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Daniel Litt’s probability puzzle

MAURA B. PATERSON AND DoOUGLAS R. STINSON

Abstract. In this expository note, we discuss a “balls-and-urns” probability
puzzle posed by Daniel Litt.

1 Introduction

On August 29, 2024, Quanta Magazine published a discussion [3] of a prob-
ability puzzle that Daniel Litt posed on “X” on January 29, 2024. Here is
the description of the puzzle from [3]:

Imagine, he wrote, that you have an urn filled with 100 balls,
some red and some green. You can’t see inside; all you know is
that someone determined the number of red balls by picking a
number between zero and 100 from a hat. You reach into the
urn and pull out a ball. It’s red. If you now pull out a second
ball, is it more likely to be red or green (or are the two colours
equally likely)?

These kinds of probability puzzles can be notoriously tricky, and intuition
can easily lead one astray. For these reasons, we feel it is often useful
to approach such puzzles from a mathematical point of view. We present
three rigorous approaches to solving the problem in the next section. In
Section 3, we use an inductive approach to solve the puzzle. In Section 4, we
present pseudocode to simulate the problem. Finally, Section 5 concludes
with some comments and discussion.
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2 Three solutions

2.1 Probability distribution on the urns

For 1 <z <100, let U, denote an urn that contains x red balls and 100 — x
green balls. Suppose a red ball has been removed from U,. If we remove a
second ball from U,, the probability this second ball is red is (x — 1)/99.
Let’s denote this (conditional) probability by P,. The overall probability
P that the second ball is red depends on the probability distribution on the
set of possible urns, U = {Uy,...,Ujoo}-

Suppose we (incorrectly) assume a uniform distribution on U, i.e.,
Pr[U,] = 1/100

for all z, with 1 < z < 100. In this case,

100
P=> PiU,] x P,
r=1

100 1 r—1
> (0 St
100 99

rx=1
1 100
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This answer would be correct in the scenario where U, is first chosen uni-
formly at random and then a red ball is removed from U,. However, this
is not quite the scenario that is described in the puzzle.

The puzzle assumes that urns with more red balls are more likely to be
chosen than urns with fewer red balls. Imagine that we have created 100
urns Uy, ...,Uigg, as previously described. The total number of red balls

in all the urns is
100

r=——:.
2
=1
If we choose a red ball uniformly at random, then the probability that the
ball is chosen from urn U, is

x 2z
Pr{U,] = 1555101 = 100 % 101"
2
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Now we compute

100

P=> PiU,] x P,
r=1

_ % 2 o r—1
© 42100 101 7 99
2 100
— 2 J—
~ 99 x 100 x 101 * ;(”7 7)
B 2 y 100 x 101 x 201 100 x 101 @)
" 99 x 100 x 101 6 2

_2 (0 1
S99\ 6 2

_ 2 (198
99\ 6
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The value 2/3 is in fact the intended answer to the question. The reason
the puzzle is rather tricky is possibly due to the nonuniform distribution
on U that is induced by the initial choice of a red ball.

Remarks:

1. When we compute Y 22 in (2), we obtain a square pyramidal number;
see [4]. The study of these numbers dates back to Archimedes. The
classical formula >"_, z? = n(n + 1)(2n 4+ 1)/6 can be interpreted
as the volume of a square pyramid where the levels consist of square
grids of 2 unit spheres, z = 1,...,n.

2. We also observe that the computation in (2) can be simplified slightly
by using the hockey stick identity

zn: z\  (n+1
—\r S \r+1)
setting r = 2 and n = 100.
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2.2 A solution based on conditional probability

Consider the following formulation of the puzzle. Suppose that
z € {0,...,100}

is chosen uniformly at random. Then « red balls and 100 —x green balls are
placed in an urn. Finally, two balls are drawn without replacement from
the urn. We are asked to compute the conditional probability

Pr[both balls are red]
Pr(the first ball is red]

P = Pr[both balls are red | the first ball is red] =
It is clear that

Pr[the first ball is red] = 1/2,

where the probability is computed over the set of all 101 possible urns. To
compute Pr[both balls are red], we observe that

Pr the urn contains x red balls _ 1 o z(x —1)
and both chosen balls are red | ~ 101 = 100 x 99"
Hence,
100 2z —1)
Pr|both ball d] = _
rfboth balls are red] ;101x100x99
Therefore,

2 100
P = 10T x 100 x 99 ;x(x -b.

Thus P = 2/3, by the same calculation that was performed in Section 2.1.

2.3 A symmetry argument

The article [3] also presents the following elegant argument (attributed to
George Lowther in a post on “X”) that the answer is 2/3. This argument
involves almost no mathematical calculations:

Imagine that instead of starting with 100 balls, you start with
101 balls in a row. Pick a ball at random. Then colour the balls
to the left of it green and the ones to the right of it red. Throw
that ball away, leaving 100 balls.

Then pick a second ball at random. That ball corresponds to
the first ball in the original problem. The problem tells you
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that you picked a red ball, so it was to the right of the ball you
threw away. Now pick a third ball. This ball is either to the left
of the first ball, between the first ball and the second, or to the
right of the second. In two of the three possibilities, the third
ball is red. So the probability that the ball is red is 2/3.

George Lowther says in his “X” post that the answer is 2/3 “by symmetry.”
This certainly seems reasonable, but it might be of interest to develop a
more detailed mathematical symmetry-based argument. In other words,
how do we formalize this notion of symmetry?

We consider a slightly different, but equivalent, formulation of this argu-
ment. Suppose we have the following three-step process, starting from
100 balls (instead of starting from 101 balls and throwing the first ball
away ).

1. Choose an index ¢ uniformly at random from the set {0,...,100}.
The first ¢ balls are coloured green, and the remaining 100 — ¢ balls
are coloured red.

2. Choose an index j uniformly at random from the set {i+1,...,100}.
This is the first ball chosen, which is red.

3. Choose an index k uniformly at random from the set {1,...,100}\{;}.
This is the second ball chosen, which can be either red or green.

Let’s analyse steps 1 and 2. There are (120) possible choices for the ordered
pair (4, ), because 0 < i < j < 100. For each choice of i and j, we obtain
three intervals (some of which may be empty): [1,4], [{ + 1,57 — 1], and
[7 + 1,100]. The first interval corresponds to green balls, and the last two
intervals correspond to red balls. Note that we are ignoring the red ball
chosen in step 2, which occurs in the j* position.

In step 3, the chosen ball is red if and only if k is in the second or third
interval. The sum of the lengths of all three intervals equals 99. So we
can express the lengths of the three intervals as a triple (¢1, 2, ¢3) of non-
negative integers whose sum is 99. Asi and j vary over all (') possibilities,
we get all possible such triples occurring once each. It then follows imme-
diately (by symmetry!) that the expectation of each ¢; is 33. By linearity
of expectation, the expected value of ¢5 + ¢3 is 66. (Alternatively, we can
observe that £5 + €3 = 99 — ¢;. Since the expectation of ¢; is 33, the expec-
tation of 99 — ¢; must be 66.) The probability that the second ball is red
is the expectation of ¢5 + £3 divided by the sum of the lengths of the three
intervals (i.e., 99). Therefore the desired probability is 66/99 = 2/3.
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3 An inductive approach

We could consider the generalisation of the puzzle where we start with an
arbitrary fixed number n > 2 of balls. The puzzle always has the same
solution, independent of the value of n, namely 2/3. Tt suffices to look at
any of the proofs we have presented and replace “100” by “n”; the proofs are
otherwise unchanged. However, if we are thinking in terms of an arbitrary
number of balls, we could consider an inductive approach to analysing the
problem. It turns out that an inductive approach uses less computation—
similar to the symmetry argument—in the sense that we do not have to

evaluate sums of squares of integers.

Since we will be considering varying sizes of urns, let us denote by U, , an
urn that contains n balls, z of which are red (where 0 < z < n). Fix a
value of n and choose a random value z € {0,...,n}. Suppose we sample
two balls from U, , without replacement. A sample will be denoted as one
of three possible multisets {R, R}, {R,G}, or {G,G}. For j € {0,1,2},
let E,, ; denote the event that the sample contains j red balls (and hence
2 — j green balls). We will prove by induction on n that Pr[E, ;] = 1/3,
for j € {0,1,2}.

The base case (where n = 2) is clearly true, since there is only one pos-
sible sample from each Us, (for € {0,1,2}) and the three samples are
respectively {G, G}, {R,G}, and {R, R}.

Now, as an inductive hypothesis, assume that Pr[E, ;] = 1/3 (with j €
{0,1,2}) for urns containing n balls. For 0 < z < n, we can construct
Un+1,z from U, , by adding a new green ball to the urn. The urn Uy, 41 n41
contains n + 1 new red balls.

Let us consider the possible samples of two balls from a randomly chosen
Un+41,z- If we restrict to the samples consisting of two “old” balls, we
have Pr[E, 11 ;| = 1/3, for j € {0,1,2}, by induction. Let us now examine
samples that contain at least one new ball. We observe the following;:

e There are n(n+1)/2 samples that contain a new green ball and an old
green ball, and there are n(n+1)/2 samples that contain a new green
ball and an old red ball. This follows because the urns Uy,...,U,
contain an equal number (namely, n(n +1)/2) of red and green balls.

e There are n(n + 1)/2 samples that contain two new red balls (these
are the samples from Up41,n41)-
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Therefore, among the samples that contain at least one new ball, we have
Pr[E,1;] = 1/3, for j € {0,1,2}. Then it follows (by induction) that
Pr[E, ;] =1/3, for all n > 2 and for j € {0,1, 2}.

With this result in hand, it is a simple matter to solve Litt’s puzzle. In
Litt’s puzzle, we choose two balls in succession. Each unordered sample
of two balls ({G,G}, {R,G}, or {R,R}) can be ordered in two equally
probable ways. The corresponding outcomes are (G, G), (G,G), (G, R),
(R,Q), (R,R), and (R, R). Therefore we have

Pr[(G, G)] = % Pr[(R, R)] = % Pr[(R,G)] = % Pr[(G, R)] = é

We want to compute

P = Pr[both balls are red | the first ball is red].

We see immediately that

Remark: The computation done to evaluate (1) has a nice interpretation
in this inductive setting. If we remove the urn U, ¢ and then remove one
red ball from each of remaining urns, we end up with the urns U,,_; , for
0 <2 <n-—1 (in the case of (1), we have n = 100). The calculation in (1)
just computes the probability that a randomly chosen ball in the collection
of urns Uyg , is red; this probability is of course just 1/2.

4 Simulations

It is also interesting to design an algorithm that simulates the problem. If
nothing else, this would provide empirical verification of the mathematical
analysis. In the following algorithm, 7" is the total number of trials, ¢ is the
current trial, and s is the number of successful trials. In each trial, we first
construct an array A where the first « values are 1’s (corresponding to red
balls) and the remaining values are 0’s. We choose a random element A[i].
If Afi] = 1, then we have chosen a red ball, so we do the following:

e increment t by 1;
e choose a second random element A[j] where j # i;
e if A[j] =1, then increment s (here the second ball is red, so we have

a successful trial).
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After T trials, the ratio s/T is the proportion of successful trials; this ratio
should be close to 2/3 if T is sufficiently large. A pseudocode description
of the algorithm is as follows:

t =1

while t <= T do
choose a random value x in {1,...,n}
for i from 1 to n do

if i <= x then A[i] := 1 else A[i] := 0 end if
end do
choose a random value i in {1,...,n}
if A[i] = 1 then

t =t +1

choose a random value j in {1,...,n} \ {i}
if A[j] = 1 then s := s + 1 end if

end if
end do
print(s/T)
It is straightforward to generate a random value j € {1,...,n}\ {i}. One
way to do this is to generate a random value j € {1,...,n — 1}. Then, if

j > 1, replace j by j + 1.

5 Comments

The n = 2 case of Litt’s puzzle is a classical puzzle, known as “Bertrand’s
box paradox.” It dates back to 1889, where it was described in Joseph
Bertrand’s book Calcul des Probabilités; see [1]. A perhaps better-known
puzzle of this general type is the “boy or girl paradox,” which is discussed
in [2]. This puzzle was posed by Martin Gardner in 1959 in his long-running
Mathematical Games column in Scientific American. The “paradox” is a
consequence of the following two questions, as stated in [2]:

1. Mr. Jones has two children. The older child is a girl. What
is the probability that both children are girls?

2. Mr. Smith has two children. At least one of them is a boy.
What is the probability that both children are boys?

The answer to the first question is clearly 1/2, if we assume that the gender
of the younger child is independent of the gender of the first child.
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The second question is a bit trickier, and it has been argued that the answer
is 1/2 as well as 1/3. The answer of 1/3 is obtained as follows. We consider
the four possible distributions of two children to be equally likely: BB, BG,
GB, and GG. If at least one child is a boy, then GG is impossible, so there
remain three possible distributions. In two of these three distributions—
namely BG and GB—the “other” child is a girl. Therefore the answer
is 1/3.

Of course, Daniel Litt’s puzzle has the answer 2/3, which is different from
either version of the boy or girl paradox. Basically, everything comes down
to the underlying distribution. In the two-ball version of Litt’s puzzle (i.e.,
Bertrand’s box paradox), we have discussed how the underlying distri-
butions of balls in urns yield three equally likely (unordered) multisets:
{R, R}, {R,G}, and {G,G}. So there is a uniform distribution on the pos-
sible multisets of cardinality two. (This was the base case of the inductive
approach we discussed in Section 3. We also showed that the same distri-
bution holds, independent of the number of balls.) In contrast, in the boy
or girl paradox, there is a uniform distribution defined on ordered pairs (of
children).

In many probability puzzles, the challenge is to convert an English language
description of a problem into mathematical language. It is also important
to be cognizant of any implicit assumptions that are being made. For
example, in Litt’s puzzle, it is implicitly assumed that all the balls in an
urn are equally likely to be chosen. However, if we view the urn as a
physical object and we think of reaching into the urn to choose a ball, then
this assumption may not be valid. Someone who places the balls into the
urn might place all the green balls near the top, so they are more likely to
be chosen.
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