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Abstract

Circuit codes are cycles in the graph of the n dimensional hy-
percube. They are theoretically and practically important, as cir-
cuit codes can be used as error correcting codes. A circuit code is
characterized by three parameters: its dimension, its spread (which
determines how many errors it can detect), and its length (which
determines its accuracy). We present a new method for constructing
a circuit code of spread k + 1 from a circuit code of spread k. This
method leads to record code lengths for 18 circuit codes of spread
k = 7 and 8 in dimension 22 < n < 30. We also derive a new lower
bound on the length of circuit codes of spread 4, which improves
upon bound suggested by Singleton for dimension n > 86.

Keywords:Circuit Code, Snake in the Box, Coil in the Box, k-Coil, Error
Correcting Code

1 Introduction

Let I(n) denote the graph of the n dimensional hypercube, that is the
graph on 2" vertices where each vertex corresponds to a binary vector of
length n, and two vertices z and z’ are adjacent if their binary vectors
differ in exactly one position. For any subgraph G of I(n) and any two
vertices x, 2’ € G we define the distance dg(x,2’) as the minimum number
of edges in G needed to travel from x to z’. If there is no path in G from
x to 2’ then dg(x,2") = co. Observe that dj,(x,2’) equals the number of
positions where the binary vectors corresponding to x and z’ differ.
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A circuit C is a graph consisting of a sequence of distinct vertices (z1,...,2xN)
where each pair of cyclically consecutive vertices is adjacent, and the edges
between these consecutive vertices. For brevity we will often say that C' =
(z1,...,zN) is a circuit, in which case the edges are implied. For any pair
of vertices z;, z; in a circuit C' = (z1,...,2xn) with ¢ < j there are exactly
two paths between x; and z; in C, traversing the edges: x;x;41,...,2;-17;
and Z;Zj41,..., TN-1TN, TNT1,- - -, Ti—1%; respectively. An n-dimensional
code is a subgraph of I(n).

Definition 1.1. A subgraph C of I(n) is a circuit code of spread k
(an (n, k) circuit code) if:

1. C is a circuit.

2. If x and ' are vertices of C with dj(,(x,z") < k then
do(z,2") = di)(z,2').

An equivalent characterization of circuit codes was proven by Klee.

Lemma 1.2 (Klee [14] Lemma 2). An n-dimensional circuit code C of
length N > 2k has spread k if and only if for all vertices x,x' € C,
do(z,2") > k = dipy(z,2") > k.

Finding long circuit codes is practically and theoretically important, since
circuit codes can be used as error-correcting codes [12]. Circuit codes of
spread 1 are known as Gray codes [8], and circuit codes of spread 2 are
known as coils or snakes in the box (however, current terminology uses
“snake” to refer to an open path) [12]. Both of these types of circuit
codes have been extensively studied. Let K(n,k) denote the maximum
length of an (n, k) circuit code, it is well-known that K(n,1) = 2™ and
K(n,2) > 22 [1]. In contrast, circuit codes of spread k > 3 are less-
well understood and exact values for K(n, k) are generally only known for
n < 17 and k < 7 and some special (n, k) pairs.

In this note we present a simple new construction for generating a circuit
code of spread k + 1 from a circuit code of spread k. This allows the better
studied codes of smaller spreads to be leveraged to create codes of larger
spreads, and results in 18 new records for codes of spread 7 and 8, and in
dimension 22 < n < 30. Specifically, we prove the following theorem.

Theorem 1.3. Let C be an (n,k) circuit code with length N > 2(k + 1).
Then there exists an (n+ 7,k + 1) circuit code C' with length
N’ = N + 2q, where ¢ = (%] and r = [log, q] + 1.
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A useful application of Theorem 1.3 is a new lower bound on K (n,4) which
improves upon the lower bound suggested by Singleton [20] when n > 86.

Theorem 1.4. Forn > 6, K(|1.53n],4) > 40-3"=8/3 and hence
K(”v 4) > 40 - 3([-65351” —8)/3.

2 Previous Constructions and Bounds

We begin by surveying the theoretical lower bounds for K (n, k) and some
of the most important constructions used in their derivation. Exact values
for K (n, k) are known for only a few special cases, given in Table 1.

Table 1: Exact values for K(n, k).

K(n,k) =2n forn < [23£]+2 (See [20])
K(|2£] +2,k) =4k +6 for k even (See [7])
K(|%] +2,k) =4k +4 for k odd (See [7])
K(|%] +3,k) =4k +8 for k odd >9 (See [7])

The following constructions apply for a wide variety of (n, k) combinations.
Here we state the “result” of each construction and refer the reader to the
original paper for the precise construction details.

Construction 2.1 (Singleton [20]). Let C' be an (n,k) circuit code with
length N. Then there exists an (n+ 1,k) circuit code C' with length N’ =
N+2[4&].

Construction 2.2 (Singleton [20]). Let C' be an (n,k) circuit code with
length N, and k > 3. Then there exists an (n+ 2,k) circuit code C' with

length N' = N + 4| 5005 ]

Construction 2.3 (Singleton [20]). Let C' be an (n,k) circuit code with
length N for k > 3 and k odd. Then there exists an (n + XL k) circuit
code C" with length N' = N + (k + 1)[#_1J

Construction 2.4 (Singleton [20]). Let C be an (n,k) circuit code with
length N for k > 2 and k even. Then there exists an (n + %, k) circuit
code C" with length N' = N + (k + 2)Lk—ﬂ\r]1j

Construction 2.5 (Deimer [5]). Let C be an (n+ 1,k + 1) circuit code
with length N. Then there exists an (n, k) circuit code C' with length N’ >
N-— A

n+1
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Construction 2.6 (Klee [14]). Let k be even and let 2 < ny < ng. Suppose
Cy is an (n1,k — 1) circuit code of length N1 > 2k where Ny is divisible by
k, and suppose Cy is an (na, k) circuit code with length No > 2k. If k =2
there exists an (ny + no, k) circuit code C' of length N' = % Ifk >4

there exists an (n1 + ng + 1, k) circuit code C' of length N’ = W

These constructions result in the following lower bounds for

K(n,k), k> 3.

Table 2: Lower bounds for K(n, k).

K(n,2) > 22" (See [1])
K(n,3) >32.30n-8/3 forn > 6 (See [20])
K(n,k) > (k+ 1)227/ D171 for | odd and | 2% ] > 2 (See [20])
K(n,4) = o" for 0 < § < 3'/3 (See [14])
K(n, k) = 6" for k even and 0 < & < 4% (See [14])
K(n, k) > 4™/ (+1 for odd k£ > 3 (See [14])

The last three inequalities in Table 2 are asymptotic bounds, where
f(n) < g(n) means liminf,, o g(n)/f(n) > 0, and f(n) < g(n) means
lim, 00 g(n)/ f(n) = 0.

In addition to the previous constructions, the “necklace” construction of
Paterson and Tuliani has been particularly important, leading to many new
records for K(n,k) [18]. However, identifying arrangements of necklaces
satisfying the conditions of that construction required a backtrack search,
limiting the dimensions examined to n < 17. The conditions placed upon
the arrangement of necklaces also become more restrictive as k increases,
and for the range of dimensions n examined, no suitable arrangements for
codes of spread k > 7 were found [18].

For n < 17 and k < 7 many of the current records for K (n, k) (reported in
Table 3) have been set by computational methods, e.g. exhaustive search
[15, 11], pruning based approaches [21, 16], genetic algorithms [19, 3, 6, 13],
or other computational approaches [4, 22, 2].
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3 Generating an (n + r,k + 1) Circuit Code from an (n,k)
Circuit Code

3.1 Transition Sequences

Each vertex of I(n) corresponds to a binary vector of length n, so for
every circuit C' = (x1,...,2x) of I(n) we can define a transition sequence
T = (71,...,7n) where 7; denotes the position in which z; and x;4; (or
zn and z) differ. Using the convention that x; = 0 for any circuit, we see
that the transition sequence corresponds uniquely to the edges in C'. Since
I(n) is bipartite this implies |T'| is even [10].

Define a segment of a sequence T = (71,...,7n) as a subsequence of
cyclically consecutive elements. For any z;,z; € C = (x1,...,2n) with
1 < j there are exactly two segments in T" between x; and x;, correspond-
ing to the two paths in C traversing the edges: x;xit1,...,2;—17; and
TjTjt1y- - TN—1TN, TNTL, - - ., Ti—12;. These segments are

(TisTig1, -+, Tj—1) and (75, Tj41, .-, TN, T1, - - ., Ti—1). If i = j then the two
segments are @ and 7. These segments are called complements because
they partition T'. If T is a segment in 7', its complement is denoted ’f’c,
and (T =17

The set of transition elements {ti,...,t;m} (m < n) of T are the unique
elements of T. When T is the transition sequence of a circuit each t; €
{t1,...,tm} must appear in T" an even number of times. A useful result to
which we shall refer is the following.

Lemma 3.1 (Singleton [20]). Let C be a circuit code of spread k and length
N > 2(k 4+ 1) with corresponding transition sequence T. Then any k + 1
cyclically consecutive elements of T are all distinct.

3.2 A New Circuit Code Construction

The idea behind proving Theorem 1.3 is to strategically insert members of
a new set of transition elements {s1, ..., s,} into T, the transition sequence
of an (n, k) circuit code, so that the resulting sequence T” is the transition
sequence of an (n+r,k+ 1) circuit code. An (n+7,k+ 1) circuit code can
then be constructed by setting the first vertex to 0 and defining subsequent
vertices from 7. As Example 1 illustrates, the straightforward approach of
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inserting all r new transition elements after each complete segment of T' of
length k£ + 1 can fail to increase the spread. Thus a more careful approach
(the following Construction 3.2, which is illustrated concretely in Example
2) is needed.

Example 1. The following transition sequence from [14] results in a (6,2)
circuit code of length 24:
T=(1,2,6,4,5,6,1,3,5,4,6,5,1,2,6,4,5,6,1,3,5,4,6,5).

For any r > 0 there are three possible new transition sequences formed by
inserting the sequence X =7,...,6 + r after the end of every segment of T
of length 3, these are (temporarily ignoring overbraces):

T'=(X,1,2,6,X,4,5,6,X,1,3,5,X,4,6,5,X,1,2,6,X,4,5,6,X,1,3,5,X,4,6,5)

T =(1,X,2,6,4,X,5,6,1,X,3,5,4,X,6,5,1,X,2,6,4,X,5,6,1,X,3,5,4, X, 6,5)
m——
T =(1,2,X,6,4,5,X,6,1,3,X,5,4,6, X,5,1,2, X,6,4,5, X,6,1,3, X,5,4,6, X, 5)

Each of these sequences has length N' = 24 + 8r. If T, T", or T" is
the transition sequence of a spread 3 circuit code it follows from Lemma 1.2
that in every segment of length > 3 corresponding to a shortest path in the
circuit between two vertices, i.e. every segment with length between 3 and
%/(: 12 4 4r), at least 3 transition elements must appear an odd number
of times. This condition is violated in T',T"”, and T"" by the overbraced
segments. Thus T cannot be extended to a (6 + r,3) transition sequence by
inserting X after each segment of T of length 3.

Unlike the simple method of Example 1, we will prove the following con-
struction is guaranteed to result in the transition sequence of a circuit code
of increased spread.
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Construction 3.2.
Split 7" in half into 7" = (71,...,7n/2) and T2 = (TN/241, -+ TN)
N
q [m1
Split 7! into ¢ segments:

Tgi = (T(ht1)-G=1) 15+ - > Tht1)j) for j=1,...,¢ =1
Ty = (Tt 1)-(g-D+1> - - - TN/2)
Split 72 into ¢ segments:
sz = (T(k+1)-(j71)+N/2+1; RN T(k+1)-j+N/2) forj=1,...,q—1
T7? = (T(h41)-(q—1)+N/241> - -+ TN)
r+ [logy q] +1
Define new transition elements {s1,...,s,} with TN {s1,...,8.} =@
for j=1toqg—1do
i + largest value in {1,...,r — 1} such that 2~! divides j

le»l — (TJ17SZ)
TJ{2 < (T]-27 Si)
T (T%,sr)
T)?  (T7, sv)
return 7" = (T}, T3, ..., T;', T, T2, ..., T;?)

Example 2 demonstrates how Construction 3.2 is applied to the transition
sequence 7' of a (10, 3) circuit code. There (and elsewhere) we use T"* to
denote the segment (T7,...,T)") of T".

Example 2. A transition sequence T = (71,...,7y) is symmetric if T =
(71, s TNy2) = (TNj2415 -+ TN) = T?. Consider the transition sequence
T of a symmetric (10,3) circuit code of length N = 72 (from [20]) with
T =72 = (5,8,1,9,6,10,1,8,2,9,1,10,7,8,1,9,5,10,1,8,3,9, 1, 10,

—— —— ' ~— — — —

T T3 i T T TE

6,8,1,9,7,10,1,8,4,9, 1, 10).
——— —— N——

i TE TS
Here q = (2(37-%1)] =9, r=1Tlog,91+1=5, {t1,...,tm} = {1,...,10},
and {s1,...,s5} = {11,...,15}. Apply Construction 3.2 to T by split-
ting T into T' and T? and subdividing T® into ¢ = 9 segments as in-
dicated. Then insert one of {11,...,15} at the end of each T]? to get
Tl as follows: T = (5,8,1,9,11, 6,10,1,8,12, 2,9,1,10,11, 7,8,1,9,13,

Ty T4 T4 T

5,10,1,8,11, 3,9,1,10,12, 6,8,1,9,11, 7,10,1,8,14, 4,9, 1,10, 15)

7 & /9 & &
T5 TG T7 TS T9
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The sequence T' = (T'', T'?) will be the transition sequence for a (15,4)
circuit code of length 90.

An important property of Construction 3.2 is that any segment of 7" of

length > k + 2 contains at least one member of {s1,...,s.}. This is

easily shown as follows. Since N(= |T|) is even we have |T'| = |T?| =
1 2

N/2, and therefore ¢ = [fcv—ﬁ] = %1 = (%1 Because T},..., T},

and T¢,...,T7 , all contain k + 1 elements, this means |T,;| = |T7| €

{1,...,k+1}. Finally, since the segments T/*(T/?) of T" are formed by
appending an element of {sq,..., s} to the end of T}(T?) fori=1,...,q
we see that any segment of 77 with length > k + 2 must contain the end of
a segment T/ or T;/? and therefore contains an element of {s1,...,s,}.
The sequence 77 = (71,...,7pn/) generated by Construction 3.2 naturally
defines a sequence of vertices (z,...,2%\,) in I(n + r) as follows. Fix
#) = 0 and define 41 as the vertex equal to zj in all positions except 77,
for 1 <4 < N’ —1. Clearly zj is adjacent to xj, , for 1 < i < N’ — 1.
The next two results establish that all the x} are distinct and that z'y, is
adjacent to z}. Hence C" = (xf,...,2y,/) is a circuit.

Lemma 3.3. Let C be an (n,k) circuit code of length N > 2(k + 1) and
transition sequence T. Let T' = (11,...,Tn/) be the transition sequence
resulting from applying Construction 3.2 to T. For 1 <i<j < N’ let T
be the segment (7],...,7;_1) of T'. Then some transition element of T
appears an odd number of times. Furthermore, if T contains one of the
transition elements {s1,...,s,}, then some s, € {s1,...,s.} appears in T

exactly once.

Proof. Let {t1,...,tm,} be the transition elements of T', then the transition
elements of T" are {t1,...,t;m}U{s1,...,5.}. Let A=T N {t1,...,tm} and
let B=TnN{s1,...,5.}. If |[B| =0 then |A| < k + 1, so T is a segment of
T of length < k + 1. By Lemma 3.1 this means that every element of 7" is
distinct, appearing exactly once.

Now suppose |B| > 0, we will show some s, € {s1,...,s,} appears in T
exactly once. Either 7/ or 7j_; are both in T"! or both in T2, or 7/ € T"!
and 7/_, € T'. Suppose 7/ and 7}_; are both in T’' and let s, denote
the maximum index member of B. Then s, appears in T exactly once,
otherwise (by construction) s, appears in 7' between two appearances of
sy, for some w > p. But this contradicts the definition of s,. The argument
for when 7/ and 77_, € T' is identical.

47



Now suppose that 7/ € T"! and Tiq € T2, then s, € 7. The transition

element s, appears in 7" only in position NT/ = (4 +¢) and N'(= N +2g).

Since 7 < N’ and T ends with element TJ/»_l, we see that 7y, & T. Thus s,

occurs exactly once in 7T O

Corollary 3.4. Let C be an (n, k) circuit code of length N > 2(k + 1) and
transition sequence T. Let T' = (71, ...,Thn/) be the transition

sequence resulting from applying Construction 3.2 to T, and let
(,...,2%) be the vertex sequence defined by T'. Then (x},...,2%,) de-
fines a circuit.

Proof. Define 2y, , | as being equal to 2y, in all positions except 7y,. Then
travelling from z} to 2y, requires using all of the transitions in 7. The
transition elements of T' are {t1,...,tm} U {s1,...,s-}. Each t; appears
in 77 the same number of times that it appears in T, an even number. By
construction, each s; appears an equal number of times in 7"" and T2, so
s; appears an even number of times in 7. Since every transition element of
T" appears an even number of times, we conclude that 27 = 'y, ;. Thus in
(x},...,2y,) every pair of cyclically consecutive vertices is adjacent. Now
let 2}, 2% € (2f,...,2) with i < j, then T = ({,...,7j_1) is a transition
sequence between r; and x; in 7". By Lemma 3.3 some transition element
of T appears an odd number of times and hence z; and x; are distinct.
Hence (z,...,2%/) are all distinct and (2, ...,2'y,) defines a circuit. O

From Corollary 3.4 we see that 7" defines a circuit C' = (,...,2\,) in
I(n + ), and by construction, N’ = N + 2¢. Thus to prove Theorem 1.3
we only need to show that C’ has spread k + 1. To do so we require a
technical result. If x is a vertex of I(n) and 7 < n, we denote by x* the
“natural” projection of x onto I(n) formed by taking the first 7 elements
of the binary vector x. There is an important relationship between the
transition sequence T” from Construction 3.2 and the transition sequence
T of the underlying (n, k) circuit code C.

Lemma 3.5. Let C be an (n,k) circuit code of length N > 2(k + 1) with
transition sequence T. Let T = (11,...,75,) and C' = (x},...,2y,) be
the transition sequence and circuit code (in dimension n+r) resulting from
applying Construction 8.2 to T. Let xj,x; € C'" with i < j and let T be a
shortest transition sequence in T' between x to ;. Then TO{ts,. .. tm}
is a shortest transition sequence in T between ;" and 27 € C.
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Proof. Let xj,a; € C' with i < j, then there are two segments in 7"
between z; and ;. Let T denote the shorter of these (chosen arbitrarily
if both segments have the same length) and let 7T denote its complement.
Then 70 is also a segment between z and 2’ in T'. Also note that z;* and
2’ € C. Tt is necessary that the subsequence 7'M {t1,...,t,} is a segment
between z;* and 2" in 7. Since there are only two segments between ;"
and z7* in T, and they partition T', we conclude that 7N {t1,.. ., tm} is
the other segment. Because |T| < |[TT|, |T| < ¥+ ¢ and T contains no
transitions spaced % + ¢ apart in 7" (e.g. 7 and T]/V/2+q+1 are spaced
% + g apart in 7", as are Ty, 5, and TI/V/2+q). For any 7,74 € T' spaced
§ + g apart, if 7, € T then 75 € TC. Also, if 7/, is the vth element
of T'" then 74 is the vth element of 7" (and similarly if 7/, € T and
745 € T''). Since elements of {s1,...,s,} are located in the same relative
positions of 7" and T', 7/, € {t1,...,tm} <= 74 € {t1,...,tm} (even
if 7, # 74). So for every 7, € T N {t1,...,tn} there is a corresponding
75 € TC N {t1,... ,tm} (and no other S TN {t,...,tm} corresponds to
this 75). Thus ITO{t1, ..t} < |TCN{t1, ... tm}|. Hence TN{t1,... tm}
is a shortest segment between ;" and z7* in 7. O

Figure 1 illustrates this, showing a (3,2) circuit code C' with transition
sequence T' = (2,1,3,2,1,3) (on the left) and the (4, 3) circuit code C’ (on
the right) with transition sequence T’ = (2,1, 3,4, 2,1, 3,4) resulting from
Construction 3.2. E.g. for z; = 1100 and z; = 1011 the shortest path in C’
between z] and z, indicated by dashed lines, “contains as a subpath” the
shortest path in C' between z;* = 110 and :c;* = 101.

Figure 1: A (3,2) Circuit Code and a (4,3) Circuit Code.
0111 0110

01() w110

000 — 100

N\ /

00] —————————— () ] 0010

We now have everything we need to proceed to the main proof.
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Proof of Theorem 1.3. Let C be an (n,k) circuit code with length N >
2(k+1) and transition sequence T'. Apply Construction 3.2 to T' to get a new
transition sequence T' = (71,...,75s) and vertex sequence (z,..., 2z ).
By Corollary 3.4, C' = (z},..., &) is a circuit and by construction N’ =
N + 2¢q, so it only remains to be shown that C’ has spread k + 1. By
Lemma 1.2 it suffices to show for all vertices z}, 2 € C’ with i < j that
dc’( 7,7 ]) > k+ 1 = dI(""FT)( i) ]) > k+]‘
Suppose that z} and J:] are vertices of C’ with der(af, J) >k+1. Let T
denote the segment of T” that is the shorter transition sequence between z
and 27, and let TT denote its complement. If |7'| = |TC| either segment may

be chosen. Note that 7' may “start” in 7! and end in T’Q,Aor the reverse,
or may be entirely contained in 7" or T2, Finally, let A = T'N{t1,...,tm}
and B =T N{s1,...,s:}, so dc:(z},2}) = |A| + | B|.

If |B] = 0 then |A| = k + 1. In this case T is a segment of T of length
k+1, and by Lemma 3.1 these transition elements are all distinct. So
drny(zi*,25) = k+ 1 and dj(n4r) (2], 2;) = k + 1, and we are done.

IR ] Vg
Now suppose that |B| > 0. First we will show that some s, € {s1,...,s,}
occurs an odd number of times in 7. If T'= (7/, ... ,Tj_1) then this follows
from Lemma 3.3. Otherwise, then we have 7C = (7/, ... ,Tj—1) and |TC| >

AN’ = L(N+2¢) > 1(2(k+2)) = k+2. By design of Construction 3.2 this
means that 76 N {sy,...,s,} # @, so by Lemma 3.3 some sp€{s1,...,5}
occurs exactly once in 7. Because sp occurs an even number of times in
T’, and since T and 1T are complements in 7", s, occurs an odd number of
times in 7. In both cases, some s, € {s1,...,s,} appears an odd number
of times in 7.

Now d (1) (2, J) = dy(n) (2, 2/ ')+the number of members of {s1,...,s,}

/

occuring an odd number of times in 7. If dry(zi, 2 ¢ *) >k thisis > k+ 1.
Suppose dj(,)(z l*, i *) < k. By Lemma 3.5 A is a shortest transition se-
quence between x;* and 27" in T Thus |A| = dc (2", 27) = drn)(x Z*,x;*)
since C has spread k. Furthermore, since |A\ < k we have |B| < 2, and since
consecutive elements of B differ when |T'| < & 5 +q all elements of B must oc-

cur exactly once. Thus dr(qr (2}, 25) = |A|+|B| = dor (2}, %) > k+1. O
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4 A New Lower Bound for K(n,4)

Singleton [20] remarks that for k > 4 and even, the best lower bound
available for K (n,k) seems to be applying the third lower bound given in
Table 2 to K (n, k+1) (as every circuit code of spread k+1 is also a circuit
code of spread k). In particular, for k = 4 this gives K (n,4) > 6-2127/61-1,
Subsequently, Klee [14] established the much stronger asymptotic result:
K(n,4) = 0™ for 0 < § < 33, suggesting that non-asymptotic lower
bounds stronger than K(n,4) > 6 - 2127/6]=1 may be possible. We will
now prove that Theorem 1.3 gives a non-asymptotic lower bound that is
stronger than K (n,4) > 6 - 2127/61=1 for n > 86.

First we establish the following claim, our argument is a minor modification
of the one given in Chapter 17 of [9].

Lemma 4.1. Forn > 6 there exists an (n,3) circuit code C with length N
divisible by 8 and satisfying 32 - 3("=8)/3 < N < %32 - 3(n=8)/3

Proof. Let C be an (n, 3) circuit code with transition sequence T'. Suppose
that t; occurs m times in T. Construction S5 of [9] states that there is an
(n+3,3) circuit code C’ with length N’ = N +8m, and t; occurs 3m times
in the new transition sequence T”. Note that if N is divisible by 4 and ;
appears % times in T, then N’ = 3N and ¢; appears 3m = NT/ times in T”.

For n = 6,7,8 consider the following transition sequences for (n,3) circuit
codes. Note that |Tg| = 16, |T7| = 24, and |Ts| = 32. Also, 5 occurs 4 times
in Tg, 2 occurs 6 times in 77, and 8 occurs 8 times in Tg.

(17
(57
(57

5,2,6,3,5,4,6,1,5,2,6,3,5,4
2,6,1,7,2,5,3,6,2,7,4,5,2,6
2,6,8,1,7,2,8,5,3,6,8,2,7, 4

)

0 = O

5,3,6,2,7,4)
9 b 9 9 b 9 3 b 9 3 b 9 b 9 ’67871’77278’57376’87277’478)

Therefore by Construction S5 we see that for any p € N, in dimension
n = 6+ 3p there exists an (n, 3) circuit code with length N = 16-3("=6)/3 ¢
(32-3(n=#)/3 1632.3(n=8)/3) 'in dimension n = 7+ 3p there exists an (n, 3)
circuit code with length N =24 -3(n=7)/3 ¢ (32.3(n=8)/3 2137 3(n=8)/3)
and in dimension n = 8 4+ 3p there exists an (n, 3) circuit code with length
N =32.3n=8/3, O

Proof of Theorem 1.4. Theorem 1.3 implies K (n+r,4) > N+2[ 2] > 3N,

where N > 2 -4 is the length of an (n,3) circuit code, ¢ = [£}], and
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r = [logy q] + 1. From Lemma 4.1 we know that for n > 6 there exists an
(n,3) circuit code C' of length N divisible by 8, and 32 - 3("=8)/3 < N <
2232-3(n=8)/3_ Using this code we have K (n+r,4) > 40-3("=8/3 ¢ = I
(by divisibility), and 7 = [logy 2% ] + 1 < [log, 2% | + 2.

Now 2% > 313 g0 r < 2 + |log, %4 - 378/3 .25 < 53n. Hence
K(|1.53n],4) > 40-3("=#)/3 for n > 6. And making the change of variables
u = 1.53n we get K(|u],4) > 40 - 3(1:6535u]-8)/3, O

A simple analysis shows that the lower bound of Theorem 1.4 exceeds
6 - 212n/61=1 for n > 86.

5 Computational Results

5.1 Methodology

The efficacy of Construction 3.2 was tested by applying it to circuit codes
of spreads 2-9 in dimensions 3-30. Table 3 lists the greatest lower bound
found for each (n,k) combination. The table was constructed as follows.
For spreads 2-7 and dimensions 3-30 we seeded the table with empirical
results from [20, 5, 11, 17, 2] which collectively survey all empirical records
of which we are aware, for spreads 8 and 9 we seeded the table by using the
exact bounds of Table 1 and the non-asymptotic lower bounds of Table 2.

Next, we applied Constructions 2.1 - 2.4 (collectively the “Singleton” con-
structions), the construction of Deimer (Construction 2.5), and the con-
struction of Klee (Construction 2.6). Because these constructions were
applied sequentially we iterated applying the constructions until there was
no improvement in any entry of the table. To this “initial” table we then
applied Construction 3.2 to the column corresponding to codes of spread k,
replacing the appropriate entry in the neighboring column of the table (for
codes of spread k + 1) if a larger lower bound was found. Each time after
applying Construction 3.2 to codes of spread k& we repeated the iterative
application of the constructions of Singleton, Deimer, and Klee to prop-
agate any further improvements in the lower bounds before applying the
construction to codes of spread k + 1. Finally, after applying the construc-
tion to codes of all spreads we iteratively applied the constructions from
Singleton, Deimer, and Klee once more.
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Construction 2.6 was applied to our table as follows. Let C' be an (n,k)
circuit code with length N > 2(k + 1)2, and let T = (71,...,7n) be its

transition sequence with transition elements {t1,...,t;,}. Split T into T =
(T15---,7ny2), T? = (Tnj241, - - -»7n) and subdivide T into ¢ = (%]

segments T7,..., T} of length < k 4 1 as in Construction 3.2 (where only
segment Té may have length < k+1). Note that ¢ > k+1. Fori = 1,2 de-

fine new transition sequences 7' = (T7',...,T;') and T" = (T{?,...,T}?)
where T}" = (T}, tm11) for j <p=(k + 1)(20@71\41)1 — & and Ti" = T} oth-

erwise. Observe that 0 < p <k+1 < ¢, so the T]{i are well-defined. Finally
combine T, T'? into T" = (T'*,T"?). Observe that t,,,1 occurs an even
number of times in 7”7, and any two occurences of ¢,,+1 are separated by
a segment of 7" which contains as a subsegment a segment of T of length
> k 4+ 1. From this it can be shown that T’ defines an n + 1 dimensional
circuit code C’ of spread k (but not necessarily of spread k + 1) and length
N =N+2p=2k+1) [2(]67111)] Thus C’ satisfies the divisibility criterion
of Construction 2.6 (for C). Because this method does not generate all
(n 4+ 1,k) circuit codes with length divisible by k + 1, we also indicate in
Table 3 when an entry exceeds the asymptotic lower bounds from Table 2
which are derived from Construction 2.6.

5.2 Discussion of Computational Results

Our construction found several new circuit codes for spreads of 7 and
8. Because codes of spreads 2-7 and dimensions 3-30 have been well-
studied (see [11, 17] for surveys) the improvements noted in Table 3 for
codes of spread 7 are perhaps the most significant. All of our new cir-
cuit codes of spread 7 and 8 are generated from the (17,6,204) circuit
code of [18], the (15,7,60) and (17,7,102) circuit codes of [11], and the
(18,7,116) circuit code resulting from applying Construction 2.1 to the
(17,7,102) circuit code. Applying Construction 3.2 to these 4 circuit codes,
we have: (17,6,204) — (22,7,234), (15,7,60) — (18,8,68), (17,7,102) —
(21,8,116), and (18,7,116) — (22,8, 132). From these 4 new circuit codes,
all of which are of record length, we generate the remaining circuit codes
as follows.

Tteratively apply Construction 2.1 and Construction 2.3 to the

(22,7,234) circuit code (and the new circuit codes these constructions gen-
erate) to get the (23,7, 266), (24,7, 310), (26,7, 466), (27,7, 532), (28,7, 618),
and (30, 7,930) circuit codes. Iteratively apply Construction 2.2 and Con-
struction 2.4 to the (21,8,116) and (22,8, 132) circuit codes (and the new
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Table 3: Lower Bounds for K(n, k) (Prior Best Bound in Parentheses).

n/k |2 3 4 5 6 7 8 9

3 6¢ 6¢ 6¢ 6¢ 6¢ 6¢ 6¢ 6¢
4 8c 8c 8c 8c 8c 8c 8c 8c
5 l4c 10c 10c 10c 10c 10c 10c 10c
6 26¢ 16¢ 12¢ 12¢ 12c¢ 12¢ 12¢ 12¢
7 48c 24c 1l4c l4c l4c 1l4c l4c l4c
8 96¢ 36¢ 22¢ 16¢c | 16¢c | 16¢ 16¢ 16¢
9 188 64 30c 24c 18c 18c 18c 18c
10 | 362 102 46¢ 28c | 20c | 20c 20c 20c
11 | 668 160 70 40c | 30c | 22c 22¢ 22¢
12 | 1340 288 102 60 36¢c | 32¢ 24¢ 24¢
13 | 2584 494 182 80 50c | 36¢ 26¢ 26¢
14 | 4934 812 280 106 | 68 48c 38¢ 28¢
15 | 9868 1380 480 210 | 88 60 42 40c
16 | 19740 2240 768 288 | 118 | 76 46 44c
17 | 39840 3910 1224 | 476 | 204 | 102 54 48
18 | 78848 5212 1530 | 570 | 238 | 116 68(60)ab 52
19 | 157696 7818 2040 | 712 | 284 | 134 78 60
20 | 315392 10424 | 2688 | 950 | 330 | 152 86 80
21 | 630784 15634 | 3400 | 1140 | 436 | 198 116(98)ab | 88
22 1261568 20848 | 4488 | 1422 | 510 | 234(228)ab | 132(114)ab | 100
23 | 2523136 31266 | 5910 | 1898 | 608 | 266(262)b | 148(128)b | 110
24 | 5046272 41696 | 7480 | 2280 | 714 | 310(304)b | 168(158)b | 124
25 | 10092544 | 62530 | 9870 | 2846 | 932 | 390 188(176)b | 160
26 | 20185088 | 83392 | 13248 | 3794 | 1086 | 466(452)b | 236(202)ab | 176
27 | 40370176 | 125058 | 20304 | 4560 | 1304 | 532(518)b | 272(234)ab | 200
28 | 80740352 | 166784 | 34704 | 5690 | 1530 | 618(608)b | 308(268)b | 222
29 161480704 | 250114 | 57246 | 7586 | 1996 | 774 348(328)b | 248
30 | 322961408 | 333568 | 97846 | 9120 | 2328 | 930(900)b | 396(368)b | 320

a = prior record also exceeded directly by applying Construction 3.2
b = record exceeds Klee’s asymptotic lower bound
¢ = value known to be optimal
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circuit codes these constructions generate) to get the (23, 8, 148), (24, 8, 168),
(25,8, 188), (26, 8,236), (27, 8,272), (28, 8,308), (29, 8, 348), and (30, 8, 396)
circuit codes.

Using this approach 4 out of the 18 new circuit codes result directly from
applying Construction 3.2. Construction 3.2 also directly results in circuit
codes that are longer than the previous record (26,8,202) and (27, 8,234)
circuit codes, but these circuit codes are shorter than the ones resulting from
iteratively applying Constructions 2.1-2.4 to the (22,7,234), (18,8,68),
(21,8,116), and (22, 8,132) circuit codes.

The chief advantage of our construction is that it is very easy to implement,
allowing the better studied codes of smaller spreads to be leveraged to
generate codes of larger spreads, where the spread is too large for computer
search. This adds another construction (in addition to Constructions 2.1
- 2.6) to generate non-trivial codes for large spreads. As the results for
spreads k = 7, 8 indicate, the construction is additive to Constructions 2.1-
2.6. However the results for spread k£ + 1 = 9 indicate that the success of
this approach relies on good starting codes for spread k.

6 Conclusions

In this note we presented a simple method for constructing a circuit code
of spread k + 1 from a circuit code of spread k. This construction leads
to 18 new record code lengths for circuit codes of spread k = 7,8 and in
dimensions 22 < n < 30 by leveraging the record length circuit codes of
spread 6 and 7 from [18] and [11]. We also derived a new lower bound on
the length of circuit codes of spread 4, which improves upon the bound
suggested by Singleton for n > 86.

Some of the records in Table 3 stood for at least 32 years before being
broken by the method described here, however we believe that further im-
provements of the lower bounds on K (n, k) are still possible. In particular,
Construction 5 from [20] describes how to extend an (n, 7) circuit code un-
der certain conditions on how close a specific pair of transition elements ap-
pear in the transition sequence. While applying that construction directly
does not improve the lower bounds in the table (we tried!) the transition
sequences arising from combining Construction 3.2 with the construction
method of [18] are highly structured, suggesting that a modification of that
approach may succeed.
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A Transition Sequences for New Record Circuit Codes

The following codes are the transition sequences for the new record length
circuit codes reported in Table 3. We follow the convention of [18], [11], and
others in reporting transition sequences, which assigns the labels 0,...,9
to dimensions 1 through 10, and the characters a,...,z to dimensions 11
through 36. To maintain consistency with the rest of this note (where many
of our arguments rely on the even parity of the transition sequence) we re-
port all N transitions in the code. As [11] observes, the final transition is
not technically necessary to reconstruct the circuit code since it is a cycle de-
fined to start to 0. When using these transition sequences, the reader should
carefully distinguish between the number “1” and the letter “1”, e.g. as
in the transition sequences for the (22,7,234),(23,7,266),and (24,7,310)
codes.

(22,7,234) 5b32f78hgc3befdidc80195hd478e65j1ab2f6eh017gfb3i4c8g7abh0
984de5k19034a2h1e67fb2iade3cb7hg084¢36j7d5409ah1e5dg06if
€a213b7f69ahg873cd4i08g2391h0d56ealjdcd2babhfg73b25i6¢43g
89h0d4cfgbked912a6he589f76i2bc3g7th1280gc4j5d908bchla9bef
6i2a14l1

(23,7,266) 5b32f78mhgc3befm4idc801m95hd478me65j1abm2f6eh01m7gfb3
i4mc8g7abhm0984de5mk19034am2hle67fmb2iade3meb7hg08m
4c36j7dmb5409ah1me5dg06imfea2l3b7f69amhg873cdm4i08g23m
91h0d56mealj9cdm2babhfgm73b25i6mc43g89hm0d4cfghmked9
12am6he589fm76i2bc3mg7fh128m0gc4j5dm908bchlma9bef6im
2al4l

(24,7,310) 5b3m2{7n8hgmc3bnef4miden801m95hnd47m8ebn5jlmab2nf6e
mh01n7gfmb3indc8mg7anbhO0m984nde5mk19n034ma2hnle6m?7
fbn2iamde3ncb7mhgOn84cm36jn7d5m409nah1me5dng06mifena
213b7mf69nahgm873ncd4mi08ng23m91hn0d5m6beanljdmed2nb
abmhfgn73bm25in6c4m3g8n9h0md4cnfgbmkedn912mabhne58
m9f7n6i2mbc3ng7fmh12n80gmc4jn5d9m08bnchlma9snef6mi2a
nl4l

(26,7,466) 5mbn3o2pfm7n8ohpgmcn3obpemfn4oipdmen8o0plm9ns0hpdm
4n7o8pem6bn50jplmanbo2pfméneohpOmln7ogpfmbn3oip4dmen8
ogp7manbohpOm9n8o4pdmen50kplm9nOo3p4dman2ohplmenbo
7Tpfmbn2oipamdneo3pcmbn7ohpgmOn8o4pcm3n6ojp7mdn5odp
Om9naohplmenbodpgmOn6oipfmenao2pl3mbn7ofpb6m9naohpg
m8n7o3pcmdn4oip0m8ngo2p3m9nlohpOmdn5obpemanlojp9Ime
ndo2pbman6ohpfmgn7o3pbm2n5oip6mcn4o3pgm8n9ohpOmdn4
ocpfmgn5okpemdn9olp2man6ohpemb5n8o9pfm7n6oip2mbnco3p
gm7nfohplm2n8o0pgmcn4ojp5mdn9o0p8mbncohplman9ospe
mfn6oip2manlodpl
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(27,7,532)

(28,7,618)

(30,7,930)

(18,8,68)

(21,8,116)

(22,8,132)

5mbn3o2gpfm7n8oqhpgmcen3qobpemfng4oipdmeqn8o0plmg9n
50hpdgqm4n7o8pgem6bn50jgplmanboq2pfm6béneqohpOmlng7ogpf
mbqgn3oip4dmqcn8ogp7qmanbohpqOm9n8odqpdmen50gkplm9n
0go3p4mang2ohplmeqn6o7pfmgbn2oipagmdneo3pgcmbn7ohq
pgmOn8og4pcm3nbqojp7mdng504p0m9gnaohplmgens0dpggm
On6oipgfmenao2qpl3mbn7ofqp6m9naoqghpgm8n7qo3pcmdng4oi
pOm8qngo2p3mg9nlohpOgmdn5o6pgemanlojgp9mendog2pbm
an6gohpfmgnq7o3pbm2gn5oip6mgcn4o3pggm8n9ohpgOmdndo
cgpfmgn5ogkpemdn9qolp2mang6ohpemb5qn8o9pfmq7nboip2q
mbnco3pggm7nfohqplm2n8oq0pgmcendqojpsmdng9o0p8mbgnc
ohplmgan9o5peqmin6oipg2manlodqpl

5mbgn3or2pfqgm7nr8ohgpgmrcn3qobpremfgndoripdgmenr8o0q
plmr9n5qohprdm4qn7or8peqm6nr5ojgplmranbqo2prfméqneor
hpOgm1nr7oggpfmrbn3qoiprdmcegn8orgp7qmanrbohqpOmr9In8q
o4prdmeqgn5orkplqm9nrOo3qp4mran2qohprlmeqn6or7pfgmbnr
2oigpamrdneqo3prcmbqn7orhpggmOnr8o4gpcmr3n6qojpr7mdqg
nbordpO0gm9nraohgplmren5qodprgmOqn6oripfqmenrao2pl3mb
qn7orfp6gm9Inraochgpgmr8n7qo3prcmdgndorip0gm8nrgo2gp3m
r9nlqohprOmdgn5or6peqmanrlojgqp9mrendqo2prbmagn6orhpf
gmgnr7o3gqpbmr2n5qoipr6mecgndor3pggm8nr9ohgpOmrdndqoc
prfmggn5orkpeqmdnr9olgp2mran6gohprem5qn8or9pfqm7nréoi
gp2mrbncqo3prgm7qnforhplqm2nr8o0qpgmrcndqojprbmdgn9o
rOp8gmbnrcohgplmran9qo5premfgn6orip2gmanrlodpl

5qmrbsnt3qor2sptfqmr7snt8qorhsptggmresnt3qorbspteqmrfsnt
4qorisptdgmresnt8qorOspt1qmr9snt5qorhsptdqmr4snt7qor8spt
eqmrobsntbqorjsptlgmrasntbqor2sptfqmrésnteqorhsptOgmrlsnt
7qorgsptfqgmrbsnt3qorispt4dqmresnt8qorgspt7gmrasntbqorhspt0
qmr9snt8qordsptdgmresnt5qorkspt 1qmr9IsntOqor3sptdqmrasnt
2qorhspt1lgmresnt6qor7sptfqmrbsnt2qorisptagmrdsnteqor3sptc
gmrbsnt7qorhsptgqmr0snt8qordsptcqmr3snt6qorjspt7qmrdsnt5
qordsptOgmr9sntaqorhsptlgmresntbqordsptggmrOsnt6qorisptiq
mresntaqor2sptl3gmrbsnt7qorfspt6qmrIsntaqorhsptgqmr8snt7
qor3sptcqmrdsnt4qorisptOgmr8sntgqor2spt3qmr9Isnt1qorhspt0
gmrdsnt5qor6spteqmrasnt1qorjspt9gmresntdqor2sptbgmrasnt6
qorhsptfgqmrgsnt7qor3sptbgqmr2snt5qorispt6gmresntdqor3sptgq
mr8snt9qorhsptOgmrdsnt4dqoresptfgmrgsntbqorkspteqmrdsnt9q
orlspt2gmrasnt6qorhspteqmrb5snt8qor9sptfqgmr7snt6qorispt2q
mrbsntcqor3sptggmr7sntfqorhspt1gmr2snt8qorOsptggmresntdq
orjsptbgmrdsnt9qorOspt8qmrbsntcqorhspt lqmrasnt9qorsspteq
mrfsnt6qorispt2qmrasnt1qordsptl

2e571b9afc6825319g46cd5el17f402cb6h184d9c2eflabd8327geblc
6824f70bd9ch

01234567h08192a3bi041c253dh06172e48j031f2594h06172a3bi05
1kg789dc0bh324ed109iab76de2ch0153be89ja0124cefhd3b072e9i
5dgk

0123456hi708192ahj3b041c2hi53d0617hk2e48031hif259406hj17

2a3b0hi511g789dcOhib324ed1hj09ab76dhie2c0153hkbe89a01hi2
4cefd3hjb072e95hidgl
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(23,8,148)

(24,8,168)

(25,8,188)

(26,8,236)

(27,8,272)

(28,8,308)

(29,8,348)

(30,8,396)

01231456m7h081192ma3bil041mc2531dh0m61721e48mj0311f25m
94h01617m2a3bli05m1kg789ldcOmbh3214edm109ilab7m6de2lch
0m153ble89mja01124cmefhd13b0m72e9li5dmgk

0123m456nhi70m819n2ahjm3b0n41c2mhi5n3d06m17hnk2e4m8
03n1hifm259n406hmj17n2a3bmOhin511g789mdcOnhib3m24end1
hjm09anb76dmhien2c01m53hnkbe8m9a0nlhi2m4cenfd3hmjb0
n72e9mbhindgl

0123n14506m7hn08lo192mna3boil04n1mco253Indh0om617n2leo
48mjn0310lf25nm940h016n17mo2a3bnli0o5m1kg789nldcoOmbh
n32lo4edmn109oilabn7m6ode2lnch0om153nbleo89mjnallol24c
nmefohdl3nb0mo72e9nlisodmgk

0l11m2n304p516m7nhop0l8m1n9o2pal3mbniopOl4mInco2p513m
dnhop0l6m1n702pel4dm8njop0l3mInfo2p519m4nhop0l6m1ln7o2p
al3mbniop051kgl7m8n9odpclOmbnhop3l2m4neodpll0m9niopal
bm7n6odpel2mcnhop0l1m5n3obpel8m9njopalOmlin2o4pclemfn
hopdl3mbn0Oo7p2lem9niop5dgk

0m1n203p4q5m6énhoipq7mOn8olp9g2manhojpg3mbnOodplgcm
2nhoipgbm3ndo0p6qlm7nhokpg2men4o8p0g3mlnhoipgfm2n50
9p4q0m6nhojpqlm7n2oap3gbmOnhoipg51lgm7n809pdqcmOnho
ipgbm3n2o04peqdmlnhojpqOm9naobp7q6mdnhoipgem2ncoOplq
5m3nhokpgbmen8o9paq0mlnhoipg2m4dncoepfqdm3nhojpgbm0
n7o02peq9mbnhoipqdgl

Onlo2p3qlrdn506pmqr7nho0p8qlrin9o2pmqran3obpiqlrOndolp
mgqrcn205p3qlrdnho0pmqrénlo7p2qlren4o8pmqrjn0o3plqlrfn2o0
5pmqr9Indohp0qlré6nlo7pmqr2nao3pbglrin0o5pmqrlkgn7o8p9ql
rdncoOpmqgrbnho3p2qlrdneodpmqrlnOo9piglranbo7pmqr6ndoe
p2qlrenho0pmgrin503pbglren8o9pmqrjnao0plqglr2ndocpmgrenf
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