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A New Method for Constructing Circuit Codes

Kevin M. Byrnes ∗

Abstract

Circuit codes are cycles in the graph of the n dimensional hy-
percube. They are theoretically and practically important, as cir-
cuit codes can be used as error correcting codes. A circuit code is
characterized by three parameters: its dimension, its spread (which
determines how many errors it can detect), and its length (which
determines its accuracy). We present a new method for constructing
a circuit code of spread k + 1 from a circuit code of spread k. This
method leads to record code lengths for 18 circuit codes of spread
k = 7 and 8 in dimension 22 ≤ n ≤ 30. We also derive a new lower
bound on the length of circuit codes of spread 4, which improves
upon bound suggested by Singleton for dimension n ≥ 86.

Keywords:Circuit Code, Snake in the Box, Coil in the Box, k-Coil, Error
Correcting Code

1 Introduction

Let I(n) denote the graph of the n dimensional hypercube, that is the
graph on 2n vertices where each vertex corresponds to a binary vector of
length n, and two vertices x and x′ are adjacent if their binary vectors
differ in exactly one position. For any subgraph G of I(n) and any two
vertices x, x′ ∈ G we define the distance dG(x, x′) as the minimum number
of edges in G needed to travel from x to x′. If there is no path in G from
x to x′ then dG(x, x′) =∞. Observe that dI(n)(x, x

′) equals the number of
positions where the binary vectors corresponding to x and x′ differ.
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A circuit C is a graph consisting of a sequence of distinct vertices (x1, . . . , xN )
where each pair of cyclically consecutive vertices is adjacent, and the edges
between these consecutive vertices. For brevity we will often say that C =
(x1, . . . , xN ) is a circuit, in which case the edges are implied. For any pair
of vertices xi, xj in a circuit C = (x1, . . . , xN ) with i < j there are exactly
two paths between xi and xj in C, traversing the edges: xixi+1, . . . , xj−1xj
and xjxj+1, . . . , xN−1xN , xNx1, . . . , xi−1xi respectively. An n-dimensional
code is a subgraph of I(n).

Definition 1.1. A subgraph C of I(n) is a circuit code of spread k
(an (n, k) circuit code) if:

1. C is a circuit.

2. If x and x′ are vertices of C with dI(n)(x, x
′) < k then

dC(x, x′) = dI(n)(x, x
′).

An equivalent characterization of circuit codes was proven by Klee.

Lemma 1.2 (Klee [14] Lemma 2). An n-dimensional circuit code C of
length N ≥ 2k has spread k if and only if for all vertices x, x′ ∈ C,
dC(x, x′) ≥ k ⇒ dI(n)(x, x

′) ≥ k.

Finding long circuit codes is practically and theoretically important, since
circuit codes can be used as error-correcting codes [12]. Circuit codes of
spread 1 are known as Gray codes [8], and circuit codes of spread 2 are
known as coils or snakes in the box (however, current terminology uses
“snake” to refer to an open path) [12]. Both of these types of circuit
codes have been extensively studied. Let K(n, k) denote the maximum
length of an (n, k) circuit code, it is well-known that K(n, 1) = 2n and
K(n, 2) ≥ 77

2562n [1]. In contrast, circuit codes of spread k ≥ 3 are less-
well understood and exact values for K(n, k) are generally only known for
n ≤ 17 and k ≤ 7 and some special (n, k) pairs.

In this note we present a simple new construction for generating a circuit
code of spread k+ 1 from a circuit code of spread k. This allows the better
studied codes of smaller spreads to be leveraged to create codes of larger
spreads, and results in 18 new records for codes of spread 7 and 8, and in
dimension 22 ≤ n ≤ 30. Specifically, we prove the following theorem.

Theorem 1.3. Let C be an (n, k) circuit code with length N ≥ 2(k + 1).
Then there exists an (n+ r, k + 1) circuit code C ′ with length
N ′ = N + 2q, where q = d N

2(k+1)e and r = dlog2 qe+ 1.
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A useful application of Theorem 1.3 is a new lower bound on K(n, 4) which
improves upon the lower bound suggested by Singleton [20] when n ≥ 86.

Theorem 1.4. For n ≥ 6,K(b1.53nc, 4) ≥ 40 · 3(n−8)/3, and hence
K(n, 4) ≥ 40 · 3(b.6535nc−8)/3.

2 Previous Constructions and Bounds

We begin by surveying the theoretical lower bounds for K(n, k) and some
of the most important constructions used in their derivation. Exact values
for K(n, k) are known for only a few special cases, given in Table 1.

Table 1: Exact values for K(n, k).
K(n, k) = 2n for n < b 3k2 c+ 2 (See [20])
K(b 3k2 c+ 2, k) = 4k + 6 for k even (See [7])
K(b 3k2 c+ 2, k) = 4k + 4 for k odd (See [7])
K(b 3k2 c+ 3, k) = 4k + 8 for k odd ≥ 9 (See [7])

The following constructions apply for a wide variety of (n, k) combinations.
Here we state the “result” of each construction and refer the reader to the
original paper for the precise construction details.

Construction 2.1 (Singleton [20]). Let C be an (n, k) circuit code with
length N . Then there exists an (n+ 1, k) circuit code C ′ with length N ′ =
N + 2bN2k c.
Construction 2.2 (Singleton [20]). Let C be an (n, k) circuit code with
length N , and k ≥ 3. Then there exists an (n + 2, k) circuit code C ′ with
length N ′ = N + 4b N

2(k−1)c.
Construction 2.3 (Singleton [20]). Let C be an (n, k) circuit code with
length N for k ≥ 3 and k odd. Then there exists an (n + k+1

2 , k) circuit

code C ′ with length N ′ = N + (k + 1)b N
k+1c.

Construction 2.4 (Singleton [20]). Let C be an (n, k) circuit code with
length N for k ≥ 2 and k even. Then there exists an (n + k+2

2 , k) circuit

code C ′ with length N ′ = N + (k + 2)b N
k+1c.

Construction 2.5 (Deimer [5]). Let C be an (n + 1, k + 1) circuit code
with length N . Then there exists an (n, k) circuit code C ′ with length N ′ ≥
N − b N

n+1c.
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Construction 2.6 (Klee [14]). Let k be even and let 2 ≤ n1 ≤ n2. Suppose
C1 is an (n1, k − 1) circuit code of length N1 ≥ 2k where N1 is divisible by
k, and suppose C2 is an (n2, k) circuit code with length N2 ≥ 2k. If k = 2
there exists an (n1 + n2, k) circuit code C ′ of length N ′ = N1N2

k . If k ≥ 4

there exists an (n1 + n2 + 1, k) circuit code C ′ of length N ′ = N1(N2+2)
k .

These constructions result in the following lower bounds for
K(n, k), k ≥ 3.

Table 2: Lower bounds for K(n, k).
K(n, 2) ≥ 77

256
2n (See [1])

K(n, 3) ≥ 32 · 3(n−8)/3 for n ≥ 6 (See [20])

K(n, k) ≥ (k + 1)2b2n/(k+1)c−1 for k odd and b 2n
k+1
c ≥ 2 (See [20])

K(n, 4) � δn for 0 < δ < 31/3 (See [14])

K(n, k) � δn for k even and 0 < δ < 41/k (See [14])

K(n, k) & 4n/(k+1) for odd k > 3 (See [14])

The last three inequalities in Table 2 are asymptotic bounds, where
f(n) . g(n) means lim infn→∞ g(n)/f(n) > 0, and f(n) ≺ g(n) means
limn→∞ g(n)/f(n) =∞.

In addition to the previous constructions, the “necklace” construction of
Paterson and Tuliani has been particularly important, leading to many new
records for K(n, k) [18]. However, identifying arrangements of necklaces
satisfying the conditions of that construction required a backtrack search,
limiting the dimensions examined to n ≤ 17. The conditions placed upon
the arrangement of necklaces also become more restrictive as k increases,
and for the range of dimensions n examined, no suitable arrangements for
codes of spread k ≥ 7 were found [18].

For n ≤ 17 and k ≤ 7 many of the current records for K(n, k) (reported in
Table 3) have been set by computational methods, e.g. exhaustive search
[15, 11], pruning based approaches [21, 16], genetic algorithms [19, 3, 6, 13],
or other computational approaches [4, 22, 2].
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3 Generating an (n + r, k + 1) Circuit Code from an (n, k)

Circuit Code

3.1 Transition Sequences

Each vertex of I(n) corresponds to a binary vector of length n, so for
every circuit C = (x1, . . . , xN ) of I(n) we can define a transition sequence
T = (τ1, . . . , τN ) where τi denotes the position in which xi and xi+1 (or
xN and x1) differ. Using the convention that x1 = ~0 for any circuit, we see
that the transition sequence corresponds uniquely to the edges in C. Since
I(n) is bipartite this implies |T | is even [10].

Define a segment of a sequence T = (τ1, . . . , τN ) as a subsequence of
cyclically consecutive elements. For any xi, xj ∈ C = (x1, . . . , xN ) with
i < j there are exactly two segments in T between xi and xj , correspond-
ing to the two paths in C traversing the edges: xixi+1, . . . , xj−1xj and
xjxj+1, . . . , xN−1xN , xNx1, . . . , xi−1xi. These segments are
(τi, τi+1, . . . , τj−1) and (τj , τj+1, . . . , τN , τ1, . . . , τi−1). If i = j then the two
segments are ∅ and T . These segments are called complements because
they partition T . If T̂ is a segment in T , its complement is denoted T̂ {,
and (T̂ {){ = T̂ .

The set of transition elements {t1, . . . , tm} (m ≤ n) of T are the unique
elements of T . When T is the transition sequence of a circuit each ti ∈
{t1, . . . , tm} must appear in T an even number of times. A useful result to
which we shall refer is the following.

Lemma 3.1 (Singleton [20]). Let C be a circuit code of spread k and length
N ≥ 2(k + 1) with corresponding transition sequence T . Then any k + 1
cyclically consecutive elements of T are all distinct.

3.2 A New Circuit Code Construction

The idea behind proving Theorem 1.3 is to strategically insert members of
a new set of transition elements {s1, . . . , sr} into T , the transition sequence
of an (n, k) circuit code, so that the resulting sequence T ′ is the transition
sequence of an (n+ r, k+ 1) circuit code. An (n+ r, k+ 1) circuit code can
then be constructed by setting the first vertex to ~0 and defining subsequent
vertices from T ′. As Example 1 illustrates, the straightforward approach of
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inserting all r new transition elements after each complete segment of T of
length k + 1 can fail to increase the spread. Thus a more careful approach
(the following Construction 3.2, which is illustrated concretely in Example
2) is needed.

Example 1. The following transition sequence from [14] results in a (6, 2)
circuit code of length 24:

T = (1, 2, 6, 4, 5, 6, 1, 3, 5, 4, 6, 5, 1, 2, 6, 4, 5, 6, 1, 3, 5, 4, 6, 5).

For any r > 0 there are three possible new transition sequences formed by
inserting the sequence X = 7, . . . , 6 + r after the end of every segment of T
of length 3, these are (temporarily ignoring overbraces):

T ′ = (
︷ ︸︸ ︷
X, 1, 2, 6, X, 4, 5, 6, X, 1, 3, 5, X, 4, 6, 5, X, 1, 2, 6, X, 4, 5, 6, X, 1, 3, 5, X, 4, 6, 5)

T ′′ = (
︷ ︸︸ ︷
1, X, 2, 6, 4, X, 5, 6, 1, X, 3, 5, 4, X, 6, 5, 1, X, 2, 6, 4, X, 5, 6, 1, X, 3, 5, 4, X, 6, 5)

T ′′′ = (1, 2,
︷ ︸︸ ︷
X, 6, 4, 5, X, 6, 1, 3, X, 5, 4, 6, X, 5, 1, 2, X, 6, 4, 5, X, 6, 1, 3, X, 5, 4, 6, X, 5)

Each of these sequences has length N ′ = 24 + 8r. If T ′, T ′′, or T ′′′ is
the transition sequence of a spread 3 circuit code it follows from Lemma 1.2
that in every segment of length ≥ 3 corresponding to a shortest path in the
circuit between two vertices, i.e. every segment with length between 3 and
N ′

2 (= 12 + 4r), at least 3 transition elements must appear an odd number
of times. This condition is violated in T ′, T ′′, and T ′′′ by the overbraced
segments. Thus T cannot be extended to a (6 + r, 3) transition sequence by
inserting X after each segment of T of length 3.

Unlike the simple method of Example 1, we will prove the following con-
struction is guaranteed to result in the transition sequence of a circuit code
of increased spread.
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Construction 3.2.
Split T in half into T 1 = (τ1, . . . , τN/2) and T 2 = (τN/2+1, . . . , τN )

q ← d N
2(k+1)e

Split T 1 into q segments:

T 1
j = (τ(k+1)·(j−1)+1, . . . , τ(k+1)·j) for j = 1, . . . , q − 1

T 1
q = (τ(k+1)·(q−1)+1, . . . , τN/2)

Split T 2 into q segments:

T 2
j = (τ(k+1)·(j−1)+N/2+1, . . . , τ(k+1)·j+N/2) for j = 1, . . . , q − 1

T 2
q = (τ(k+1)·(q−1)+N/2+1, . . . , τN )

r ← dlog2 qe+ 1
Define new transition elements {s1, . . . , sr} with T ∩ {s1, . . . , sr} = ∅
for j = 1 to q − 1 do

i← largest value in {1, . . . , r − 1} such that 2i−1 divides j
T ′1j ← (T 1

j , si)

T ′2j ← (T 2
j , si)

T ′1q ← (T 1
q , sr)

T ′2q ← (T 2
q , sr)

return T ′ = (T ′11 , T
′1
2 , . . . , T

′1
q , T

′2
1 , T

′2
2 , . . . , T

′2
q )

Example 2 demonstrates how Construction 3.2 is applied to the transition
sequence T of a (10, 3) circuit code. There (and elsewhere) we use T ′i to
denote the segment (T ′i1 , . . . , T

′i
q ) of T ′.

Example 2. A transition sequence T = (τ1, . . . , τN ) is symmetric if T 1 =
(τ1, . . . , τN/2) = (τN/2+1, . . . , τN ) = T 2. Consider the transition sequence
T of a symmetric (10, 3) circuit code of length N = 72 (from [20]) with
T 1 = T 2 = (5, 8, 1, 9︸ ︷︷ ︸

T i
1

, 6, 10, 1, 8︸ ︷︷ ︸
T i
2

, 2, 9, 1, 10︸ ︷︷ ︸
T i
3

, 7, 8, 1, 9︸ ︷︷ ︸
T i
4

, 5, 10, 1, 8︸ ︷︷ ︸
T i
5

, 3, 9, 1, 10︸ ︷︷ ︸
T i
6

,

6, 8, 1, 9︸ ︷︷ ︸
T i
7

, 7, 10, 1, 8︸ ︷︷ ︸
T i
8

, 4, 9, 1, 10︸ ︷︷ ︸
T i
9

).

Here q = d 72
2(3+1)e = 9, r = dlog2 9e + 1 = 5, {t1, . . . , tm} = {1, . . . , 10},

and {s1, . . . , s5} = {11, . . . , 15}. Apply Construction 3.2 to T by split-
ting T into T 1 and T 2 and subdividing T i into q = 9 segments as in-
dicated. Then insert one of {11, . . . , 15} at the end of each T ij to get

T ′ij as follows: T ′i = (5, 8, 1, 9, 11︸ ︷︷ ︸
T ′i
1

, 6, 10, 1, 8, 12︸ ︷︷ ︸
T ′i
2

, 2, 9, 1, 10, 11︸ ︷︷ ︸
T ′i
3

, 7, 8, 1, 9, 13︸ ︷︷ ︸
T ′i
4

,

5, 10, 1, 8, 11︸ ︷︷ ︸
T ′i
5

, 3, 9, 1, 10, 12︸ ︷︷ ︸
T ′i
6

, 6, 8, 1, 9, 11︸ ︷︷ ︸
T ′i
7

, 7, 10, 1, 8, 14︸ ︷︷ ︸
T ′i
8

, 4, 9, 1, 10, 15︸ ︷︷ ︸
T ′i
9

)
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The sequence T ′ = (T ′1, T ′2) will be the transition sequence for a (15, 4)
circuit code of length 90.

An important property of Construction 3.2 is that any segment of T ′ of
length ≥ k + 2 contains at least one member of {s1, . . . , sr}. This is
easily shown as follows. Since N(= |T |) is even we have |T 1| = |T 2| =

N/2, and therefore q = dN/2k+1e = d |T
1|

k+1e = d |T
2|

k+1e. Because T 1
1 , . . . , T

1
q−1

and T 2
1 , . . . , T

2
q−1 all contain k + 1 elements, this means |T 1

q | = |T 2
q | ∈

{1, . . . , k + 1}. Finally, since the segments T ′1i (T ′2i ) of T ′ are formed by
appending an element of {s1, . . . , sr} to the end of T 1

i (T 2
i ) for i = 1, . . . , q

we see that any segment of T ′ with length ≥ k+ 2 must contain the end of
a segment T ′1i or T ′2i and therefore contains an element of {s1, . . . , sr}.

The sequence T ′ = (τ ′1, . . . , τ
′
N ′) generated by Construction 3.2 naturally

defines a sequence of vertices (x′1, . . . , x
′
N ′) in I(n + r) as follows. Fix

x′1 = ~0 and define x′i+1 as the vertex equal to x′i in all positions except τ ′i ,
for 1 ≤ i ≤ N ′ − 1. Clearly x′i is adjacent to x′i+1 for 1 ≤ i ≤ N ′ − 1.
The next two results establish that all the x′i are distinct and that x′N ′ is
adjacent to x′1. Hence C ′ = (x′1, . . . , x

′
N ′) is a circuit.

Lemma 3.3. Let C be an (n, k) circuit code of length N ≥ 2(k + 1) and
transition sequence T . Let T ′ = (τ ′1, . . . , τ

′
N ′) be the transition sequence

resulting from applying Construction 3.2 to T . For 1 ≤ i < j ≤ N ′ let T̂
be the segment (τ ′i , . . . , τ

′
j−1) of T ′. Then some transition element of T̂

appears an odd number of times. Furthermore, if T̂ contains one of the
transition elements {s1, . . . , sr}, then some sp ∈ {s1, . . . , sr} appears in T̂
exactly once.

Proof. Let {t1, . . . , tm} be the transition elements of T , then the transition
elements of T ′ are {t1, . . . , tm}∪{s1, . . . , sr}. Let A = T̂ ∩ {t1, . . . , tm} and
let B = T̂ ∩ {s1, . . . , sr}. If |B| = 0 then |A| ≤ k + 1, so T̂ is a segment of
T of length ≤ k + 1. By Lemma 3.1 this means that every element of T̂ is
distinct, appearing exactly once.

Now suppose |B| > 0, we will show some sp ∈ {s1, . . . , sr} appears in T̂
exactly once. Either τ ′i or τ ′j−1 are both in T ′1 or both in T ′2, or τ ′i ∈ T ′1
and τ ′j−1 ∈ T ′2. Suppose τ ′i and τ ′j−1 are both in T ′1 and let sp denote

the maximum index member of B. Then sp appears in T̂ exactly once,

otherwise (by construction) sw appears in T̂ between two appearances of
sp for some w > p. But this contradicts the definition of sp. The argument
for when τ ′i and τ ′j−1 ∈ T ′2 is identical.

47



Now suppose that τ ′i ∈ T ′1 and τ ′j−1 ∈ T ′2, then sr ∈ T̂ . The transition

element sr appears in T ′ only in position N ′

2 = (N2 + q) and N ′(= N + 2q).

Since j ≤ N ′ and T̂ ends with element τ ′j−1, we see that τ ′N ′ 6∈ T̂ . Thus sr

occurs exactly once in T̂ .

Corollary 3.4. Let C be an (n, k) circuit code of length N ≥ 2(k + 1) and
transition sequence T . Let T ′ = (τ ′1, . . . , τ

′
N ′) be the transition

sequence resulting from applying Construction 3.2 to T , and let
(x′1, . . . , x

′
N ′) be the vertex sequence defined by T ′. Then (x′1, . . . , x

′
N ′) de-

fines a circuit.

Proof. Define x′N ′+1 as being equal to x′N ′ in all positions except τ ′N ′ . Then
travelling from x′1 to x′N ′+1 requires using all of the transitions in T ′. The
transition elements of T ′ are {t1, . . . , tm} ∪ {s1, . . . , sr}. Each ti appears
in T ′ the same number of times that it appears in T , an even number. By
construction, each sj appears an equal number of times in T ′1 and T ′2, so
sj appears an even number of times in T ′. Since every transition element of
T ′ appears an even number of times, we conclude that x′1 = x′N ′+1. Thus in
(x′1, . . . , x

′
N ′) every pair of cyclically consecutive vertices is adjacent. Now

let x′i, x
′
j ∈ (x′1, . . . , x

′
N ′) with i < j, then T̂ = (τ ′i , . . . , τ

′
j−1) is a transition

sequence between x′i and x′j in T ′. By Lemma 3.3 some transition element

of T̂ appears an odd number of times and hence x′i and x′j are distinct.
Hence (x′1, . . . , x

′
N ′) are all distinct and (x′1, . . . , x

′
N ′) defines a circuit.

From Corollary 3.4 we see that T ′ defines a circuit C ′ = (x′1, . . . , x
′
N ′) in

I(n + r), and by construction, N ′ = N + 2q. Thus to prove Theorem 1.3
we only need to show that C ′ has spread k + 1. To do so we require a
technical result. If x is a vertex of I(n) and ñ < n, we denote by x∗ the
“natural” projection of x onto I(ñ) formed by taking the first ñ elements
of the binary vector x. There is an important relationship between the
transition sequence T ′ from Construction 3.2 and the transition sequence
T of the underlying (n, k) circuit code C.

Lemma 3.5. Let C be an (n, k) circuit code of length N ≥ 2(k + 1) with
transition sequence T . Let T ′ = (τ ′1, . . . , τ

′
N ′) and C ′ = (x′1, . . . , x

′
N ′) be

the transition sequence and circuit code (in dimension n+r) resulting from
applying Construction 3.2 to T . Let x′i, x

′
j ∈ C ′ with i < j and let T̂ be a

shortest transition sequence in T ′ between x′i to x′j. Then T̂ ∩ {t1, . . . , tm}
is a shortest transition sequence in T between x′∗i and x′∗j ∈ C.
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Proof. Let x′i, x
′
j ∈ C ′ with i < j, then there are two segments in T ′

between x′i and x′j . Let T̂ denote the shorter of these (chosen arbitrarily

if both segments have the same length) and let T̂ { denote its complement.
Then T̂ { is also a segment between x′i and x′j in T ′. Also note that x′∗i and

x′∗j ∈ C. It is necessary that the subsequence T̂ ∩ {t1, . . . , tm} is a segment
between x′∗i and x′∗j in T . Since there are only two segments between x′∗i
and x′∗j in T , and they partition T , we conclude that T̂ { ∩ {t1, . . . , tm} is

the other segment. Because |T̂ | ≤ |T̂ {|, |T̂ | ≤ N
2 + q and T̂ contains no

transitions spaced N
2 + q apart in T ′ (e.g. τ ′1 and τ ′N/2+q+1 are spaced

N
2 + q apart in T ′, as are τ ′N+2q and τ ′N/2+q). For any τ ′α, τ

′
β ∈ T ′ spaced

N
2 + q apart, if τ ′α ∈ T̂ then τ ′β ∈ T̂ {. Also, if τ ′α is the vth element

of T ′1 then τ ′β is the vth element of T ′2 (and similarly if τ ′α ∈ T ′2 and

τ ′β ∈ T ′1). Since elements of {s1, . . . , sr} are located in the same relative

positions of T ′1 and T ′2, τ ′α ∈ {t1, . . . , tm} ⇐⇒ τ ′β ∈ {t1, . . . , tm} (even

if τ ′α 6= τ ′β). So for every τ ′α ∈ T̂ ∩ {t1, . . . , tm} there is a corresponding

τ ′β ∈ T̂ { ∩ {t1, . . . , tm} (and no other τ ′γ ∈ T̂ ∩ {t1, . . . , tm} corresponds to

this τ ′β). Thus |T̂∩{t1, . . . , tm}| ≤ |T̂ {∩{t1, . . . , tm}|. Hence T̂∩{t1, . . . , tm}
is a shortest segment between x′∗i and x′∗j in T .

Figure 1 illustrates this, showing a (3, 2) circuit code C with transition
sequence T = (2, 1, 3, 2, 1, 3) (on the left) and the (4, 3) circuit code C ′ (on
the right) with transition sequence T ′ = (2, 1, 3, 4, 2, 1, 3, 4) resulting from
Construction 3.2. E.g. for x′i = 1100 and x′j = 1011 the shortest path in C ′

between x′i and x′j , indicated by dashed lines, “contains as a subpath” the
shortest path in C between x′∗i = 110 and x′∗j = 101.

Figure 1: A (3, 2) Circuit Code and a (4, 3) Circuit Code.

We now have everything we need to proceed to the main proof.
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Proof of Theorem 1.3. Let C be an (n, k) circuit code with length N ≥
2(k+1) and transition sequence T . Apply Construction 3.2 to T to get a new
transition sequence T ′ = (τ ′1, . . . , τ

′
N ′) and vertex sequence (x′1, . . . , x

′
N ′).

By Corollary 3.4, C ′ = (x′1, . . . , x
′
N ′) is a circuit and by construction N ′ =

N + 2q, so it only remains to be shown that C ′ has spread k + 1. By
Lemma 1.2 it suffices to show for all vertices x′i, x

′
j ∈ C ′ with i < j that

dC′(x′i, x
′
j) ≥ k + 1⇒ dI(n+r)(x

′
i, x
′
j) ≥ k + 1.

Suppose that x′i and x′j are vertices of C ′ with dC′(x′i, x
′
j) ≥ k + 1. Let T̂

denote the segment of T ′ that is the shorter transition sequence between x′i
and x′j , and let T̂ { denote its complement. If |T̂ | = |T̂ {| either segment may

be chosen. Note that T̂ may “start” in T ′1 and end in T ′2, or the reverse,
or may be entirely contained in T ′1 or T ′2. Finally, let A = T̂ ∩{t1, . . . , tm}
and B = T̂ ∩ {s1, . . . , sr}, so dC′(x′i, x

′
j) = |A|+ |B|.

If |B| = 0 then |A| = k + 1. In this case T̂ is a segment of T of length
k + 1, and by Lemma 3.1 these transition elements are all distinct. So
dI(n)(x

′∗
i , x

′∗
j ) = k + 1 and dI(n+r)(x

′
i, x
′
j) = k + 1, and we are done.

Now suppose that |B| > 0. First we will show that some sp ∈ {s1, . . . , sr}
occurs an odd number of times in T̂ . If T̂ = (τ ′i , . . . , τ

′
j−1) then this follows

from Lemma 3.3. Otherwise, then we have T̂ { = (τ ′i , . . . , τ
′
j−1) and |T̂ {| ≥

1
2N
′ = 1

2 (N +2q) ≥ 1
2 (2(k+2)) = k+2. By design of Construction 3.2 this

means that T̂ { ∩{s1, . . . , sr} 6= ∅, so by Lemma 3.3 some sp ∈ {s1, . . . , sr}
occurs exactly once in T̂ {. Because sp occurs an even number of times in

T ′, and since T̂ and T̂ { are complements in T ′, sp occurs an odd number of

times in T̂ . In both cases, some sp ∈ {s1, . . . , sr} appears an odd number

of times in T̂ .

Now dI(n+r)(x
′
i, x
′
j) = dI(n)(x

′∗
i , x

′∗
j )+the number of members of {s1, . . . , sr}

occuring an odd number of times in T̂ . If dI(n)(x
′∗
i , x

′∗
j ) ≥ k this is ≥ k+ 1.

Suppose dI(n)(x
′∗
i , x

′∗
j ) < k. By Lemma 3.5 A is a shortest transition se-

quence between x′∗i and x′∗j in T . Thus |A| = dC(x′∗i , x
′∗
j ) = dI(n)(x

′∗
i , x

′∗
j )

since C has spread k. Furthermore, since |A| < k we have |B| ≤ 2, and since
consecutive elements of B differ when |T̂ | ≤ N

2 +q all elements of B must oc-
cur exactly once. Thus dI(n+r)(x

′
i, x
′
j) = |A|+|B| = dC′(x′i, x

′
j) ≥ k+1.

50



4 A New Lower Bound for K(n, 4)

Singleton [20] remarks that for k ≥ 4 and even, the best lower bound
available for K(n, k) seems to be applying the third lower bound given in
Table 2 to K(n, k+ 1) (as every circuit code of spread k+ 1 is also a circuit
code of spread k). In particular, for k = 4 this gives K(n, 4) ≥ 6 ·2b2n/6c−1.
Subsequently, Klee [14] established the much stronger asymptotic result:
K(n, 4) � δn for 0 < δ < 31/3, suggesting that non-asymptotic lower
bounds stronger than K(n, 4) ≥ 6 · 2b2n/6c−1 may be possible. We will
now prove that Theorem 1.3 gives a non-asymptotic lower bound that is
stronger than K(n, 4) ≥ 6 · 2b2n/6c−1 for n ≥ 86.

First we establish the following claim, our argument is a minor modification
of the one given in Chapter 17 of [9].

Lemma 4.1. For n ≥ 6 there exists an (n, 3) circuit code C with length N
divisible by 8 and satisfying 32 · 3(n−8)/3 ≤ N ≤ 24

2232 · 3(n−8)/3.

Proof. Let C be an (n, 3) circuit code with transition sequence T . Suppose
that ti occurs m times in T . Construction S5 of [9] states that there is an
(n+ 3, 3) circuit code C ′ with length N ′ = N + 8m, and ti occurs 3m times
in the new transition sequence T ′. Note that if N is divisible by 4 and ti
appears N

4 times in T , then N ′ = 3N and ti appears 3m = N ′

4 times in T ′.

For n = 6, 7, 8 consider the following transition sequences for (n, 3) circuit
codes. Note that |T6| = 16, |T7| = 24, and |T8| = 32. Also, 5 occurs 4 times
in T6, 2 occurs 6 times in T7, and 8 occurs 8 times in T8.

T6 = (1, 5, 2, 6, 3, 5, 4, 6, 1, 5, 2, 6, 3, 5, 4, 6)
T7 = (5, 2, 6, 1, 7, 2, 5, 3, 6, 2, 7, 4, 5, 2, 6, 1, 7, 2, 5, 3, 6, 2, 7, 4)
T8 = (5, 2, 6, 8, 1, 7, 2, 8, 5, 3, 6, 8, 2, 7, 4, 8, 5, 2, 6, 8, 1, 7, 2, 8, 5, 3, 6, 8, 2, 7, 4, 8)

Therefore by Construction S5 we see that for any p ∈ N, in dimension
n = 6+3p there exists an (n, 3) circuit code with length N = 16 ·3(n−6)/3 ∈
(32 ·3(n−8)/3, 161532 ·3(n−8)/3), in dimension n = 7 + 3p there exists an (n, 3)

circuit code with length N = 24 · 3(n−7)/3 ∈ (32 · 3(n−8)/3, 242232 · 3(n−8)/3),
and in dimension n = 8 + 3p there exists an (n, 3) circuit code with length
N = 32 · 3(n−8)/3.

Proof of Theorem 1.4. Theorem 1.3 implies K(n+r, 4) ≥ N+2d N2·4e ≥ 5
4N ,

where N ≥ 2 · 4 is the length of an (n, 3) circuit code, q = d N2·4e, and
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r = dlog2 qe+ 1. From Lemma 4.1 we know that for n ≥ 6 there exists an
(n, 3) circuit code C of length N divisible by 8, and 32 · 3(n−8)/3 ≤ N ≤
24
2232 · 3(n−8)/3. Using this code we have K(n+ r, 4) ≥ 40 · 3(n−8)/3, q = N

2·4
(by divisibility), and r = dlog2

N
2·4e+ 1 ≤ blog2

N
2·4c+ 2.

Now 2.53 > 31/3 so r ≤ 2 + blog2
24
224 · 3−8/3 · 2.53nc ≤ .53n. Hence

K(b1.53nc, 4) ≥ 40 ·3(n−8)/3 for n ≥ 6. And making the change of variables
u = 1.53n we get K(buc, 4) ≥ 40 · 3(b.6535uc−8)/3.

A simple analysis shows that the lower bound of Theorem 1.4 exceeds
6 · 2b2n/6c−1 for n ≥ 86.

5 Computational Results

5.1 Methodology

The efficacy of Construction 3.2 was tested by applying it to circuit codes
of spreads 2-9 in dimensions 3-30. Table 3 lists the greatest lower bound
found for each (n, k) combination. The table was constructed as follows.
For spreads 2-7 and dimensions 3-30 we seeded the table with empirical
results from [20, 5, 11, 17, 2] which collectively survey all empirical records
of which we are aware, for spreads 8 and 9 we seeded the table by using the
exact bounds of Table 1 and the non-asymptotic lower bounds of Table 2.

Next, we applied Constructions 2.1 - 2.4 (collectively the “Singleton” con-
structions), the construction of Deimer (Construction 2.5), and the con-
struction of Klee (Construction 2.6). Because these constructions were
applied sequentially we iterated applying the constructions until there was
no improvement in any entry of the table. To this “initial” table we then
applied Construction 3.2 to the column corresponding to codes of spread k,
replacing the appropriate entry in the neighboring column of the table (for
codes of spread k + 1) if a larger lower bound was found. Each time after
applying Construction 3.2 to codes of spread k we repeated the iterative
application of the constructions of Singleton, Deimer, and Klee to prop-
agate any further improvements in the lower bounds before applying the
construction to codes of spread k+ 1. Finally, after applying the construc-
tion to codes of all spreads we iteratively applied the constructions from
Singleton, Deimer, and Klee once more.

52



Construction 2.6 was applied to our table as follows. Let C be an (n, k)
circuit code with length N > 2(k + 1)2, and let T = (τ1, . . . , τN ) be its
transition sequence with transition elements {t1, . . . , tm}. Split T into T 1 =
(τ1, . . . , τN/2), T 2 = (τN/2+1, . . . , τN ) and subdivide T i into q = d N

2(k+1)e
segments T i1, . . . , T

i
q of length ≤ k + 1 as in Construction 3.2 (where only

segment T iq may have length < k+ 1). Note that q > k+ 1. For i = 1, 2 de-
fine new transition sequences T ′1 = (T ′11 , . . . , T

′1
q ) and T ′2 = (T ′21 , . . . , T

′2
q )

where T ′ij = (T ij , tm+1) for j ≤ p = (k + 1)d N
2(k+1)e − N

2 , and T ′ij = T ij oth-

erwise. Observe that 0 ≤ p ≤ k+ 1 < q, so the T ′ij are well-defined. Finally

combine T ′1, T ′2 into T ′ = (T ′1, T ′2). Observe that tm+1 occurs an even
number of times in T ′, and any two occurences of tm+1 are separated by
a segment of T ′ which contains as a subsegment a segment of T of length
≥ k + 1. From this it can be shown that T ′ defines an n + 1 dimensional
circuit code C ′ of spread k (but not necessarily of spread k+ 1) and length
N ′ = N + 2p = 2(k+ 1)d N

2(k+1)e. Thus C ′ satisfies the divisibility criterion

of Construction 2.6 (for C1). Because this method does not generate all
(n + 1, k) circuit codes with length divisible by k + 1, we also indicate in
Table 3 when an entry exceeds the asymptotic lower bounds from Table 2
which are derived from Construction 2.6.

5.2 Discussion of Computational Results

Our construction found several new circuit codes for spreads of 7 and
8. Because codes of spreads 2-7 and dimensions 3-30 have been well-
studied (see [11, 17] for surveys) the improvements noted in Table 3 for
codes of spread 7 are perhaps the most significant. All of our new cir-
cuit codes of spread 7 and 8 are generated from the (17, 6, 204) circuit
code of [18], the (15, 7, 60) and (17, 7, 102) circuit codes of [11], and the
(18, 7, 116) circuit code resulting from applying Construction 2.1 to the
(17, 7, 102) circuit code. Applying Construction 3.2 to these 4 circuit codes,
we have: (17, 6, 204) → (22, 7, 234), (15, 7, 60) → (18, 8, 68), (17, 7, 102) →
(21, 8, 116), and (18, 7, 116)→ (22, 8, 132). From these 4 new circuit codes,
all of which are of record length, we generate the remaining circuit codes
as follows.

Iteratively apply Construction 2.1 and Construction 2.3 to the
(22, 7, 234) circuit code (and the new circuit codes these constructions gen-
erate) to get the (23, 7, 266), (24, 7, 310), (26, 7, 466), (27, 7, 532), (28, 7, 618),
and (30, 7, 930) circuit codes. Iteratively apply Construction 2.2 and Con-
struction 2.4 to the (21, 8, 116) and (22, 8, 132) circuit codes (and the new
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Table 3: Lower Bounds for K(n, k) (Prior Best Bound in Parentheses).
n/k 2 3 4 5 6 7 8 9
3 6c 6c 6c 6c 6c 6c 6c 6c
4 8c 8c 8c 8c 8c 8c 8c 8c
5 14c 10c 10c 10c 10c 10c 10c 10c
6 26c 16c 12c 12c 12c 12c 12c 12c
7 48c 24c 14c 14c 14c 14c 14c 14c
8 96c 36c 22c 16c 16c 16c 16c 16c
9 188 64 30c 24c 18c 18c 18c 18c
10 362 102 46c 28c 20c 20c 20c 20c
11 668 160 70 40c 30c 22c 22c 22c
12 1340 288 102 60 36c 32c 24c 24c
13 2584 494 182 80 50c 36c 26c 26c
14 4934 812 280 106 68 48c 38c 28c
15 9868 1380 480 210 88 60 42 40c
16 19740 2240 768 288 118 76 46 44c
17 39840 3910 1224 476 204 102 54 48
18 78848 5212 1530 570 238 116 68(60)ab 52
19 157696 7818 2040 712 284 134 78 60
20 315392 10424 2688 950 330 152 86 80
21 630784 15634 3400 1140 436 198 116(98)ab 88
22 1261568 20848 4488 1422 510 234(228)ab 132(114)ab 100
23 2523136 31266 5910 1898 608 266(262)b 148(128)b 110
24 5046272 41696 7480 2280 714 310(304)b 168(158)b 124
25 10092544 62530 9870 2846 932 390 188(176)b 160
26 20185088 83392 13248 3794 1086 466(452)b 236(202)ab 176
27 40370176 125058 20304 4560 1304 532(518)b 272(234)ab 200
28 80740352 166784 34704 5690 1530 618(608)b 308(268)b 222
29 161480704 250114 57246 7586 1996 774 348(328)b 248
30 322961408 333568 97846 9120 2328 930(900)b 396(368)b 320

a = prior record also exceeded directly by applying Construction 3.2
b = record exceeds Klee’s asymptotic lower bound
c = value known to be optimal
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circuit codes these constructions generate) to get the (23, 8, 148), (24, 8, 168),
(25, 8, 188), (26, 8, 236), (27, 8, 272), (28, 8, 308), (29, 8, 348), and (30, 8, 396)
circuit codes.

Using this approach 4 out of the 18 new circuit codes result directly from
applying Construction 3.2. Construction 3.2 also directly results in circuit
codes that are longer than the previous record (26, 8, 202) and (27, 8, 234)
circuit codes, but these circuit codes are shorter than the ones resulting from
iteratively applying Constructions 2.1-2.4 to the (22, 7, 234), (18, 8, 68),
(21, 8, 116), and (22, 8, 132) circuit codes.

The chief advantage of our construction is that it is very easy to implement,
allowing the better studied codes of smaller spreads to be leveraged to
generate codes of larger spreads, where the spread is too large for computer
search. This adds another construction (in addition to Constructions 2.1
- 2.6) to generate non-trivial codes for large spreads. As the results for
spreads k = 7, 8 indicate, the construction is additive to Constructions 2.1-
2.6. However the results for spread k + 1 = 9 indicate that the success of
this approach relies on good starting codes for spread k.

6 Conclusions

In this note we presented a simple method for constructing a circuit code
of spread k + 1 from a circuit code of spread k. This construction leads
to 18 new record code lengths for circuit codes of spread k = 7, 8 and in
dimensions 22 ≤ n ≤ 30 by leveraging the record length circuit codes of
spread 6 and 7 from [18] and [11]. We also derived a new lower bound on
the length of circuit codes of spread 4, which improves upon the bound
suggested by Singleton for n ≥ 86.

Some of the records in Table 3 stood for at least 32 years before being
broken by the method described here, however we believe that further im-
provements of the lower bounds on K(n, k) are still possible. In particular,
Construction 5 from [20] describes how to extend an (n, 7) circuit code un-
der certain conditions on how close a specific pair of transition elements ap-
pear in the transition sequence. While applying that construction directly
does not improve the lower bounds in the table (we tried!) the transition
sequences arising from combining Construction 3.2 with the construction
method of [18] are highly structured, suggesting that a modification of that
approach may succeed.
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A Transition Sequences for New Record Circuit Codes

The following codes are the transition sequences for the new record length
circuit codes reported in Table 3. We follow the convention of [18], [11], and
others in reporting transition sequences, which assigns the labels 0, . . . , 9
to dimensions 1 through 10, and the characters a,. . . ,z to dimensions 11
through 36. To maintain consistency with the rest of this note (where many
of our arguments rely on the even parity of the transition sequence) we re-
port all N transitions in the code. As [11] observes, the final transition is
not technically necessary to reconstruct the circuit code since it is a cycle de-
fined to start to ~0. When using these transition sequences, the reader should
carefully distinguish between the number “1” and the letter “l”, e.g. as
in the transition sequences for the (22, 7, 234), (23, 7, 266), and (24, 7, 310)
codes.

(22,7,234) 5b32f78hgc3bef4idc80195hd478e65j1ab2f6eh017gfb3i4c8g7abh0
984de5k19034a2h1e67fb2iade3cb7hg084c36j7d5409ah1e5dg06if
ea2l3b7f69ahg873cd4i08g2391h0d56ea1j9cd2ba6hfg73b25i6c43g
89h0d4cfg5ked912a6he589f76i2bc3g7fh1280gc4j5d908bch1a95ef
6i2a14l

(23,7,266) 5b32f78mhgc3befm4idc801m95hd478me65j1abm2f6eh01m7gfb3
i4mc8g7abhm0984de5mk19034am2h1e67fmb2iade3mcb7hg08m
4c36j7dm5409ah1me5dg06imfea2l3b7f69amhg873cdm4i08g23m
91h0d56mea1j9cdm2ba6hfgm73b25i6mc43g89hm0d4cfg5mked9
12am6he589fm76i2bc3mg7fh128m0gc4j5dm908bch1ma95ef6im
2a14l

(24,7,310) 5b3m2f7n8hgmc3bnef4midcn801m95hnd47m8e6n5j1mab2nf6e
mh01n7gfmb3in4c8mg7anbh0m984nde5mk19n034ma2hn1e6m7
fbn2iamde3ncb7mhg0n84cm36jn7d5m409nah1me5dng06mifena
2l3b7mf69nahgm873ncd4mi08ng23m91hn0d5m6ean1j9mcd2nb
a6mhfgn73bm25in6c4m3g8n9h0md4cnfg5mkedn912ma6hne58
m9f7n6i2mbc3ng7fmh12n80gmc4jn5d9m08bnch1ma95nef6mi2a
n14l

(26,7,466) 5mbn3o2pfm7n8ohpgmcn3obpemfn4oipdmcn8o0p1m9n5ohpdm
4n7o8pem6n5ojp1manbo2pfm6neohp0m1n7ogpfmbn3oip4mcn8
ogp7manbohp0m9n8o4pdmen5okp1m9n0o3p4man2ohp1men6o
7pfmbn2oipamdneo3pcmbn7ohpgm0n8o4pcm3n6ojp7mdn5o4p
0m9naohp1men5odpgm0n6oipfmenao2pl3mbn7ofp6m9naohpg
m8n7o3pcmdn4oip0m8ngo2p3m9n1ohp0mdn5o6peman1ojp9mc
ndo2pbman6ohpfmgn7o3pbm2n5oip6mcn4o3pgm8n9ohp0mdn4
ocpfmgn5okpemdn9o1p2man6ohpem5n8o9pfm7n6oip2mbnco3p
gm7nfohp1m2n8o0pgmcn4ojp5mdn9o0p8mbncohp1man9o5pe
mfn6oip2man1o4pl
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(27,7,532) 5mbn3o2qpfm7n8oqhpgmcn3qobpemfnq4oipdmcqn8o0p1mq9n
5ohpdqm4n7o8pqem6n5ojqp1manboq2pfm6neqohp0m1nq7ogpf
mbqn3oip4mqcn8ogp7qmanbohpq0m9n8o4qpdmen5oqkp1m9n
0qo3p4manq2ohp1meqn6o7pfmqbn2oipaqmdneo3pqcmbn7ohq
pgm0n8oq4pcm3n6qojp7mdnq5o4p0m9qnaohp1mqen5odpgqm
0n6oipqfmenao2qpl3mbn7ofqp6m9naoqhpgm8n7qo3pcmdnq4oi
p0m8qngo2p3mq9n1ohp0qmdn5o6pqeman1ojqp9mcndoq2pbm
an6qohpfmgnq7o3pbm2qn5oip6mqcn4o3pgqm8n9ohpq0mdn4o
cqpfmgn5oqkpemdn9qo1p2manq6ohpem5qn8o9pfmq7n6oip2q
mbnco3pqgm7nfohqp1m2n8oq0pgmcn4qojp5mdnq9o0p8mbqnc
ohp1mqan9o5peqmfn6oipq2man1o4qpl

(28,7,618) 5mbqn3or2pfqm7nr8ohqpgmrcn3qobpremfqn4oripdqmcnr8o0q
p1mr9n5qohprdm4qn7or8peqm6nr5ojqp1mranbqo2prfm6qneor
hp0qm1nr7ogqpfmrbn3qoipr4mcqn8orgp7qmanrbohqp0mr9n8q
o4prdmeqn5orkp1qm9nr0o3qp4mran2qohpr1meqn6or7pfqmbnr
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