
Polynomial representation of functions on

the integers modulo n
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Abstract. We define a polynomial index PI for any finite commutative ring
with unity element. This index provides a measure of the distance the ring
is from being a finite field (whose PI is 1). After proving a multiplicativity
property for the ring Zn, we focus on the case of Zpm (p a prime). We
determine the index for this ring using the concepts of annihilator polyno-
mials and stopping point degrees. Finally, we give a specific formula for
PI (Zpm) in terms of p and m only, provided that m ≤ p.

1 Introduction

In this paper we explore the extent to which functions from a finite com-
mutative ring with unity to itself can be represented by polynomials over
that ring, including defining an index to measure how close the ring is to
being a finite field.

Let R denote a finite commutative ring with unity of cardinality r. Consider
the set Pr(R) of all polynomials with coefficients in R of degree < r, so there
are a total of rr such polynomials. We also note that there are rr functions
f : R → R.

Let Rr denote the set of all r-tuples over the ring R. For a polynomial
p(x) with coefficients in R, let Sp = (p(a1), . . . , p(ar)) where the elements
ai run through the r elements of the ring R, obtaining a vector of length r.
Calculate these vectors Sp for each of the rr polynomials over R and denote
the resulting set of rr vectors by the set T . Hence the set T contains all
vectors—not necessarily distinct—that arise from the rr polynomials of
degree < r with coefficients from R, and so |T | ≤ rr.
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Definition 1.1. Define the polynomial index (PI ) for the ring R by the
ratio |T |/rr. That is, it is the ratio of the number of distinct image vectors
generated by all polynomials of degree less than r over R divided by the
total number of possible vectors of length r over R.

The authors suspect that for a general ring R the polynomial index will
be difficult to calculate. In what follows we do an examination of the
case R = Zn, the ring of integers modulo n. First, however, we settle the
question of the value of our index when R is a finite field.

Theorem 1.2. If the ring R is a finite field, the polynomial index of R is 1.

Proof. It is well known that the Lagrange Interpolation Formula holds over
the finite field R (see [2], page 269). Over a finite field, every function
can be represented by a polynomial, i.e., if f : R → R is a function over
the finite field R of cardinality r, there is a unique polynomial Pf (x) with
coefficients in R of degree < r with the property that Pf (a) = f(a) for
every element a ∈ R. In fact, the polynomial Pf (x) can be written down
as follows:

Pf (x) =
∑
a∈R

f(a)(1− (x− a)r−1).

This polynomial is clearly of degree < r. Recall that the multiplicative
group R∗ of the field R is of order r−1, so for any non-zero element y ∈ R,
we have yr−1 = 1. Hence for any a ∈ R, we get

Pf (a) = f(a)(1−0)+
∑
b̸=a

f(b)(1−(a−b)r−1) = f(a)+
∑
b̸=a

f(b)(1−1) = f(a).

Since every function over the field R is represented by a polynomial of
degree less than r, each of the rr possible vectors will be obtained. But
there are exactly rr polynomials, so each vector will be picked up exactly
once. Hence the polynomial index for the field R will be rr/rr = 1.

Because of this beautiful fact about finite fields, we can use the polynomial
index as a measure of how far away a given ring is from being a finite
field.

2 The case R = Zn and multiplicativity of Vn

We now turn our attention to the case where our ring R is of the form Zn;
i.e., R is the ring of integers modulo n. We shall use the notation Vn to

Polynomial representation of functions

83



stand for the number of distinct image vectors of polynomials of degree less
than n over Zn. Hence the polynomial index PI of Zn is Vn/n

n, and we
shall want to explore how to find the value of Vn. An initial step in doing
this is to establish that it is sufficient to study Zpm where p is prime.

Let n = pmqk with p and q distinct primes and suppose v = (a0, a1, . . . ,
an−1) is the image vector of f(x) = cn−1x

n−1 + · · · + c1x + c0 over Zn.
Let fp and fq be polynomials in which each coefficient ci is replaced by
ci mod pm and ci mod qk, i.e., they are polynomials over Zpm and Zqk ,
respectively. Finally, let the “combined” ordered pair of image vectors of
(fp, fq) be(

(a0 mod pm, a0 mod qk), . . . , (an−1 mod pm, an−1 mod qk)
)
.

By the Chinese Remainder Theorem, this set of ordered pairs uniquely rep-
resents the splitting of f into the pair (fp, fq). Said another way, the vector
v in Zn is uniquely represented by this ordered pair in Zpm × Zqk .

Example 2.1. Suppose f(x) = 5x5 over Z12. Its image vector is

v = f
(
(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11)

)
= (0, 5, 4, 3, 8, 1, 0, 11, 4, 9, 8, 7).

Reducing f modulo 3 and 4 gives us f3(x) = 2x5 and f4(x) = x5. Reducing
v modulo 3 (first entry) and 4 (second entry) gives us the following vector
in Z3 × Z4:(
(0, 0), (2, 1), (1, 0), (0, 3), (2, 0), (1, 1), (0, 0), (2, 3), (1, 0), (0, 1), (2, 0), (1, 3)

)
.

We note that the first (i.e., mod 3) entries are (0, 2, 1, 0, 2, 1, 0, 2, 1, 0, 2, 1)
(i.e., four copies of (0, 2, 1)) and the second (i.e., mod 4) entries are (0, 1, 0, 3,
0, 1, 0, 3, 0, 1, 0, 3) (i.e., three copies of (0, 1, 0, 3)). Finally, we can compute
that f3((0, 1, 2)) = (0, 2, 1) and f4((0, 1, 2, 3)) = (0, 1, 0, 3).

We recall that, in general, the Euler-phi function ϕ(n) counts the number
of elements a with 0 ≤ a < n such that a is relatively prime to n. Because
ϕ(pm) = pm − pm−1, Euler’s Theorem says that if GCD(x, p) = 1, then

xpm−pm−1 ≡ 1 (mod pm), and likewise for qk. This allows us to decrease (if
necessary) the degree of each term of fp and fq so that the new reduced
function f∗

p is of degree less than pm, and likewise f∗
q is of degree less than

qk, while retaining the exact same combined image vector as (fp, fq). We
can then show that the two vectors within the ordered pair are in fact image
vectors of allowable polynomials in Zpm × Zqk .
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Example 2.2. Referring now to the example above and applying Euler’s
Theorem, since ϕ(3) = 2 and ϕ(4) = 2 also, we have

f∗
3 (x) = 2x5 = 2x2x2x ≡ 2(1)(1)x = 2x (mod 3)

(note that in this case we applied Euler’s Theorem twice to get deg(f∗
3 ) <

3), and we verify that f∗
3

(
(0, 1, 2)

)
= (0, 2, 1). Likewise, f∗

4 (x) = x2x3 ≡
x3 (mod 4), and f∗

4

(
(0, 1, 2, 3)

)
= (0, 1, 0, 3).

Lemma 2.3. Suppose a polynomial f(x) over Zpm contains a term of the

form cxd where d ≥ pm. Then f(x) and f∗(x) = · · · + cxd−pm+pm−1

+ · · ·
have the same image vector in Zpm .

Proof. We suppose d ≥ pm (since such a d needs to be reduced for our
purposes). Euler’s Theorem states that if GCD(x, p) = 1, then

xϕ(pm) = xpm−pm−1

≡ 1 (mod pm).

Hence if GCD(x, p) = 1, then xd ≡ xd−pm+pm−1

(mod pm). On the other
hand, if GCD(x, p) ̸= 1 (i.e., if x = pa for some a), then both xd and

xd−pm+pm−1

are 0 since d− pm + pm−1 ≥ pm−1 ≥ m (for all p and m), and
(pa)m is 0 modulo pm. Thus f(x) and f∗(x) have the same image vector
for all x ∈ Zpm .

Example 2.4. Suppose f(x) = x10 over Z9. The image vector of f is (0, 1,
7, 0, 4, 4, 0, 7, 1). Note that as long as the degree of this term is 2 or higher
(since 9 = 32), the image vector will contain 0 at the elements 0, 3, and 6
(i.e., all the elements that are not relatively prime to 9 and hence are not
covered by Euler’s Theorem). Now, ϕ(9) = 9− 3 = 6, so f∗(x) = x10−6 =
x4, and we confirm that its image vector is still (0, 1, 7, 0, 4, 4, 0, 7, 1).

We are now ready for the main result of this section.

Theorem 2.5 (Multiplicativity). Suppose n = pmqk with p and q distinct
primes. Let Tn be the set of all image vectors of polynomials of degree less
than n over Zn and, as above, let Vn be the cardinality of Tn. Define Tpm ,
Vpm , Tqk , and Vqk similarly. Then Vn = VpmVqk .

Proof. (Vn ≤ VpmVqk) We argue above that by the Chinese Remainder
Theorem, every vector of Tn is in one-to-one correspondence with a unique
ordered pair of vectors in Zpm × Zqk , and, as in Lemma 2.3, we employ
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Euler’s Theorem to guarantee that those vectors are in fact in Tpm and
Tqk (because they are image vectors of the polynomials of degree less than
m and k, respectively). We do not, however, know if all ordered pairs of
vectors of Tpm × Tqk are represented as we move through all the elements
of Tn. Hence we can conclude that Vn ≤ VpmVqk .

(Vn ≥ VpmVqk) Here we denote by (cp)i, and (cq)j the coefficients of poly-
nomials over Zpm and Zqk , respectively. Likewise, we denote by (ap)i and
(aq)j the first and second parts in an ordered pair in Tpm ×Tqk . Finally, by
the Chinese Remainder Theorem, we denote the unique element of Zn cor-
responding to the pair

(
(ap)i, (aq)j

)
by

[
(ap)i, (aq)j

]
. We assume without

loss of generality that pm < qk.

Suppose fp(x) = (cp)m−1x
m−1 + · · · + (cp)0 is a polynomial over Zpm

whose image vector is
(
(ap)0, . . . , (ap)pm−1

)
, and likewise suppose fq(x) =

(cq)k−1x
k−1 + · · · + (cq)0 is a polynomial over Zqk whose image vector is(

(aq)0, . . . , (aq)qk−1

)
(so the ordered pairs of these vectors lie in Tpm×Tqk).

We note that for a power d ≥ m, we have (cp)d = 0. We now compute
the unique (by the Chinese Remainder Theorem) vector a of length n of
elements of Zn:

a =
([
(ap)0, (aq)0

]
, . . . ,

[
(ap)pm−1, (aq)pm−1

]
,[

(ap)0, (aq)pm

]
, . . . ,

[
(ap)pm−1, (aq)qk−1

])
.

It remains to show that the vector a lies in Tn; that is, a is the image vector
of some polynomial over Zn of degree less than n. Let

f(x) =
[
(cp)k−1, (cq)k−1

]
xk−1+

[
(cp)k−2, (cq)k−2

]
xk−2+· · ·+

[
(cp)0, (cq)0

]
.

But now f(x) mod pm = fp(x) and f(x) mod qk = fq(x), as we defined
above. We have shown then that an arbitrary ordered pair of vectors in
Tpm × Tqk corresponds to a unique vector a of length n whose elements are
in Zn, and we have shown that a is the image vector of a polynomial over
Zn whose degree is less than n. Hence a is in Tn, and so Vn ≥ VpmVqk .
Combined with our previous argument, we conclude that Vn = VpmVqk .

Example 2.6. We illustrate this latter part of the proof; wherein, we start
with image vectors in Tpm and Tqk and produce a corresponding, unique

image vector in Tn. Suppose f3(x) = x2, whose image vector in T3 is
(0, 1, 1), and f4(x) = x3, whose image vector in T4 is (0, 1, 0, 3). This
results in the following combined vector in T3 × T4:(
(0, 0), (1, 1), (1, 0), (0, 3), (1, 0), (1, 1), (0, 0), (1, 3), (1, 0), (0, 1), (1, 0), (1, 3)

)
.
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By the Chinese Remainder Theorem, the unique vector in Z12 correspond-
ing to this ordered pair of vectors is (0, 1, 4, 3, 4, 1, 0, 7, 4, 9, 4, 7), and we
need only show that this vector “belongs” to some polynomial of degree
less than 12 over Z12. In reality it is the image vector of many, many such
polynomials, but in particular, f12(x) = 9x3 + 4x2 works (the reader can
check). We note that 9x3 +4x2 ≡ x2 (mod 3) and 9x3 +4x2 ≡ x3 (mod 4).

Corollary 2.7. If n = pm1
1 . . . pms

s with s ≥ 2, then Vn = Vp
m1
1

. . . Vpms
s

.

This can be proved using induction on s. Theorem 2.2 handles the base case
s = 2. Because the Chinese Remainder Theorem and Euler’s Theorem can
both be applied to an integer with multiple prime factors, the inductive
step can be an argument similar to that used for the base case but now
applied to n/pms

s and pms
s . We leave the details of that inductive step to

the reader.

We remark here that the polynomial index PI (Zn) = Vn/n
n is not mul-

tiplicative. We have just proved that the numerator is multiplicative, but

if n = pmqk, then nn = (pm)n(qk)n > (pm)p
m

(qk)q
k

. However, the index
remains the ratio of the number of functions produced by polynomials di-
vided by the total number of possible functions; that is, if n = pmqk, then
PI (Zn) = VpmVqk/n

n.

3 Annihilator polynomials over Zpm

We have now shown that to investigate Vn it is sufficient to investigate Vpm ,
where p is prime and m ≥ 0.

Definition 3.1. A polynomial a(x) of degree less than pm over Zpm is called
an annihilator polynomial (or simply an annihilator) if a(x) = 0 for all
x ∈ Zpm .

Example 3.2. A machine search for annihilators of degree 4 over Z23 finds
28 such polynomials, for example x4 + 2x3 + 3x2 + 2x.

Theorem 3.3. If A(pm) is the total number of annihilator polynomials of
degree less than pm over Zpm , then Vpm = (pm)p

m

/A(pm).

Proof. Two polynomials f(x) and g(x) of degree less than pm over Zpm

have the same image vector if and only if they differ by an annihilator
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a(x). Hence the set of all polynomials having that fixed image vector is the
set f(x) + a(x) as a(x) ranges over the set of annihilators. Since this set
has cardinality A(pm), we get that the total number of distinct polynomial
image vectors Vpm is (pm)p

m

/A(pm).

So our task now is to determine the count A(pm). If k is any degree below
pm, we denote the number of annihilators of degree k over Zpm by A(pm, k).

Clearly, A(pm) =
∑pm−1

j=0 A(pm, j).

We now need to introduce “the alpha function.”

Definition 3.4. Over Zpm , we let α(j) be the largest α ∈ {0, 1, 2, . . . ,m}
such that pα divides j!. In other words, α(j) is the total number times p
appears in j!.

Example 3.5. In Z23 , we have α(1) = 0, and α(2) = α(3) = 1, and α(4) =
α(5) = · · · = 3 since the value of α cannot exceed m = 3.

The following theorem is proved as Corollary 5(i) in [1].

Theorem 3.6 (Kahyap and Vardy [1]). The number of annihilators of degree
k < pm over Zpm is A(pm, k) = (pα(k) − 1)pα(1)+α(2)+···+α(k−1).

Example 3.7. In Z23 , this result says that

A(23, 4) = (23 − 1)20+1+1 = (7)(4) = 28,

as confirmed by machine search in Example 3.2.

We can now, with a little more work, write down a simple expression for
A(pm) in terms of the α-function. We observe that A(pm, 0) = 1 (i.e., the
zero polynomial) and that A(pm, 1) = 0 (i.e., it is not possible to have a
linear annihilator).

Theorem 3.8. For all k ≥ 3,

1 +

k−1∑
j=2

A(pm, j) = A(pm, k)/(pα(k) − 1) = pα(2)+α(3)+···+α(k−1).
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Proof. The second equality follows directly from Theorem 3.6, so we prove,
by induction on the degree k, that the first and last quantities are equal.
If k = 3, the first above is

1 +

2∑
j=2

A(pm, j) = 1 + (pα(2) − 1)p0 = pα(2);

whereas, the last is also pα(2). Hence, we have established the base case.

We now assume for j = k − 1 that 1 +
∑k−2

j=2 A(pm, j) = pα(2)+···+α(k−2).
Then

1 +

k−1∑
j=2

A(pm, j) = pα(2)+···+α(k−2) +A(pm, k − 1)

= pα(2)+···+α(k−2) + (pα(k−1) − 1)pα(2)+···+α(k−2)

= pα(2)+···+α(k−2) + pα(2)+···+α(k−1) − pα(2)+···+α(k−2)

= pα(2)+···+α(k−1),

as desired.

If we set k = pm in Theorem 3.8, we arrive at the following corollary.

Corollary 3.9. The total number A(pm) of annihilator polynomials of de-

gree less than pm in Zpm (i.e., A(pm) = 1 +
∑pm−1

j=2 A(pm, j)) is given by

pα(2)+α(3)+···+α(pm−1).

This says that once you have computed the values of α up to the point
where α(j) = m, computing A(pm) is an easy process. We examine this
“stabilization point” in the next section.

Example 3.10.
For Z23 , we have A(23) = 2α(2)+···+α(7) = 21+1+3+3+3+3 = 214.
For Z32 , we have A(32) = 3α(2)+···+α(8) = 30+1+1+1+2+2+2 = 39.

Corollary 3.11. We have Vpm = (pm)p
m

/
∑pm−1

j=2 α(j). Hence the polyno-

mial index PI of Zpm is 1/
∑pm−1

j=2 α(j).

Proof. The first statement is simply writing down that Vpm is the total
number of polynomials of degree less than m divided by the total number
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of annihilators. The second statement uses the first statement and the
definition of the polynomial index:

PI (Zpm) =
Vpm

(pm)pm =
(pm)p

m

(pm)pm
∑pm−1

j=2 α(j)
=

1∑pm−1
j=2 α(j)

.

Example 3.12.
Since V23 = (23)2

3

/214 = 224/214 = 210, we have PI (Z23) = 1/214.

Since V32 = (32)3
2

/39 = 318/39 = 39, we have PI (Z32) = 1/39.

4 Stopping points and computing Vpm

When exploring the number Vpm of distinct image vectors of polynomials
over Zpm , we look through all polynomials of degree less than pm. It turns
out, however, that it is not necessary to go up beyond a certain, smaller de-
gree to find all the polynomial image vectors. Hence we make the following
definition.

Definition 4.1. In Zpm , the stopping point is the smallest degree 0 ≤ s ≤ pm

such that the full set of polynomial image vectors is generated by polyno-
mials of degree less than s over Zpm .

Theorem 4.2. The stopping point 0 ≤ s ≤ pm in Zpm is the smallest degree
j for which α(j) = m, i.e., by definition of the function α, it is the smallest
j such that pm divides j!.

The degree s is known as the Kempner number for pm (see [3], Sequence
A002034).

Proof. By the definition of stopping point degree s, we have that the ratios
(pm)p

m

/A(pm) and (pm)s/
(
1 +

∑s−1
j=2 A(pm, j)

)
are equal since they both

give the count Vpm , and s is the smallest degree for which this equality
holds. Applying Theorem 3.8, we obtain

(pm)p
m

pα(2)+···+α(pm−1)
=

(pm)s

pα(2)+···+α(s−1)
,

and simplifying we get

(pm)p
m−s = pα(s)+···+α(pm−1).
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On the left-hand side, the exponent on p is (pm − s)m, i.e., it is the sum
of pm − s copies of m. On the other hand, the right-hand side gives a
summation of pm − s terms which can be no larger than m by definition of
the α-function. We conclude then that α(s) = m. Moreover, we must have
α(s− 1) < m, for otherwise s− 1 would make our ratios above equal, but
s is the smallest degree with this property.

Example 4.3. In Z23 , since α(3) ̸= 3 (i.e., 8 ∤ 3!) but α(4) = 3 (i.e., 8 | 4!) we
see that 4 is the stopping point degree. In Z32 , since α(5) = 1 but α(6) = 2,
we see that 6 is the stopping point degree. For a more dramatic example,
consider Z53 . We have α(2) through α(4) are 0, α(5) through α(9) are 1,
α(10) through α(14) are 2, and α(15) = 3, so the stopping point is s = 15,
which is far short of 53 = 125. As both p and m increase, the gap between
s and pm grows rapidly.

We have already observed that the number of polynomials of degree less
than pm over Zpm that generate a fixed polynomial image vector is the total
number of annihilators A(pm), so a formula for computing this number,
making use of the stopping point, might be helpful.

Proposition 4.4. If s is the stopping point for Zpm , then

A(pm) = (pm)p
m−s(p

∑s−1
j=2 α(j))

Proof. We know from Corollary 3.9 that

A(pm) = p
∑pm−1

j=2 α(j).

Moreover the proof of Theorem 4.2 uses the equality

(pm)p
m

p
∑pm−1

j=2 α(j)
=

(pm)s

p
∑s−1

j=2 α(j)
.

Solving for A(pm), the quantity in the left-hand denominator, gives the
desired result.

Example 4.5. We saw in Example 4.3 that s = 4 for Z23 . Thus A(23) =
(23)8−422 = 212+2 = 214, as computed directly above. Again, the higher p
and/orm goes, the greater computational advantage of the stopping degree.
For another example, s = 15 for Z53 , so A(53) = (53)125−1555(1+2) =
5330+15 = 5345 giving us that V53 = (53)125/5345 = 5375−345 = 530.
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Finally, let us return to the computation of Vpm . We know that Vpm =
(pm)p

m

/A(pm) and that it can also be computed with smaller quantities

via Vpm = (pm)s/
(
p
∑s−1

j=2 α(j)
)
. However, the former formula uses the α-

function, and the latter uses both the α-function and the stopping point.
It would be good to write down a formula for Vpm that involves only p
and m. The following is a start on that goal, with a restriction on these
quantities. First, an example to hopefully “light the way.”

Example 4.6. Consider V53 . Note that s = 15 = (3)(5) = mp. Also,∑14
j=2 α(j) = 5(1 + 2) = p

(
1 + · · · + (m − 1)

)
= p(m − 1)(m)/2. We thus

conclude that V53 = (53)(3)(5)/5(5)(2)(3)/2 = 545/515 = 530, as computed in
Example 4.5.

Theorem 4.7. If 1 ≤ m ≤ p, then Vpm = ppm(m+1)/2.

Proof. For m = 1, we know that Vp = pp, so the result holds. Otherwise,
since

α(p) = · · · = α(2p− 1) = 1,
α(2p) = · · · = α(3p− 1) = 2,

...
α
(
(m− 1)p

)
= · · · = α(mp− 1) = m− 1,

α(mp) = m,

we see that the stopping degree s is mp. Moreover,

α(2) + · · ·+ α(s− 1) = α(2) + · · ·+ α(mp− 1)

= p+ 2p+ · · ·+ (m− 1)p

= p(1 + 2 + · · ·+ (m− 1))

= p(m− 1)(m)/2.

We have then

Vpm =
pm

2p

pp(m−1)(m)/2

= pm
2p−p(m−1)(m)/2

= pp(2m
2−m2+m)/2

= ppm(m+1)/2.
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Corollary 4.8.

(a) For all primes p, we have Vp2 = p3p.

(b) For all odd primes p, we have Vp3 = p6p.

Example 4.9.

(a) V32 = 39; V1012 = 101303.

(b) V53 = 530; V1013 = 101606.

Finding a formula for Vpm in terms of p and m when m exceeds p is more
complicated because of the behavior of the α-function. For example, for
Z24 , we have α(2) = α(3) = 1; but then α(4) jumps by 2 rather than 1;
and later α(8) jumps by 3; etc. Thus the general case requires much closer
examination than the m ≤ p case above.

We have one more result, which follows from Theorem 4.7 and the fact that,
by definition, PI (Zpm) = Vpm/(pm)p

m

.

Corollary 4.10. If m ≤ p, then PI (Zpm) =
1

pmpm−p(m)(m+1)/2
.

Example 4.11.
PI (Z22) = 1/2(2)(4)−(2)(2)(3)/2 = 1/22.
PI (Z32) = 1/3(2)(9)−(3)(2)(3)/2 = 1/39 (as computed in Example 3.12).
PI (Z53) = 1/5(3)(125)−(5)(3)(4)/2 = 1/5375−30 = 1/5345.

While this index PI is difficult to determine for an arbitrary ring, we end
by noting that there are exactly four non-isomorphic rings of order 4: the
finite field of order 4, whose PI is 1 (as proved at the start); the ring Z4 of
integers modulo 4, whose PI is 1/4; the ring L of 2× 2 matrices ( a b

0 a ) over
Z2, whose PI (by machine calculation) is 1/4; and the ring M = Z2 × Z2,
whose PI (again by machine calculation) is 1/16.

Acknowledgments

The authors would like to thank the referee for their comments and correc-
tions that improved our draft.

Polynomial representation of functions

93



References

[1] N. Kashyap and A. Vardy, Enumerating annihilator polynomials over
Zn, (2005), preprint, https://ece.iisc.ac.in/~nkashyap/Papers
/annihilators.pdf.

[2] R. Lidl and H. Niederreiter, Finite Fields, Second edition, Cambridge
University Press, 1997.

[3] N. J. A. Sloane, The On-line Encyclopedia of Integer Sequences, 1964.
https//oeis.org.

Nicholas Cotton
661 W. Chestnut Street, Lancaster, PA 17603
nzc5354@psu.edu

Gove Effinger
Department of Mathematics and Statistics, Skidmore College
Saratoga Springs NY 12866
effinger@skidmore.edu

Gary L. Mullen
Department of Mathematics, The Pennsylvania State University
University Park, PA 16802
g4m@psu.edu

Cotton, Effinger, and Mullen

94


