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Polynomial representation of functions on
the integers modulo n

NicHOLAS COTTON, GOVE EFFINGER, AND GARY L. MULLEN

Abstract. We define a polynomial index PI for any finite commutative ring
with unity element. This index provides a measure of the distance the ring
is from being a finite field (whose PI is 1). After proving a multiplicativity
property for the ring Z,,, we focus on the case of Z,m (p a prime). We
determine the index for this ring using the concepts of annihilator polyno-
mials and stopping point degrees. Finally, we give a specific formula for
PI(Zpm) in terms of p and m only, provided that m < p.

1 Introduction

In this paper we explore the extent to which functions from a finite com-
mutative ring with unity to itself can be represented by polynomials over
that ring, including defining an index to measure how close the ring is to
being a finite field.

Let R denote a finite commutative ring with unity of cardinality r. Consider
the set P,.(R) of all polynomials with coefficients in R of degree < r, so there
are a total of r” such polynomials. We also note that there are r" functions
f: R— R.

Let R" denote the set of all r-tuples over the ring R. For a polynomial
p(x) with coefficients in R, let S, = (p(a1),...,p(ar)) where the elements
a; run through the r elements of the ring R, obtaining a vector of length 7.
Calculate these vectors S), for each of the " polynomials over R and denote
the resulting set of r" vectors by the set T. Hence the set T contains all
vectors—not necessarily distinct—that arise from the r” polynomials of
degree < r with coefficients from R, and so |T'| < r".
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POLYNOMIAL REPRESENTATION OF FUNCTIONS

Definition 1.1. Define the polynomial index (PI) for the ring R by the
ratio |T'|/r". That is, it is the ratio of the number of distinct image vectors
generated by all polynomials of degree less than r over R divided by the
total number of possible vectors of length r over R.

The authors suspect that for a general ring R the polynomial index will
be difficult to calculate. In what follows we do an examination of the
case R = Z,, the ring of integers modulo n. First, however, we settle the
question of the value of our index when R is a finite field.

Theorem 1.2. If the ring R is a finite field, the polynomial index of R is 1.

Proof. Tt is well known that the Lagrange Interpolation Formula holds over
the finite field R (see [2], page 269). Over a finite field, every function
can be represented by a polynomial, i.e., if f: R — R is a function over
the finite field R of cardinality r, there is a unique polynomial P;(x) with
coefficients in R of degree < r with the property that Ps(a) = f(a) for
every element a € R. In fact, the polynomial Pf(z) can be written down

as follows:
=Y fla(—(@—a)").

a€ER
This polynomial is clearly of degree < r. Recall that the multiplicative

group R* of the field R is of order r — 1, so for any non-zero element y € R,
we have y"~! = 1. Hence for any a € R, we get

Py(a) = f(a)(1=0)+ ) f(B)(1—(a=b)""") = f(a)+ D _ f(b)( = f(a).
b#a b#a

Since every function over the field R is represented by a polynomial of
degree less than r, each of the " possible vectors will be obtained. But
there are exactly " polynomials, so each vector will be picked up exactly
once. Hence the polynomial index for the field R will be r" /r" = 1. O

Because of this beautiful fact about finite fields, we can use the polynomial

index as a measure of how far away a given ring is from being a finite
field.

2 The case R = Z,, and multiplicativity of V,,

We now turn our attention to the case where our ring R is of the form Z,;
i.e., R is the ring of integers modulo n. We shall use the notation V,, to
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stand for the number of distinct image vectors of polynomials of degree less
than n over Z,. Hence the polynomial index PI of Z, is V,,/n™, and we
shall want to explore how to find the value of V,,. An initial step in doing
this is to establish that it is sufficient to study Z,~ where p is prime.

Let n = p™¢* with p and ¢ distinct primes and suppose v = (ag, a1, ...,
an_1) is the image vector of f(x) = ¢, 12" 1 + -+ + c17 + ¢o over Z,.
Let f, and f; be polynomials in which each coefficient ¢; is replaced by
¢; mod p™ and ¢; mod ¢¥, i.e., they are polynomials over Zym and Zgx,
respectively. Finally, let the “combined” ordered pair of image vectors of

(fp: fq) be
((ao mod p™, ag mod ¢*),...,(an_1 mod p™, a,_; mod qk)).

By the Chinese Remainder Theorem, this set of ordered pairs uniquely rep-
resents the splitting of f into the pair (f,, f). Said another way, the vector
v in Zj, is uniquely represented by this ordered pair in Zym X Zgx.

Example 2.1. Suppose f(z) = 5x® over Zis. Its image vector is
v = f(((), 1,2,3,4,5,6,7,8,9, 10, 11)) =(0,5,4,3,8,1,0,11,4,9,8,7).

Reducing f modulo 3 and 4 gives us f3(z) = 22° and f4(z) = 2°. Reducing
v modulo 3 (first entry) and 4 (second entry) gives us the following vector
in Zg X Z4I

((0,0), (2,1), (1,0), (0,3), (2,0), (1,1), (0,0), (2,3), (1,0), (0,1), (2,0), (1,3)).

We note that the first (i.e., mod 3) entries are (0,2,1,0,2,1,0,2,1,0,2,1)
(i-e., four copies of (0,2, 1)) and the second (i.e., mod 4) entries are (0, 1,0, 3,
0,1,0,3,0,1,0,3) (i.e., three copies of (0, 1,0, 3)). Finally, we can compute
that f3((0,1,2)) = (0,2,1) and f1((0,1,2,3)) = (0,1,0,3).

We recall that, in general, the Euler-phi function ¢(n) counts the number
of elements a with 0 < a < n such that a is relatively prime to n. Because
d(p™) = p™ — p™~!, Euler’s Theorem says that if GCD(x,p) = 1, then
2?" """ =1 (mod p™), and likewise for ¢*. This allows us to decrease (if
necessary) the degree of each term of f, and f; so that the new reduced
function f, is of degree less than p™, and likewise f; is of degree less than
¢", while retaining the exact same combined image vector as (f,, f,). We
can then show that the two vectors within the ordered pair are in fact image
vectors of allowable polynomials in Zym X Zgk.
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POLYNOMIAL REPRESENTATION OF FUNCTIONS

Example 2.2. Referring now to the example above and applying Euler’s
Theorem, since ¢(3) = 2 and ¢(4) = 2 also, we have

fi(z) = 22° = 2222z = 2(1)(1)x = 22 (mod 3)

(note that in this case we applied Euler’s Theorem twice to get deg(f3)

3), and we verify that f5((0,1,2)) = (0,2,1). Likewise, f;(z) = 2223
2% (mod 4), and f;((0,1,2,3)) = (0,1,0,3).

A

Lemma 2.3. Suppose a polynomial f(z) over Z,~ contains a term of the
form cx® where d > p™. Then f(z) and f*(x) = --- + cxd=P" P
have the same image vector in Zym .

Proof. We suppose d > p™ (since such a d needs to be reduced for our
purposes). Euler’s Theorem states that if GCD(z, p) = 1, then

29@") = " " = (mod p™).

Hence if GOD(z,p) = 1, then ¢ = 247" +7" " (mod p™). On the other
hand, if GCD(x,p) # 1 (i.e., if z = pa for some a), then both z¢ and
24P+ " are 0 since d —p™ ™71 > pm=l > m (for all p and m), and
(pa)™ is 0 modulo p™. Thus f(z) and f*(x) have the same image vector
for all z € Zpm. O

Example 2.4. Suppose f(z) = 2! over Zg. The image vector of f is (0,1,

7,0,4,4,0,7,1). Note that as long as the degree of this term is 2 or higher
(since 9 = 32), the image vector will contain 0 at the elements 0, 3, and 6
(i.e., all the elements that are not relatively prime to 9 and hence are not
covered by Euler’s Theorem). Now, ¢(9) =9 — 3 =6, so f*(z) = 21076 =
2%, and we confirm that its image vector is still (0,1,7,0,4,4,0,7,1).

We are now ready for the main result of this section.

Theorem 2.5 (Multiplicativity). Suppose n = p™q¢* with p and q distinct
primes. Let T,, be the set of all image vectors of polynomials of degree less
than n over Z,, and, as above, let V,, be the cardinality of T,,. Define T,m,
Vpm, Tyr, and Ve similarly. Then V,, = Vm V.

Proof. (V, < VymVyr) We argue above that by the Chinese Remainder
Theorem, every vector of T}, is in one-to-one correspondence with a unique
ordered pair of vectors in Z,m X Zg, and, as in Lemma 2.3, we employ
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Euler’s Theorem to guarantee that those vectors are in fact in 7,» and
T,x (because they are image vectors of the polynomials of degree less than
m and k, respectively). We do not, however, know if all ordered pairs of
vectors of T),m x T, are represented as we move through all the elements
of T;,. Hence we can conclude that Vi, < V,m V.

(Vi = Vm V) Here we denote by (cp);, and (cq); the coefficients of poly-
nomials over Z,n and Zg, respectively. Likewise, we denote by (ap); and
(aq); the first and second parts in an ordered pair in T,m x Tyx. Finally, by
the Chinese Remainder Theorem, we denote the unique element of Z,, cor-
responding to the pair ((ap)i, (aq)j) by [(ap)i, (aq)j]. We assume without
loss of generality that p™ < ¢".

Suppose fy(z) = (ep)m—12™ 1 4+ -+ + (cp)o is a polynomial over Z,m
whose image vector is ((ap)o, ..., (ap)pm—1), and likewise suppose f4(z) =
(cq)p—12%1 4+ --- + (cq)o is a polynomial over Zq+ whose image vector is
((aq)o, A (aq)qk,l) (so the ordered pairs of these vectors lie in Tp,m x Tyx ).
We note that for a power d > m, we have (¢p)g = 0. We now compute
the unique (by the Chinese Remainder Theorem) vector a of length n of
elements of Z,,:

a = ([(ap)o, (aq)o],-- - [(ap)pm 1, (ag)pm 1],
[(a’p)m (aq)Pm] 3oy [(ap)pmfl, (aq)qk,l] ) .

It remains to show that the vector a lies in T},; that is, a is the image vector
of some polynomial over Z,, of degree less than n. Let

f(@) = [(ep)r-1, (cq)r—1]a" "+ [(ep)k—2, (cq)k—2] 2"+ -+ [(cp)o, (cq)o]-

But now f(z) mod p™ = f,(z) and f(z) mod ¢* = f,(x), as we defined
above. We have shown then that an arbitrary ordered pair of vectors in
T,m X Ty corresponds to a unique vector a of length n whose elements are
in Z,, and we have shown that a is the image vector of a polynomial over
Z,, whose degree is less than n. Hence a is in T),, and so V;, > V,m V.
Combined with our previous argument, we conclude that V,, = V,m Vir. 0O

Example 2.6. We illustrate this latter part of the proof; wherein, we start
with image vectors in T),m and T,» and produce a corresponding, unique

image vector in T},. Suppose f3(z) = z2, whose image vector in Ty is
(0,1,1), and f4(x) = 2, whose image vector in Ty is (0,1,0,3). This
results in the following combined vector in T3 x Ty:

((0,0), (1,1), (1,0), (0,3), (1,0), (1,1), (0,0), (1,3), (1,0), (0,1), (1,0), (1,3)).
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By the Chinese Remainder Theorem, the unique vector in Zjs correspond-
ing to this ordered pair of vectors is (0,1,4,3,4,1,0,7,4,9,4,7), and we
need only show that this vector “belongs” to some polynomial of degree
less than 12 over Zjo. In reality it is the image vector of many, many such
polynomials, but in particular, fia(z) = 923 + 422 works (the reader can
check). We note that 922 + 422 = 22 (mod 3) and 92° + 422 = 2 (mod 4).

Corollary 2.7. If n = p™ ...p™= with s > 2, then V,, = Vo o Vpma.

This can be proved using induction on s. Theorem 2.2 handles the base case
s = 2. Because the Chinese Remainder Theorem and Euler’s Theorem can
both be applied to an integer with multiple prime factors, the inductive
step can be an argument similar to that used for the base case but now
applied to n/p7*s and p7*=. We leave the details of that inductive step to
the reader.

We remark here that the polynomial index PI(Z,) = V,,/n™ is not mul-
tiplicative. We have just proved that the numerator is multiplicative, but
if n = p™¢*, then n® = (P™)™(¢")" > (p™)P" (qk)qk. However, the index
remains the ratio of the number of functions produced by polynomials di-
vided by the total number of possible functions; that is, if n = p™¢*, then
PI(Zy) = Viym Vi /0.

3 Annihilator polynomials over Z,m~

We have now shown that to investigate V;, it is sufficient to investigate Vpm,
where p is prime and m > 0.

Definition 3.1. A polynomial a(x) of degree less than p™ over Z,m is called
an annihilator polynomial (or simply an annihilator) if a(x) = 0 for all
x € me.

Example 3.2. A machine search for annihilators of degree 4 over Zgs finds
28 such polynomials, for example z* + 223 4 322 + 2.

Theorem 3.3. If A(p™) is the total number of annihilator polynomials of

m

degree less than p™ over Z,m, then V,m = (p™)P /A(p™).

Proof. Two polynomials f(x) and g(z) of degree less than p™ over Zym
have the same image vector if and only if they differ by an annihilator
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a(x). Hence the set of all polynomials having that fixed image vector is the
set f(x) + a(z) as a(x) ranges over the set of annihilators. Since this set
has cardinality A(p™), we get that the total number of distinct polynomial
image vectors V,m is (p™)P" JA(p™). O

So our task now is to determine the count A(p™). If k is any degree below
p™, we denote the number of annihilators of degree k over Z,~ by A(p™, k).
Clearly, A(p™) = Y22 A(p™, ).

We now need to introduce “the alpha function.”

Definition 3.4. Over Z,=, we let a(j) be the largest o € {0,1,2,...,m}
such that p* divides j!. In other words, «(j) is the total number times p
appears in j!.

Example 3.5. In Z,s, we have a(1) = 0, and o(2) = «(3) = 1, and «(4) =
a(5) = -+ = 3 since the value of o cannot exceed m = 3.

The following theorem is proved as Corollary 5(i) in [1].

Theorem 3.6 (Kahyap and Vardy [1]). The number of annihilators of degree
k < p™ over Zpm is A(p™, k) = (p*F) — 1)peFa@)t-+alk=1),

Example 3.7. In Zos, this result says that
A2%,4) = (2° = 12T = (T)(4) = 28,

as confirmed by machine search in Example 3.2.

We can now, with a little more work, write down a simple expression for
A(p™) in terms of the a-function. We observe that A(p™,0) =1 (i.e., the
zero polynomial) and that A(p™,1) = 0 (i.e., it is not possible to have a
linear annihilator).

Theorem 3.8. For all k > 3,
k—1
L+ AP™,j) = A(p™ k) /(p*®) — 1) = pr@ @ tat=),
j=2
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Proof. The second equality follows directly from Theorem 3.6, so we prove,
by induction on the degree k, that the first and last quantities are equal.
If k = 3, the first above is

L+ Ap™ ) =1+ " —1)p° =p*®);

whereas, the last is also p*(?). Hence, we have established the base case.

We now assume for j = k — 1 that 1 + Zk 2A( ,j) = pe@ttalk=2)
Then

k—1
14+ ZA<pm>]) — a(2)+~~~+a(k—2) + A(pm, k— 1)
j=2 pa(2) cta(k—2) + (pa(kfl) _ l)pa(2)+---+a(k72)
a(2)+»~~+a(k—2) +pa(2)+"‘+a(/€—1) _ pa(2)+~-+o¢(k—2)
pa(2) ~--+o¢(l€71)7
as desired. 0

If we set k = p™ in Theorem 3.8, we arrive at the following corollary.

Corollary 3.9. The total number A(p™) of annihilator polynomials of de-
gree less than p™ in Zym (i.e., A(p™) =1+ Z§:2_1 A(p™, 7)) is given by
pe@ta@)ttalp™ 1)

This says that once you have computed the values of a up to the point
where «(j) = m, computing A(p™) is an easy process. We examine this
“stabilization point” in the next section.

Example 3.10.
For Zss, we have A(23) — 9a(2)++a(7) — 9l+1+3+3+34+3 _ 914
For Zg2, we have A(3%) = 3*()++a(8) — 30+1+1+1424242 _ 39,

Corollary 3.11. We have V,m = (p™)P m/zp ;' a(j). Hence the polyno-
mial index PI of Z,m is 1/ Epmfl a(j).

Proof. The first statement is simply writing down that V= is the total
number of polynomials of degree less than m divided by the total number
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of annihilators. The second statement uses the first statement and the
definition of the polynomial index:

m

Vm (™)? 1
PI(ZPT”) = TIZL)pm = m pm—1 N p™—1 - H
(™) (pm)P™ 30—y al)) i a(j)

Example 3.12. ,
Since Vas = (23)2" /21 = 224 /214 = 210 we have PI(Zys) = 1/2'4.
Since Vi2 = (32)3° /3% = 318/39 = 3% we have PI(Z32) = 1/3°.

4 Stopping points and computing V=

When exploring the number V= of distinct image vectors of polynomials
over Zym, we look through all polynomials of degree less than p™. It turns
out, however, that it is not necessary to go up beyond a certain, smaller de-
gree to find all the polynomial image vectors. Hence we make the following
definition.

Definition 4.1. In Z,, the stopping point is the smallest degree 0 < s < p™
such that the full set of polynomial image vectors is generated by polyno-
mials of degree less than s over Zym.

Theorem 4.2. The stopping point 0 < s < p™ in Zym is the smallest degree
j for which a(j) = m, i.e., by definition of the function «, it is the smallest
4 such that p™ divides j!.

The degree s is known as the Kempner number for p™ (see [3], Sequence
A002034).

Proof. By the definition of stopping point degree s, we have that the ratios
(p™)P" JA(p™) and (p™)*/(1 + Zj;; A(p™,j)) are equal since they both
give the count V,m, and s is the smallest degree for which this equality
holds. Applying Theorem 3.8, we obtain

®@™m)” _ (™)*
pa@++apm—1) ~ pa@+-+a(s—1)’

m

and simplifying we get

(pM)pm*S — pa(8)+-~+a(pm*1).
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On the left-hand side, the exponent on p is (p™ — s)m, i.e., it is the sum
of p™ — s copies of m. On the other hand, the right-hand side gives a
summation of p™ — s terms which can be no larger than m by definition of
the a-function. We conclude then that «(s) = m. Moreover, we must have
a(s — 1) < m, for otherwise s — 1 would make our ratios above equal, but
s is the smallest degree with this property. O

Example 4.3. In Z,s, since a(3) # 3 (i.e., 81 3!) but a(4) = 3 (i.e., 8 | 4!) we
see that 4 is the stopping point degree. In Zsz2, since a(5) = 1 but a(6) = 2,
we see that 6 is the stopping point degree. For a more dramatic example,
consider Zss. We have «(2) through «(4) are 0, a(5) through «(9) are 1,
a(10) through «(14) are 2, and «(15) = 3, so the stopping point is s = 15,
which is far short of 52 = 125. As both p and m increase, the gap between
s and p™ grows rapidly.

We have already observed that the number of polynomials of degree less
than p™ over Z,~ that generate a fixed polynomial image vector is the total
number of annihilators A(p™), so a formula for computing this number,
making use of the stopping point, might be helpful.

Proposition 4.4. If s is the stopping point for Zym, then

m s—1 .
Ap™) = ()" 0 (=2 V)

Proof. We know from Corollary 3.9 that

p™—1

A(p™) = p>i=z ),
Moreover the proof of Theorem 4.2 uses the equality

VA L (0
e tel)  pXisiel)’

p

Solving for A(p™), the quantity in the left-hand denominator, gives the
desired result. O

Example 4.5. We saw in Example 4.3 that s = 4 for Zys. Thus A(2%) =
(23)8-422 = 21242 = 214 45 computed directly above. Again, the higher p
and/or m goes, the greater computational advantage of the stopping degree.
For another example, s = 15 for Zgs, so A(5%) = (5%)125-15550142) —
5330415 — 5345 giving us that Vis = (5%)125 /5345 = 5375345 _ 530,

91



COTTON, EFFINGER, AND MULLEN

Finally, let us return to the computation of Vpm. We know that Vpm =
(p™)P" JA(p™) and that it can also be computed with smaller quantities
via Vpm = (pm)s/(pzj;21 1)), However, the former formula uses the a-
function, and the latter uses both the a-function and the stopping point.
It would be good to write down a formula for V,~ that involves only p
and m. The following is a start on that goal, with a restriction on these
quantities. First, an example to hopefully “light the way.”

Example 4.6. Consider Vzs. Note that s = 15 = (3)(5) = mp. Also,
St a(i) =5(1+2) =p(l+-+ (m—1)) = p(m — 1)(m)/2. We thus
conclude that Vis = (53)3)6) /50)(2)(3)/2 = 545 /515 — 530 a5 computed in
Example 4.5.

Theorem 4.7. If 1 < m < p, then Vpm = pp(m+1)/2,

Proof. For m = 1, we know that V,, = pP, so the result holds. Otherwise,
since

alp)=---=a2p—-1) =1,
a2p)=---=a@Bp-1) =2,

a((m—1)p) = :-:a(mp—l)—m—L
a(mp) =m,

we see that the stopping degree s is mp. Moreover,

a22)+-Fals—1)=a2)+ -+ a(mp—1)
=p+2p+---+(m—1)p
=p(1+ 24+ (m 1))
— plm — 1)(m) /2.
We have then
PP
pp(m—1)(m)/2

m’p—p(m—1)(m)/2

‘/p'm ==

=p
— pp(2m*—m®+m)/2

— ppm(m+1)/2' |
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Corollary 4.8.

(a) For all primes p, we have V2 = p*?
(b) For all odd primes p, we have Vs = p®?

Example 4.9.
(a) V},Q = 39, ‘/1012 = 101303.
(b) ‘/53 = 530; V1013 = 101606.

Finding a formula for V,= in terms of p and m when m exceeds p is more
complicated because of the behavior of the a-function. For example, for
Zsa, we have a(2) = a(3) = 1; but then «a(4) jumps by 2 rather than 1;
and later «(8) jumps by 3; etc. Thus the general case requires much closer
examination than the m < p case above.

We have one more result, which follows from Theorem 4.7 and the fact that,
by definition, PI(Zym) = Vym /(p™)P"

1
prpT—p(m) (mF 1) /2

Corollary 4.10. If m < p, then PI(Zpm) =

Example 4.11.

PI(Zy2) = 1/200)=22)B)/2 = 1 /92,

PI(Z32) = 1/32O=()2)3)/2 = 1/39 (as computed in Example 3.12).
PI(Zss) = 1/5(3)(125)=(3)(3)(0)/2 — 1 /5375-30 — 1 /5345,

While this index PI is difficult to determine for an arbitrary ring, we end
by noting that there are exactly four non-isomorphic rings of order 4: the
finite field of order 4, whose PI is 1 (as proved at the start); the ring Z, of
integers modulo 4, whose PI is 1/4; the ring L of 2 x 2 matrices (&) over
Zs, whose PI (by machine calculation) is 1/4; and the ring M = Zg X Zo,

whose PI (again by machine calculation) is 1/16.
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