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Abstract

A vertex labeling is an assignment of integers to the vertices of
a graph, subject to certain conditions. Graceful and harmonious
labelings are among the most studied labelings. Suppose that G is a
graph of order m and size n. The graph G is said to be graceful if
there is an injection f : V (G) → {0, 1, . . . , n} such that, when each
edge uv of G has assigned the weight |f(u) − f(v)|, the resulting
weights are distinct [14]. Similarly, when m ≤ n, the graph G is said
to be harmonious if there is an injection f : V (G) → Zn such that,
when each edge uv of G has assigned the weight f(u)+f(v) (mod n),
the resulting weights are distinct [10].

In this paper we present a method that allows us to transform
a special kind of graceful labeling into a harmonious labeling for
four families of graphs that are constructed using cells isomorphic to
the cycle C4; thus we prove that all quadrilateral snakes, all snake
polyominoes, all hybrid quadrilateral snakes, and all straight simple
polyominal caterpillars are harmonious graphs.
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1 Introduction

Let f be a graceful labeling of a graph G; suppose there exists an integer λ,
such that f(u) ≤ λ < f(v) or f(v) ≤ λ < f(u), for every uv ∈ E(G), then f
is said to be an α-labeling with boundary value λ. By an α-graph we mean
a graph that admits an α-labeling. Note that an α-graph is necessarily
bipartite.

A snake of length n > 1, is a packing of n congruent geometrical objects,
called cells, such that the first and last cell each have only one neighbor and
all the n− 2 cells in between have exactly two neighbors. Polyominoes are
planar shapes made by connecting a certain number of equal-sized squares,
each joined together with at least one other square along an edge. A snake
polyomino is a snake where the cells are squares, i.e., the cycle C4. In
[3], Barrientos and Minion proved that all snake polyominoes admit an
α-labeling. A nCm-snake is a connected graph in which the n cells (or
blocks) are isomorphic to the cycle Cm and the block-cut point graph is a
path. Thus, a nC4-snake or quadrilateral snake is a bipartite graph of order
3n + 1 and size 4n. Barrientos [1] proved that all quadrilateral snakes are
α-graphs. A hybrid quadrilateral snake is a snake where two consecutive
squares share a vertex or an edge.

Grace [8] defined a sequential labeling of a graph G of size n as an injective
function f : V (G)→ Zn, where the weight of every edge uv of G is defined
as f(u) + f(v), and the set of induced weights is {t, t + 1, . . . , t + n − 1}
for some integer t. A graph G is sequential if it admits a sequential label-
ing. Chang et al., [4], called the sequential labeling, strongly t-harmonious.
Grace showed that any sequential graph is harmonious; he also proved the
following proposition.
Proposition 1. If G is an α-graph, then G is sequential.

Motivated by all these results we investigate here the existence of α-labelings
of snake polyominoes, quadrilateral snakes, hybrid quadrilateral snakes,
that is, snakes where the connection is done via vertex amalgamation
and/or edge amalgamation. We also consider here straight simple poly-
ominal caterpillars; we present a technique that transforms the α-labelings
of these graphs into harmonious labelings, proving so that all these graphs
are harmonious.

The families of snakes considered in this work are quite robust; it is an open
problem to determine the number of these snakes with n cells. There is an
injection between the set of snake polyominoes with n cells and the set of
self-avoiding walks of length n− 1. For every snake polyomino, there exists
a quadrilateral snake of the same length. The converse of this statement is
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not true. To check this fact, consider the examples in Figure 1.

In part (a) we have, in solid lines, a snake polyomino together with its
associated quadrilateral snake (dashed lines). In part (b) we have, in solid
lines, a quadrilateral snake, but the shape in dashed lines is not a valid
snake polyomino. In part (c) we show that every snake polyomino can be
represented, for enumeration purposes, as a self-avoiding walk. Note that
not all self-avoiding walks correspond to a snake polyomino.

(a) (b) (c)

Figure 1: Relation between snake polyominos, quadrilateral snakes, and
self-avoiding walks.

In this work we follow the notation and terminology used in [7]; the reader
interested in graph labelings is refered to this survey for more information.

2 Related Results

Several families of harmonious graphs are known. Some of them are ob-
tained using vertex amalgamation. For example, Seoud and Youseff [15]
showed that if the one-point union of two cycles is harmonious, then the
size of the graph is divisible by 4. Xu [16] proved that kC3-snakes are
harmonious if and only if k 6≡ 2(mod 4). Grace [9] showed that Kn-snakes
are harmonious. Graham and Sloane [10] conjectured that 2Kn-snake is
harmonious only when n is 4.

We can also find in the literature harmonious labelings of graphs obtained
using edge amalgamation. Graham and Sloane [10] proved that ladders,
Pm×P2, are harmonious when m > 2; ladders are a special type of the snake
polyominoes considered in this work. Jungreis and Reid [11] generalized this
result by showing that the grids Pm × Pn are harmonious when (m,n) 6=
(2, 2). Lu [13] used Θ(Cm)n to denote the graph made from n copies of
Cm that share an edge, that is, a generalized book. Xu [17] proved that
Θ(Cm)2 is harmonious except when m = 3; moreover, he proved that all
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cycles with a chord are harmonious except for C6 in the case where the
distance in C6 between the endpoints of the chord is 2.

In order to prove that the snakes considered in this work are harmonious,
we prove first that they accept a felicitous labeling, these labelings were first
used by Lee et al. in [12]. Let G be a graph of size n. An injective function
f : V (G) → Zn+1 is called felicitous if the weights induced by f(u) +
f(v) (mod n) for each edge uv of G are distinct. Figueroa-Centeno et al. [5]
define a felicitous graph G to be strongly felicitous if there exists an integer
λ so that for every edge uv of G, min{f(u), f(v)} ≤ λ < max{f(u), f(v)}.
They prove that G is strongly felicitous if and only if G is an α-graph.
For the sake of completeness, we prove here that every α-graph is also a
felicitous graph.
Proposition 2. If G is an α-graph, then G is felicitous.

Proof. Suppose that G is an α-graph of size n. Let f be an α-labeling with
boundary value λ of G. Consider the following labeling of G defined, for
every vertex v of G, as

g(v) =

{
f(v) if f(v) ≤ λ,
n+ λ+ 1− f(v) if f(v) > λ.

Clearly, g is an injective function; furthermore, g uses labels from [0, λ] ∪
[λ + 1, n]. For every w ∈ {1, 2, . . . , n}, there is an edge uv of G such
that f(v) − f(u) = w. The weight of the edge uv, under the labeling g is,
g(v)+g(u) = n+λ+1−f(v)+f(u) = n+λ+1−(f(v)−f(u)) = n+λ+1−w.
Since 1 ≤ w ≤ n, we have that λ + 1 ≤ g(v) + g(u) ≤ n + λ. That is, the
set of weights induced by g consists of n consecutive integers; when these
integers are reduced modulo n, we obtain the set Zn. Therefore, g is a
felicitous labeling of G.

The results in Section 3 are based on three essential results related to α-
labeled graphs. Let f be an α-labeling with boundary value λ of a graph
G of size n, the labeling g of G defined as g(v) = f(v) when f(v) ≤ λ, and
g(v) = f(v) + k − 1 when f(v) > λ, is a k-graceful labeling, that is, the
set of induced weights is {k, k + 1, . . . , k + n − 1}, where k is any positive
integer. For i = 1, 2, let fi be an α-labeling with boundary value λi of
a graph Gi of size ni. Suppose that f1 is transformed into a (n2 + 1)-
graceful labeling and f2 is shifted λ1 units, by adding the constant λ1
to every vertex label. Thus, both graphs have a vertex labeled λ1. The
amalgamation of these vertices produces a new α-labeled graph. Suppose
now that f1 is transformed into a n2-graceful labeling and f2 is shifted λ1
units, both graphs have an edge of weight n2 with end vertices labeled λ1
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and λ1 + n2 − 1. The edge amalgamation of these graphs results in a new
α-labeled graph. For example, if the consecutive vertices of two copies of
C4 are labeled 0, 4, 2, and 3, the boundary value is 2; the vertex and edge
amalgamations produce the α-labeled graphs shown in Figure 2.

0

8

2

7

6

4

5

0 6 4

7 2 5

Figure 2: Vertex and edge amalgation of two squares.

3 Harmonious Snakes

The concept of chain graphs was introduced by Barrientos in [2]. The
following definition extends this concept. For every 1 ≤ i ≤ n, let ui, vi ∈
V (Gi), where Gi is a connected graph; the graph G, obtained by identifying
(vertex amalgamation) vi with ui+1, for each 1 ≤ i ≤ n−1, is called a chain
graph. Barrientos [2] proved that when all the Gi are α-graphs, there exists
a chain graph G, constructed using the Gi’s, that is also an α-graph. To
prove this result, the vertices ui and vi are chosen to be the vertices labeled
0 and λ by an α-labeling of the Gi’s.

So, we can prove that all quadrilateral snakes are α-graphs by showing that
we have an α-labeling of C4 that allows us to do the vertex amalgamation.
Consider the labeling of Gi = C4 that assigns the integers xi, yi, xi +2, and
yi + 1 to consecutive vertices. If xi = 0 and yi = 3, this is an α-labeling.
If xi + 2 < yi, the induced weights are yi − xi − 2, yi − xi − 1, yi − xi, and
yi − xi + 1; that is, four consecutive numbers. If xi > yi + 1, the weights
are xi − yi − 1, xi − yi, xi − yi, xi − yi + 1, and xi − yi + 2. Note that this
is an α-labeling of C4 when yi = 0 and xi = 2. Suppose that ui is labeled
xi when xi + 2 < yi, then vi can be chosen to be the vertex labeled xi + 2
or yi + 1. If vi is labeled xi + 2, then ui+1 must be labeled xi+1 = xi + 2
and xi+1 + 2 < yi+1. If vi is labeled yi + 1, then ui+1 must be labeled
yi+1 = yi + 1. Thus, the weights on each Gi are four consecutive integers
and the final labeling of G is an α-labeling.

Using this construction, Barrientos [1] proved the next theorem.
Theorem 3.1. All quadrilateral snakes are α-graphs.
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As a consequence of this theorem and Proposition 2 we can prove the fol-
lowing corollary.
Corollary 1. All quadrilateral snakes are felicitous.

In Figure 3a we show the α-labeling, of a quadrilateral snake of length 7,
obtained using this procedure. In Figure 3b we show the felicitous labeling
of the snake obtained using Proposition 2.

(a) (b)

24 2

0 23

3 22

5

6 21

8 19

1020 18

17 1213

16 15

16 2

0 17

3 18

5

6 19

8 21

1020 22

23 1213

24 15

Figure 3: α- and felicitous labelings of a quadrilateral snake

Theorem 3.2. All quadrilateral snakes are harmonious.

Proof. Let G be a quadrilateral snake of length n, thus G is a graph of
size 4n. Let g be the felicitous labeling of G described before. If λ is
the boundary value of the α-labeling f of G used to generate g, then the
labels on the first cell of G are 0, λ + 1, 2, λ + 2, with induced weights
λ+1, λ+2, λ+3, and λ+4. The labels on the last cell of G are λ−2, 4n, λ,
and 4n − 1, with induced weights λ − 3, λ − 2, λ − 1, and λ. Now we
replace the labels 4n and λ with the labels 1 and λ− 1, respectively. Note
that neither of these labels has been used before, so the new labeling of
G is injective and uses labels from Z4n. The weights induced by this new
labeling of G on the last cell are also λ−3, λ−2, λ−1, and λ. Since neither
of the labels nor the weights, on the other cells, have been modified and
the largest label used is 4n− 1, we have a harmonious labeling of G.

In Figure 4 we show the resulting labeling for the graph in Figure 2.

Now we turn our attention to the snake polyominoes. We claim that all
snake polyominoes of length n > 1 are harmonious. The technique used to
prove this claim does not produce the desired labeling when the polyomino
is the one in Figure 5, however this graph is harmonious, as we show in
Figure 5.
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5

6 19

8 21

1020 22

23 1213

1 14

Figure 4: A harmonious labeling of a quadrilateral snake.

2

5

6

0

4

9

1 3

Figure 5: Harmonious labeling of a special snake polyomino of length 3.

Let G1 and G2 be two graphs of positive sized. The graph Γ obtained by
identifying an edge of G1 with an edge of G2 is called an edge amalgamation
of G1 and G2. In [3], Barrientos and Minion proved the following result.
Theorem 3.3. If G1 and G2 are two α-graphs, then there is an edge amal-
gamation Γ of G1 and G2 that is an α-graph.

The graph Γ is obtained by amalgamating the edge of weight 1 in G2 with
the edge of weight |E(G2)| in G2.

Using this result, together with the building blocks shown in Figure 6, the
authors were able to prove that all snake polyominoes admit an α-labeling
[3].

We claim that all snake polyominoes are harmonious. In order to prove
this claim, we first show an α-labeling of the snake that has a property
that allows us to transform it into a felicitous labeling, which is finally
transformed into the claimed harmonious labeling. This α-labeling is, in
general, different of that found in [3].
Theorem 3.4. All snake polyominoes are α-graphs.
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7 0 5

1 4 3

7 0 5

3 6 4

0 7 1

5 3 4

3 2

0 4

0 6 1

7 4 5

0 6 4

7 2 5

0 3 2

7 1 6

0 7 2

4 1 3

Figure 6: α-labelings of the building blocks.

Proof. Suppose that G is a snake polyomino with n cells. Then its order
in 2(n+ 1) and size 3n+ 1. We analyze two cases depending on the parity
of n.

Case 1: When n is even. Suppose that G has been α-labeled using the
technique presented in [3], Theorem 2. Thus, the weights in the first cell
of G are 3n − 2, 3n − 1, 3n, and 3n + 1; and the weights in the last cell
of G are 4, 3, 2, and 1. We decompose G into three components G1, G2,
and G3, where G1 and G3 are the extreme cells of G, respectively, and
G2 is the snake polyomino formed by all the interior cells of G. Note that
when n = 2, G2 does not exist. Substract from every vertex label of G2

the constant that transforms the labeling of G2 into an α-labeling. The
components G1 and G2 are labeled using the α-labeling of C4 shown in
Figure 6. Thus, G1, G2, and G3 have been α-labeled and the edge of G
where G1 and G2 were amalgamated has weight 3n− 5; similarly, the edge
of G where G2 and G3 were amalgamated has weight 1. Therefore, we can
apply Theorem 3 to G1 and G2, to produce a snake polyomino, G′, with
n−1 cells, identifying the edge of weight 1 in G1 with the edge of 3n−5 in
G2. Once this is done, we apply Theorem 3 again to G′ and G3, identifying
the edge of weight 1 in G′ with the edge of weight 4 in G3. The resulting
graph is G with an α-labeling f that does not use the labels 1 and λ − 1,
where λ is its boundary value.

Case 2: When n is odd. We decompose G into two components, G1 and
G2, where G1 consists of the first n− 3 cells of G and G2 is formed by the
last three cells of G. Since n − 3 is even, we label G1 using the technique
described in Case 1. G2 is α-labeled using one of the labelings shown in
Figure 7, the labeling is chosen in such a way that the edge of G, where G1

and G2 were amalgamated, has weight 10.
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0 9 1

10 4 8

7 6

10 1 9

0 6 2

4 5

0 10 1

8 3 7

6 5

0 9 4 7

10 2 8 6

0 10 2 5

7 1 6 4

10 0 8 6

3 9 4 7

Figure 7: α-labelings of snake polyominoes with three cells.

It is routine to verify that these building blocks cover all the possible con-
figurations of the last three cells of G.

Now we apply Theorem 3 to G1 and G2, identifying the edge of weight 1 in
G1 with the edge of weight 10 in G2. Thus, as in Case 1, we have obtained
an α-labeling of G that does use the labels 1 and λ− 1.

Therefore, any snake polyomino with n cells has an α-labeling that does
not use the labels 1 and λ− 1.

As a consequence of Proposition 2 and Theorem 4 we have the following
corollary.
Corollary 2. If G is a snake polyomino with n ≥ 2 cells, then G is felici-
tous.

As we did in Theorem 2, we use the felicitous labeling of G to prove that
G is also a harmonious graph.
Theorem 3.5. If G is a snake polyomino with n ≥ 2 cells, then G is
harmonious.

Proof. The α-labeling of G obtained in Theorem 4 does not use the labels
1 and λ−1. Thus, the associated felicitous labeling of G does not use these
labels neither. So, to obtain a harmonious labeling we replace the label
3n + 1 by 1 and the label λ by λ − 1. As in Theorem 2, the final labeling
is in fact a harmonious labeling of G.
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In Figure 8 we show a complete example of this construction, starting with
the α-labeling and ending with the associated harmonious labeling.

α-labeling felicitous labeling harmonious labeling
0 18 3

19 2 15 6

16 5 12 10

13 8 11

0 12 3

11 2 15 6

14 5 18 10

17 8 19

0 12 3

11 2 15 6

14 5 18 9

17 8 1

Figure 8: α-, felicitous, and harmonious labeling of a snake polyomino

Now we describe how to obtain an α-labeling of a hybrid quadrilateral
snake. By a hybrid quadrilateral snake we mean a snake where every inte-
rior cell shares an edge or a vertex with its neighbor cells. In other words,
the (i+ 1)th cell is attached to the ith cell using vertex or edge amalgama-
tion. Since every cell is an α-graph, these operations produce an α-graph
when the building blocks are used according to the procedures described in
Theorem 1 and Theorem 4. Thus, we can prove the following theorem.
Theorem 3.6. All hybrid quadrilateral snakes are α-graphs.

Using the building blocks in Figure 6 it is always possible to start with a
cell that does not use the label 1 and end with a cell that does not use the
label λ− 1. This implies that the resulting α-labeling, of the hybrid snake,
can be transformed into a felicitous labeling, which can be modified to get
a harmonious labeling of this snake. In Figure 8 we show a harmonious
labeling of a hybrid snake with 9 cells obtained using the constructions
described in this work.
Corollary 3. All hybrid snakes are felicitous.
Corollary 4. All hybrid snakes are harmonious.

Froncek et al. [6] introduced the concept of straight simple polyominal
caterpillar as the graph obtained as follows. Consider two paths of length
n, Π1 and Π2, with V (Πi) = {ui1, ui2, . . . , uin+1} and E(Πi) = {uijuij+1 :
1 ≤ j ≤ n}. With these paths a (straight) snake polyomino (or ladder
Pn+1×P2) can be formed by adding the edges u1ju

2
j for every 1 ≤ j ≤ n+1.

Let L be any nonempty subset of {u1ju1j+1, u
2
ju

2
j+1 : 1 ≤ j ≤ n}. A straight

simple polyominal caterpillar is the graph obtained by edge amalgamating
a copy of C4 to every element of L. In [6], the authors proved that all
straight simple polyominal caterpillars are α-graphs. In order to prove that
these graphs also admit a harmonious labeling, is enough to show that
there exists an α-labeling that does not assign the labels 1 and λ− 1. The
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26 8

27 11

9 28 12

14 29

30 17

31

18

19

1

Figure 9: Harmonious labeling of a hybrid quadrilateral snake.

building blocks used in [6] not always produce an α-labeling with these
characteristics. The labeled building blocks shown in Figure 10 solve this
problem. The building blocks in parts (a) - (d) can be applied to label the
first cells(s) (or head) of our graph without using the label 1; the building
blocks in parts (c) - (f) can be applied to label the last cell(s) (or tail) of
our graph without using the label λ−1. The cells in between can be labeled
using these blocks or using the blocks in [6]. Note that the labelings in (e)
and (f) are based on a specific coloring of the vertices, if this coloring does
not match the one of the rest of the polyominal caterpillar, then it is always
possible to relabel them in such a way that they match with the coloring
of these two building blocks. Thus we have proved the following.
Proposition 3. For any straight simple polyominal caterpillar, G, there
exists an α-labeling of G with boundary value λ such that the integers 1 and
λ− 1 are not assigned as labels of G.

As we concluded before, this special α-labeling can be transformed into a
felicitous labeling, which can be modified into a harmonious labeling. Thus,
we can prove the following corollaries.
Corollary 5. All straight simple polyominal caterpillars are felicitious.
Corollary 6. All straight simple polyominal caterpillars are harmonious.
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