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Abstract

We give an update on work relating to Horadam sequences that
are generated by a general linear recurrence formula of order two.
This article extends a first ever survey published in early 2013 in this
Bulletin, and includes coverage of a new research area opened up in
recent times.

1 Introduction

1.1 Preamble

Looking back over time we can see that, within the vast and ill-defined
field of applied mathematics, the advent of serious computing power in the
1970s began to accelerate a then already discernible breach between classic
analytical mathematics (concentrating on problems and theories involving
continuous phenomena) and that which tackled discrete concepts and en-
tities. The latter has, over the last sixty years or so, developed its own
characteristics and subject personality—aided en route by increased expo-
sure to software tools/languages—and it is in this broad sphere of what
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is nowadays known as discrete mathematics that the theory of integer se-
quences lies, with many applications now found in number theory and com-
binatorics to name but two areas. Away from these, difference equations
and discrete dynamical systems together define a further fundamental and
wide-ranging field of research promoting discrete models of importance in
the natural sciences, engineering, economics and finance; topics of partic-
ular interest to mathematicians include iteration theory, complex dynam-
ics, chaos theory, topological and combinatorial dynamics, stability theory,
boundary value problems, symmetries and integrable systems, g-difference
equations, ergodic theory, numerical analysis, dynamic equations on time-
scale, and difference-differential equations. The umbrella covering linear
difference equations in particular forms part of this domain of interest, un-
der which resides those of order two whose most general form is the essence
of a Horadam sequence. Difference equations appear, of course, through
strong connections with a variety of observed evolution and other natu-
ral phenomena (continuous time systems are measured in discrete time),
and as such they constitute important modelling descriptors. They also
arise when differential equations are discretised in readiness for numerical
interrogation.

Certain sequences have had more impact than others in grabbing the at-
tention of researchers—some because they display interesting mathematical
features or else possess an impressive array of enumerative interpretations
(or both), others for different reasons. Sitting venerably at the head of
the large class of second order recurrence sequences, and with an accessible
general term closed form (for each characteristic root case), the Horadam
sequence engenders a natural desire to examine its properties and occupies
a position in which breadth and depth are to be found in results cultivated
from its basic definition and from its close connections with ‘near neighbour’
sequences (i.e., part specialisations, or others recoverable from it such as
Fibonacci, Pell, Lucas, Jacobsthal, Tagiuri, Fermat, and so on). A major
element of its appeal surely lies with the fact that it offers scope for analysis
which retains, for the most part, a necessary level of algebraic manageabil-
ity even in its full generality, in addition to which, as we shall see, still
today the sequence has new theoretical and applications aspects of itself
to disclose after half a century of existence and concomitant intellectual
scrutiny.
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1.2 The Horadam Sequence

We recall that, given (arbitrary) initial values wy = a, w; = b, a Horadam
sequence {wn}og = {wn}§® = {wn(a,b;p,q)}§° is defined by the linear
recurrence

Wy = PWp—-1 — qWn—2 (1)

of order 2; it accommodates many well documented sequences of interest
which have initial values a, b and/or parameters p, g fully or part specialised
(they include, as alluded to above, so called ‘primordial’ and ‘fundamental’
ones of particular interest for historical reasons, see Section 2.1 later). Roots
of the characteristic polynomial A\? — p\ + ¢ for (1) give rise to separate
degenerate (p? = 4q) and non-degenerate (p? # 4q) case closed forms for
w, which are standard undergraduate exercises to construct. For p? #
4q (p,q # 0), there are two distinct characteristic roots a(p,q) = (p +

Vp? —49)/2, B(p,q) = (p — Vp* — 4q)/2, with a + = p, a8 = q and, for

n > 0, a closed form

w”(a(p7 q)a B(pv Q)7 a, b)
(b—ap)a™ — (b —aa)p™

a—0 '
For p? = 4q, on the other hand, the characteristic roots co-incide as simply
a(p) = B(p) = p/2 and, for n > 0,

wy(a,b;p, q)

(2)

wn(a,bip,p*/4) = wn(a(p),a,b)
= bna" ' —a(n—1)a™ (3)

1.3 Remit

A survey article [37] was published in the early part of 2013, attempting
to set down a good portion of research carried out on Horadam sequences,
and highlight those behind it, from the point in time when the sequence
was first properly announced as a mathematical construct in the 1960s—
Horadam and one or two contemporaries began the process at the beginning
of the decade but it was two now very familiar 1965 papers of his that are
considered instrumental in formalising the start of a sustained period of
study yet to end, being thus works of major provenance in the genealogy
of the sequence. The nature of investigations reported in [37] displayed a
diverse collection of ideas, analysis and results, since which new papers have
appeared and, not surprisingly, some missed first time around have been
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brought to our attention. In view of these, and some positive responses
we received (including that from Professor Horadam himself, to whom the
article was dedicated), it seems appropriate to add to that survey which was
designed to serve as both a timeline of research and as a resource for the
discrete mathematics community; in doing so, the visibility of the sequence
is maintained and its relative standing underscored.

Mathematical fashions come into vogue, and then become somewhat passé,
at an ever increasing pace—in this they mimic other areas of science and
art. As well as being an update to work on the Horadam sequence this
article is offered in the same vein as its forerunner—as an acknowledgement
of a longevity to the profile of the Horadam sequence within the body of
published mathematical writings and, by association, as a recognition of its
creator Alwyn F. Horadam. In framing both contextually and technically
this area of study, they may combine to act as a useful prospectus for
someone planning to enter the great adventure of reseach within it and so
assist any beginner in choosing a starting point which is both meaningful
and credible.

2 Research Update and Extension

This comprises three subsections—one concerning general topics of inter-
est, another describing works on the subject of (both real and complex)
Horadam sequence periodicity in which the author has been involved over
a recent period of time, and a further one discussing other selected articles
and emergent applications of the sequence; a summary section completes
matters. It should be mentioned that during the review process a not
inconsiderable number of papers looked at were observed to begin by intro-
ducing the notion of a general Horadam sequence but to then immediately
assign values to some parameters and analyse the resulting sequence(s)—
accordingly, many are not suitable for inclusion in any survey article, par-
ticularly those that focus on second order recurrence sequences with little or
no generality to them. There is also an issue surrounding the nature/level
of some works produced in this area, but its discussion would best form
part of a wider one—outwith the article in hand here, certainly—on what
constitutes research.
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2.1 General Topics of Interest

As a first addendum to [37] we note that Bunder [12], as well as giving a
variety of results on Horadam terms (closed forms, recurrences, ratio limits,
and connections between w, (a, b; p, ¢) and terms w, (0, 1;p, q), w,(2, 1;p, q)
from sequences with particular initial values), generalised a number the-
oretic result of D. Gerdemann to give necessary and sufficient conditions
under which—for two consecutive values of n—a finite linear combination of
Horadam terms wy4p, Wntht1,-- ., Wk combines as a single Horadam term
w,, possessing a multiplicative constant which is itself a combination of char-
acteristic root powers. Bunder also features in a 1975 omission [11] from
the previous survey in which, given zg = a, z; = b, on defining a sequence
{zn}§° through the power product recurrence z, = (2p,—1)P(2n—2)? (n > 2)
it is possible to identify an explicit closed form z,, = a@n(1:0:P,=0) pwn(0,1;p,—q)
for the general (n + 1)th term of {z,}5° valid for n > 0. A short inductive
proof (and a generalised version) of Bunder’s original observation is seen in
[36], and [38] offers a new and concise proof from first principles; note that
a three deep version of his non-linear recurrence has a closed form solution
also related to Horadam type sequences (this work is in press).

The works [11, 36, 38] have echoes in a paper by A.G. Shannon. Let r > 1
and consider a set of r recurrence sequences, each of order r, the sth one
of which we denote as

(e, = {ul)}e
= {ul) @ B ul) Py Py P} (4)
For any s =1,...,r, it is defined by the alternating sign linear recurrence
r
- X
W) =3 () Pl nzrl (5)
j=1
and characterised by the 7 initial values ugq, ugg) e ugT,z and the r recur-
rence variables P, 1, P2, ..., P.,. These r-sets of recurrence sequences have

been discussed by Shannon in a useful overview [57] where he inter-relates
some of the major results by, and generalised sequences associated with,
A.F. Horadam, H.C. Williams, A.N. Philippou and E. Lucas. Shannon
introduces such sequence sets in the context of generalised Horadam type
sequences. Interestingly, the imposition of exclusive 0,1 initial sequence
values by him, according to the rule uS”% =0sn (n=1,...,7) involving the
Kroneker Delta function, immediately links them to aforementioned works.

In the r = 2 case, for example, then a pair of sequences {ugr)b}‘fo are defined,
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where s = 1, 2; these are, specifically,

2) § 0o 2 2 2 0

{u§,i}1 = uﬁi(uﬁ{, Ug,%; Py, P2 o) }7
= {wn(lvo;P2,1aP2,2)}(C)>oa

2) § 0o 2 2 2 I

W35 = {udh @), ud Py, Po) s

= {wn(0,1;Po1,P22)}5°, (6)

with sequences {w,(1,0; P21, —P22)}5° and {w,(0,1; Pa1, —P22)}5° cen-
tral to [11, 36, 38].

On a different topic, Yazlik and Taskara obtained in 2012 the spectral
norm and eigenvalues of a circulant matrix comprising so called gener-
alized k-Horadam numbers [62], followed by publication of a paper [64]
which gave the determinant and inverse of such a matrix (the articles each
contain at least one evaluated sum involving these k-Horadam numbers);
related earlier work by the authors and by Kocer et al. was mentioned in
[37], and this work was extended also in [65]. Referring to the Horadam
number as a generalised Fibonacci number, in 2009 Cerin [17] gave for-
mulas for sums of products of two Horadam terms (from distinct sequence
sources) differing in both the initial conditions producing them and position
within their respective sequence. Extensions of these sums—involving the
stand alone inclusion, or added combinations of, multiplier term(s) in the
summand (that is, summing index binomial coefficients/linear polynomi-
als/integer powers)—were also examined, and closed forms found by him.
The interplay between Horadam sequence elements and tri-diagonal matrix
determinants was moved forward [60] by Taskara et al., who related matrix
entries to Horadam numbers and characteristic roots, going on to show that
sequence terms can be represented as the determinant of a tri-diagonal ma-
trix comprising entries taken from the four defining parameters a, b, p, g of a
Horadam sequence. Yazlik and Taskara’s k-Horadam sequence {Hy , }n>0
satisfies the recurrence Hy, ny2 = f(k)Hg nt+1+9(k)Hy, n (with initial values
Hyro = a, Hy1 = b), where f(k),g(k) are scalar valued polynomials. In
a follow on paper [63] to a 2012 publication (cited in [37]), they defined a
negatively subscripted generalised k-Horadam sequence and derived some
relationships between positively and negatively subscripted sequence terms
and both permanents and determinants of tri-diagonal matrices whose en-
tries contain these numbers.

In 2011 Kilig et al. [24] extended work by Melham [48] to investigate certain
sums consisting of products of at most two terms of {w,(a, b;p, —1)}5°, the
results necessarily involving other derivative sequences. The main features
of these articles are (i) the types of alternating and non-alternating sums
chosen for examination, and (ii) a variability in the lower values of summing
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indices; we note that Melham was influenced strongly by a 1981 paper of
D.L. Russell [56] which delivered evaluations of sums of single Horadam
terms, and products and squares of terms, with certain restrictions on the
p, q parameters of (1) (see also the 1969 paper of Iyer [21] which is relevant
here).

Associating a 2 x 2 matrix W(p,q) with the basic Horadam recurrence
equation (1), G. Cerda [15] gave results for properties of powers of W,
making connections with the Binet closed forms of the well known ini-
tial values specific sequences wy, (0, 1;p, ¢) and w, (2, p; p, q) (termed the re-
spective nth generalised Fibonacci and Fibonacci-Lucas sequence, although
known classically as the (fundamental) generalised Fibonacci and (primor-
dial) generalised Lucas sequences. A subsequent publication [16] gave a
host of further identities for the same sequences through the introduction
of a so called generalised Lucas matrix V (p, ¢) for which he also formulated
results and used in combination with W (p, q).

Bunder has developed the work in [11, 36, 38] by considering the natu-
ral order of operations (addition, multiplication, exponentiation, tetration,
and so on) in the context of recurrence sequences, see [13]. Recalling that
the standard linear Horadam recurrence for w,, is based on the sum of two
products (pw,—; and —qw,_2), and that for z, is based on the product
of two exponentiated terms ((z,—1)P and (z,-2)9), he develops the idea of
operationally higher order recursions effecting the exponentiation of expo-
nents and incorporated in a Horadam-style recurrence relation deploying a
function associated with W. Ackermann from the 1920s as a tool to achieve
it. Noting that the closed forms (2),(3) for w,, are representable via simple
arithmetic functions, and z, has a form involving particular initial values
instances of w,,, he shows that in this respect no further sequence general-
isations exist other than in a small number of special cases.

A different area of work, which eluded the authors of [37], is now brought
to attention. In 1993 Terracini [61] investigated the convergence, under
a variety of conditions, of quotients w41 /wy, of neighbouring Horadam
sequence terms, with all four recurrence parameters a,b,p,q said to be-
long to a normed field . Among the topics examined were circumstances
under which the sequence of quotient terms exists and, assuming p # 0,
its analytic convergence properties for K = R (with p?> — 4¢ > 0) and
for K = Z (with p?> — 4¢ # 0). He also showed that in the case q =
+1, £ = R, it is possible to choose suitable initial values a,b such that
the quotients wp41/w, are convergents of the simple continued fraction
for the characteristic root with largest magnitude. This latter result ex-
tended one by P. Kiss [27] (see also [28, 31]) who published a number
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of papers on these themes and related problems of interest. For exam-
ple, a 1991 paper [29] surveyed results concerning the diophantine ap-
proximative property of second order linear recurrences and discussed the
dependence of the characteristic root estimate on characteristic polyno-
mial discriminant (also [33]). Based on some results for Lucas numbers,
Shannon and Horadam studied the kth convergent py/qi of the contin-
ued fraction CF(wy,) = wy, — Qn/[wn — Qn/(wn — Qn/{wn —...})] (where
Qn = (b—apf)(aa — b)(aB)™/(a — B)?), and showed that the sequence of
convergent numerators {py }¢° forms a generalised Fibonacci (i.e, Horadam
type) sequence {pg (1, wn;wn, Qn)}5° [58].

Other theory by Kiss and others is to be found on the distribution of term
ratios [32] (building on Matyds [47]), and on the geometric properties of
both 2D and 3D points whose co-ordinates are successive Horadam terms
[23] (in doing so, furthering earlier work from the 1980s by Horadam [20]
(who, referring to a related 1974 paper by Jaiswal [22], considered the loci of
such points in the z,y plane for some particular p, ¢ values and examined
briefly higher dimensional cases) and by Bergum [10] (who extended the
analysis of Horadam)). For initial values 0,1, Kiss and Métyds—with cer-
tain constraints placed on recurrence parameters—gave an approximation
to 7 in terms of Horadam sequence elements which for large N is correct
to O(1/log(N)) [30].

In a 1979 paper on yet another aspect of the Horadam sequence, Kiss [26]
studied zero terms which enabled him to give upper and lower bounds for
the general term of a particular sequence type—this improved on a similar
(lower) bound by Mignotte [49] and generalised a result by Stewart [59]; a
connected paper from the mid 1960s of relevance, and referenced by Kiss,
is that of Mahler [46].

At this juncture we mention one further paper by Horadam himself, not
featuring in the survey [37]. It is a short 1979 offering [19] in which he
extended separate results by Berzsenyi and Zeilberger from earlier in the
decade so as to evaluate sums of products of Horadam sequence terms. The
work was based on a single recurrence identity, taken from one of his two
seminal 1965 papers, relating elements of the Horadam sequence with those
of the (Fibonacci generalisation) sequence {wy, (1, p;p, ¢)}&°.

Early progress was slow in discrete mathematics for a considerable time,
during which it enjoyed but a relatively small number of active partici-
pants. One reason put forward for this was the inverse relationship be-
tween an abundance of inherently enumerative problems and the number
of standardised theories available for application—this reduced many of the
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former to solution by bespoke methods and feats of technical acrobatics,
so to speak, formed necessarily in an ad hoc manner. Those days are long
gone, and as the general field has developed so have areas such as the theory
of sequences which now boasts a solid foundation of fundamental results to
underpin it (supported by the wonderful On-Line Encyclopaedia of Integer
Sequences web platform)—specific work on the Horadam sequence forms
only a part, of course, but it is not an inconsequential one.

The study of this sequence has, from tentative awakenings in the late 1950s,
passed through the usual phases replicated by no end of other mathemat-
ical spheres, subjects and smaller clusters of individual topics of interest:
beginning with a natural exuberance and creative energy for it (individual
solutions to problems sometimes acting as facilitators of, or pointers to, a
broader analysis/theory waiting to be uncovered), momentum gained from
early results was followed by periods of consolidation and in turn maturity.
Some new, and in many ways surprising, aspects of the Horadam sequence
have, however, even now become manifest at this relatively advanced point
in time, one striking case in point involving the basic notion of cyclicity—it
is this to which we turn next.

2.2 Periodicity

In a deviation from classic types of research, we report on recent attempts
to blaze a combined theoretic-computational trail through what is a zone
of rich and varied periodic properties exhibited by some sequences along
the real line and in the complex plane.

The author has been part of a new and absorbing series of investigations
into Horadam sequence periodicity which is proving to be both fruitful and
informative. In [5] periodic (and some non-periodic) behaviour has been
classified using properties of fundamental governing variables called gen-
erators that absorb the characteristc roots of a recurrence sequence and,
together with its initial conditions, allow a convenient representation of the
sequence for analysis. It is possible to determine all essential types of orbits
in the complex plane, with resulting maps visually pleasing and technically
instructive. Further examples of closed path geometric configurations—
such as polygons and bipartite graphs—are presented in [8], and together
these papers demonstrate a surprising variety in the nature of cyclic se-
quence patterns. The question of precisely how many paths of fixed period
exist is one that has also been addressed [6], where the number—denoted
for period k as the enumerative function Hp(k)—is found to increase with
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k>1as1,1,3,5,10,11,21,22,33,34,55,46,78,. .., producing a first enu-
merative context for the O.E.I.S. Sequence No. A102309 registered as long
ago as 2005 as a mere abstract mathematical construct. Two equivalent
formulas are proposed for the sequence Hp(k) which each involve Euler’s
totient function (one counts relatively prime primitive generators to iden-
tify all possible orbits, while the other counts divisors of the period), and an
evaluation of the lower and upper bounds of sequence terms is also made.

We should point out that all of the theory developed around Horadam
periodicity was in fact motivated by three non-complex sequences of type
{wn (1, v/s;4/5,1)}§° which, for s = 1,2,3, have respective period 6,8, 12
and are shown to arise from evaluations of so called Catalan polynomi-
als [39]. These polynomials feature in another, and somewhat different,
study [41] where the idea of Horadam periodicity is pursued using a matrix
based approach through which conditions for cyclicity are formulated and
verified. Both non-degenerate and degenerate characteristic root cases are
discussed as the methodology is brought to bear on the problem, with peri-
odic behaviour shown to be centred around the notion of an identity triplet
[p,q, 8] (p,q are the characterising parameters of (1), and ¢ the sequence
period). The underlying ideas are developed, and lead to a hitherto unseen
phenomenon termed ‘masked’ periodicity discussed separately in relation
to the non-degenerate roots case [40]. What is meant by this is that a fully
general (arbitrary initial values) Horadam sequence can mask, or hide, one
or two special case (specific initial values) sequence(s) of smaller period.
The salient factors enabling this to occur are determined, through which
it becomes evident that the underlying causes are dictated by the defining
property of a primitive root of unity; this is confirmed using the generator
approach [7], where the notion of masking is shown to extend to higher
order linear recurrence sequences and an order three example given accord-
ingly (it might also be mentioned that using a new generating function
method—which also addresses both characteristic root cases—we are able
to obtain additional results which inform further the occurrences of masking
and recover other previously noted periodic sequence behaviours; the work
will hopefully be published in the not too distant future). An observation
made in [41] reports on a simple procedure to generate sequences with any
chosen period, the article [43] detailing how indeed this works in practice
and giving some illustrative instances; Catalan polynomials are once more
intrinsic to what is a simple algorithm to produce self-repeating sequences
that is rather unique in kind.

It is well known that the ability to pick out, a priori, those critical in-

fluences underpinning the behaviour/dynamics of a system or model is a
real talent in mathematics and other scientific disciplines. Sometimes, how-
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ever, they emerge as a product of the particular approach taken towards
analysis, and this applies here to an extent—from the combined papers
[5, 6, 7, 8, 39, 40, 41, 43] we are in a position to understand the inherent
cyclic potential of a Horadam sequence from more than one mathematical
stance. It remains, though, an open question as to how the generator driven
perspective of periodicity might be fully unified with that of its alternative
conceptualisation through the theory of matrices, and is one for which more
study beckons.

2.3 Other Works and Applications

In Section 3 of [40] the authors have given an overview of appearances by the
2x2 matrix A(p,q) = (f _Oq) (characterised by the Horadam recurrence pa-
rameters p, ¢) that frames the forerunner study [41]. While the majority of
references cited therein deal with the aforementioned fundamental and pri-
mordial sequences, one is pertinent to us here: Rosenbaum [55] used a ma-
trix approach in which he employed A (p, —¢q) to formulate the degenerate
and non-degenerate characteristic root case closed forms of w,, (a, b; p, —q)
described by (2),(3) with characteristic roots a(p, —q), 5(p, —¢) modified
accordingly. We cannot omit to mention, too, as a point of completeness,
that the closed forms (2),(3)—on which so much work has been based over
the years—were derived in a novel, and apparently little known, fashion
by Niven and Zuckerman in 1960 [50]; the methodology adopted is alluded
to in [38], and it seems that the only formal reference to their technique
before then was made by R.G. Buschman [14] as long ago as 1963 (this is
surprising, as the technique might have application to the solution of linear
recursions of order three or more if it lends itself to extension). For those
with interest, we note that using the terminology ‘generalised Fibonacci se-
quence’ as a synonym for Horadam sequence, Austin and Austin—writing
at a level they describe as educational mathematics—showed how, based on
the essential Binet type expression for a sequence general term closed form,
one can generate many order two integer sequences and find the associated
recurrence formulas describing them [1].

Non-linear difference equations have been the subject of much attention
over the last couple of decades or so, with solution analysis of low order
rational difference equations used as prototypes for the study of higher or-
der systems (whose forms are many and varied). Characteristics such as
attractivity, boundedness, stability and periodicity have caught the inter-
est of many researchers, noting that the role of a linear order two Ho-
radam type recursion as the linearised version of a difference equation
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Znt1 = F(xp,2n—1) for a rational non-linear function F' is not new, and
facilitates the study of local solution stability about an equilibrium point.
On this theme Halim and Bayram [18] have, for instance, considered the
difference equation z,41 = q/(p + Tn—r), determining its stability proper-
ties and asymptotic behaviours based on the fact that its solution can be
expressed in terms of elements from the (fundamental) Horadam sequence
{wn(0,1;p,—q)}5°; among the results given, it is shown that the equa-
tion has a unique convergent equilibruim point F = %(fp +p?+4q) €
R*™ = (0,00) which is asymptotically stable both locally and (since it is a
global attractor) globally. A related paper is that of Bacani and Rabago
[3] who have studied the pair of difference equations z,+1 = ¢/[p + (z,)"],
Yn+1 = q/[—p + (yn)?], giving interesting results on their solutions in the
case v = 1 and some observations on solutions for v > 1—all framed by
the same sequence {w,(0,1;p,—¢)}5°. It is noted (Theorem 15 therein)
that for v > ¢ = p+ 1 the difference equation for x,, has a prime period 2
solution of form {...,q/p,q/[p + (¢/p)"], ...}, with similar results existing
(Theorems 22 and 23) for the y,, equation.

In a deviation away from this area, the sequence {w,(0,1;p, —¢)}5° un-
derpins much of the work of Rabago [53] in his article on homogeneous
second order linear recurrence differential equations with period k& (see also
his results on periodic functions [54], where this specific sequence occurs
once more). In a rather unusual 2012 offering, Rabago [52] gave a formula
to generate intermediate (or ‘missing’) terms from a finite string of Ho-
radam terms wy,(a,c;p, —¢) in which only the first element wy = a and
the last in the string are specified; denoting the final prescribed term
as b, the author shows that the key result is the relation wy = ¢ =
[b4+w,(0,1; p, —q)aq]/wn+1(0,1; p, —q). Another nice quirk of mathematics
is that any sequence {z, }§° satisfying the arithmetic-geometric recurrence
relation 2,41 = ax, + (a + d)r2,_1 + (@ + 2d)r?2,_o + - + (@ + nd)r"x
(with d, r the common difference and common ratio of the usual arithmetic
and geometric progressions) can be shown to satisfy a reduced order two
Horadam type recursion [2].

Two essential properties of the Horadam sequence—being the linearity of its
governing recurrence equation, and the resulting availability of closed form
general term formulas—are pleasing ones to motivate theoretical study.
Application is a topic whose potential itself shows much promise, and an
example can be seen in [4]. Uniformly distributed pseudo-random number
generators are commonly employed in numerical algorithms and simula-
tions. In the article a pseudo-random number generation algorithm is based
on the geometric properties of a complex Horadam sequence, and for certain
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model parameters the sequence exhibits uniformity in the distribution of
arguments. This feature was exploited to design a pseudo-random number
generator which was evaluated using Monte Carlo 7 estimations and found
to perform comparatively favourably with ones in standard usage such as
the Multiplicative Lagged Fibonacci and the ‘twister’ Mersenne generators
(see also [9] which mentions this work and consolidates that of [8]).

In addition to the creation of pseudo-random number generators, recur-
rence sequences of given length have found applications in the study of
multi-phase signals for different radio electronic systems. It is anticipated
that Horadam sequences with long periods will provide insights into the
problem of how best to produce an area covering (in some defined sense)
that consists of a multitude of Horadam sequence terms; in this context,
the computational complexity of efficiently generating terms in high volume
becomes interesting, with tractability potentially influenced by the use of
parallel processors. The ability to create a large number of recurrence se-
quences over finite fields might also offer up applications in cryptography.
Geometric patterns related to the Fibonacci numbers have been linked to
optimal solutions for the layout of mirrors in a concentrated solar power
plant, so that, given variability allowed in the four characterising parame-
ters of (1), the study of Horadam sequences may provide a deeper under-
standing of how plants such as the chamomile or sunflower optimise the
patterns of their flowers—this in turn could lead to new data distribution
algorithms, the development of novel data search techniques, or the design
of structures with certain properties optimised.

Applications (and the potential for them) aside, new theoretical features
of Horadam sequences continue to emerge. The classic geometric mean
sequence has—drawing on the result of Bunder in [11] referred to earlier
(Section 2.1)—delivered new identities which connect Jacobsthal numbers
with parameterised familes of Horadam numbers [45]; they are established
first by inference, and then proven independently. In the balanced power
(that is, p+q = 1, ¢ # —1 (or p # 2)) case of Bunder’s recurrence,
the functional exponent of a scalar multiplier introduced to the defining
recurrence equation shows dependency on a Horadam sequence (as well
as that exhibited in the powers of both initial sequence values a,b) [42].
In [44] sequence based closed form entries of an exponentiated 2-square
matrix offer the general term of a particular family type of polynomials
(each family part of a larger class) in terms of two separate, but equivalent,
generalised Fibonacci polynomials that are each seen to be derived from
functional versions of a Horadam recursion.

We repeat again that little attention has been paid to part specialised Ho-
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radam sequences, other than to mention some works involving the (funda-
mental) generalised Fibonacci and (primordial) generalised Lucas sequences
(these being recognised as important ones), for to do so would have made
the task much bigger than it already is—even as this article goes to press,
other papers are manifesting themselves as relevant to its remit (such as
that on computing sums of products of binary sequences [25] and on the
solutions nature of a certain diophantine equation [51]).

3 Summary

One of the defining features of mathematics, as a subject, is that some
areas have managed to successfully steer a path between the pragmatists
and abstracters who in extreme cases reside at opposite ends of the research
spectrum. This is due, in the main, to their appeal to both types of mindset,
and while falling under a broad applied classification it would seem that
interest in Horadam sequences has come mostly from those slightly on the
purer side of the great mathematical divide.! An undeniably important
factor in the advance of science is the discerning of patterns and regularities
in nature, so that more and more phenomena can be subsumed into general
categories and laws. The same can be said of similar observations made in
many mathematical fields, and there must be plenty of examples in which
analysis of particular second order linear recurrence sequences has fuelled
deeper theory formulated for the more general Horadam sequence. There
is, of course, clear evidence to show that a reverse path is possible whereby
results found for the Horadam sequence have immediate consequences for,
and application to, a plethora of special case instances; through this two-
way process one can easily appreciate its attraction.

We have seen built up a body of literature that has evolved steadily, and
collectively offers an impressive array of results based on decades of en-
deavour exploiting the rather giving nature of the sequence (there is some
variability in quality across the totality of outputs, as suggested at the be-
ginning of Section 2, but this is to be expected). That contributions show
no sign of stalling merits their continued documentation here as a source
of encouragement to study and develop the theory and applications of Ho-
radam sequences still further. As this article is drawn to a close there is,

1We should mention that the notion of modulo periodicity has also been examined
but—as this seemed to move away from the original ideas of Horadam and associates in
the early 1960s, and so the profile of work which followed in consequence—it was not
included in the survey [37], nor is it addressed here.
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perhaps, a general point to be made. Academic surveys and expositions
which offer technical appraisal—even when comprehensive in scope and
well written—too often attract little regard for some reason and are used
blithely for convenience as part of other types of publication held as sim-
ply more worthwhile; this is both unfortunate and unfair (the author has
written on the issue at some length in [34]). If not combining as something
which is close to a definitive account, it is nevertheless hoped that together
this work and its precursor [37] will at least stand as an informative and
panoptic record of activity to be owned by the current community of math-
ematicians, and in turn bequeathed to a future generation of analysts for
whom a productive time still awaits as they tease out more insights into
the acclaimed Horadam sequence—certainly, one would hope that once ver-
dant pastures of discovery are not yet exhausted, and remain fertile terra
incognita for the observant and willing mathematician journeying through
the land of linear recurrence sequences.

Dedication

This article is dedicated to the memory of Alwyn F. Horadam, who passed
away in July 2016. A personal tribute to the man and his sequence was
published in this journal by the present author in [35]; note that the afore-
mentioned (Section 2.3) closed form Horadam sequence term formulations
of Niven and Zuckerman [50] are set out in an appendix therein, to which
the interested reader is directed.

4 Acknowledgements

The author gratefully acknowledges the help of University of Derby Li-
brary staff Tim Peacock, Deborah Bamford and Gurdev Toora in assisting
with the acquisition of various works referenced. Thanks, too, are due to
an anonymous referee for encouraging remarks about the work and the
manuscript submitted, coupled with suggestions made for some works to
be cited.

113



References

[1]

2]

[5]

[6]

[7]

8]

[9]

H. W. Austin and J. W. Austin, Binet formulas for recursive integer
sequences, J. Math. Sci. Math. Ed., 4 (2004), 1-8.

J. B. Bacani and J. F. T. Rabago, On linear recursive sequences with
coefficients in arithmetic-geometric progressions, Appl. Math. Sci., 9
(2015), 2595-2607.

J. B. Bacani and J. F. T. Rabago, On two nonlinear difference equa-
tions, Dyn. Cont. Disc. Imp. Sys. (Series A), to appear.

O. D. Bagdasar and M. Chen, A Horadam-based pseudo-random num-
ber generator, Proc. U.K. Sim-A.M.S.S. 16th Int. Conf. Mod. Sim.,
Cambridge, U.K. (2014), 226-230.

O. D. Bagdasar and P. J. Larcombe, On the characterization of peri-
odic complex Horadam sequences, Fib. Quart., 51 (2013), 28-37.

O. D. Bagdasar and P. J. Larcombe, On the number of complex Ho-
radam sequences with a fixed period, Fib. Quart., 51 (2013), 339-347.

O. D. Bagdasar and P. J. Larcombe, On the masked periodicity of Ho-
radam sequences: a generator-based approach, Fib. Quart., to appear.

O. Bagdasar, P. J. Larcombe and A. Anjum, Particular orbits of peri-
odic Horadam sequences, Oct. Math. Mag., 21 (2013), 87-98.

O. D. Bagdasar, P. J. Larcombe and A. Anjum, On the structure of
periodic complex Horadam orbits, Carp. J. Math., 32 (2016), 29-36.

G. E. Bergum, Addenda to geometry of a generalized Simson’s formula,
Fib. Quart., 22 (1984), 22-28.

M. W. Bunder, Products and powers, Fib. Quart., 13 (1975), 279.

M. W. Bunder, Horadam functions and powers of irrationals, Fib.
Quart., 50 (2012), 304-312.

M. W. Bunder, Products and powers, powers and exponentiations ...,
Fib. Quart., 52 (2014), 172-174.

R. G. Buschman, Fibonacci numbers, Chebyshev polynomials general-
izations and difference equations, Fib. Quart., 1(4) (1963), 1-7 & 19.
[The first (1963) volume of The Fibonacci Quarterly was the only one
whose issues—published in four parts (February, April, October and
December)—had page numbering beginning at p.1 for each.]

114



[15]

[16]

[17]

[18]

G. Cerda, Matrix methods in Horadam sequences, Bol. Mat., 19
(2012), 97-106.

G. Cerda-Morales, On generalized Fibonacci and Lucas numbers by
matrix methods, Hac. J. Math. Stat., 42 (2013), 173-179.

7. Cerin, On sums of products of Horadam numbers, Kyung. Math. J.,
49 (2009), 483-492.

Y. Halim and M. Bayram, On the solutions of a higher-order difference
equation in terms of generalized Fibonacci sequences, Math. Meth.
Appl. Sci., 39 (2016), 2974-2982.

A. F. Horadam, Sums of products: an extension, Fib. Quart., 17
(1979), 248-250.

A. F. Horadam, Geometry of a generalized Simson’s formula, Fib.
Quart., 20 (1982), 164-168.

M. R. Iyer, Sums involving Fibonacci numbers, Fib. Quart., 7 (1969),
92-98 (& Errata, ibid., 8 (1970), 530).

D. V. Jaiswal, Some geometrical properties of the generalized Fi-
bonacci sequence, Fib. Quart., 12 (1974), 67-70.

J. P. Jones and P. Kiss, On points whose coordinates are terms of a
linear recurrence, Fib. Quart., 31 (1993), 239-245.

E. Kilig, N. Omiir and Y. T. Ulutag, Some finite sums involving gener-
alized Fibonacci and Lucas numbers, Dis. Dyn. Nat. Soc., 2011 (2011),
Art. I.D. No. 284261, 11pp.

E. Kilig and P. Stanica, General approach in computing sums of prod-
ucts of binary sequences, Hacett. J. Math. Stat., 42 (2013), 1-7.

P. Kiss, Zero terms in second order linear recurrences, Math. Sem.
Notes (Koebe University), 7 (1979), 145-152.

P. Kiss, A diophantine approximative property of the second order
linear recurrences, Period. Math. Hung., 11 (1980), 281-287.

P. Kiss, On second order recurrences and continued fractions, Bull.
Malay. Math. Soc. (Series 2), 5 (1982), 33-41.

P. Kiss, Results on the ratios of the terms of second order linear re-
currences, Math. Slov., 41 (1991), 257-260.

P. Kiss and F. Métyas, An asymptotic formula for 7, J. Num. Theory,
31 (1989), 255-2509.

115



[31]

[32]

[33]

P. Kiss and Z. Sinka, On the ratios of the terms of second order linear
recurrences, Period. Math. Hung., 23 (1991), 139-143.

P. Kiss and R. F. Tichy, Distribution of the ratios of the terms of
a second order linear recurrence, Indag. Math. (Series A), 89 (1986),
79-86.

P. Kiss and R. F. Tichy, A discrepancy problem with applications to
linear recurrences. I & II, Proc. Japan Acad. (Series A), 65 (1989),
135-138 & 191-194.

P. J. Larcombe, A short monograph on exposition and the emotive
nature of research and publishing, Math. Today, 52 (2016), 86-90.

P. J. Larcombe, Alwyn Francis Horadam, 1923-2016: a personal trib-
ute to the man and his sequence, Bull. I.C.A., 78 (2016), 93-107.

P. J. Larcombe and O. D. Bagdasar, On a result of Bunder involv-
ing Horadam sequences: a proof and generalization, Fib. Quart., 51
(2013), 174-176.

P. J. Larcombe, O. D. Bagdasar and E. J. Fennessey, Horadam se-
quences: a survey, Bull. I.C.A., 67 (2013), 49-72.

P. J. Larcombe, O. D. Bagdasar and E. J. Fennessey, On a result of
Bunder involving Horadam sequences: a new proof, Fib. Quart., 52
(2014), 175-177.

P. J. Larcombe and E. J. Fennessey, On cyclicity and density of some
Catalan polynomial sequences, Bull. I.C.A., 71 (2014), 87-93.

P. J. Larcombe and E. J. Fennessey, On the phenomenon of masked
periodic Horadam sequences, Util. Math., 96 (2015), 111-123.

P. J. Larcombe and E. J. Fennessey, On Horadam sequence periodicity:
a new approach, Bull. I.C.A., 73 (2015), 98-120.

P. J. Larcombe and E. J. Fennessey, On a scaled balanced-power prod-
uct recurrence, Fib. Quart., 54 (2016), 242-246.

P. J. Larcombe and E. J. Fennessey, A polynomial based construction
of periodic Horadam sequences, Util. Math., 99 (2016), 231-239.

P. J. Larcombe and E. J. Fennessey, On sequence-based closed form
entries for an exponentiated general 2 X 2 matrix: a re-formulation and
an application, Bull. I.C.A., 79 (2017), 82-94.

116



[45]

[46]

[47]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

P. J. Larcombe and J. F. T. Rabago, On the Jacobsthal, Horadam and
geometric mean sequences, Bull. .C.A., 76 (2016), 117-126.

K. Mahler, A remark on recursive sequences, J. Math. Sci., 1 (1966),
12-17.

F. Matyas, On the quotients of the elements of linear recursive se-
quences of second order (in Hungarian), Mat. Lapok, 27 (1976-79),
379-389.

R. S. Melham, Certain classes of finite sums that involve generalized
Fibonacci and Lucas numbers, Fib. Quart., 42 (2004), 47-54.

M. Mignotte, A note on linear recursive sequences, J. Austr. Math.
Soc. (Series A), 20 (1975), 242-244.

I. Niven and H. S. Zuckerman, An introduction to the theory of num-
bers, Wiley, New York, U.S.A. (1960).

A. Petho, Perfect powers in second order linear recurrences, J. Num.
Theory, 15 (1982), 5-13.

J. F. T. Rabago, On solving the second-order linear recurrence se-
quence, Int. J. Math. Sci. Comp., 2 (2012), 1-2.

J. F. T. Rabago, On second-order linear recurrent homogeneous dif-
ferential equations with period k, Hacett. J. Math. Stat., 43 (2014),
923-933.

J. F. T. Rabago, On second-order linear recurrent functions with pe-
riod k£ and proofs to two conjectures of Sroysang, Hacett. J. Math.
Stat., 45 (2016), 429-446.

R. A. Rosenbaum, An application of matrices to linear recursion rela-
tions, Amer. Math. Month., 66 (1959), 792-793.

D. L. Russell, Summation of second-order recurrence terms and their
squares, Fib. Quart., 19 (1981), 336-340.

A. G. Shannon, The sequences of Horadam, Williams and Philippou
as generalized Lucas sequences, Adv. Stud. Cont. Math., 23 (2013),
525-532.

A. G. Shannon and A. F. Horadam, Generalized Fibonacci continued
fractions, Fib. Quart., 26 (1988), 219-223.

C. L. Stewart, Primitive divisors of Lucas and Lehmer numbers, in A.
Baker and D. W. Masser (Eds.), Transcendence theory: advances and
applications, Academic Press, London, U.K. (1977), 79-92.

117



[60]

[61]

[62]

[63]

N. Taskara, K. Uslu, Y. Yazlik and N. Yilmaz, The construction of
Horadam numbers in terms of the determinant of tridiagonal matri-
ces, Proc. 9th Int. Conf. Num. Anal. Appl. Math. (A.LP. Conf. Proc.
No. 1389), Halkidiki, Greece (2011), 367-370.

L. Terracini, On the convergence of quotients of some recursive se-
quences, in G. E. Bergum, A. N. Philippou and A. F. Horadam
(Eds.), Applications of Fibonacci numbers (Vol. 5), Kluwer, Dordrecht,
Netherlands (1993), 547-560.

Y. Yazlik and N. Taskara, Spectral norm, eigenvalues and determinant
of circulant matrix involving the generalized k-Horadam numbers, Ars
Comb., 104 (2012), 505-512.

Y. Yazlik and N. Taskara, On the negatively and positively subscripted
generalized k-Horadam sequences and their matrix presentations, Wid.
Appl. Sci. J., 27 (2013), 1561-1565.

Y. Yazlik and N. Taskara, On the inverse of circulant matrix via gener-
alized k-Horadam numbers, Appl. Math. Comp., 223 (2013), 191-196.

Y. Yazlik and N. Taskara, On the norms of an r-circulant matrix with
the generalized k-Horadam numbers, J. Ineq. Appl., 394 (2013), 8pp.

118



