti cyclically shifts columns i places to the right;
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and Vr permutes columns according to multiplication of column index by
the invertible element r (so C0 is always fixed).

For instance, if A is the diagram in (7),

C2(A) =

∣∣∣∣∣∣∣∣

× × − − × − −
× × × − − − ×
− − − − × − −
− − × − × − ×

∣∣∣∣∣∣∣∣
, T2(A) =

∣∣∣∣∣∣∣∣

− − × × − − ×
× − − − − × ×
− − − − − − ×
− × − − × − ×

∣∣∣∣∣∣∣∣
,

s23(A) =

∣∣∣∣∣∣∣∣

× × − − × − −
− − − − × − −
− − − × × × −
− − × − × − ×

∣∣∣∣∣∣∣∣
, V2(A) =

∣∣∣∣∣∣∣∣

− × × × − − −
× − × − × − −
− − × − − − −
− − × − − × ×

∣∣∣∣∣∣∣∣
.

Since Z2 is abelian, we can identify the action of C2 on coboundaries di-
rectly.

Lemma 1 C2(∂d1 . . . ∂dk) = ∂d1 . . . ∂dk
∏t−1
i=0 ∂2+4i. �

We complete this subsection by identifying the group generated by the
operations above.

Theorem 2 The group Diag(t) defined by diagrammatic action on Z2 is
Diag(t) ∼= [Zt o Z∗t ] × S4 × Z2, of order 48 t φ(t). A generating set for
Diag(t) is {T1, Vr, r ∈ Z∗t , s12, s23, s34, C2}.

Proof. The composition V−1r T1Vr acts on column [j]t of A to give column
[(jr − 1)r−1]t = [j − r−1]t, so V−1r T1Vr = Tr−1 . Define a homomorphism
µ : Z∗t → Aut(Zt) by µ(Vr)(T1) = Tr−1 . Consequently, 〈T1,Vr, r ∈ Z∗t 〉 ∼=
Zt oµ Z∗t . Each swapping sij is shown in [3] to commute with rotations
Ti and dilatations Vr, but it permutes rows while rotations and dilatations
permute columns, so 〈s12, s23, s34〉 ∼= S4 does not intersect 〈T1,Vr, r ∈ Z∗t 〉.
All combinations of swapping, rotation and dilatation preserve the total
number of coboundaries but complement C2 does not, so C2 is not in the
subgroup of Diag(t) generated by rotations, swappings and dilatations. It
is shown in [3] that C2 commutes with all other operations. �
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3 Bundle actions as Diagram actions

In this section we express the bundle actions on Z2 in terms of the dia-
grammatic operations and identify the role of the diagrammatic action C2.
Subsection 3.1 is given to proving the following theorem.

Theorem 3 In the notation of Theorems 1 and 2

1. The shift actions by x, u and v, respectively, on ψ, are the diagram-
matic actions T1, s12s34 and s13s24, respectively.

2. The automorphism actions by hr, h23 and h243, respectively, on ψ,
are the diagrammatic actions Vr−1 , C2s23 and s234 := s23s24, respec-
tively.

From Theorem 3 we obtain our main result.

Theorem 4 Bundle action by Bund(t) on Zt × Z2
2-cocyclic matrices cor-

responds to diagrammatic action by the subgroup

Diag(t)∗ = 〈T1, Vr, r ∈ Z∗t , s12s34, s13s24, C2s23, s23s24〉 ∼= (ZtoZ∗t )×S4

of index 2 in Diag(t). The operation C2 is not in Diag(t)∗.

Proof. Define a homomorphism α : Bund(t) � Diag(t) by x 7→ T1, hr 7→
Vr−1 , u 7→ s12s34, v 7→ s13s24, h23 7→ C2s23 and h243 7→ s23s24. By Theo-
rem 2 and Theorem 3, α(〈x, hr, r ∈ Z∗t 〉) = 〈T1,Vr−1 , r ∈ Z∗t 〉 ∼= Zt oZ∗t is
an isomorphism.

Let CS4 be the subgroup of Diag(t) which is generated by the 6 order-
2 elements C2sij ; it is isomorphic to S4. Since C2 and sij commute,
products corresponding to even permutations in S4 will appear unchanged,
while those corresponding to odd permutations in S4 will be multiplied by
C2. Then, from Theorem 1 and Theorem 3, α(Z2

2 o S3) is generated by
C2s12C2s34 = s12s34 and C2s13C2s24 = s13s24 (shift action, isomorphic to
Z2
2), and C2s23 and C2s23C2s24 = s23s24 (automorphism action, isomor-

phic to S3). Direct calculation shows that α maps Z2
2 o S3 onto CS4, so α

is an isomorphism. Thus Diag(t)∗ ∼= (Zt oZ∗t )× S4, and α(Bund(t)) does
not contain C2. �
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3.1 Proof of Theorem 3

Every cocyclic matrix Mψ admits a decomposition as the Hadamard (point-
wise) product of the cocyclic matrices corresponding to the generators.
That is, Mψ = M ε1

∂1
. . .M ε4t

∂4t
Mρ, εi ∈ {0, 1}. Each coboundary matrix M∂i

is symmetric.

Let Mi the matrix obtained from M∂i by negating the ith row and the ith

column. Each Mi is a 4× 4-block back diagonal square matrix of order 4t
(see [2] for details). The first block row has a 4×4 matrix A[i]4 as the d i4eth
block and J4 blocks in the other t− 1 positions. The remaining block rows
are obtained by successively back-cycling the first.

Let R =

(
0 1
1 0

)
, D =

(
−1 1

1 −1

)
so DR =

(
1 −1
−1 1

)
. The

4× 4-blocks A[i]4 depend on the equivalence class of i modulo 4, as follows:

A0 =

(
J2 DR
DR J2

)
, A1 =

(
D J2
J2 D

)
, A2 =

(
DR J2
J2 DR

)
, A3 =

(
J2 D
D J2

)
.

It may be checked that bundle action by each of x, u, v, hr and h243 leaves
Mρ invariant. Only action by h23 alters Mρ. In terms of identifying diagram
actions, it does not matter whether we work with M∂i or Mi so we use the
latter. We determine each bundle action on Mi in the subsections below,
concluding with the action of h23 on Mρ.

3.1.1 Shift action of x

First, we change the order of the elements in the group to g′ = xg, obtaining

(x, 1) < (x, u) < · · · < (xt−1, uv) < (1, 1) < · · · < (1, uv)

that is, we put the first block of 4 elements at the end of the list.

For an individual coboundary ∂i, the reordering takes the first four rows
to the last four, moving the other rows upwards. Now the blocks A[i]4

start from the d i4e − 4th-column, the negated row is the i − 4th row, and
the negated column is still the ith column. Next we perform the pointwise
product of the first row and the others. This first row (the former 5th) has
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two negative entries, at positions i and i − 4, so we have to negate these
columns, getting the coboundary ∂i−4.

So, the action of x on the cocyclic matrix is the 1-rotation T1 on Dψ.

3.1.2 Shift action of u (resp. v)

First, we change the order of the elements in the group to g′ = ug (resp.
g′ = vg), obtaining

(xi, u) < (xi, 1) < (xi, uv) < (xi, v), 0 ≤ i < t, (xi, v) < (xi+1, u), 0 ≤ i < t−1,

or respectively,

(xi, v) < (xi, uv) < (xi, 1) < (xi, u), 0 ≤ i < t, (xi, u) < (xi+1, v) 0 ≤ i < t−1);

that is, we reorder every block of 4 elements by means of the permutation
σ = (12)(34) (resp. σ = (13)(24)).

For an individual coboundary ∂i, the reordering permutes rows in the same
way. This permutation transforms the blocks A[i]4 in the same way, under

(A1A2)(A3A0) (resp. (A1A3)(A2A0)), the negated row is the σ(i)th and
the negated column is the ith. The first row (the former 2nd, resp. 3rd) has
two negative entries, at positions i and σ(i). After negating these columns,
we get the coboundary ∂σ(i).

So, the action of u (resp. v) on the cocyclic matrix is the composition of
swappings s12s34 (resp. s13s24).

3.1.3 Automorphism action of hr

A straightforward algebraic calculation shows that hr(∂k) = Vr−1(∂k), for
each k = xkxukuvkv. Set δ(i, j) = −1 if i = j, and δ(i, j) = 1 otherwise.

On one hand, hr(∂k)(xixuiuviv, xjxujuvjv)

= ∂k(xr·ix mod t uiu viv, xr·jx mod t uju vjv) (8)

= δ(xkxukuvkv, xr·ix mod tuiuviv) δ(xkxukuvkv, xr·jx mod tujuvjv)

δ(xkxukuvkv, xr·(ix+jx) mod tu(iu+ju) mod 2v(iv+jv) mod 2).
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On the other hand, Vr−1(∂k)(xixuiuviv, xjxujuvjv)

= ∂xkx·r−1 mod t uku vkv (xix uiu viv, xjx uju vjv) (9)

= δ(xkx·r
−1 mod t uku vkv, xix uiu viv) δ(xkx·r

−1 mod t uku vkv, xjx uju vjv)

δ(xkx·r
−1 mod t uku vkv, x(ix+jx) mod t u(iu+ju) mod 2 v(iv+jv) mod 2).

Since r is invertible in Zt, these equations are equal term by term. Conse-
quently, hr = Vr−1 , for all r ∈ Z∗t .

3.1.4 Automorphism action of h243

The automorphism h243 shifts the second, third and fourth positions of
the elements in G cyclically to the right, in each block of 4, leaving the
first element unchanged. So the action on the cocycles will be the same
permutation of every second, third and fourth rows and columns in every
block of four.

For an individual coboundary ∂i, this reordering transforms the blocks
A[i]4 in the same way, giving the permutation (A2A3A0), and the negated
row/column remains unchanged if [i]4 is 1 and is interchanged cyclically
between cosets 2, 3 and 0, so we get the coboundary s234(∂i).

Hence, the action of h243 on any cocyclic matrix gives us the operation s234.

3.1.5 Automorphism action of h23

The action of the automorphism h23 on the cocyclic matrix will be the
permutation of second and third rows and columns in every block of four.

For an individual coboundary ∂i, this reordering transforms the blocks
A[i]4 in the same way, giving the permutation (A2A3), and the negated
row/column remains unchanged if [i]4 is 0 or 1 and interchanged between
cosets 2 and 3, so we get the coboundary s23(∂i).

The action of this reordering on matrix Mρ applies the same permutation
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to its rows and columns, so the 4× 4 blocks in (4) become




1 1 1 1
1 −1 −1 1
1 1 −1 −1
1 −1 1 −1


 .

This expression coincides with the pointwise product of the 4 × 4 block
in (4) and the block A2 with the second row and column negated, so the
action of the automorphism h23 on Mρ gives us Mρ ·M∂2 ·M∂6 . . .M∂4t−2

,
the product with all coboundaries whose index is congruent to 2 modulo 4.
Hence, by Lemma 1, h23(∂d1 . . . ∂dk ρ) = s23(∂d1 . . . ∂dk) (

∏t−1
i=0 ∂2+4i) ρ =

C2(s23(∂d1 . . . ∂dk)) ρ.

Hence, the action of h23 on any cocyclic matrix gives us the operation
C2s23.

4 Complement

Next we demonstrate that complementation corresponds to matrix trans-
position and gives the matrix of the transpose cocycle.

Theorem 5 The operation C2 on Mψ coincides with transposition: C2(Mψ) =
(Mψ)> = Mψ> .

Proof. Consider Mψ = M∂d1
. . .M∂dk

Mρ. Since transposition commutes

with pointwise products, M>ψ = M∂d1
. . .M∂dk

M>ρ . By (4)

M>ρ = Jt⊗




1 1 1 1
1 −1 −1 1
1 1 −1 −1
1 −1 1 −1


 =


Jt ⊗




1 1 1 1
1 1 −1 −1
1 −1 1 −1
1 −1 −1 1





 ·Mρ .

By Lemma 1, M>ψ = M∂d1
. . .M∂dk

(
t−1∏

i=0

M∂2+4i

)
Mρ = C2(Mψ), as claimed.

Since G = Zt × Z2
2 is abelian, the transpose ψ> of ψ, with ψ>(g, h) =

ψ(h, g), is a cocycle [8, (6.10)], and (Mψ)> = Mψ> . �
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In summary, we have shown that the diagrammatic operations which can be
implemented for effective calculation of cocyclic Hadamard matrices over
G = Zt × Z2

2, can all be interpreted as compositions of known algebraic
equivalences, with the exception of complementation, which corresponds to
matrix transposition. Ó Catháin [11] has used the algebraic equivalences
together with transposition to determine classes of cocyclic matrices of
order 4t over various G. He then checks any transposes lying in such a class
to partition them into Hadamard inequivalence classes. He coins the term
strong inequivalence for Hadamard matrices H and H ′ for which H ′ is not
Hadamard equivalent to H or to H>. So, this approach using diagrammatic
operations may be computationally effective.

One might wonder if useful diagrams and diagram operations can be found
for cocycles over other groups. This has been the case for cocycles over D4t

[1]. It would also be interesting to investigate whether there are diagram-
matic operations which correspond to Orrick’s switching operations.
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